EP2296157B1 - Electromechanical actuator with interdigital electrodes - Google Patents

Electromechanical actuator with interdigital electrodes Download PDF

Info

Publication number
EP2296157B1
EP2296157B1 EP10175846.4A EP10175846A EP2296157B1 EP 2296157 B1 EP2296157 B1 EP 2296157B1 EP 10175846 A EP10175846 A EP 10175846A EP 2296157 B1 EP2296157 B1 EP 2296157B1
Authority
EP
European Patent Office
Prior art keywords
plates
substrate
actuator
movable element
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10175846.4A
Other languages
German (de)
French (fr)
Other versions
EP2296157A1 (en
Inventor
Bernard Diem
Henri Sibuet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2296157A1 publication Critical patent/EP2296157A1/en
Application granted granted Critical
Publication of EP2296157B1 publication Critical patent/EP2296157B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0042Bistable switches, i.e. having two stable positions requiring only actuating energy for switching between them, e.g. with snap membrane or by permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0084Switches making use of microelectromechanical systems [MEMS] with perpendicular movement of the movable contact relative to the substrate

Definitions

  • the invention relates to miniature electromechanical actuators type MEMS (English Micro-Electro-Mechanical Systems, or microelectromechanical systems) made according to micro-machining technologies inspired by the manufacture of electronic integrated circuit chips.
  • MEMS English Micro-Electro-Mechanical Systems, or microelectromechanical systems
  • the actuators are elements that cause a mechanical action under the effect of the application of a voltage or an electric control current.
  • the mechanical action is a displacement of a movable element of the actuator.
  • the effect of this displacement depends on the type of actuator considered;
  • electrical switches are mainly concerned, that is to say that the displacement of the movable element causes the opening or closing of an electrical contact; but it may also be possible to apply the invention to other types of actuators, such as optical switches in which the displacement of the movable element interrupts or modifies the optical path followed by a light beam.
  • MEMS-type electrical switches have already been proposed which are actuated by an electromagnetic force produced by a small electrical coil integrated in a fixed part of the switch, the coil acting on a magnetic part carried by the movable element of the actuator.
  • Other actuators have also been proposed, the moving element of which is displaced by an electrostatic force produced between two planar conducting electrodes located opposite one another, one formed on a substrate of the actuator, the other carried by the movable element of the actuator.
  • the patent US 7,071,431 describes switches that work on this principle.
  • the movable element is a cantilevered recessed beam parallel to the fixed substrate. The electrostatic force is exerted between the substrate and the beam and tends to attract the free end thereof to the substrate.
  • An object of the invention is to propose a solution making it easier to find a good compromise between the factors just described.
  • a miniature electromechanical actuator electrostatically controlled which comprises a fixed substrate and a movable member hinged to the substrate so as to allow a displacement of a portion of the movable element in a first selected direction, a series parallel conductive plates on the movable element, whose height extends in the first direction and which are regularly spaced in a second direction perpendicular to the first, and another series of parallel conductive plates on the fixed substrate, the two series plates being interdigitated symmetrically one in the other and overlapping one part of their height so that an electric voltage applied between the two series produces an electrostatic force having a component according to the height of the plates in the first direction , the plates having opposite ends in a third direction perpendicular to the first two, characterized in that the opposite ends of the plates of one of the series are mechanically and electrically secured to two end crosspieces which face opposite ends of the plates of the other series.
  • the sleepers are preferably integral with the plates of the movable member.
  • the first series of movable conductive plates form an interdigitated movable electrode with the second series of plates forming a fixed electrode. A control voltage is applied between these two electrodes.
  • each plate of the fixed electrode is entirely surrounded by a conductive material which comprises two plates of the movable electrode and the parts of sleepers that bring them together at their opposite ends.
  • a conductive material which comprises two plates of the movable electrode and the parts of sleepers that bring them together at their opposite ends.
  • the crosspieces are preferably micro-machined in the same conductive material as the plates of the first series and form a block homogeneous with them.
  • the conductive plates are preferably flat; their length in the third direction is preferably greater than their height in the direction of travel. This direction of displacement (and therefore the height of the plates) is preferably perpendicular to the surface of the substrate in which the fixed and mobile electrodes are machined. The fixed plates thus rise vertically from the surface of the substrate.
  • the articulation of the movable electrode on the substrate is preferably machined in the same material as the fixed plates or the movable plates. It can be constituted by torsion arms allowing a rotation of the plates in their own plane, therefore around an axis parallel to the substrate and perpendicular to the plates, or by arms or bending plates embedded in the substrate and also allowing a rotation of the moving electrode in the plane of the plates.
  • the two end crosspieces which interconnect the plates of a series are preferably situated exactly equidistant from the two opposite ends of one plate of the other series, and this distance is preferably the same for all the plates. .
  • the application of a control voltage between the fixed and mobile electrodes creates forces in the direction of the desired displacement, but also longitudinal forces exerted between a crossbar connecting the plates of the first series and the ends of plates of the other series. These latter forces compensate each other, however, when the two sleepers are located at the same distance from the opposite ends of the same plate.
  • the sleepers stiffen the set of parallel plates they connect and make it more difficult to deform them.
  • the movable element of the actuator is arranged symmetrically on either side of the articulation, in the manner of a rocker, and it comprises two movable electrodes integral with one of the other (each consisting of a series of conductive plates). These moving electrodes operate in phase opposition, i.e. a control voltage applied to a moving electrode tends to the closer to the substrate, which distances the other, and vice versa.
  • Each movable electrode is associated with a respective fixed electrode with which it is interdigitated.
  • the movable element may carry one or more electrical contact pads for establishing an electrical connection when the movable member is moved to a position corresponding to a switch closure.
  • the stud carried by the movable element short-circuits two conductors carried by the fixed substrate when the free end of the movable element approaches the substrate under the effect of the electrostatic force.
  • the switch thus formed may, in particular in the case where it is constituted by symmetrical actuating means, be associated with magnetic holding means which make it possible to maintain the state reached by the switch even after the voltage has been removed. or tilt control current.
  • the magnetic holding means comprise for example a permanent magnet placed above the movable element and a soft layer of magnetic material placed below the fixed element. Or they comprise one or more permanent magnets integrated in the fixed substrate below the fixed element and the movable element.
  • a conductive layer is formed on the substrate below the plates constituting the moving electrodes, between the plates constituting the fixed electrodes and at the same potential as these, to create an additional electrostatic attraction force attracting the element. mobile to the substrate.
  • the actuator Figures 1 and 2 is an electrical switch that is formed on a plane substrate 10.
  • the figure 2 represents the switch in the open state.
  • the substrate 10 may be of electrically insulating material or of silicon, in which conductive and / or semiconducting and / or insulating layers are formed in desired patterns using conventional microelectronics techniques (layer deposition successions , engravings of these layers, doping, etc.).
  • the substrate may carry contact pads 12 and 14 to enable the application of a control voltage for opening or closing the switch. These pads may serve as solder pads for soldering connecting wires connecting the switch to external circuit elements for controlling the switch.
  • the substrate 10 may also carry two pads 16 and 18 which constitute the output of the switch: when the switch is open, these pads are electrically insulated from each other; when the switch is closed, they are electrically connected to each other; these pads 16 and 18 may also serve as solder pads son connecting the switch to external circuit elements that the switch is intended to control.
  • the mechanical part of the switch comprises two elements, one fixed with respect to the substrate, the other moving relative to the substrate. These two elements are conductive and serve respectively as a fixed electrode and a moving electrode, the actuating force of the switch being an electrostatic force bringing the moving electrode closer to the fixed electrode when a control voltage is applied between these electrodes.
  • the fixed electrode is electrically connected to the stud 12 and the mobile electrode is electrically connected to the stud 14.
  • the movable electrode is connected to the substrate by an ART joint around which it pivots.
  • the joint is a single rotation joint located at a first end of the movable electrode.
  • the axis of rotation can be considered as parallel to the plane of the substrate (plane of the view from above of the figure 1 ) and perpendicular to the plane of the section of the figure 2 .
