EP2301053B1 - Thermal fuse - Google Patents

Thermal fuse Download PDF

Info

Publication number
EP2301053B1
EP2301053B1 EP09779728.6A EP09779728A EP2301053B1 EP 2301053 B1 EP2301053 B1 EP 2301053B1 EP 09779728 A EP09779728 A EP 09779728A EP 2301053 B1 EP2301053 B1 EP 2301053B1
Authority
EP
European Patent Office
Prior art keywords
fusible
connection
thermal fuse
melting
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09779728.6A
Other languages
German (de)
French (fr)
Other versions
EP2301053A1 (en
Inventor
Georg Schulze-Icking-Konert
Daniel Seebacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2301053A1 publication Critical patent/EP2301053A1/en
Application granted granted Critical
Publication of EP2301053B1 publication Critical patent/EP2301053B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges

Definitions

  • the invention relates to a thermal fuse for interrupting a current flow in modules, in particular for use in the automotive sector
  • thermal fuse In order to protect electrical modules against overheating, irreversible thermal fuses are required, which interrupt a current-carrying conductor if the ambient temperature is too high, ie trigger the fuse.
  • the thermal fuses are designed so that the trip temperature is not reached due to a high current flow, so that it is ensured that they can not be triggered by a high current but only by an excessively high ambient temperature.
  • a thermal fuse of the above type thus serves to provide an independent Abschaltpfad for electrical modules available, with inadmissible high temperatures in the module, for example, due to failures of components, short circuits, for example, by external influence, malfunction of insulation materials and the like Current flow is safely interrupted.
  • thermal fuses are usually based on the concept of a fixed spring, such as a spring. a soldered leaf spring, which opens a contact by a spring force when triggered. In this case, even in the unreleased case, a mechanical force is permanently exerted on the joint, which leads to quality problems, especially in long periods of use, such as. long operating times in the automotive sector. In particular, a disruption of the solder joint may occur after some time.
  • An alternative embodiment of a thermal fuse uses a conductive fusing element of a fusible material that begins to melt at a triggering temperature and thereby breaks an electrical connection.
  • a melting element is usually arranged between two connection regions, at which the molten material of the melting element collects after melting due to the surface tension. A separation was successful when a deposit or a drop of fused material has formed on one or both terminal areas, without leaving a conductive bridge of fusible material between the terminal areas.
  • connection areas In experiments with connection areas, the front side, on which the fusible element completely rests, just as large as the cross-section of the contact surface of the fusible element or cup-shaped connection areas, which completely surrounds the fusible element at its ends, it was observed that they do not always reliably trigger since a conductive bridge of fusible material remains between the coverings or between the drops at the connection areas.
  • a thermal fuse for interrupting a current flow in modules is provided, in particular for use in the automotive sector.
  • the thermal fuse comprises a terminal having a terminal portion and a fuse of fused material attached at one end to the terminal portion to provide an electrically conductive connection between the fuse and the terminal.
  • the connecting element has a propagation region for receiving molten melting material.
  • the propagation region has a spreading surface on which a melt material part of the molten melting material spreads during melting of the melting element, wherein the propagation surface corresponds to an inner surface of a funnel-shaped structure.
  • connection elements in the propagation region have a surface structure in which, in particular, an energy barrier with respect to the propagation of the molten melting material is avoided. This can be achieved in particular by providing the propagation surface only with curvatures of 0 or positive curvatures, and in particular avoiding negative curvatures in order to reduce the surface energy. It can thereby minimize the risk that bridges of fusible material remain between the connection areas of the thermal fuse.
  • the thermal fuse may have two connection elements, between which the fusible element is received, so that ends of the fusible element are attached to the corresponding connection elements.
  • the propagation surface may correspond to an inner surface of a funnel-shaped structure.
  • the tip of the funnel-shaped structure may be flattened with a surface which is equal to or smaller than the cross-sectional area of the end of the fusible element.
  • a conventional thermal fuse 1 which has two connection elements 2, between which a conductive fusible element 3 is arranged.
  • the fusible element 3 is fastened with its two ends to a respective connection region 4 of the connection lines 2, for example soldered.
  • the cross section of the connection elements 2 at the contact point to the fusible element 3 and the cross section at the ends of the fusible element 3 are substantially the same, so that the connection elements 2 substantially flush with respect to their surfaces in the fusible element 3.
  • the fusible material of the fusible element 3 melts.
  • the fusible material of the fusible element is preferably a low-melting metal or an alloy, such as an aluminum alloy. Lot, which in the molten state, a high surface energy, i. Surface tension.
  • a flux 5 may be provided, that breaks through the oxide skin during melting and increases the wetting or the surface tension.
  • the liquid melting material creeps beyond the connection region 4 of the connection elements 2 beyond a propagation surface 6 of the connection elements 2, in which the connection region 4 is located.
  • additional fusible material is distributed on the previously exposed surface of the connecting element 2, so that the liquid melting material from the center of the fusible element 3, which has previously made the conductive connection between the connecting elements 2, is withdrawn. This takes place until the melting element 3 is completely divided into two pieces of molten material at the connection elements 2, which collect as drops or coating on the respective propagation surface 6 of the connection element 2.
  • the conductive connection between the connection elements 2 should be interrupted.
  • the surface tension corresponds to the difference between the surface free energies of the surface of the connection element 2 and the surface of the liquid melt material.
  • E is the total surface energy
  • E 0 a proportion of the constant material-dependent surface energy
  • connection elements 2 By suitably choosing the geometry of the propagation region 6 of one or more of the connection elements 2, it can now be ensured that the curvature-dependent fraction of the surface energy during and after the triggering is negative and thus the contraction of the melted melt material parts 7 at the connection regions is supported.
  • FIGS. 3a and 3b, 4a and 4b such as 5a and 5b show embodiments for thermal fuses 1, which provide the molten melt material parts 7 within the corresponding propagation region 6 no or a negative curvature even after melting.
  • the surface free energy is reduced, thereby promoting spreading of the molten melt material. This reduces the risk that bridges of molten material remain between the connection elements 2.
  • the propagation region 6 comprises a flat surface which contains the connection region 4 of the connection element 2.
  • the area of the terminal portion 4 is widened so that the surface of the terminal portion 4 where the fuse element 3 abuts before reflowing and the spreading surface 6 on which the molten fuse material propagates lie in a flat surface.
  • the spreading surface 6 is formed with a size sufficient to receive so much molten melting material that it is ensured that no conductive bridge between the connecting elements 2 remains.
  • the total area depends, among other things, on the surface tension of the enamel material (material properties) and the volume of the enamel element 3 off.
  • the surface is chosen so large that a drop of half the amount of the melt material of the fusible element 3 on the flat propagation surface 6 of the connection element 2 finds room. This can be found, for example, empirically.
  • the propagation surfaces 6 cup-shaped with a cup rim 8 and a cup bottom 9 are formed.
  • the cup bottom 9 is preferably flat and has a larger area than corresponds to the connection region 4 of the melting element 3.
  • the cup edges 8 of the propagation surface 6 are perpendicular or obliquely inwards or outwards from the cup bottom 9 in the direction of the opposite connection element 2 or in the direction of the melting element 3.
  • the angle between the cup bottom 9 and the cup rim 8 forms a negative curvature which promotes the spreading of the molten melt material over the cup-shaped spreading surface 6.
  • the volume of the cup-shaped spreading surface 6 that is to say the volume defined by the edge of the cup rim 8 opposite the cup bottom 9, has a size to accommodate the volume of the molten melting material part 7 which is at least half the volume of the melting material of the melting element 3 corresponds.
  • a distribution of the molten melting material on the cup-shaped spreading surface 6 is in FIG. 4b shown.
  • FIGS. 5a and 5b a further thermal fuse 1 is shown, in which the propagation surface 6 is funnel-shaped.
  • the thermal fuse 1 of FIG. 5 has for this purpose a connection funnel 10 as a propagation region, which is arranged around the surface 11 of the connection region 4 of the connection element 2. Between the surface 11 and the funnel-shaped propagation region 10 is also a negative curvature, which is the distribution and spreading of the molten melt material within the connection funnel 10th supported.
  • the volume formed by the connection funnel 10 corresponds to at least half the volume of the melt material of the fusible element 3.
  • the melting material may in all embodiments be formed from low-melting solder, which is preferably provided with a flux, such as e.g. a flux soul in the interior of the fusible element 3 or as a surface covering of the fusible element 3 is formed.
  • a flux such as e.g. a flux soul in the interior of the fusible element 3 or as a surface covering of the fusible element 3 is formed.
  • a hollow ball which is open to the opposite connection region and whose inner surface likewise has a negative curvature
  • the size of the area in which the molten melting material spreads depends on the volume of the fusible element and the melt material part, which attaches to the respective connection element 3.
  • the boundary of the propagation region should not have to be exceeded by the molten melting material during the melting of the fusible element 3 in order to completely separate the thermal fuse 1.
  • the opposing connection elements 2 are identical. These can also be designed differently, which in particular can shift the distribution of the melting material parts accumulating during the melting process.

