EP2301175A1 - Control network for motor vehicles - Google Patents

Control network for motor vehicles

Info

Publication number
EP2301175A1
EP2301175A1 EP09772210A EP09772210A EP2301175A1 EP 2301175 A1 EP2301175 A1 EP 2301175A1 EP 09772210 A EP09772210 A EP 09772210A EP 09772210 A EP09772210 A EP 09772210A EP 2301175 A1 EP2301175 A1 EP 2301175A1
Authority
EP
European Patent Office
Prior art keywords
time
bus
nodes
sensors
control network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09772210A
Other languages
German (de)
French (fr)
Inventor
Calin Augustin Rotaru
Robert Erhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2301175A1 publication Critical patent/EP2301175A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/417Bus networks with decentralised control with deterministic access, e.g. token passing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]

Definitions

  • the invention relates to a control network for motor vehicles, with nodes in the form of control devices, sensors and / or actuators, which are interconnected by a timed bus and synchronized in time.
  • DE 103 40 165 A1 describes a control network of this type which has, for example, a sensor and a control unit.
  • the measurement times of the sensor are to be controlled so that the results obtained after each measurement cycle can be transmitted via a free time slot of the bus as far as possible without delay, so that the measurement data, when they arrive in the control unit, still as current as possible.
  • the invention defined in claim 1 uses the timed bus not only to synchronize the network nodes with the R. 322857 - 2 -
  • Bus but also to synchronize the network nodes with each other and, based on this, for temporal coordination of actions to be performed by different nodes.
  • the invention allows the measuring cycles of a plurality of sensors, for example two or more radar sensors, to be timed to one another in such a way that mutual signal interference is avoided.
  • the network contains different actuators, for example for automatic intervention in the propulsion system, the braking system and / or the steering of the vehicle as part of an automatic distance and speed control, an Electronic Stability System (ESP), a Predictive Safety System (PSS) For collision avoidance or mitigation of collision sequences, and the like, the invention allows the actions of the various actuators to be timed to avoid undesirable interactions.
  • ESP Electronic Stability System
  • PSS Predictive Safety System
  • the invention can also be used to match the actions of various Signalausêtsund control devices to each other so that each control unit provides the results calculated by him or partial results, which are also required by other control devices as timely as possible.
  • FIG. 1 is a block diagram of a control network according to the invention.
  • FIG. 2 shows a simplified communication protocol of a FlexRay bus, via which various nodes of the control network communicate with one another;
  • Figure 3 is a sketch of a driving situation to explain the operation of the network.
  • FIG. 4 shows an example of an action table created by a time coordination system.
  • the control network shown in Figure 1 comprises a number of nodes 10 interconnected by a timed bus 12 (e.g., a deterministic bus such as FlexRay or the like).
  • the nodes 10 are sensors, control units and actuators that are required for various assistance and safety functions in a motor vehicle.
  • the sensors include two radar sensors Rl and R2 which serve farther away R. 322857 - 4 -
  • Locate objects eg, preceding vehicles
  • a system of ultrasonic sensors U which are used to locate objects in the vicinity.
  • control devices Two further of the nodes 10 are control devices, namely a control unit PSS for the execution of
  • nodes 10 of the network are actuators Al and A2, for example for activating seatbelt pretensioners and for pre-activating airbags under the control of the control unit PSS.
  • Each node 10 has a bus interface 14 over which it communicates with the bus 12 and which includes a bus time reference system synchronized with the bus 12.
  • each node 10 also has a local time reference system 16, but is able to synchronize with the bus time reference system 14, as indicated by double arrows in FIG.
  • the control unit PSS additionally has a time coordination system 18, which serves to coordinate the actions to be performed by the various nodes with one another in terms of time. This is possible despite a spatial separation of the actuators 10, because the time reference systems 14, 16 of all actuators due to the synchronization with the bus 12 indicate the same global time, so that the execution times of the various R. 322857 - 5 -