  • the direction of rotation is indicated by an arrow R and the rotation causes a tilting of the moving electrode so that its free end, situated opposite the articulation, moves in a direction perpendicular to the plane of the substrate (direction represented by an arrow Z).
  • the fixed electrode is constituted by a series of parallel conductive plates PF rising from the upper surface of the substrate at a height which is oriented along the Z direction;
  • the moving electrode is constituted by a series of parallel conductive plates PM interposed symmetrically in the middle of the intervals between the plates PF of the fixed electrode.
  • the electrodes are spaced in a direction Y parallel to the plane of the substrate.
  • the parallel plates are elongate in a general elongation direction X which is perpendicular to the Y and Z directions.
  • the plates are preferably planar.
  • the plates PF and the plates PM are in mutual overlap over part of their height, that is to say that the bottom of the movable plates PM does not descend to the bottom of the fixed plates PF, and the top of the fixed plates PF does not climb to the top of the PM moving plates.
  • the fixed plates PF are all electrically interconnected and are electrically connected to the stud 12; they are in practice machined in the same conductive layer; the movable plates PM are all electrically connected to each other and are electrically connected to the stud 14; they are machined in another conductive layer.
  • the detail of the conductive and insulating layer patterns making it possible to make the connections between the plates and the studs 12 and 14 is not represented. These layers are formed in a surface portion of the substrate.
  • the electrical connection between the moving plates is through the ART joint.
  • the connection with the fixed plates can be done by direct contact between the bottom of the plates and a conductive layer deposited on the substrate.
  • the movable electrode comprises not only the movable conductive plates PM but also crosspieces 22 and 24 located at opposite ends of the plates (opposite to the general direction of elongation X).
  • the crosspiece 22 is located close to the joint ART and is mechanically and electrically secured to all the proximal ends of the movable plates (ends close to the joint); the crossbar 24 is secured mechanically and electrically to all the distal ends (remote from the joint) of the movable plates.
  • the sleepers extend over the entire height of the movable plates and are formed in the same layer as they.
  • each of the fixed plates PF except the two end plates fixed at the end of the series, is entirely surrounded by a rectangle of conducting material which comprises two movable plates PM and two portions of crosspieces which connect these two movable plates to each of their opposite ends.
  • the figure 1 corresponds to a case where there are N + 1 fixed plates for N movable plates.
  • N + 1 movable plates for N fixed plates we can consider the opposite, that is to say, N + 1 movable plates for N fixed plates, and in this case all the fixed plates are surrounded by two movable plates and the cross portions that connect them.
  • the distance separating one end of a fixed plate from the crosspiece 22 is strictly equal to the distance separating the other end of this fixed plate from the cross member 24; this distance is preferably constant over the entire height of the fixed and identical plate from one fixed plate to the other.
  • This distance (in the X direction) is preferably two to three times greater than the uniform spacing (in the Y direction) between any fixed conductive plate and the adjacent movable conductive plates.
  • the rotation joint ART which allows the group of conductive plates PM forming the movable electrode to rotate in their own plane about an axis parallel to the substrate, comprises for example a foot rigid anchor 40 secured to the substrate, and horizontal torsion bars 42, 44, extending in the Y direction perpendicular to the plane of the parallel plates; these torsion bars 42, 44 connect the anchor foot 40 and the cross member 22.
  • the crosspiece 22 has a recessed area 46 in which are located the anchor foot and the torsion bars 42 and 44
  • the torsion bars could also be located outside the moving electrode, on either side of it, rather than in a recess of the crosspiece 22.
  • the articulation could be made differently, for example by a thin plate acting in bending, extending perpendicularly to the direction of elongation of the movable plates, over the entire height thereof, this plate being anchored to its foot to the substrate along a recess line according to the direction Y.
  • the thinness of this bending plate would allow bending around this embedding line, which is equivalent to a rotation of all the movable plates in their plane around this line.
  • the bending plate may be located in a recess of the cross member 22 or be located outside the electrode and decomposed into two plates located on either side of the movable electrode.
  • the cross members 22 and 24 are preferably machined in the same block of conductive material that forms the movable plates.
  • this material is a both conductive and magnetic material, such as 80/20 nickel-iron.
  • the free distal end of the moving electrode carries one or more contact pads for making electrical contact between the pads 16 and 18 of the substrate when the applied control voltage has moved the movable electrode to the substrate 10.
  • the pads 16 and 18 are each connected to a respective conductor 26, 28 formed on the substrate; the ends of these conductors 26, 28 are close to one another but separated so that there is no direct electrical contact between them and therefore no possibility of current flow.
  • the end of the moving electrode approaches the substrate, it comes into contact with both ends of conductors 26 and 28 and electrically connects them to each other, establishing a short circuit between the pads. 16 and 18.
  • a conductive contact pad 30 is formed under the crossbar 24 to facilitate this contacting.
  • the pad is preferably isolated from the conductive plates so that the establishment of the contact does not put the conductors 26 and 28 to the potential imposed on the moving electrode by the control voltage.
  • the fixed electrodes are etched in a doped polycrystalline silicon layer, and the mobile electrodes in a nickel-iron layer.
  • the thickness of a fixed or movable plate is about 5 micrometers, the interval between a fixed plate and a movable plate is 1 to 2 micrometers, identical on each side of the fixed plate and identical for all fixed plates ; there are between 20 and 50 fixed plates and if there are N fixed plates, there are N + 1 or N-1 movable plates interdigitated with the fixed plates.
  • the length of the plates may typically be from 300 to 700 microns and the displacement amplitude of the free end of the moving electrode may be from 1 to 5 micrometers.
  • the spacing between the end of a stationary plate and the cross member 22 or 24 may preferably be from 2 to 5 micrometers.
  • the height of the plates can be from 5 to 20 micrometers.
  • the continuous control voltage is between 1 volt and 10 volts.
  • the contact force obtained can be of the order of 10 -4 newtons; it does not depend on the height of the plates or their mutual overlapping height, but depends (quadratically) on the applied voltage, the length of the plates, their number, and the interval between fixed plates and moving plates; it also depends on the vertical distance between the movable plates and the conductive layer possibly present between the fixed plates.
  • the switch is open in its rest position in the absence of control voltage; maintaining in the closed position of the switch is done by maintaining the control voltage, without consumption of current; the return to the open position is done by removing the control voltage, the restoring force of the bending plate or the bars of torsion bringing the moving electrode back to its rest position away from the substrate.
  • the fixed plates rest on a continuous conductive layer 50 which is connected to the same potential as the fixed plates.
  • This layer is present in the gap between the fixed plates and therefore tends to attract uniformly down all the PM plates constituting the moving electrode because these plates are located just above this layer.
  • the moving electrode makes contact between two conductors 26 and 28 formed on the substrate when the end of the electrode touches the substrate.
  • the contact is between a pad 30 of the movable electrode and a single contact 28 of the substrate, to establish a connection between the stud 30 and the contact 28, provided to isolate the current path thus established the application path of the control voltage.
  • the current path of the established contact then also passes through the anchor foot and the torsion bars or bending plates, but remaining separate from the current path of the control voltage.
  • the figure 4 and the figure 5 schematically represent the details of the forces exerted between the fixed conductive plates PF and the movable conductive plates PM (in the case where there are N + 1 fixed plates for N movable plates, which is preferable for symmetrizing the forces which are exercise on moving plates).
  • the arrows represent these forces, the convention being that the direction of the arrow represents the direction of the force of attraction exerted on a movable plate by a fixed element.
  • the figure 4 represents, in simplified schematic form, a cross-section of the conductive plates, perpendicular to the section of the figure 2 .
  • Horizontal forces between the overlapping parts of the plates all offset each other.
  • the forces exerted between the parts that are not overlapping are symmetrical but have a resultant downward.
  • a vertical force is exerted between the bottom of the movable plates and the conductor 50 which is located between the fixed plates and at the same potential as the latter.
  • This last force is greater when the switch is in the closed state since the moving plates are close to the substrate. It therefore contributes to better ensure the maintenance of the switch in the closed position. But it disappears instantly when the control voltage is removed, and it does not oppose the return of the switch in the open position under the effect of elastic restoring forces.
  • the figure 5 is a simplified vertical section (parallel to the plane of the plates) in which we see a fixed conductive plate PF and the end cross members 22 and 24 which connect the movable plates. Moving plates are not shown.