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Thermosicherung zum Unterbrechen eines Stromflusses in Modulen, insbesondere für den Einsatz im Automotive-BereichThe invention relates to a thermal fuse for interrupting a current flow in modules, in particular for use in the automotive sector

Stand der TechnikState of the art

Um elektrische Module gegen Überhitzung zu schützen, werden irreversible Thermosicherungen benötigt, die bei einer zu hohen Umgebungstemperatur einen stromführenden Leiter unterbrechen, das heißt die Sicherung auslösen. Die Thermosicherungen sind dabei so ausgelegt, dass die Auslösetemperatur nicht aufgrund eines hohen Stromflusses erreicht wird, so dass gewährleistet ist, dass diese nicht durch einen hohen Strom sondern ausschließlich durch eine zu hohe Umgebungstemperatur ausgelöst werden können. Eine Thermosicherung der oben genannten Art dient also dazu, einen unabhängigen Abschaltpfad für elektrische Module zur Verfügung zu stellen, wobei bei unzulässig hohen Temperaturen in dem Modul, zum Beispiel aufgrund von Ausfällen von Bauelementen, Kurzschlüssen zum Beispiel durch Fremdeinwirkung, Fehlfunktionen von Isolationswerkstoffen und dergleichen der Stromfluss sicher unterbrochen wird.In order to protect electrical modules against overheating, irreversible thermal fuses are required, which interrupt a current-carrying conductor if the ambient temperature is too high, ie trigger the fuse. The thermal fuses are designed so that the trip temperature is not reached due to a high current flow, so that it is ensured that they can not be triggered by a high current but only by an excessively high ambient temperature. A thermal fuse of the above type thus serves to provide an independent Abschaltpfad for electrical modules available, with inadmissible high temperatures in the module, for example, due to failures of components, short circuits, for example, by external influence, malfunction of insulation materials and the like Current flow is safely interrupted.

Herkömmliche Thermosicherungen basieren zumeist auf dem Konzept einer fixierten Feder, wie z.B. einer eingelöteten Blattfeder, die im Auslösefall einen Kontakt durch eine Federkraft öffnet. Dabei wird auch im nicht ausgelösten Fall permanent eine mechanische Kraft auf die Verbindungsstelle ausgeübt, was zu Qualitätsproblemen speziell bei langen Einsatzzeiten, wie z.B. den langen Betriebszeiten im Automotive-Bereich, führen kann. Insbesondere kann nach einiger Zeit eine Zerrüttung der Lötstelle auftreten.Conventional thermal fuses are usually based on the concept of a fixed spring, such as a spring. a soldered leaf spring, which opens a contact by a spring force when triggered. In this case, even in the unreleased case, a mechanical force is permanently exerted on the joint, which leads to quality problems, especially in long periods of use, such as. long operating times in the automotive sector. In particular, a disruption of the solder joint may occur after some time.