  • the function of the time coordination system 18 may also be distributed over several nodes.
  • FIG. 2 shows a typical communication protocol of a timed bus 12.
  • the protocol for a FlexRay bus is shown here.
  • This protocol comprises 64 cycles each having a specific cycle time Y (depending on the global cluster parameter GCP, for example 5 ms).
  • Each cycle is divided into a static segment 20, a dynamic segment 22 and a symbol segment 24 and an idle time 25 used by the bus as a buffer for local time synchronization of the controllers).
  • Static segment 20 includes fixed length slots 26, each assigned to one of nodes 10.
  • the dynamic segment 22 contains slots 28 whose length can vary dynamically as needed.
  • the data to be sent by the individual nodes 10 or their bus interfaces are combined to form "frames" which are distributed to the slots assigned to the nodes in question.
  • the distribution can vary from cycle to cycle.
  • a new cycle cycle sequence begins, and the frame distribution repeats with the 64 cycle period.
  • Each frame has a cycle counter in the header.
  • controller 14 is automatic and part of the FlexRay specification.
  • the bus time reference system provided by the bus interfaces 14 is sufficient.
  • a global time reference can be achieved by synchronizing the local time reference systems 16 with the bus time reference system 14 over and over again.
  • the time coordination system 18 within the 64 * Y ms cyclically put a "global time" on the bus.
  • Control network is equipped.
  • the radar sensors Rl and R2 and their detection areas 32, 34 and the ultrasonic sensors U are shown symbolically. Furthermore, an object 36 is shown, which could be a potential obstacle possibly requiring triggering of the actuators A1 and A2.
  • the object 36 is a real obstacle or an insignificant object such as a tin can or the like lying on the road.
  • the object 36 is already in the blind spot of the two detection areas 32, 34, so that it can no longer be detected by the radar sensor.
  • the ultrasonic sensors U which are actually intended for the parking aid, are now to be used to qualify the object 36 more closely and to track it at close range.
  • the corresponding time sequence is shown schematically in FIG.
  • FIG. 4 shows an action table, which is created, for example, by the time coordination system 18 and continuously updated.
  • the left column shows the global time. In milliseconds, and in the right column are the associated actions and events to be performed by the various nodes of the network.
  • the radar sensor Rl performs its measurement at the global time 10
  • the radar sensor R2 performs its measurement at the global time 20.
  • this table is updated so that the radar sensor Rl performs its measurements at times 30, 50, 70, etc., and the radar sensor R2 at the times 40, 60, 80, etc.
  • FIG. 4 an event is shown in FIG. 4 which takes place at some non-fixed global time x and consists in the control unit PSS tracking the object 36 from the radar signals determining that the object can no longer be located (because it is now in the blind spot).
  • the controller PSS calculates the so-called "time to collision" TTC, which indicates the time that is likely to pass from the present moment until the object 36, if it is a real obstacle, collides with the vehicle 30.
  • the time coordination system 18 then ensures that the ultrasound sensors U are switched on at a somewhat later time, in the example shown at x + 0.5 TTC (although the parking assistance function is not in operation).
  • the ultrasonic sensors also locate the object 36, it must be assumed that this is a real obstacle, and at precisely calculated times, again under the control of the time coordination system 18, the actuators A1 and A2 are triggered. If the ultrasonic sensors can not locate the object 36 because it was a small, irrelevant object, the time coordination system 18 will cause the ultrasonic sensors to be at a time much later than the expected impact time, for example at x + 2 TTC to be switched off again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Control network for motor vehicles, having nodes (10) in the form of controllers (PSS, EH), sensors (R1, R2, U) and/or actuators (A1, A2) which are connected to one another and time-synchronized by a time-controlled bus (12), characterized in that each node (10) has a time reference system (14, 16) which is synchronized to the bus (12) and which indicates a global time which is common to all nodes, and in that at least one node has a time coordination system (18) which coordinates, for a plurality of actions which are to be performed by different nodes, the global times at which these actions are to be performed.