  • a fixed conductive plate PF and the end cross members 22 and 24 which connect the movable plates. Moving plates are not shown.
  • the plates are well maintained in their plane and the overall result of the forces remains vertical.
  • one advantage of the interdigitated electrode structure with partial overlap of the height of the fixed and movable plates is the fact that the vertical actuating force created between the movable and fixed plates is high and does not depend on the inclination of the movable electrode when the bottom of the movable conductive plates remains between the fixed plates and the top of the fixed plates remains between the movable plates.
  • the actuator shown on the Figures 1 to 3 does not operate with a symmetrical control in that the tilting is obtained from a neutral return position to an active position by the application of a control voltage, and return to the control position by the forces of elastic return of the joint when the control voltage is canceled.
  • a symmetrically controlled actuator having a first control voltage for passing the actuator in a first state and a second control voltage to make switch the actuator to another state.
  • This can be achieved by providing two pairs of fixed electrodes (PF and PF 'conductive plates) and mobile pairs (PM and PM' conductive plates).
  • the figure 6 represents such an embodiment.
  • the two mobile electrodes are identical and articulated on both sides of the same joint ART.
  • the two movable electrodes are integral with each other so that the movement of one towards the bottom causes the other to move upwards.
  • a first control voltage is applied between the fixed electrode and the movable electrode of a pair located on one side of the joint and brings the distal end of the moving electrode closer to the substrate, moving the distal end away from the substrate. of the other moving electrode.
  • a second control voltage can be applied between the moving electrode and the fixed electrode of the second pair, and brings the distal end of the second moving electrode closer to the substrate, moving the first moving electrode away from the substrate.
  • the figure 6 represents such a symmetrically controlled double symmetrical contact switch structure.
  • Contacts 28 ', 30' corresponding to the references 28 and 30 of the first movable electrode are provided at the end of the second movable electrode.
  • the symmetrical control voltages are brought for example to the two fixed electrodes by a stud 12 and to the two mobile electrodes by two other studs such as the stud 14 of the figure 1 , only one of these two pads receiving a control voltage at a given moment.
  • the control pads are not represented on the figure 6 .
  • the symmetrically controlled actuator comprising two fixed electrodes and two movable electrodes secured to one another, is magnetically held.
  • the magnetic hold can be achieved by providing that the material or a portion of the moving electrode material is magnetic, with a magnet above or below the substrate, which holds the moving electrode group on the side where it has tilted. .
  • the magnet produces a vertical magnetic field and the magnetization direction of the magnetic layer of the movable element depends on the inclination (and thus the direction of tilting) of the movable element. The magnetic field then steadily maintains the switch in its tilting position.
  • the control voltage can be switched off after switching off, without this cutoff bringing the moving electrodes back to their rest position, provided of course that the magnetizing force acting on the movable electrode to maintain it in the sense that it is inclined is greater than the restoring force of the elastic joint. With a magnetic hold, the electrical energy consumption in a stable state is strictly zero.
  • the force of the electrical contact established by the switch depends on the magnetization force. It is of course necessary to find a compromise between the magnetization force in the holding position and the electrostatic force necessary to leave a stable position of the switch.
  • the conductive material that constitutes the conductive plates of the two mobile electrodes may be made of magnetic material such as iron-nickel which is both magnetic and electrically conductive.
  • a coating of the conductive mobile electrodes by a magnetic layer may also be sufficient.
  • the magnet creates a magnetic field that magnets the moving electrode preferentially in the closed-side direction, which allows magnetic retention.
  • the figure 7 represents a structure with a permanent magnet 60 placed above the fixed and movable electrodes and a soft magnetic iron-nickel layer 102 deposited on the substrate 10 below these electrodes.
  • magnets are integrated directly into the substrate. It is known to deposit magnets on the surface of a substrate in thin layers or in wells dug in the surface of the substrate. These magnets are given a magnetization of vertical orientation. For example, it is possible to provide a magnet at each end of the moving electrode, or a single magnet under the whole of the moving electrode. Magnets can be in NdFeB compound (neodymium-iron-boron) or in samarium-cobalt and one can reach residual inductions of the order of a tenth of Tesla to a Tesla. Deposition is by electro-deposition or sputtering. Deposits of magnetic layers 10 to 50 micrometers thick are technically feasible and provide sufficient magnetic retention. These magnetized layers require annealing at temperatures of about 700 ° C, and will therefore be realized before forming the stacks of layers constituting the fixed and mobile electrodes.
  • the figure 8 represents a structure with integrated magnets, with two magnets 62 and 62 'incorporated in the substrate and placed respectively vertically above the end of the two mobile electrodes.
  • the advantage of integrated magnets is that the footprint is smaller because it can remove the magnet 60 and the fastening means of this magnet on the structure. In addition, it is no longer necessary to provide a step of forming a soft magnetic layer (102, figure 7 ) on the substrate. Finally, the radiofrequency behavior (for radiofrequency applications) is better.
  • the moving electrode may carry a reflecting mirror placed in the path of a light beam and which modifies or interrupts the optical path of this light beam depending on the tilting state of the moving electrode, so that function of the angle that forms the surface of the mirror with the plane of the substrate.
  • Insulating and conductive layers 104 serving to establish an interconnection pattern between the fixed plates and a control pad, as well as the conductive layer possibly present between the fixed plates, are then deposited and etched. The detail of these layers is not represented.
  • a polycrystalline silicon layer 106 is then deposited for manufacturing the fixed plates.
  • the assembly is covered with a layer of silicon oxide 108 and a resin layer 110 that is photogravred to define the pattern of fixed conductive plates.
  • Figure 9A .
  • the pattern of fixed conductive parallel plates is etched in the oxide layer 108 and in the silicon layer 106.
  • Figure 9B The pattern of fixed conductive parallel plates is etched in the oxide layer 108 and in the silicon layer 106.
  • An insulating layer 112 (in the same material as the layer 108) is deposited, which will serve as a lateral spacer between the movable plates and the fixed plates and vertical spacer between the movable plates and the substrate.
  • the profile of this layer has openings between the fixed conductive parallel plates, openings which will serve to receive the material of the conductive conductive plates.
  • a thin layer of nickel 114 (0.1 micrometer) is deposited on layer 112; this nickel layer constitutes a growth seed (in English "seed layer") which will subsequently electrolytic growth of nickel-iron.
  • seed layer in English "seed layer”
  • a nickel-iron (80% / 20%) layer 116 of about 8 to 10 microns in thickness is electrolytically grown to fill the openings of the layer 112 to form the conductive plates movable between the fixed plates.
  • Figure 9E A nickel-iron (80% / 20%) layer 116 of about 8 to 10 microns in thickness is electrolytically grown to fill the openings of the layer 112 to form the conductive plates movable between the fixed plates.
  • the silicon oxide layers 108 and 112 are removed to release the moving plates PM formed by the layer 116; this leads to two sets of interdigitated conductive plates with partial overlap, one of which is integral with the substrate and the other is free.
  • the simplest articulation in this case is constituted by a vertical thin bending plate, constituted at the same time as the movable plates but formed in an opening of the layer 112 to come into contact with the fixed substrate.
  • the soft magnetic layer 102 will not be formed, but the integrated magnets will be formed instead.
  • the integrated magnets are preferably embedded in the substrate to flush on its surface.
  • openings in the substrate can be etched at the locations of the magnets, an electrode deposited in these openings, and the substrate placed in an electrolytic bath containing the metal ions that will constitute the magnet. It is thus possible to form in particular a magnetic compound CoPt which is deposited electrolytically on the electrodes placed at the bottom of the openings. Annealing provides a vertical crystalline orientation of the material, which facilitates subsequent permanent magnetization in the vertical direction.
  • the condensation on the substrate of a vapor phase of the metals composing the magnetic layer to be carried out is used, in particular NdFeB (neodymium, iron, boron).
  • the method for producing the magnets may comprise the following steps: from a silicon wafer, a photolithography step is carried out to define openings in the silicon at the locations of the magnets, without removing the photolithography resin; then a layer of SiO 2 and a layer of tantalum are deposited, and the tantalum is removed outside the openings by removing the photolithography resin on which the tantalum rests; tantalum serves as a barrier layer at the bottom of the openings; depositing an NdFeB compound, for example Nd 2 Fe 14 B, by cathodic sputtering in plasma under argon; the deposition can be done at 400 ° C, producing an amorphous layer of NdFeB and can be followed by annealing at 750 ° C ensuring crystal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)