Eine alternative Ausführungsform einer Thermosicherung verwendet ein leitendes Schmelzelement aus einem Schmelzmaterial, das bei einer Auslösetemperatur zu schmelzen beginnt und dadurch eine elektrische Verbindung unterbricht. Ein solches Schmelzelement wird in der Regel zwischen zwei Anschlussbereiche angeordnet, an denen sich das aufgeschmolzene Material des Schmelzelements nach dem Aufschmelzen aufgrund der Oberflächenspannung sammelt. Eine Trennung war erfolgreich, wenn sich an einem oder an beiden Anschlussbereichen ein Belag bzw. ein Tropfen von Schmelzmaterial gebildet hat, ohne dass eine leitende Brücke aus Schmelzmaterial zwischen den Anschlussbereichen verbleibt.An alternative embodiment of a thermal fuse uses a conductive fusing element of a fusible material that begins to melt at a triggering temperature and thereby breaks an electrical connection. Such a melting element is usually arranged between two connection regions, at which the molten material of the melting element collects after melting due to the surface tension. A separation was successful when a deposit or a drop of fused material has formed on one or both terminal areas, without leaving a conductive bridge of fusible material between the terminal areas.

In Versuchen mit Anschlussbereichen, deren Stirnseite, an der das Schmelzelement vollständig anliegt, gerade so groß ist wie der Querschnitt der Anlagenfläche des Schmelzelementes bzw. bei becherförmigen Anschlussbereichen, die das Schmelzelement an seinen Enden vollständig umschließt, wurde beobachtet, dass diese nicht immer zuverlässig auslösen, da eine leitende Brücke aus Schmelzmaterial zwischen den Belägen bzw. zwischen den Tropfen an den Anschlussbereichen verbleibt.In experiments with connection areas, the front side, on which the fusible element completely rests, just as large as the cross-section of the contact surface of the fusible element or cup-shaped connection areas, which completely surrounds the fusible element at its ends, it was observed that they do not always reliably trigger since a conductive bridge of fusible material remains between the coverings or between the drops at the connection areas.

Dokument US 5,631,621 offenbart z.B. eine Thermosicherung gemäß dem Oberbegriff des Anspruchs 1.document US 5,631,621 For example, discloses a thermal fuse according to the preamble of claim 1.

Es ist daher Aufgabe der vorliegenden Erfindung, eine Thermosicherung der oben genannten Art zur Verfügung zu stellen, die zuverlässiger auslöst.It is therefore an object of the present invention to provide a thermal fuse of the type mentioned above, which triggers reliable.

Offenbarung der ErfindungDisclosure of the invention

Diese Aufgabe wird durch die Thermosicherung nach Anspruch 1 gelöst.This object is achieved by the thermal fuse according to claim 1.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.Further advantageous embodiments of the invention are specified in the dependent claims.

Gemäß einem Aspekt ist eine Thermosicherung zum Unterbrechen eines Stromflusses in Modulen vorgesehen, insbesondere für den Einsatz im Automotive-Bereich. Die Thermosicherung umfasst ein Anschlusselement mit einem Anschlussbereich und ein Schmelzelement aus Schmelzmaterial, das mit einem Ende an dem Anschlussbereich angebracht ist, um eine elektrisch leitende Verbindung zwischen dem Schmelzelement und dem Anschlusselement zu schaffen. Das Anschlusselement weist einen Ausbreitungsbereich zur Aufnahme von aufgeschmolzenem Schmelzmaterial auf. Der Ausbreitungsbereich weist eine Ausbreitungsfläche auf, auf der sich beim Schmelzen des Schmelzelementes ein Schmelzmaterialteil aus dem aufgeschmolzenen Schmelzmaterial ausbreitet, wobei die Ausbreitungsfläche einer Innenfläche einer trichterförmigen Structur entspricht.According to one aspect, a thermal fuse for interrupting a current flow in modules is provided, in particular for use in the automotive sector. The thermal fuse comprises a terminal having a terminal portion and a fuse of fused material attached at one end to the terminal portion to provide an electrically conductive connection between the fuse and the terminal. The connecting element has a propagation region for receiving molten melting material. The propagation region has a spreading surface on which a melt material part of the molten melting material spreads during melting of the melting element, wherein the propagation surface corresponds to an inner surface of a funnel-shaped structure.

Eine Idee, bei der obigen Thermosicherung besteht darin, die Ausbreitungsbereiche zur Aufnahme des aufgeschmolzenen Schmelzmaterials so auszubilden, dass beim Auslösen die Trennung des Strompfades durch das Schmelzelement durch Ausnutzen der Oberflächenspannung des aufgeschmolzenen Schmelzmaterials unterstützt wird. Insbesondere weisen die Anschlusselemente im Ausbreitungsbereich eine Flächenstruktur auf, bei der insbesondere eine Energiebarriere bezüglich der Ausbreitung des aufgeschmolzenen Schmelzmaterials vermieden wird. Dies kann insbesondere dadurch erreicht werden, dass die Ausbreitungsfläche nur mit Krümmungen von 0 oder positiven Krümmungen versehen wird und insbesondere negative Krümmungen vermieden werden, um die Oberflächenenergie zu reduzieren. Es kann dadurch das Risiko minimiert werden, dass Brücken aus Schmelzmaterial zwischen den Anschlussbereichen der Thermosicherung verbleiben.One idea, in the above thermal fuse, is to form the propagation areas for receiving the molten melt material such that when triggered, the separation of the current path through the fuse element is assisted by utilizing the surface tension of the molten melt material. In particular, the connection elements in the propagation region have a surface structure in which, in particular, an energy barrier with respect to the propagation of the molten melting material is avoided. This can be achieved in particular by providing the propagation surface only with curvatures of 0 or positive curvatures, and in particular avoiding negative curvatures in order to reduce the surface energy. It can thereby minimize the risk that bridges of fusible material remain between the connection areas of the thermal fuse.