Description

R. 322857 - 1 - R. 322857 - 1 -
Beschreibungdescription
Titeltitle
Steuerungsnetzwerk für KraftfahrzeugeControl network for motor vehicles
Stand der TechnikState of the art
Die Erfindung betrifft ein Steuerungsnetzwerk für Kraftfahrzeuge, mit Knoten in der Form von Steuergeräten, Sensoren und/oder Aktoren, die durch einen zeitgesteuerten Bus miteinander verbunden und zeitlich synchronisiert sind.The invention relates to a control network for motor vehicles, with nodes in the form of control devices, sensors and / or actuators, which are interconnected by a timed bus and synchronized in time.
In DE 103 40 165 Al wird ein Steuerungsnetzwerk dieser Art beschrieben, das beispielsweise einen Sensor und ein Steuergerät aufweist. Durch die Synchronisation des Sensors mit dem Bus sollen hier die Meßzeiten des Sensors so gesteuert werden, daß die nach jedem Meßzyklus erhaltenen Ergebnisse möglichst ohne Verzögerung über einen freien Zeitslot des Busses übermittelt werden können, so daß die Meßdaten, wenn sie im Steuergerät eintreffen, noch möglichst aktuell sind.DE 103 40 165 A1 describes a control network of this type which has, for example, a sensor and a control unit. By synchronizing the sensor with the bus, the measurement times of the sensor are to be controlled so that the results obtained after each measurement cycle can be transmitted via a free time slot of the bus as far as possible without delay, so that the measurement data, when they arrive in the control unit, still as current as possible.
Offenbarung der ErfindungDisclosure of the invention
Die in Anspruch 1 angegebene Erfindung nutzt den zeitgesteuerten Bus nicht nur zur Synchronisation der Netzwerkknoten mit dem R. 322857 - 2 -The invention defined in claim 1 uses the timed bus not only to synchronize the network nodes with the R. 322857 - 2 -
Bus, sondern auch zur Synchronisation der Netzwerkknoten untereinander und, darauf aufbauend, zur zeitlichen Koordinierung der von verschiedenen Knoten auszuführenden Aktionen .Bus, but also to synchronize the network nodes with each other and, based on this, for temporal coordination of actions to be performed by different nodes.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben .Advantageous embodiments are specified in the subclaims.
Beispielsweise erlaubt es die Erfindung, die Meßzyklen mehrerer Sensoren, beispielsweise zweier oder mehrerer Radarsensoren, zeitlich so aufeinander abzustimmen, daß gegenseitige Signalstörungen vermieden werden.For example, the invention allows the measuring cycles of a plurality of sensors, for example two or more radar sensors, to be timed to one another in such a way that mutual signal interference is avoided.
Wenn das Netzwerk verschiedene Aktoren enthält, beispielsweise für automatische Eingriffe in das Antriebssystem, das Bremssystem und/oder die Lenkung des Fahrzeugs im Rahmen einer automatischen Abstands- und Geschwindigkeitsregelung, eines elektronischen Stabilitätssystems (ESP) , eines prädiktiven Sicherheitssystems (PSS; Predictive Safety System) zur Kollisionsvermeidung oder zur Milderung der Kollisionsfolgen, und dergleichen, erlaubt es die Erfindung, die Aktionen der verschiedenen Aktoren zeitlich so abzustimmen, daß unerwünschte Wechselwirkungen vermieden werden.If the network contains different actuators, for example for automatic intervention in the propulsion system, the braking system and / or the steering of the vehicle as part of an automatic distance and speed control, an Electronic Stability System (ESP), a Predictive Safety System (PSS) For collision avoidance or mitigation of collision sequences, and the like, the invention allows the actions of the various actuators to be timed to avoid undesirable interactions.
In der Kraftfahrzeugtechnik besteht eine zunehmende Tendenz, verschiedene Steuerungs- und Assistenzfunktionen miteinander zu vernetzen. In diesem Zusammenhang läßt sich die Erfindung auch dazu nutzen, die Aktionen von verschiedenen Signalauswertungsund Steuergeräten so aufeinander abzustimmen, daß jedes Steuergerät die von ihm errechneten Ergebnisse oder Teilergebnisse, die auch von anderen Steuergeräten benötigt werden, möglichst zeitgerecht zur Verfügung stellt. R. 322857 - 3 -In automotive engineering, there is an increasing tendency to network different control and assistance functions. In this context, the invention can also be used to match the actions of various Signalauswertungsund control devices to each other so that each control unit provides the results calculated by him or partial results, which are also required by other control devices as timely as possible. R. 322857 - 3 -
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert .An embodiment of the invention is illustrated in the drawings and explained in more detail in the following description.
Es zeigen:Show it:
Figur 1 ein Blockdiagramm eines erfindungsgemäßen Steuerungsnetzwerkes;Figure 1 is a block diagram of a control network according to the invention;
Figur 2 ein vereinfachtes Kommunikationsprotokoll eines FlexRay-Busses, über den verschiedene Knoten des Steuerungsnetzwerkes miteinander kommunizieren;FIG. 2 shows a simplified communication protocol of a FlexRay bus, via which various nodes of the control network communicate with one another;