Description

L'invention concerne les actionneurs électromécaniques miniatures de type MEMS (de l'anglais Micro-Electro-Mechanical Systems, ou microsystèmes électromécaniques) réalisés selon les technologies de micro-usinage inspirées de la fabrication des puces de circuits intégrés électroniques.The invention relates to miniature electromechanical actuators type MEMS (English Micro-Electro-Mechanical Systems, or microelectromechanical systems) made according to micro-machining technologies inspired by the manufacture of electronic integrated circuit chips.

Les actionneurs sont des éléments qui provoquent une action mécanique sous l'effet de l'application d'une tension ou un courant électrique de commande. L'action mécanique est un déplacement d'un élément mobile de l'actionneur. L'effet de ce déplacement dépend du type d'actionneur considéré ; on s'intéressera principalement dans ce qui suit aux interrupteurs électriques, c'est-à-dire que le déplacement de l'élément mobile entraîne l'ouverture ou la fermeture d'un contact électrique ; mais on peut éventuellement appliquer l'invention aussi à d'autres types d'actionneurs, tels que des interrupteurs optiques dans lesquels le déplacement de l'élément mobile vient interrompre ou modifier le chemin optique suivi par un faisceau lumineux.The actuators are elements that cause a mechanical action under the effect of the application of a voltage or an electric control current. The mechanical action is a displacement of a movable element of the actuator. The effect of this displacement depends on the type of actuator considered; In the following, electrical switches are mainly concerned, that is to say that the displacement of the movable element causes the opening or closing of an electrical contact; but it may also be possible to apply the invention to other types of actuators, such as optical switches in which the displacement of the movable element interrupts or modifies the optical path followed by a light beam.

On a déjà proposé des interrupteurs électriques de type MEMS qui sont actionnés par une force électromagnétique produite par une petite bobine électrique intégrée dans une partie fixe de l'interrupteur, la bobine agissant sur une partie magnétique portée par l'élément mobile de l'actionneur. On a également proposé d'autres actionneurs dont l'élément mobile est déplacé par une force électrostatique produite entre deux armatures conductrices planes situées en regard l'une de l'autre, l'une formée sur un substrat de l'actionneur, l'autre portée par l'élément mobile de l'actionneur. Le brevet US 7 071 431 décrit des interrupteurs qui fonctionnent sur ce principe. L'élément mobile est une poutre encastrée en porte à faux, parallèle au substrat fixe. La force électrostatique est exercée entre le substrat et la poutre et tend à attirer l'extrémité libre de celle-ci vers le substrat. Un plot de contact électrique est porté par l'extrémité de la poutre et vient en contact avec un ou plusieurs plots correspondants du substrat lorsqu'une tension de commande suffisante est appliquée entre le substrat et la poutre.
Le document " US 2002/145 493 A1 " décrit un actionneur électromagnétique selon le préambule de la revendication 1.
MEMS-type electrical switches have already been proposed which are actuated by an electromagnetic force produced by a small electrical coil integrated in a fixed part of the switch, the coil acting on a magnetic part carried by the movable element of the actuator. . Other actuators have also been proposed, the moving element of which is displaced by an electrostatic force produced between two planar conducting electrodes located opposite one another, one formed on a substrate of the actuator, the other carried by the movable element of the actuator. The patent US 7,071,431 describes switches that work on this principle. The movable element is a cantilevered recessed beam parallel to the fixed substrate. The electrostatic force is exerted between the substrate and the beam and tends to attract the free end thereof to the substrate. An electrical contact pad is carried by the end of the beam and comes into contact with one or more corresponding pads of the substrate when a sufficient control voltage is applied between the substrate and the beam.
The document " US 2002/145493 A1 "discloses an electromagnetic actuator according to the preamble of claim 1.

Parmi les facteurs importants à prendre en considération dans la conception d'un interrupteur électrique, il y a, entre autres :

  • la force d'actionnement, nécessaire pour faire passer l'interrupteur d'un premier état dans un autre ; cette force doit être suffisante pour que l'élément mobile puisse passer d'une première position dans une deuxième position (et réciproquement) malgré les forces de maintien (par exemple magnétiques) ou de rappel (par exemple l'élasticité d'une poutre) qui peuvent s'exercer sur l'élément mobile lorsqu'il est dans la première position ;
  • la tension appliquée pour obtenir cette force : on souhaite qu'elle soit aussi faible que possible, notamment pour être compatible avec les tensions d'alimentation usuelles des circuits intégrés (quelques volts) ;
  • la consommation de courant, inévitable pour obtenir ce passage d'un état vers un autre état ; on souhaite une faible consommation ;
  • la consommation de courant nécessaire pour maintenir l'interrupteur dans son état ; l'idéal de ce point de vue est un maintien sans aucune consommation de courant ;
  • la force appliquée entre les contacts électriques lorsque l'interrupteur est fermé : si elle est trop faible, le contact n'est pas bon et l'interrupteur ne peut laisser passer qu'un courant très faible (ou alors c'est au détriment de sa durée de vie) ;
  • la distance entre les contacts électriques lorsque l'interrupteur est dans un état ouvert ; il faut qu'elle soit suffisante pour qu'il n'y ait pas de risque d'une conduction parasite de courant entre les contacts dans l'état ouvert de l'interrupteur, mais pas trop grande pour ne pas engendrer des déplacements trop importants de l'élément mobile de l'interrupteur.
Important factors to consider when designing an electrical switch include:
  • the actuating force necessary to move the switch from one state to another; this force must be sufficient for the movable element to pass from a first position to a second position (and vice versa) despite holding (for example magnetic) or restoring forces (for example the elasticity of a beam) which can be exerted on the movable element when it is in the first position;
  • the voltage applied to obtain this force: it is desired that it be as small as possible, in particular to be compatible with the usual supply voltages of the integrated circuits (a few volts);
  • the consumption of current, inevitable to obtain this passage of a state towards another state; we want low consumption;
  • the power consumption required to maintain the switch in its state; the ideal from this point of view is a maintenance without any current consumption;
  • the force applied between the electrical contacts when the switch is closed: if it is too weak, the contact is not good and the switch can pass only a very weak current (or so it is to the detriment of its lifetime);
  • the distance between the electrical contacts when the switch is in an open state; it must be sufficient so that there is no risk of parasitic current conduction between the contacts in the open state of the switch, but not too great not to cause excessive movements of the movable element of the switch.