Weiterhin kann die Thermosicherung zwei Anschlusselemente aufweisen, zwischen denen das Schmelzelement aufgenommen ist, so dass Enden des Schmelzelementes an den entsprechenden Anschlusselementen angebracht sind.Furthermore, the thermal fuse may have two connection elements, between which the fusible element is received, so that ends of the fusible element are attached to the corresponding connection elements.

Gemäß einer weiteren Ausführungsform kann die Ausbreitungsfläche einer Innenfläche einer trichterförmigen Struktur entsprechen. Insbesondere kann die Spitze der trichterförmigen Struktur mit einer Fläche abgeflacht sein, die gleich oder kleiner ist als die Querschnittsfläche des Endes des Schmelzelementes.According to a further embodiment, the propagation surface may correspond to an inner surface of a funnel-shaped structure. In particular, the tip of the funnel-shaped structure may be flattened with a surface which is equal to or smaller than the cross-sectional area of the end of the fusible element.

Kurzbeschreibung der ZeichnungenBrief description of the drawings

Bevorzugte Ausführungsformen werden anhand der beigefügten Zeichnungen näher erläutert. Es zeigen

  • Figuren 1 a und 1 b eine herkömmliche Thermosicherung im nicht ausgelösten bzw. ausgelösten Zustand;
  • Figur 2 eine herkömmliche Thermosicherung mit becherförmigen Anschlussbereichen;
  • Figuren 3a und 3b eine Thermosicherung mit erweiterten Anschlussbereichen in einem nicht ausgelösten bzw. ausgelösten Zustand;
  • Figuren 4a und 4b eine weitere Thermosicherung in einem nicht ausgelösten bzw. ausgelösten Zustand; und
  • Figuren 5a und 5b eine erfindungsgemäβe Ansführungsform einer Thermosicherung in einem nicht ausgelösten bzw.
  • ausgelösten Zustand.
Preferred embodiments will be explained in more detail with reference to the accompanying drawings. Show it
  • FIGS. 1 a and 1b a conventional thermal fuse in the untripped or tripped state;
  • FIG. 2 a conventional thermal fuse with cup-shaped connection areas;
  • FIGS. 3a and 3b a thermal fuse with extended connection areas in a non-tripped or tripped state;
  • FIGS. 4a and 4b another thermal fuse in an untripped or tripped state; and
  • FIGS. 5a and 5b An inventive embodiment of a thermal fuse in an untripped or
  • triggered condition.

Beschreibung von AusführungsformenDescription of embodiments

In der nachfolgenden Beschreibung bezeichnen gleiche Bezugszeichen Elemente gleicher oder vergleichbarer Funktion.In the following description, like reference numerals designate elements of like or comparable function.

In den Figuren 1 a und 1 b ist eine herkömmliche Thermosicherung 1 dargestellt, die zwei Anschlusselemente 2 aufweist, zwischen denen ein leitendes Schmelzelement 3 angeordnet ist. Das Schmelzelement 3 ist mit seinen beiden Enden an einem jeweiligen Anschlussbereich 4 der Anschlussleitungen 2 befestigt, z.B. angelötet. Der Querschnitt der Anschlusselemente 2 an der Kontaktstelle zu dem Schmelzelement 3 und der Querschnitt an den Enden des Schmelzelementes 3 sind im Wesentlichen gleich, so dass die Anschlusselemente 2 im Wesentlichen bezüglich ihrer Oberflächen bündig in das Schmelzelement 3 übergehen.In the FIGS. 1 a and 1 b, a conventional thermal fuse 1 is shown, which has two connection elements 2, between which a conductive fusible element 3 is arranged. The fusible element 3 is fastened with its two ends to a respective connection region 4 of the connection lines 2, for example soldered. The cross section of the connection elements 2 at the contact point to the fusible element 3 and the cross section at the ends of the fusible element 3 are substantially the same, so that the connection elements 2 substantially flush with respect to their surfaces in the fusible element 3.

Übersteigt die Umgebungstemperatur der Thermosicherung 1 einen Schwellenwert, so schmilzt das Schmelzmaterial des Schmelzelementes 3. Bei dem Schmelzmaterial des Schmelzelementes handelt es sich vorzugsweise um ein niedrig schmelzendes Metall bzw. eine Legierung wie z.B. Lot, das im aufgeschmolzenen Zustand eine hohe Oberflächenenergie, d.h. Oberflächenspannung, aufweist. Auf der Oberfläche oder im Inneren des Schmelzelementes 3 kann ein Flussmittel 5 vorgesehen sein, dass die Oxidhaut beim Aufschmelzen durchbricht und die Benetzung bzw. die Oberflächenspannung erhöht.If the ambient temperature of the thermal fuse 1 exceeds a threshold value, the fusible material of the fusible element 3 melts. The fusible material of the fusible element is preferably a low-melting metal or an alloy, such as an aluminum alloy. Lot, which in the molten state, a high surface energy, i. Surface tension. On the surface or in the interior of the fusible element 3, a flux 5 may be provided, that breaks through the oxide skin during melting and increases the wetting or the surface tension.

Aufgrund der Oberflächenspannung des aufgeschmolzenen Schmelzmaterials kriecht das flüssige Schmelzmaterial über den Anschlussbereich 4 der Anschlusselemente 2 hinaus über eine Ausbreitungsfläche 6 der Anschlusselemente 2, in der sich der Anschlussbereich 4 befindet. Dadurch wird zusätzliches Schmelzmaterial an der zuvor freiliegenden Oberfläche des Anschlusselements 2 verteilt, so dass das flüssige Schmelzmaterial aus der Mitte des Schmelzelementes 3, das zuvor die leitende Verbindung zwischen den Anschlusselementen 2 hergestellt hat, abgezogen wird. Dies erfolgt, bis das Schmelzelement 3 vollständig in zwei Schmelzmaterialteile an den Anschlusselementen 2 aufgeteilt ist, die sich als Tropfen oder Belag an der jeweiligen Ausbreitungsfläche 6 des Anschlusselementes 2 sammeln. Dadurch soll die leitfähige Verbindung zwischen den Anschlusselementen 2 unterbrochen werden.Due to the surface tension of the molten melting material, the liquid melting material creeps beyond the connection region 4 of the connection elements 2 beyond a propagation surface 6 of the connection elements 2, in which the connection region 4 is located. As a result, additional fusible material is distributed on the previously exposed surface of the connecting element 2, so that the liquid melting material from the center of the fusible element 3, which has previously made the conductive connection between the connecting elements 2, is withdrawn. This takes place until the melting element 3 is completely divided into two pieces of molten material at the connection elements 2, which collect as drops or coating on the respective propagation surface 6 of the connection element 2. As a result, the conductive connection between the connection elements 2 should be interrupted.