Figur 3 eine Skizze einer Fahrsituation zur Erläuterung der Funktionsweise des Netzwerkes; undFigure 3 is a sketch of a driving situation to explain the operation of the network; and
Figur 4 ein Beispiel einer von einem Zeitkoordinationssystem erstellten Aktionstabelle.FIG. 4 shows an example of an action table created by a time coordination system.
Ausführungsformen der ErfindungEmbodiments of the invention
Das in Figur 1 gezeigte Steuerungsnetzwerk umfaßt eine Anzahl von Knoten 10, die durch einen zeitgesteuerten Bus 12 (z. B. einen deterministischen Bus wie FlexRay oder dergleichen) miteinander verbunden sind. Bei den Knoten 10 handelt es sich um Sensoren, Steuergeräte und Aktoren, die für verschiedene Assistenz- und Sicherheitsfunktionen in einem Kraftfahrzeug benötigt werden. Im gezeigten Beispiel umfassen die Sensoren zwei Radarsensoren Rl und R2 , die dazu dienen, weiter entfernte R. 322857 - 4 -The control network shown in Figure 1 comprises a number of nodes 10 interconnected by a timed bus 12 (e.g., a deterministic bus such as FlexRay or the like). The nodes 10 are sensors, control units and actuators that are required for various assistance and safety functions in a motor vehicle. In the example shown, the sensors include two radar sensors Rl and R2 which serve farther away R. 322857 - 4 -
Objekte (z. B. vorausfahrende Fahrzeuge) im Vorfeld des eigenen Fahrzeugs zu orten, sowie ein System von Ultraschallsensoren U, die zur Ortung von Objekten im Nahbereich dienen.Locate objects (eg, preceding vehicles) in advance of the own vehicle, as well as a system of ultrasonic sensors U, which are used to locate objects in the vicinity.
Bei zwei weiteren der Knoten 10 handelt es sich um Steuergeräte, nämlich ein Steuergerät PSS zur Ausführung vonTwo further of the nodes 10 are control devices, namely a control unit PSS for the execution of
Sicherheitsfunktionen (Pre-Crash) , und ein Steuergerät EH für eine elektronische Einparkhilfe auf der Basis der Signale der Ultraschallsensoren U.Safety functions (pre-crash), and an EH control unit for an electronic parking aid on the basis of the signals of the ultrasonic sensors U.
Weitere Knoten 10 des Netzwerkes sind Aktoren Al und A2 , beispielsweise zur Aktivierung von Sicherheitsgurtstraffern und zur Vor-Aktivierung von Airbags unter der Kontrolle des Steuergeräte PSS.Further nodes 10 of the network are actuators Al and A2, for example for activating seatbelt pretensioners and for pre-activating airbags under the control of the control unit PSS.
Jeder Knoten 10 weist eine Bus-Schnittstelle 14 auf, über die er mit dem Bus 12 kommuniziert und die ein mit dem Bus 12 synchronisiertes Bus-Zeitreferenzsystem enthält.Each node 10 has a bus interface 14 over which it communicates with the bus 12 and which includes a bus time reference system synchronized with the bus 12.
Im gezeigten Beispiel weist jeder Knoten 10 außerdem ein lokales Zeitreferenzsystem 16 auf, das jedoch in der Lage ist, sich mit dem Bus-Zeitreferenzsystem 14 zu synchronisieren, wie in Figur 1 durch Doppelpfeile angedeutet wird.In the example shown, each node 10 also has a local time reference system 16, but is able to synchronize with the bus time reference system 14, as indicated by double arrows in FIG.
Mindestens einer der Knoten, im gezeigten Beispiel das Steuergerät PSS, weist zusätzlich ein Zeitkoordinationssystem 18 auf, das dazu dient, die von den verschiedenen Knoten auszuführenden Aktionen zeitlich miteinander zu koordinieren. Dies ist trotz einer räumlichen Trennung der Aktoren 10 möglich, weil die Zeitreferenzsysteme 14, 16 sämtlicher Aktoren aufgrund der Synchronisation mit dem Bus 12 dieselbe globale Zeit anzeigen, so daß die Ausführungszeiten der verschiedenen R. 322857 - 5 -At least one of the nodes, in the example shown, the control unit PSS, additionally has a time coordination system 18, which serves to coordinate the actions to be performed by the various nodes with one another in terms of time. This is possible despite a spatial separation of the actuators 10, because the time reference systems 14, 16 of all actuators due to the synchronization with the bus 12 indicate the same global time, so that the execution times of the various R. 322857 - 5 -
Aktionen sämtlich auf dieselbe globale Zeit bezogen werden können .All actions can be related to the same global time.
In einer modifizierten Ausführungsform kann die Funktion des Zeitkoordinationssystems 18 auch auf mehrere Knoten verteilt sein .In a modified embodiment, the function of the time coordination system 18 may also be distributed over several nodes.