Tous ces paramètres sont interdépendants ; par exemple il y a un lien entre la force d'actionnement et la tension de commande appliquée ; ou un lien entre la distance entre les contacts dans l'état ouvert et la force d'actionnement nécessaire pour refermer l'interrupteur.All these parameters are interdependent; for example there is a link between the actuating force and the applied control voltage; or a link between the distance between the contacts in the open state and the actuating force necessary to close the switch.

Un but de l'invention est de proposer une solution permettant de trouver plus facilement un bon compromis entre les facteurs qu'on vient de décrire.An object of the invention is to propose a solution making it easier to find a good compromise between the factors just described.

Selon l'invention, on prévoit un actionneur électromécanique miniature à commande électrostatique qui comprend un substrat fixe et un élément mobile articulé sur le substrat de manière à permettre un déplacement d'une partie de l'élément mobile dans une première direction choisie, une série de plaques conductrices parallèles sur l'élément mobile, dont la hauteur s'étend dans la première direction et qui sont espacées régulièrement dans une deuxième direction perpendiculaire à la première, et une autre série de plaques conductrices parallèles sur le substrat fixe, les deux séries de plaques étant interdigitées symétriquement l'une dans l'autre et en recouvrement mutuel sur une partie de leur hauteur de manière qu'une tension électrique appliquée entre les deux séries produise une force électrostatique ayant une composante selon la hauteur des plaques dans la première direction, les plaques ayant des extrémités opposées dans une troisième direction perpendiculaire aux deux premières, caractérisé en ce que les extrémités opposées des plaques de l'une des séries sont solidaires mécaniquement et électriquement de deux traverses d'extrémité qui viennent en regard des extrémités opposées des plaques de l'autre série.According to the invention, there is provided a miniature electromechanical actuator electrostatically controlled which comprises a fixed substrate and a movable member hinged to the substrate so as to allow a displacement of a portion of the movable element in a first selected direction, a series parallel conductive plates on the movable element, whose height extends in the first direction and which are regularly spaced in a second direction perpendicular to the first, and another series of parallel conductive plates on the fixed substrate, the two series plates being interdigitated symmetrically one in the other and overlapping one part of their height so that an electric voltage applied between the two series produces an electrostatic force having a component according to the height of the plates in the first direction , the plates having opposite ends in a third direction perpendicular to the first two, characterized in that the opposite ends of the plates of one of the series are mechanically and electrically secured to two end crosspieces which face opposite ends of the plates of the other series.

Les traverses sont de préférence solidaires des plaques de l'élément mobile. La première série de plaques conductrices mobiles forme une électrode mobile interdigitée avec la deuxième série de plaques qui forme une électrode fixe. Une tension de commande est appliquée entre ces deux électrodes.The sleepers are preferably integral with the plates of the movable member. The first series of movable conductive plates form an interdigitated movable electrode with the second series of plates forming a fixed electrode. A control voltage is applied between these two electrodes.

En d'autres mots, si on observe les plaques des deux séries coupées selon une section dans un plan perpendiculaire à la direction de déplacement choisie, chaque plaque de l'électrode fixe est entièrement entourée par un matériau conducteur qui comprend deux plaques de l'électrode mobile ainsi que les parties de traverses qui les réunissent à leurs deux extrémités opposées. On pourrait éventuellement prévoir l'inverse, à savoir que chaque plaque mobile peut être entourée par deux plaques fixes solidaires de deux traverses.In other words, if we observe the plates of the two series cut in a section in a plane perpendicular to the direction of travel chosen, each plate of the fixed electrode is entirely surrounded by a conductive material which comprises two plates of the movable electrode and the parts of sleepers that bring them together at their opposite ends. One could possibly provide the opposite, namely that each movable plate can be surrounded by two fixed plates integral with two sleepers.

Les traverses sont de préférence micro-usinées dans le même matériau conducteur que les plaques de la première série et forment un bloc homogène avec elles.The crosspieces are preferably micro-machined in the same conductive material as the plates of the first series and form a block homogeneous with them.

Les plaques conductrices sont de préférence planes ; leur longueur dans la troisième direction est de préférence plus grande que leur hauteur dans la direction de déplacement. Cette direction de déplacement (et donc la hauteur des plaques) est de préférence perpendiculaire à la surface du substrat dans lequel sont usinées les électrodes fixe et mobile. Les plaques fixes s'élèvent donc verticalement à partir de la surface du substrat.The conductive plates are preferably flat; their length in the third direction is preferably greater than their height in the direction of travel. This direction of displacement (and therefore the height of the plates) is preferably perpendicular to the surface of the substrate in which the fixed and mobile electrodes are machined. The fixed plates thus rise vertically from the surface of the substrate.

L'articulation de l'électrode mobile sur le substrat est de préférence usinée dans le même matériau que les plaques fixes ou les plaques mobiles. Elle peut être constituée par des bras de torsion autorisant une rotation des plaques dans leur propre plan, donc autour d'un axe parallèle au substrat et perpendiculaire aux plaques, ou par des bras ou des plaques de flexion encastrées dans le substrat et autorisant également une rotation de l'électrode mobile dans le plan des plaques.The articulation of the movable electrode on the substrate is preferably machined in the same material as the fixed plates or the movable plates. It can be constituted by torsion arms allowing a rotation of the plates in their own plane, therefore around an axis parallel to the substrate and perpendicular to the plates, or by arms or bending plates embedded in the substrate and also allowing a rotation of the moving electrode in the plane of the plates.

Les deux traverses d'extrémité qui relient entre elles les plaques d'une série sont de préférence situées exactement à égale distance des deux extrémités opposées d'une plaque de l'autre série, et cette distance est de préférence la même pour toutes les plaques. L'application d'une tension de commande entre les électrodes fixes et mobiles crée des forces dans le sens du déplacement souhaité, mais aussi des forces longitudinales qui s'exercent entre une traverse reliant les plaques de la première série et les extrémités de plaques de l'autre série. Ces dernières forces se compensent cependant lorsque les deux traverses sont situées à la même distance des extrémités opposées d'une même plaque.The two end crosspieces which interconnect the plates of a series are preferably situated exactly equidistant from the two opposite ends of one plate of the other series, and this distance is preferably the same for all the plates. . The application of a control voltage between the fixed and mobile electrodes creates forces in the direction of the desired displacement, but also longitudinal forces exerted between a crossbar connecting the plates of the first series and the ends of plates of the other series. These latter forces compensate each other, however, when the two sleepers are located at the same distance from the opposite ends of the same plate.

Avec cette structure d'électrodes interdigitées terminées par des traverses on crée des forces élevées dans la direction de déplacement choisie, en annulant partiellement ou de préférence totalement les forces qui pourraient être générées dans une direction perpendiculaire à la direction de déplacement choisie, forces qui engendreraient des déformations des électrodes, voire un collage d'électrodes adjacentes.With this interdigitated electrode structure terminated by cross members, high forces are created in the selected direction of displacement, partially or completely canceling out the forces that could be generated in a direction perpendicular to the direction of travel chosen, forces that would generate deformations of the electrodes, or even a bonding of adjacent electrodes.

De plus, les traverses rigidifient l'ensemble de plaques parallèles qu'elles relient et rendent plus difficile leur déformation.In addition, the sleepers stiffen the set of parallel plates they connect and make it more difficult to deform them.