In Versuchen mit derartigen Thermosicherungen wurde herausgefunden, dass diese nicht immer zuverlässig auflösen, da trotz Aufschmelzen des Schmelzmaterials leitfähige Brücken von Schmelzmaterial zwischen den Anschlusselementen 2 verbleiben. Ein Grund hierfür liegt offenbar darin, dass das Schmelzmaterial eine zu geringe Oberflächenspannung aufweist, das heißt die Affinität, des aufgeschmolzenen Schmelzmaterials sich auf der bereitgestellten Ausbreitungsfläche 6 des Anschlusselementes 2, d.h. in einem Ausbreitungsbereich, zu verteilen, ist nicht ausreichend dafür , das Schmelzmaterial zwischen den Anschlusselementen 2 vollständig zu trennen.In experiments with such thermal fuses, it has been found that they do not always dissolve reliably because, despite the melting of the melt material, conductive bridges of melt material remain between the connection elements 2. One reason for this is evidently that the melting material has too low a surface tension, that is to say the affinity of the molten melting material, on the provided propagation surface 6 of the connection element 2, ie in a propagation region, is not sufficient to completely separate the melt material between the connection elements 2.

Für ein Verständnis des Phänomens ist eine Analyse der freien Oberflächenenergie sinnvoll. Die Oberflächenspannung entspricht der Differenz der freien Oberflächenenergien der Oberfläche des Anschlusselementes 2 und der Oberfläche des flüssigen Schmelzmaterials. Die Oberflächenenergie ist nach der allgemeinen Gibbs-Thomsen-Relation aus einem konstanten, materialabhängigen Anteil und einem Anteil zusammengesetzt, der von der Krümmung der Oberfläche, auf der sich das geschmolzene Material verteilen soll, abhängt: E = E 0 + E 1 / r k ,

Figure imgb0001

wobei E der gesamten Oberflächenenergie, E0 einem Anteil der konstanten materialabhängigen Oberflächenenergie, E1/rk einem Anteil der krümmungsabhängigen Oberflächenenergie (mit rk = Krümmungsradius) entspricht.For an understanding of the phenomenon, an analysis of the surface free energy is useful. The surface tension corresponds to the difference between the surface free energies of the surface of the connection element 2 and the surface of the liquid melt material. The surface energy is composed, according to the general Gibbs-Thomsen relation, of a constant, material-dependent proportion and a proportion which depends on the curvature of the surface on which the molten material is to be distributed: e = e 0 + e 1 / r k .
Figure imgb0001

where E is the total surface energy, E 0 a proportion of the constant material-dependent surface energy, E 1 / r k a proportion of the curvature-dependent surface energy (with r k = radius of curvature).

Da bei der Ausbildung der Thermosicherung gemäß den Figuren 1 a und 1 b der Krümmungsradius rk = ∞ ist, beträgt die krümmungsabhängige Oberflächenenergie E1/rk = 0.As in the formation of the thermal fuse according to the FIGS. 1 a and 1 b is the radius of curvature r k = ∞, the curvature-dependent surface energy E 1 / r k = 0.

Bei der Thermosicherung 1 der Fig. 2 mit einem becherförmigen Anschlussbereich 4 des Anschlusselementes 2, der das Schmelzelement 3 vollständig an seinen Enden umschließt, wird der krümmungsabhängige Anteil der freien Oberflächenenergie sogar positiv, da es sich beim dem Rand des becherförmigen Anschlussbereichs 4 um positive Krümmungen handelt. Diese positiven Krümmungen stellen Energiebarrieren dar, die einem Ausbreiten des aufgeschmolzenen Schmelzmaterials über den Ausbreitungsbereich 6 auf den Anschlusselementen 2 entgegenwirken und somit das Risiko erhöht, dass zu wenig Material auf die Ausbreitungsfläche 6 bzw. Oberfläche der Anschlusselemente 2 gezogen wird und dadurch eine leitende Brücke aus Schmelzmaterial zwischen den Anschlusselementen 2 verbleibt.In the thermal fuse 1 of Fig. 2 with a cup-shaped connection region 4 of the connection element 2, which completely surrounds the melting element 3 at its ends, the curvature-dependent component of the surface free energy is even positive, since the edge of the cup-shaped connection region 4 is positive curvature. These positive curvatures represent energy barriers which counteract spreading of the melted melt material over the propagation region 6 on the connection elements 2 and thus increase the risk that too little material is drawn onto the propagation surface 6 or surface of the connection elements 2 and thereby leaving a conductive bridge of fusible material between the terminal elements 2.

Durch geeignete Wahl der Geometrie des Ausbreitungsbereichs 6 eines oder mehrerer der Anschlusselemente 2 kann nun gewährleistet werden, dass der krümmungsabhängige Anteil der Oberflächenenergie während und nach dem Auslösen negativ ist und es somit das Zusammenziehen der aufgeschmolzenen Schmelzmaterialteile 7 an den Anschlussbereichen unterstützt wird.By suitably choosing the geometry of the propagation region 6 of one or more of the connection elements 2, it can now be ensured that the curvature-dependent fraction of the surface energy during and after the triggering is negative and thus the contraction of the melted melt material parts 7 at the connection regions is supported.