In Figur 2 ist ein typisches Kommunikationsprotokoll eines zeitgesteuerten Busses 12 dargestellt. Als Beispiel ist hier das Protokoll für einen FlexRay-Bus gezeigt. Dieses Protokoll umfaßt 64 Zyklen, die jeweils eine bestimmte Zykluszeit Y (abhängig vom Global Cluster Parameter GCP, beispielsweise 5 ms) haben. Jeder Zyklus ist unterteilt in ein statisches Segment 20, ein dynamisches Segment 22 und ein Symbolsegment 24 (Symbol Window Segment) und eine Leerlaufzeit 25 (Network IdIe Time), die von dem Bus als Puffer für die lokale Zeitsynchronisation der Controller genutzt wird) . Das statische Segment 20 enthält Slots 26 fester Länge, die jeweils einem der Knoten 10 zugewiesen sind. Das dynamische Segment 22 enthält Slots 28, deren Länge dynamisch, je nach Bedarf, variieren kann.FIG. 2 shows a typical communication protocol of a timed bus 12. As an example, the protocol for a FlexRay bus is shown here. This protocol comprises 64 cycles each having a specific cycle time Y (depending on the global cluster parameter GCP, for example 5 ms). Each cycle is divided into a static segment 20, a dynamic segment 22 and a symbol segment 24 and an idle time 25 used by the bus as a buffer for local time synchronization of the controllers). Static segment 20 includes fixed length slots 26, each assigned to one of nodes 10. The dynamic segment 22 contains slots 28 whose length can vary dynamically as needed.
Die von den einzelnen Knoten 10 bzw. deren Bus-Schnittstellen zu sendenden Daten sind zu "Frames" zusammengefaßt, die auf die den betreffenden Knoten zugewiesenen Slots verteilt werden. Die Verteilung kann dabei von Zyklus zu Zyklus variieren. Nach dem Ende des Zyklus Nr. 63 beginnt eine neue Sequenz mit dem Zyklus 0, und die Verteilung der Frames wiederholt sich mit der Periode von 64 Zyklen.The data to be sent by the individual nodes 10 or their bus interfaces are combined to form "frames" which are distributed to the slots assigned to the nodes in question. The distribution can vary from cycle to cycle. At the end of cycle # 63, a new cycle cycle sequence begins, and the frame distribution repeats with the 64 cycle period.
Jeder Frame besitzt im Header einen Zykluszähler (Cycle Counter) . Die Synchronisation der Zeitbasis der Schnittstellen R. 322857 - 6 -Each frame has a cycle counter in the header. The synchronization of the time base of the interfaces R. 322857 - 6 -
14 (Controller) erfolgt automatisch und ist Teil der FlexRay Spezifikation .14 (controller) is automatic and part of the FlexRay specification.
Ein Triggersignal "Start New Cycle" und die Zyklus-Zählwerte definieren somit zusammen eine einheitliche und kohärente Zeitreferenz über eine Zeitspanne von 64 * Y ms .A trigger signal "Start New Cycle" and the cycle counts thus together define a uniform and coherent time reference over a period of 64 * Y ms.
Wenn die miteinander zu koordinierenden Aktionen der verschiedenen Knoten sämtlich in demselben Intervall von 64 * Y ms liegen, genügt folglich das durch die Bus-Schnittstellen 14 bereitgestellte Bus-Zeitreferenzsystem. Wenn Aktionen über längere Zeitspannen geplant und zeitlich koordiniert werden sollen, läßt sich eine globale Zeitreferenz dadurch erreichen, daß sich die lokalen Zeitreferenzsysteme 16 immer wieder mit dem Bus-Zeitreferenzsystem 14 synchronisieren. Dazu kann beispielsweise das Zeitkoordinationssystem 18 innerhalb deer 64 * Y ms zyklisch eine "Globale Zeit" auf den Bus legen.Consequently, if the actions to be coordinated of the various nodes are all in the same interval of 64 * Y ms, then the bus time reference system provided by the bus interfaces 14 is sufficient. When actions are to be scheduled over long periods of time and coordinated in time, a global time reference can be achieved by synchronizing the local time reference systems 16 with the bus time reference system 14 over and over again. For this purpose, for example, the time coordination system 18 within the 64 * Y ms cyclically put a "global time" on the bus.
In Figur 3 ist schematisch die Frontpartie eines Kraftfahrzeugs 30 dargestellt, das mit dem hier beschriebenenIn Figure 3, the front end of a motor vehicle 30 is shown schematically, with the described here
Steuerungsnetzwerk ausgerüstet ist. Die Radarsensoren Rl und R2 sowie deren Ortungsbereiche 32, 34 und die Ultraschallsensoren U sind symbolisch dargestellt. Weiterhin ist ein Objekt 36 gezeigt, das ein potentielles Hindernis sein könnte, das möglicherweise ein Auslösen der Aktoren Al und A2 erforderlich macht .Control network is equipped. The radar sensors Rl and R2 and their detection areas 32, 34 and the ultrasonic sensors U are shown symbolically. Furthermore, an object 36 is shown, which could be a potential obstacle possibly requiring triggering of the actuators A1 and A2.
Kurz vor dem in Figur 3 dargestellten Zeitpunkt hat das Objekt 36 noch in den Ortungsbereichen 32, 34 beider Radarsensoren Rl und R2 gelegen, so daß es mit Hilfe der Radarsensorik vom Steuergerät PSS erkannt wurde. Allerdings ist anhand der Radarechos nicht ohne weiteres zu entscheiden, ob es sich bei R. 322857 - 7 -Shortly before the time shown in Figure 3, the object 36 has still located in the detection areas 32, 34 of both radar sensors Rl and R2, so that it was detected by the control unit PSS with the help of the radar sensor. However, based on the Radarechos not easy to decide whether it is R. 322857 - 7 -
dem Objekt 36 um ein wirkliches Hindernis handelt oder um ein unbedeutendes Objekt wie eine auf der Straße liegende Blechdose oder dergleichen.the object 36 is a real obstacle or an insignificant object such as a tin can or the like lying on the road.