Dans un mode de réalisation, l'élément mobile de l'actionneur est agencé de manière symétrique de part et d'autre de l'articulation, à la manière d'une bascule, et il comporte deux électrodes mobiles solidaires l'une de l'autre (constituées chacune par une série de plaques conductrices). Ces électrodes mobiles fonctionnent en opposition de phase, c'est-à-dire qu'une tension de commande appliquée à une électrode mobile tend à la rapprocher du substrat, ce qui éloigne l'autre, et réciproquement. Chaque électrode mobile est associée à une électrode fixe respective avec laquelle elle est interdigitée.In one embodiment, the movable element of the actuator is arranged symmetrically on either side of the articulation, in the manner of a rocker, and it comprises two movable electrodes integral with one of the other (each consisting of a series of conductive plates). These moving electrodes operate in phase opposition, i.e. a control voltage applied to a moving electrode tends to the closer to the substrate, which distances the other, and vice versa. Each movable electrode is associated with a respective fixed electrode with which it is interdigitated.

Pour constituer un interrupteur électrique, l'élément mobile peut porter un ou plusieurs plots de contact électrique permettant d'établir une liaison électrique lorsque l'élément mobile est déplacé dans une position correspondant à une fermeture d'interrupteur. Par exemple, le plot porté par l'élément mobile vient court-circuiter deux conducteurs portés par le substrat fixe lorsque l'extrémité libre de l'élément mobile se rapproche du substrat sous l'effet de la force électrostatique.To form an electrical switch, the movable element may carry one or more electrical contact pads for establishing an electrical connection when the movable member is moved to a position corresponding to a switch closure. For example, the stud carried by the movable element short-circuits two conductors carried by the fixed substrate when the free end of the movable element approaches the substrate under the effect of the electrostatic force.

L'interrupteur ainsi formé, peut, notamment dans le cas où il est constitué avec des moyens d'actionnement symétriques, être associé à des moyens de maintien magnétique qui permettent de conserver l'état atteint par l'interrupteur même après suppression de la tension ou du courant de commande de basculement. Les moyens de maintien magnétique comprennent par exemple un aimant permanent placé au-dessus de l'élément mobile et une couche douce en matériau magnétique placée au-dessous de l'élément fixe. Ou alors ils comprennent un ou plusieurs aimants permanents intégrés dans le substrat fixe au-dessous de l'élément fixe et de l'élément mobile.The switch thus formed may, in particular in the case where it is constituted by symmetrical actuating means, be associated with magnetic holding means which make it possible to maintain the state reached by the switch even after the voltage has been removed. or tilt control current. The magnetic holding means comprise for example a permanent magnet placed above the movable element and a soft layer of magnetic material placed below the fixed element. Or they comprise one or more permanent magnets integrated in the fixed substrate below the fixed element and the movable element.

De préférence, une couche conductrice est formée sur le substrat au-dessous des plaques constituant les électrodes mobiles, entre les plaques constituant les électrodes fixes et au même potentiel que celles-ci, pour créer une force d'attraction électrostatique supplémentaire attirant l'élément mobile vers le substrat.Preferably, a conductive layer is formed on the substrate below the plates constituting the moving electrodes, between the plates constituting the fixed electrodes and at the same potential as these, to create an additional electrostatic attraction force attracting the element. mobile to the substrate.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :

  • la figure 1 représente une vue de dessus d'un actionneur selon l'invention, micro-usiné à partir d'un substrat plan ;
  • la figure 2 représente une coupe verticale, selon la ligne 1-1 de la figure 1, de l'actionneur de la figure 1, dans un premier état ;
  • la figure 3 représente une coupe de l'actionneur dans un deuxième état ;
  • la figure 4 et la figure 5 représentent schématiquement les diverses forces qui s'exercent entre les éléments fixes et les éléments mobiles de l'actionneur ;
  • la figure 6 représente une réalisation d'une interrupteur à contacts symétriques et à commande symétrique ;
  • la figure 7 représente un interrupteur à maintien magnétique par aimant placé au-dessus de la structure micro-usinée ;
  • la figure 8 représente un interrupteur à maintien magnétique par aimants intégrés au substrat de la structure micro-usinée ;
  • la figure 9 décrit des étapes d'un procédé de fabrication de l'actionneur.
Other features and advantages of the invention will appear on reading the detailed description which follows and which is given with reference to the appended drawings in which:
  • the figure 1 represents a top view of an actuator according to the invention, micro-machined from a plane substrate;
  • the figure 2 represents a vertical section, according to line 1-1 of the figure 1 , the actuator of the figure 1 in a first state;
  • the figure 3 represents a section of the actuator in a second state;
  • the figure 4 and the figure 5 schematically represent the various forces exerted between the fixed elements and the moving elements of the actuator;
  • the figure 6 represents an embodiment of a switch symmetrical contacts and symmetrical control;
  • the figure 7 represents a magnetically held magnetic switch placed above the micro-machined structure;
  • the figure 8 represents a magnet-held switch integrated in the substrate of the micro-machined structure;
  • the figure 9 describes steps of a method of manufacturing the actuator.

L'actionneur des figures 1 et 2 est un interrupteur électrique qui est formé sur un substrat plan 10. La figure 2 représente l'interrupteur dans l'état ouvert. Le substrat 10 peut être en matériau électriquement isolant ou en silicium, dans lequel sont formées des couches conductrices, et/ou semiconductrices et/ou isolantes gravées selon des motifs désirés à l'aide des techniques classiques de la microélectronique (successions de dépôts de couches, gravures de ces couches, dopages, etc.).The actuator Figures 1 and 2 is an electrical switch that is formed on a plane substrate 10. The figure 2 represents the switch in the open state. The substrate 10 may be of electrically insulating material or of silicon, in which conductive and / or semiconducting and / or insulating layers are formed in desired patterns using conventional microelectronics techniques (layer deposition successions , engravings of these layers, doping, etc.).

Le substrat peut porter des plots de contact 12 et 14 pour permettre l'application d'une tension de commande d'ouverture ou fermeture de l'interrupteur. Ces plots peuvent servir de plots de soudure pour la soudure de fils de connexion reliant l'interrupteur à des éléments de circuit extérieurs servant à commander l'interrupteur. Le substrat 10 peut également porter deux plots 16 et 18 qui constituent la sortie de l'interrupteur : lorsque l'interrupteur est ouvert, ces plots sont isolés électriquement l'un de l'autre ; lorsque l'interrupteur est fermé, ils sont reliés électriquement l'un à l'autre ; ces plots 16 et 18 peuvent également servir de plots de soudure de fils de connexion reliant l'interrupteur à des éléments de circuit extérieurs que l'interrupteur est destiné à commander.The substrate may carry contact pads 12 and 14 to enable the application of a control voltage for opening or closing the switch. These pads may serve as solder pads for soldering connecting wires connecting the switch to external circuit elements for controlling the switch. The substrate 10 may also carry two pads 16 and 18 which constitute the output of the switch: when the switch is open, these pads are electrically insulated from each other; when the switch is closed, they are electrically connected to each other; these pads 16 and 18 may also serve as solder pads son connecting the switch to external circuit elements that the switch is intended to control.

La partie mécanique de l'interrupteur comprend deux éléments, l'un fixe par rapport au substrat, l'autre mobile par rapport au substrat. Ces deux éléments sont conducteurs et servent respectivement d'électrode fixe et d'électrode mobile, la force d'actionnement de l'interrupteur étant une force électrostatique rapprochant l'électrode mobile de l'électrode fixe lorsqu'une tension de commande est appliquée entre ces électrodes. L'électrode fixe est reliée électriquement au plot 12 et l'électrode mobile est reliée électriquement au plot 14.The mechanical part of the switch comprises two elements, one fixed with respect to the substrate, the other moving relative to the substrate. These two elements are conductive and serve respectively as a fixed electrode and a moving electrode, the actuating force of the switch being an electrostatic force bringing the moving electrode closer to the fixed electrode when a control voltage is applied between these electrodes. The fixed electrode is electrically connected to the stud 12 and the mobile electrode is electrically connected to the stud 14.