Die Figuren 3a und 3b, 4a und 4b sowie 5a und 5b zeigen Ausführungsformen für Thermosicherungen 1, die den aufgeschmolzenen Schmelzmaterialteilen 7 innerhalb des entsprechenden Ausbreitungsbereichs 6 keine oder eine negative Krümmung auch nach dem Aufschmelzen bereitstellen. So wird die freie Oberflächenenergie verringert, wodurch ein Ausbreiten des aufgeschmolzenen Schmelzmaterials unterstützt wird. Dies verringert das Risiko, dass Brücken aus Schmelzmaterial zwischen den Anschlusselementen 2 verbleiben.The FIGS. 3a and 3b, 4a and 4b such as 5a and 5b show embodiments for thermal fuses 1, which provide the molten melt material parts 7 within the corresponding propagation region 6 no or a negative curvature even after melting. Thus, the surface free energy is reduced, thereby promoting spreading of the molten melt material. This reduces the risk that bridges of molten material remain between the connection elements 2.

In der Ausführungsform der Figuren 3a und 3b ist ein Ausbreitungsbereich 6 als Oberflächenabschnitt des Anschlusselementes 2 ausgebildet. Der Ausbreitungsbereich 6 umfasst eine ebene Fläche, die den Anschlussbereich 4 des Anschlusselementes 2 enthält. Mit anderen Worten die Fläche des Anschlussbereichs 4 ist verbreitert, so dass die Fläche des Anschlussbereichs 4, an dem das Schmelzelement 3 vor dem Aufschmelzen anliegt, und die Ausbreitungsfläche 6 , auf dem sich das aufgeschmolzene Schmelzmaterial ausbreitet, in einer ebenen Fläche liegen.In the embodiment of the FIGS. 3a and 3b is a propagation region 6 formed as a surface portion of the connection element 2. The propagation region 6 comprises a flat surface which contains the connection region 4 of the connection element 2. In other words, the area of the terminal portion 4 is widened so that the surface of the terminal portion 4 where the fuse element 3 abuts before reflowing and the spreading surface 6 on which the molten fuse material propagates lie in a flat surface.

Vorzugsweise ist die Ausbreitungsfläche 6 mit einer Größe ausgebildet, die ausreicht, so viel aufgeschmolzenes Schmelzmaterial aufzunehmen, dass gewährleistet ist, dass keine leitende Brücke zwischen den Anschlusselementen 2 verbleibt. Die gesamte Fläche hängt u. a. von der Oberflächenspannung des Schmelzmaterials (Materialeigenschaften) und dem Volumen des Schmelzelementes 3 ab. Vorzugsweise ist die Fläche jedoch so groß gewählt, dass ein Tropfen der halben Menge des Schmelzmaterials des Schmelzelementes 3 auf der ebenen Ausbreitungsfläche 6 des Anschlusselementes 2 Platz findet. Dies kann beispielsweise empirisch herausgefunden werden.Preferably, the spreading surface 6 is formed with a size sufficient to receive so much molten melting material that it is ensured that no conductive bridge between the connecting elements 2 remains. The total area depends, among other things, on the surface tension of the enamel material (material properties) and the volume of the enamel element 3 off. Preferably, however, the surface is chosen so large that a drop of half the amount of the melt material of the fusible element 3 on the flat propagation surface 6 of the connection element 2 finds room. This can be found, for example, empirically.

Bei der Ausführungsform der Figuren 4a und 4b sind die Ausbreitungsflächen 6 becherförmig mit einem Becherrand 8 und einem Becherboden 9 ausgebildet. Der Becherboden 9 ist vorzugsweise eben und weist eine größere Fläche auf, als dem Anschlussbereich 4 des Schmelzelementes 3 entspricht. Die Becherränder 8 des Ausbreitungsfläche 6 stehen senkrecht oder schräg nach innen oder außen von dem Becherboden 9 in Richtung des gegenüberliegenden Anschlusselementes 2 oder in Richtung des Schmelzelementes 3 ab. Der Winkel zwischen dem Becherboden 9 und dem Becherrand 8 bildet eine negative Krümmung, die das Verteilen bzw. Ausbreiten des aufgeschmolzenen Schmelzmaterials über die becherförmige Ausbreitungsfläche 6 unterstützt.In the embodiment of the FIGS. 4a and 4b the propagation surfaces 6 cup-shaped with a cup rim 8 and a cup bottom 9 are formed. The cup bottom 9 is preferably flat and has a larger area than corresponds to the connection region 4 of the melting element 3. The cup edges 8 of the propagation surface 6 are perpendicular or obliquely inwards or outwards from the cup bottom 9 in the direction of the opposite connection element 2 or in the direction of the melting element 3. The angle between the cup bottom 9 and the cup rim 8 forms a negative curvature which promotes the spreading of the molten melt material over the cup-shaped spreading surface 6.

Vorzugsweise weist das Volumen der becherförmigen Ausbreitungsfläche 6, das heißt das Volumen, das durch den dem Becherboden 9 gegenüberliegenden Rand des Becherrandes 8 definiert wird, eine Größe auf, um das Volumen des aufgeschmolzenem Schmelzmaterialteils 7 aufzunehmen, das mindestens dem halben Volumen des Schmelzmaterials des Schmelzelementes 3 entspricht. Eine Verteilung des aufgeschmolzenen Schmelzmaterials auf der becherförmigen Ausbreitungsfläche 6 ist in Figur 4b dargestellt.Preferably, the volume of the cup-shaped spreading surface 6, that is to say the volume defined by the edge of the cup rim 8 opposite the cup bottom 9, has a size to accommodate the volume of the molten melting material part 7 which is at least half the volume of the melting material of the melting element 3 corresponds. A distribution of the molten melting material on the cup-shaped spreading surface 6 is in FIG. 4b shown.