In der in Figur 3 dargestellten Situation liegt das Objekt 36 bereits im toten Winkel der beiden Ortungsbereiche 32, 34, so daß es von der Radarsensorik nicht mehr erfaßt werden kann. In dem hier lediglich als Beispiel dargestellten Anwendungsfall sollen nun die Ultraschallsensoren U, die eigentlich für die Einparkhilfe vorgesehen sind, dazu genutzt werden, das Objekt 36 näher zu qualifizieren und im Nahbereich zu verfolgen. Der entsprechende Zeitablauf ist schematisch in Figur 4 dargestellt.In the situation shown in Figure 3, the object 36 is already in the blind spot of the two detection areas 32, 34, so that it can no longer be detected by the radar sensor. In the application example shown here only as an example, the ultrasonic sensors U, which are actually intended for the parking aid, are now to be used to qualify the object 36 more closely and to track it at close range. The corresponding time sequence is shown schematically in FIG.
Figur 4 zeigt eine Aktionstabelle, die beispielsweise vom Zeitkoordinationssystem 18 erstellt und fortlaufend aktualisiert wird. In der linken Spalte ist die globale Zeit angegeben, z. B. in Millisekunden, und in der rechten Spalte sind die zugehörigen Aktionen und Ereignisse aufgeführt, die von den verschiedenen Knoten des Netzwerks auszuführen sind. So führt beispielsweise der Radarsensor Rl seine Messung zur globalen Zeit 10 aus, während der Radarsensor R2 seine Messung zur globalen Zeit 20 ausführt. Obgleich dies in Figur 4 nicht näher dargestellt ist, wird diese Tabelle so fortgeschrieben, daß der Radarsensor Rl seine Messungen zu den Zeiten 30, 50, 70 etc. ausführt, und der Radarsensor R2 zu den Zeiten 40, 60, 80 etc.FIG. 4 shows an action table, which is created, for example, by the time coordination system 18 and continuously updated. The left column shows the global time. In milliseconds, and in the right column are the associated actions and events to be performed by the various nodes of the network. For example, the radar sensor Rl performs its measurement at the global time 10, while the radar sensor R2 performs its measurement at the global time 20. Although this is not shown in detail in Figure 4, this table is updated so that the radar sensor Rl performs its measurements at times 30, 50, 70, etc., and the radar sensor R2 at the times 40, 60, 80, etc.
Durch dieses Alternieren der Messungen mit den beiden Radarsensoren Rl und R2 wird sichergestellt, daß sich die von den verschiedenen Radarsensoren gesendeten und empfangenen Signale nicht gegenseitig stören. R. 322857 - 8 -This alternation of the measurements with the two radar sensors Rl and R2 ensures that the signals transmitted and received by the various radar sensors do not interfere with each other. R. 322857 - 8 -
Weiterhin ist in Figur 4 ein Ereignis dargestellt, das zu irgendeiner nicht vorher festliegenden globalen Zeit x stattfindet und darin besteht, daß das Steuergerät PSS, das das Objekt 36 anhand der Radarsignale verfolgt, feststellt, daß das Objekt nicht mehr geortet werden kann (weil es nun im toten Winkel liegt) . Zu diesem Zeitpunkt berechnet das Steuergerät PSS die sogenannte "time to collision" TTC, die die Zeit angibt, die vom aktuellen Augenblick an voraussichtlich noch vergehen wird, bis das Objekt 36, wenn es denn ein echtes Hindernis ist, mit dem Fahrzeug 30 kollidiert. Daraufhin sorgt das Zeitkoordinationssystem 18 dafür, daß zu einem etwas späteren Zeitpunkt, im gezeigten Beispiel bei x + 0,5 TTC, die Ultraschallsensoren U eingeschaltet werden (obgleich die Einparkhilfefunktion nicht in Betrieb ist) .Furthermore, an event is shown in FIG. 4 which takes place at some non-fixed global time x and consists in the control unit PSS tracking the object 36 from the radar signals determining that the object can no longer be located (because it is now in the blind spot). At this time, the controller PSS calculates the so-called "time to collision" TTC, which indicates the time that is likely to pass from the present moment until the object 36, if it is a real obstacle, collides with the vehicle 30. The time coordination system 18 then ensures that the ultrasound sensors U are switched on at a somewhat later time, in the example shown at x + 0.5 TTC (although the parking assistance function is not in operation).
Wenn die Ultraschallsensoren das Objekt 36 ebenfalls orten, muß davon ausgegangen werden, daß es sich um ein echtes Hindernis handelt, und zu genau berechneten Zeiten werden dann, wieder unter der Kontrolle des Zeitkoordinationssystems 18, die Aktoren Al und A2 ausgelöst. Wenn die Ultraschallsensoren das Objekt 36 nicht orten können, da es sich um ein kleines, irrelevantes Objekt gehandelt hat, sorgt das Zeitkoordinationssystem 18 dafür, daß die Ultraschallsensoren zu einem Zeitpunkt, der deutlich später liegt als der erwartete Aufprallzeitpunkt, beispielsweise bei x + 2 TTC, wieder ausgeschaltet werden. If the ultrasonic sensors also locate the object 36, it must be assumed that this is a real obstacle, and at precisely calculated times, again under the control of the time coordination system 18, the actuators A1 and A2 are triggered. If the ultrasonic sensors can not locate the object 36 because it was a small, irrelevant object, the time coordination system 18 will cause the ultrasonic sensors to be at a time much later than the expected impact time, for example at x + 2 TTC to be switched off again.