L'électrode mobile est reliée au substrat par une articulation ART autour de laquelle elle pivote. Pour simplifier, on peut considérer que l'articulation est une articulation à rotation simple située à une première extrémité de l'électrode mobile. L'axe de rotation peut être considéré comme parallèle au plan du substrat (plan de la vue de dessus de la figure 1) et perpendiculaire au plan de la coupe de la figure 2. Le sens de rotation est indiqué par une flèche R et la rotation provoque un basculement de l'électrode mobile de sorte que son extrémité libre, située à l'opposé de l'articulation, se déplace dans une direction perpendiculaire au plan du substrat (direction représentée par une flèche Z).The movable electrode is connected to the substrate by an ART joint around which it pivots. For simplicity, it can be considered that the joint is a single rotation joint located at a first end of the movable electrode. The axis of rotation can be considered as parallel to the plane of the substrate (plane of the view from above of the figure 1 ) and perpendicular to the plane of the section of the figure 2 . The direction of rotation is indicated by an arrow R and the rotation causes a tilting of the moving electrode so that its free end, situated opposite the articulation, moves in a direction perpendicular to the plane of the substrate (direction represented by an arrow Z).

L'électrode fixe est constituée par une série de plaques conductrices parallèles PF s'élevant à partir de la surface supérieure du substrat selon une hauteur qui est orientée selon la direction Z ; l'électrode mobile est constituée par une série de plaques conductrices parallèles PM intercalées symétriquement au milieu des intervalles entre les plaques PF de l'électrode fixe. On a donc deux électrodes constituées par une série de plaques conductrices parallèles interdigitées. Les électrodes sont espacées selon une direction Y parallèle au plan du substrat.The fixed electrode is constituted by a series of parallel conductive plates PF rising from the upper surface of the substrate at a height which is oriented along the Z direction; the moving electrode is constituted by a series of parallel conductive plates PM interposed symmetrically in the middle of the intervals between the plates PF of the fixed electrode. There are therefore two electrodes constituted by a series of interdigitated parallel conductive plates. The electrodes are spaced in a direction Y parallel to the plane of the substrate.

Les plaques parallèles sont allongées dans une direction générale d'allongement X qui est perpendiculaire aux directions Y et Z. Les plaques sont de préférence planes.The parallel plates are elongate in a general elongation direction X which is perpendicular to the Y and Z directions. The plates are preferably planar.

Les plaques PF et les plaques PM sont en recouvrement mutuel sur une partie de leur hauteur, c'est-à-dire que le bas des plaques mobiles PM ne descend pas jusqu'en bas des plaques fixes PF, et le haut des plaques fixes PF ne monte pas jusqu'en haut des plaques mobiles PM.The plates PF and the plates PM are in mutual overlap over part of their height, that is to say that the bottom of the movable plates PM does not descend to the bottom of the fixed plates PF, and the top of the fixed plates PF does not climb to the top of the PM moving plates.

Les plaques fixes PF sont toutes électriquement reliées entre elles et sont reliées électriquement au plot 12 ; elles sont en pratiques usinées dans une même couche conductrice ; les plaques mobiles PM sont toutes reliées électriquement entre elles et sont reliées électriquement au plot 14 ; elles sont usinées dans une autre couche conductrice.The fixed plates PF are all electrically interconnected and are electrically connected to the stud 12; they are in practice machined in the same conductive layer; the movable plates PM are all electrically connected to each other and are electrically connected to the stud 14; they are machined in another conductive layer.

Le détail des motifs de couches conductrices et isolantes permettant de faire les liaisons entre les plaques et les plots 12 et 14 n'est pas représenté. Ces couches sont formées dans une partie superficielle 20 du substrat. La liaison électrique entre les plaques mobiles se fait à travers l'articulation ART. La liaison avec les plaques fixes peut se faire par contact direct entre le bas des plaques et une couche conductrice déposée sur le substrat.The detail of the conductive and insulating layer patterns making it possible to make the connections between the plates and the studs 12 and 14 is not represented. These layers are formed in a surface portion of the substrate. The electrical connection between the moving plates is through the ART joint. The connection with the fixed plates can be done by direct contact between the bottom of the plates and a conductive layer deposited on the substrate.

L'électrode mobile comprend non seulement les plaques mobiles conductrices PM mais aussi des traverses 22 et 24 situées aux extrémités opposées des plaques (opposées par rapport à la direction générale d'allongement X). La traverse 22 est située à proximité de l'articulation ART et est solidaire mécaniquement et électriquement de toutes les extrémités proximales des plaques mobiles (extrémités proches de l'articulation) ; la traverse 24 est solidaire mécaniquement et électriquement de toutes les extrémités distales (éloignées de l'articulation) des plaques mobiles. Les traverses s'étendent sur toute la hauteur des plaques mobiles et sont formées dans la même couche qu'elles.The movable electrode comprises not only the movable conductive plates PM but also crosspieces 22 and 24 located at opposite ends of the plates (opposite to the general direction of elongation X). The crosspiece 22 is located close to the joint ART and is mechanically and electrically secured to all the proximal ends of the movable plates (ends close to the joint); the crossbar 24 is secured mechanically and electrically to all the distal ends (remote from the joint) of the movable plates. The sleepers extend over the entire height of the movable plates and are formed in the same layer as they.

Par conséquent, si on observe la vue de dessus de la figure 1, on voit que chacune des plaques fixes PF, sauf les deux plaques fixes en bout de série, est entièrement entourée par un rectangle de matériau conducteur qui comprend deux plaques mobiles PM et deux portions de traverses qui relient ces deux plaques mobiles à chacune de leurs extrémités opposées. La figure 1 correspond à un cas où il y a N+1 plaques fixes pour N plaques mobiles. On peut envisager l'inverse, c'est-à-dire N+1 plaques mobiles pour N plaques fixes, et dans ce cas toutes les plaques fixes sont entourées par deux plaques mobiles et les portions de traverse qui les relient.Therefore, if we look at the top view of the figure 1 it can be seen that each of the fixed plates PF, except the two end plates fixed at the end of the series, is entirely surrounded by a rectangle of conducting material which comprises two movable plates PM and two portions of crosspieces which connect these two movable plates to each of their opposite ends. The figure 1 corresponds to a case where there are N + 1 fixed plates for N movable plates. We can consider the opposite, that is to say, N + 1 movable plates for N fixed plates, and in this case all the fixed plates are surrounded by two movable plates and the cross portions that connect them.

De préférence, la distance qui sépare une extrémité d'une plaque fixe de la traverse 22 est rigoureusement égale à la distance qui sépare l'autre extrémité de cette plaque fixe de la traverse 24 ; cette distance est de préférence constante sur toute la hauteur de la plaque fixe et identique d'une plaque fixe à l'autre. Cette distance (dans la direction X) est de préférence deux à trois fois plus grande que l'espacement uniforme (dans la direction Y) entre n'importe quelle plaque conductrice fixe et les plaques conductrices mobiles adjacentes.Preferably, the distance separating one end of a fixed plate from the crosspiece 22 is strictly equal to the distance separating the other end of this fixed plate from the cross member 24; this distance is preferably constant over the entire height of the fixed and identical plate from one fixed plate to the other. This distance (in the X direction) is preferably two to three times greater than the uniform spacing (in the Y direction) between any fixed conductive plate and the adjacent movable conductive plates.