In den Figuren 5a und 5b ist eine weitere Thermosicherung 1 dargestellt, bei der die Ausbreitungsfläche 6 trichterförmig ausgebildet ist. Die Thermosicherung 1 der Figur 5 weist dazu einen Anschlusstrichter 10 als Ausbreitungsbereich auf, der um die Fläche 11 des Anschlussbereichs 4 des Anschlusselementes 2 angeordnet ist. Zwischen der Fläche 11 und dem trichterförmigen Ausbreitungsbereich 10 besteht ebenfalls eine negative Krümmung, die das Verteilen und Ausbreiten des aufgeschmolzenen Schmelzmaterials innerhalb des Anschlusstrichters 10 unterstützt. Ebenso wie bei der Ausführungsform der Figuren 4a und 4b ist vorgesehen, dass das Volumen, das durch den Anschlusstrichter 10 gebildet wird, mindestens dem halben Volumen des Schmelzmaterials des Schmelzelementes 3 entspricht.In the FIGS. 5a and 5b a further thermal fuse 1 is shown, in which the propagation surface 6 is funnel-shaped. The thermal fuse 1 of FIG. 5 has for this purpose a connection funnel 10 as a propagation region, which is arranged around the surface 11 of the connection region 4 of the connection element 2. Between the surface 11 and the funnel-shaped propagation region 10 is also a negative curvature, which is the distribution and spreading of the molten melt material within the connection funnel 10th supported. As in the embodiment of the FIGS. 4a and 4b it is provided that the volume formed by the connection funnel 10 corresponds to at least half the volume of the melt material of the fusible element 3.

Das Schmelzmaterial kann bei allen Ausführungsformen aus niedrig schmelzendem Lot ausgebildet sein, das vorzugsweise mit einem Flussmittel versehen ist, wie z.B. einer Flussmittelseele im Inneren des Schmelzelementes 3 oder als Oberflächenbelag des Schmelzelementes 3 ausgebildet ist.The melting material may in all embodiments be formed from low-melting solder, which is preferably provided with a flux, such as e.g. a flux soul in the interior of the fusible element 3 or as a surface covering of the fusible element 3 is formed.

Auch andere Ausführungsformen, wie z.B. eine zu dem gegenüberliegenden Anschlussbereich geöffnete Hohlkugel, deren Innenfläche ebenfalls eine negative Krümmung aufweist, können vorgesehen sein. Die Größe des Bereichs, in dem sich das aufgeschmolzene Schmelzmaterial verteilt, hängt von dem Volumen des Schmelzelementes und dem Schmelzmaterialteil ab, der sich an dem betreffenden Anschlusselement 3 anlagert. Die Begrenzung des Ausbreitungsbereichs sollte beim Aufschmelzen des Schmelzelements 3 nicht von dem aufgeschmolzenen Schmelzmaterial überschritten werden müssen, um die Thermosicherung 1 vollständig zu trennen.Other embodiments, such as e.g. a hollow ball which is open to the opposite connection region and whose inner surface likewise has a negative curvature can be provided. The size of the area in which the molten melting material spreads, depends on the volume of the fusible element and the melt material part, which attaches to the respective connection element 3. The boundary of the propagation region should not have to be exceeded by the molten melting material during the melting of the fusible element 3 in order to completely separate the thermal fuse 1.

In den gezeigten Ausführungsformen sind die sich gegenüberliegenden Anschlusselemente 2 gleich ausgebildet. Diese können auch verschieden ausgebildet sein, wodurch sich insbesondere die Verteilung der sich beim Aufschmelzen anlagernden Schmelzmaterialteile verschieben kann.In the embodiments shown, the opposing connection elements 2 are identical. These can also be designed differently, which in particular can shift the distribution of the melting material parts accumulating during the melting process.

Claims (3)

  1. Thermal fuse (1) for interrupting a power flew in modules, in particular for use in the automotive sector, comprising:
    - a connecting element (2) with a connecting region
    - a fusible element (3) of fusible material, which is attached by one end to the connecting region, in order to create an electrically conducting connection between the fusible element (3) and the connecting element (2);
    the connecting element (2) having an expansion region for accommodating melted fusible material,
    wherein
    the expansion region has an expansian area (6), on which part of the fusible material from the melted fusible material spreads out during the melting of the fusible element, characterized in that the expansion area (6) corresponds to an inside area of a funnel-shaped structure.
  2. Thermal fuse (1) according to Claim 1, characterized in that two connecting elements (2) are provided, between which the fusible element (3) is accommodated, so that ends of the fusible element (3) are attached to the corresponding connecting elements (2).
  3. Thermal fuse (1) according to Claim 1 or 2, characterized in that the tip of the funnel-shaped structure is flattened with an area which is equal to or smaller than the cross-sectional area of the end of the fusible element (3).
EP09779728.6A 2008-07-11 2009-06-12 Thermal fuse Not-in-force EP2301053B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008040345A DE102008040345A1 (en) 2008-07-11 2008-07-11 thermal fuse
PCT/EP2009/057255 WO2010003758A1 (en) 2008-07-11 2009-06-12 Thermal fuse

Publications (2)

Publication Number Publication Date
EP2301053A1 EP2301053A1 (en) 2011-03-30
EP2301053B1 true EP2301053B1 (en) 2013-08-14

Family

ID=41047025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09779728.6A Not-in-force EP2301053B1 (en) 2008-07-11 2009-06-12 Thermal fuse

Country Status (7)

Country Link
US (1) US20110181385A1 (en)
EP (1) EP2301053B1 (en)
JP (1) JP5269197B2 (en)
KR (1) KR20110049772A (en)
CN (1) CN102089846A (en)
DE (1) DE102008040345A1 (en)
WO (1) WO2010003758A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705323B1 (en) 1995-06-07 2004-03-16 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
DE102007014334A1 (en) * 2007-03-26 2008-10-02 Robert Bosch Gmbh Fusible alloy element, thermal fuse with a fusible alloy element and method for producing a thermal fuse
DE102007014338A1 (en) * 2007-03-26 2008-10-02 Robert Bosch Gmbh thermal fuse
JP5072796B2 (en) * 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 Protection element and secondary battery device
JP5301298B2 (en) * 2009-01-21 2013-09-25 デクセリアルズ株式会社 Protective element
JP5130232B2 (en) 2009-01-21 2013-01-30 デクセリアルズ株式会社 Protective element
JP5130233B2 (en) * 2009-01-21 2013-01-30 デクセリアルズ株式会社 Protective element
JP5192524B2 (en) * 2009-09-04 2013-05-08 乾坤科技股▲ふん▼有限公司 Protective device
DE102014200640A1 (en) 2014-01-16 2015-07-30 Robert Bosch Gmbh Battery system and method for disconnecting a battery system from a connected electrical load
CN206976273U (en) * 2017-06-30 2018-02-06 厦门赛尔特电子有限公司 A kind of HVDC thermal cut-off
DE102018206345A1 (en) * 2018-04-25 2019-10-31 Robert Bosch Gmbh Fuse, gas container and method of assembling a fuse and installing it in a gas container