Claims

R.322857 - 9 -Ansprüche R.322857 - 9 claims
1. Steuerungsnetzwerk für Kraftfahrzeuge, mit Knoten (10) in der Form von Steuergeräten (PSS, EH), Sensoren (Rl, R2 , U) und/oder Aktoren (Al, A2), die durch einen zeitgesteuerten Bus (12) miteinander verbunden und zeitlich synchronisiert sind, dadurch gekennzeichnet, daß jeder Knoten (10) ein mit dem Bus (12) synchronisiertes Zeitreferenzsystem (14, 16) aufweist, das eine allen Knoten gemeinsame globale Zeit anzeigt, und daß mindestens ein Knoten ein Zeitkoordinationssystem (18) aufweist, das für mehrere, von verschiedenen Knoten auszuführende Aktionen die globalen Zeiten koordiniert, zu denen diese Aktionen auszuführen sind.A control network for motor vehicles, with nodes (10) in the form of control units (PSS, EH), sensors (Rl, R2, U) and / or actuators (Al, A2) interconnected by a timed bus (12) and time synchronized, characterized in that each node (10) has a time reference system (14, 16) synchronized with the bus (12), which indicates a global time common to all nodes, and at least one node has a time coordination system (18) that coordinates the global times for which these actions are to be performed for several actions to be performed by different nodes.
2. Steuerungsnetzwerk nach Anspruch 1, bei dem der Bus (12) ein deterministischer Bus ist.A control network according to claim 1, wherein the bus (12) is a deterministic bus.
3. Steuerungsnetzwerk nach Anspruch 2, bei dem das Zeitkoordinationssystem (18) dazu ausgebildet ist, Aktionen von Knoten zu koordinieren, deren globale Ausführungszeiten um mehr als die Dauer eines Zyklus des Busses (12) auseinander liegen.A control network according to claim 2, wherein the time coordination system (18) is arranged to coordinate actions of nodes whose global execution times are more than the duration of one cycle of the bus (12) apart.
4. Steuerungsnetzwerk nach einem der vorstehenden Ansprüche, bei dem mindestens zwei der Knoten (10) Sensoren (Rl, R2, U) sind, und das Zeitkoordinationssystem (18) dazu R. 322857 - 10 -4. Control network according to one of the preceding claims, wherein at least two of the nodes (10) are sensors (Rl, R2, U), and the time coordination system (18) thereto R. 322857 - 10 -
ausgebildet ist, die Meßzeiten der Sensoren so zu koordinieren, daß sie sich nicht gegenseitig stören.is designed to coordinate the measurement times of the sensors so that they do not interfere with each other.
5. Steuerungsnetzwerk nach Anspruch 4, bei dem die Sensoren Radarsensoren (Rl, R2 ) und/oder Ultraschallsensoren (U) sind. 5. Control network according to claim 4, wherein the sensors radar sensors (Rl, R2) and / or ultrasonic sensors (U).
EP09772210A 2008-06-30 2009-04-30 Control network for motor vehicles Withdrawn EP2301175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008040024A DE102008040024A1 (en) 2008-06-30 2008-06-30 Control network for motor vehicles
PCT/EP2009/055256 WO2010000510A1 (en) 2008-06-30 2009-04-30 Control network for motor vehicles