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168632A (en) * 1961-10-31 1965-02-02 Advance Transformer Co Ballast disconnect device having a coating of flux material
US3354282A (en) * 1966-05-25 1967-11-21 Gen Electric Canada Thermal fuse with capillary action
US3377448A (en) * 1966-08-22 1968-04-09 Littelfuse Inc Thermal responsive miniature fuse
JPS5443554A (en) * 1977-09-12 1979-04-06 Nifco Inc Temperature fuse
JPS6017775Y2 (en) * 1981-02-28 1985-05-30 日本電気ホームエレクトロニクス株式会社 temperature fuse
JPS6017777Y2 (en) * 1982-09-01 1985-05-30 資 岡崎 temperature fuse
US5252942A (en) * 1992-01-08 1993-10-12 Cooper Industries, Inc. Fuse links and dual element fuse
CN1131334A (en) * 1994-12-22 1996-09-18 中岛卓夫 Thermal fuse
JP3562696B2 (en) * 1997-12-16 2004-09-08 矢崎総業株式会社 Manufacturing method of fuse element
JP4376428B2 (en) * 2000-06-16 2009-12-02 株式会社タムラサーマルデバイス Method for coating insulating tube on lead wire of thermal fuse and thermal fuse thereof
CN1251269C (en) * 2001-02-20 2006-04-12 松下电器产业株式会社 Thermal fuse
JP4155825B2 (en) * 2001-03-02 2008-09-24 ビックマン−ベルケ ゲーエムベーハー Manufacturing method of fuse element
US6838971B2 (en) * 2001-05-21 2005-01-04 Matsushita Electric Industrial Co., Ltd. Thermal fuse
JP3990169B2 (en) * 2002-03-06 2007-10-10 内橋エステック株式会社 Alloy type temperature fuse
JP4001757B2 (en) * 2002-03-06 2007-10-31 内橋エステック株式会社 Alloy type temperature fuse
JP4230194B2 (en) * 2002-10-30 2009-02-25 内橋エステック株式会社 Alloy type thermal fuse and wire for thermal fuse element
JP4230251B2 (en) * 2003-03-04 2009-02-25 内橋エステック株式会社 Alloy type thermal fuse and material for thermal fuse element
JP4207686B2 (en) * 2003-07-01 2009-01-14 パナソニック株式会社 Fuse, battery pack and fuse manufacturing method using the same
JP4717686B2 (en) * 2006-04-04 2011-07-06 内橋エステック株式会社 Tubular thermal fuse
DE102008003659A1 (en) * 2007-03-26 2008-10-02 Robert Bosch Gmbh Fuse for interrupting a voltage and / or current-carrying conductor in the event of thermal failure and method for producing the fuse

Also Published As

Publication number Publication date
DE102008040345A1 (en) 2010-01-14
KR20110049772A (en) 2011-05-12
US20110181385A1 (en) 2011-07-28
JP5269197B2 (en) 2013-08-21
EP2301053A1 (en) 2011-03-30
WO2010003758A1 (en) 2010-01-14
JP2011527493A (en) 2011-10-27
CN102089846A (en) 2011-06-08

Similar Documents

Publication Publication Date Title
EP2301053B1 (en) Thermal fuse
EP2130210B1 (en) Thermal fuse
EP2126949B1 (en) Triggering device for a thermal fuse
AT409900B (en) ELECTRICAL COMPONENT WITH SAFETY DISCONNECTOR
WO2008116681A1 (en) Fusible alloy element, thermal fuse with fusible alloy element and method for producing a thermal fuse
DE102011052805B4 (en) fuse
DE3909302C2 (en)
DE102008057166B4 (en) Electrical circuit with overtemperature protection
DE4241922C2 (en) Fuse
DE3716391C2 (en)
WO2007033863A1 (en) Temperature fuse and method for interrupting a voltage and/or current conductor in case of a thermal defect
EP3245661B1 (en) Fuse component
WO2007125000A1 (en) Process for the dimensioning of an arresting element cut-off switch offor a surge absorberarrester
WO2012016882A1 (en) Thermal link
DE4311116C2 (en) Solid state electrolytic capacitor
DE102016208421A1 (en) Electrical energy storage cell with integrated bridging device
DE2800932A1 (en) MELT FUSE
EP3420575B1 (en) Electric fuse device
DE102019119513B4 (en) Surge protection element and component arrangement for a surge protection element
DE102017131432B3 (en) Arrangement for the thermal monitoring of electronic components located on a wiring carrier
DE102018114564B4 (en) Surge arresters
DE102016109923B4 (en) Electrical safety device with improved release characteristics
DE102014223482B4 (en) Strip-like element for mounting in an electrical fuse and a fuse with such an element
DE102008052444A1 (en) Electrical fuse i.e. over current protecting device, for use in electrical equipment of vehicle, has electrical contact points connected with each other by fuse element made of fuse material, where points are made of contact material
EP1513180A1 (en) Low voltage high power electric fuse link with movable indicating element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 627260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009007797

Country of ref document: DE

Effective date: 20131010

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131216

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009007797

Country of ref document: DE

Effective date: 20140515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140612

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140612

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 627260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090612

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160628

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160810

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009007797

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170612

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814