Publications (1)

Publication Number Publication Date
EP2301175A1 true EP2301175A1 (en) 2011-03-30

Family

ID=40910689

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09772210A Withdrawn EP2301175A1 (en) 2008-06-30 2009-04-30 Control network for motor vehicles

Country Status (4)

Country Link
US (1) US20110172849A1 (en)
EP (1) EP2301175A1 (en)
DE (1) DE102008040024A1 (en)
WO (1) WO2010000510A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013209736A1 (en) * 2013-05-24 2014-11-27 Robert Bosch Gmbh Method for evaluating obstacles in a driver assistance system for motor vehicles
US9935685B2 (en) * 2015-05-28 2018-04-03 Qualcomm Incorporated DC power line synchronization for automotive sensors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111888A (en) * 1997-05-27 2000-08-29 Micro Motion, Inc. Deterministic serial bus communication system
DE10059673A1 (en) * 2000-12-01 2002-06-06 Bosch Gmbh Robert Pulse radar method as well as pulse radar sensor and system
DE10340165A1 (en) 2003-09-01 2005-03-24 Robert Bosch Gmbh Sensor connection procedure for vehicle TTCAN networks synchronizes sensor or actuator to bus system clock during fast clock first phase
US7929461B2 (en) * 2005-06-09 2011-04-19 Tekronix, Inc. Controller area network performance parameters measurement
DE102006013640A1 (en) * 2006-03-22 2007-09-27 Robert Bosch Gmbh Method and data transmission system for transferring data between the data transmission system and a host processor of a subscriber of a data transmission system
DE102007028002A1 (en) * 2006-06-14 2008-03-27 Continental Teves Ag & Co. Ohg Transmission method for measured data from sensor device to control device, involves changing sensor device to synchronous mode on receiving synchronization messages and sending data messages that includes measured data for control device
US7602311B2 (en) * 2006-10-27 2009-10-13 Price Sherry D Vehicle distance measuring safety warning system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010000510A1 *

Also Published As

Publication number Publication date
DE102008040024A1 (en) 2009-12-31
US20110172849A1 (en) 2011-07-14
WO2010000510A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
EP3145793B1 (en) Parking assist system for a motor vehicle
EP1412774B1 (en) Method for the temporal synchronisation of a plurality of vehicle sensors
EP2033375B1 (en) Method for transmitting measured data, and sensor device
DE10000302B4 (en) Method and device for exchanging data between at least two subscribers connected to a bus system
DE19813957C2 (en) Occupant protection system with a central unit, sensors and several control modules communicatively connected by means of a BUS system for triggering occupant protection devices
DE112018006016T5 (en) Vehicle control device and electronic control system
WO2002095443A1 (en) Methods and device for self-calibration of a radar sensor arrangemetn
DE102010029223B4 (en) Brake assistant for motor vehicles with improved braking effect
DE102017209328A1 (en) Device for the synchronization of clocks in control units and control unit
EP1211070B2 (en) Device and method for synchronizing processes running in several units
EP2040965A1 (en) Method for synchronizing components of a motor vehicle brake system, and electronic brake control system
WO2001048510A1 (en) Method and device for detecting and evaluating objects in the area surrounding a vehicle
DE102014221435A1 (en) Method and device for driving an ultrasonic sensor
EP2301175A1 (en) Control network for motor vehicles
EP2527869B1 (en) Sensor device for a motor vehicle, motor vehicle and method for operating at least two sensors in a motor vehicle
DE102018214338B4 (en) Method for determining accident-relevant parameters using a vehicle radar system
DE10330255A1 (en) Driver assistance method and device for a motor vehicle
EP4018600B1 (en) Method for recognising the position of a bus subscriber
DE10333934A1 (en) Synchronization of data processing units
EP3134300B1 (en) Psi5 interface universally usable for asynchronous and synchronous data transfer
DE102012212393A1 (en) Device for measuring distance between vehicle and surroundings of vehicle, has processing unit that sends time-controlled messages to transceivers that determines priority of event-triggered messages based on message content
DE102017204394A1 (en) Self-organizing sensor arrangement and method for its operation, in particular for a motor vehicle with PSI5 interface
DE102006031237B4 (en) Control device for controlling personal protection devices, device for controlling personal protection devices and methods for controlling personal protection devices
DE102019120519A1 (en) Computer-implemented method and computer program product for testing real or virtual control devices
DE102015105366A1 (en) Driver assistance device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110412