L'articulation à rotation ART, qui permet au groupe de plaques conductrices PM formant l'électrode mobile de tourner dans leur propre plan autour d'un axe parallèle au substrat, comprend par exemple un pied d'ancrage rigide 40 solidaire du substrat, et des barres de torsion 42, 44 horizontales, s'étendant dans la direction Y perpendiculaire au plan des plaque parallèles ; ces barres de torsion 42, 44 relient le pied d'ancrage 40 et la traverse 22. Dans l'exemple représenté, la traverse 22 comporte une zone évidée 46 dans laquelle sont situés le pied d'ancrage et les barres de torsion 42 et 44. Les barres de torsion pourraient aussi être situées à l'extérieur de l'électrode mobile, de part et d'autre de celle-ci, plutôt que dans un évidement de la traverse 22. L'articulation pourrait être réalisée différemment, par exemple par une plaque mince agissant en flexion, s'étendant perpendiculairement à la direction d'allongement des plaques mobiles, sur toute la hauteur de celles-ci, cette plaque étant ancrée à son pied au substrat le long d'une ligne d'encastrement selon la direction Y. La minceur de cette plaque de flexion autoriserait une flexion autour de cette ligne d'encastrement, ce qui équivaut à une rotation de l'ensemble des plaques mobiles dans leur plan autour de cette ligne. Là aussi, la plaque de flexion peut être située dans un évidement de la traverse 22 ou être située à l'extérieur de l'électrode et décomposée en deux plaques situées de part et d'autre de l'électrode mobile.The rotation joint ART, which allows the group of conductive plates PM forming the movable electrode to rotate in their own plane about an axis parallel to the substrate, comprises for example a foot rigid anchor 40 secured to the substrate, and horizontal torsion bars 42, 44, extending in the Y direction perpendicular to the plane of the parallel plates; these torsion bars 42, 44 connect the anchor foot 40 and the cross member 22. In the example shown, the crosspiece 22 has a recessed area 46 in which are located the anchor foot and the torsion bars 42 and 44 The torsion bars could also be located outside the moving electrode, on either side of it, rather than in a recess of the crosspiece 22. The articulation could be made differently, for example by a thin plate acting in bending, extending perpendicularly to the direction of elongation of the movable plates, over the entire height thereof, this plate being anchored to its foot to the substrate along a recess line according to the direction Y. The thinness of this bending plate would allow bending around this embedding line, which is equivalent to a rotation of all the movable plates in their plane around this line. Again, the bending plate may be located in a recess of the cross member 22 or be located outside the electrode and decomposed into two plates located on either side of the movable electrode.

Les traverses 22 et 24 sont de préférence usinées dans le même bloc de matériau conducteur qui forme les plaques mobiles. Dans une réalisation, ce matériau est un matériau à la fois conducteur et magnétique, tel que du nickel-fer 80/20.The cross members 22 and 24 are preferably machined in the same block of conductive material that forms the movable plates. In one embodiment, this material is a both conductive and magnetic material, such as 80/20 nickel-iron.

L'application d'une tension de commande entre les plaques conductrices fixes et les plaques mobiles exerce une force électrostatique ayant une composante dans la direction Z, et cette force rapproche l'extrémité distale de l'électrode mobile du substrat en s'opposant à la force de rappel créée par les bras de torsion ou la plaque de flexion de l'articulation à rotation.The application of a control voltage between the fixed conductive plates and the movable plates exerts an electrostatic force having a component in the Z direction, and this force brings the distal end of the moving electrode of the substrate closer together by opposing the restoring force created by the torsion arms or the bending plate of the rotating joint.

L'extrémité distale libre de l'électrode mobile porte un ou plusieurs plots de contact servant à établir un contact électrique entre les plots 16 et 18 du substrat lorsque la tension de commande appliquée a déplacé l'électrode mobile vers le substrat 10.The free distal end of the moving electrode carries one or more contact pads for making electrical contact between the pads 16 and 18 of the substrate when the applied control voltage has moved the movable electrode to the substrate 10.

Par exemple, les plots 16 et 18 sont reliés chacun à un conducteur respectif 26, 28 formé sur le substrat ; les extrémités de ces conducteurs 26, 28 sont proches l'une de l'autre mais séparées pour qu'il n'y ait pas de contact électrique direct entre elles et donc pas de possibilité de passage de courant. Lorsque l'extrémité de l'électrode mobile se rapproche du substrat, elle vient en contact à la fois avec les deux extrémités de conducteurs 26 et 28 et les relie électriquement l'un à l'autre, établissant un court-circuit entre les plots 16 et 18.For example, the pads 16 and 18 are each connected to a respective conductor 26, 28 formed on the substrate; the ends of these conductors 26, 28 are close to one another but separated so that there is no direct electrical contact between them and therefore no possibility of current flow. When the end of the moving electrode approaches the substrate, it comes into contact with both ends of conductors 26 and 28 and electrically connects them to each other, establishing a short circuit between the pads. 16 and 18.

De préférence, un plot de contact conducteur 30 est formé sous la traverse 24 pour faciliter cette mise en contact. Le plot est de préférence isolé des plaques conductrices pour que l'établissement du contact ne mette pas les conducteurs 26 et 28 au potentiel imposé à l'électrode mobile par la tension de commande.Preferably, a conductive contact pad 30 is formed under the crossbar 24 to facilitate this contacting. The pad is preferably isolated from the conductive plates so that the establishment of the contact does not put the conductors 26 and 28 to the potential imposed on the moving electrode by the control voltage.

A titre d'exemple, les électrodes fixes sont gravées dans une couche de silicium polycristallin dopé, et les électrodes mobiles dans une couche de nickel-fer. L'épaisseur d'une plaque fixe ou mobile est d'environ 5 micromètres, l'intervalle entre une plaque fixe et une plaque mobile est de 1 à 2 micromètres, identique de chaque côté de la plaque fixe et identique pour toutes les plaques fixes ; il y a entre 20 et 50 plaques fixes et s'il y a N plaques fixes, il y a N+1 ou N-1 plaques mobiles interdigitées avec les plaques fixes. La longueur des plaques peut être typiquement de 300 à 700 micromètres et l'amplitude de déplacement de l'extrémité libre de l'électrode mobile peut être de 1 à 5 micromètres. L'espacement entre l'extrémité d'une plaque fixe et la traverse 22 ou 24 peut être de préférence de 2 à 5 micromètres. La hauteur des plaques peut être de 5 à 20 micromètres. La tension de commande continue est comprise entre 1 volt et 10 volts. La force de contact obtenue peut être de l'ordre de 10-4 newtons ; elle ne dépend pas de la hauteur des plaques ni de leur hauteur de recouvrement mutuel, mais elle dépend (quadratiquement) de la tension appliquée, de la longueur des plaques, de leur nombre, et de l'intervalle entre plaques fixes et plaques mobiles ; elle dépend aussi de la distance verticale entre les plaques mobiles et la couche conductrice éventuellement présente entre les plaques fixes.By way of example, the fixed electrodes are etched in a doped polycrystalline silicon layer, and the mobile electrodes in a nickel-iron layer. The thickness of a fixed or movable plate is about 5 micrometers, the interval between a fixed plate and a movable plate is 1 to 2 micrometers, identical on each side of the fixed plate and identical for all fixed plates ; there are between 20 and 50 fixed plates and if there are N fixed plates, there are N + 1 or N-1 movable plates interdigitated with the fixed plates. The length of the plates may typically be from 300 to 700 microns and the displacement amplitude of the free end of the moving electrode may be from 1 to 5 micrometers. The spacing between the end of a stationary plate and the cross member 22 or 24 may preferably be from 2 to 5 micrometers. The height of the plates can be from 5 to 20 micrometers. The continuous control voltage is between 1 volt and 10 volts. The contact force obtained can be of the order of 10 -4 newtons; it does not depend on the height of the plates or their mutual overlapping height, but depends (quadratically) on the applied voltage, the length of the plates, their number, and the interval between fixed plates and moving plates; it also depends on the vertical distance between the movable plates and the conductive layer possibly present between the fixed plates.

L'interrupteur est ouvert dans sa position de repos en l'absence de tension de commande ; le maintien dans la position fermée de l'interrupteur se fait en maintenant la tension de commande, sans consommation de courant ; le retour en position ouverte se fait en supprimant la tension de commande, la force de rappel de la plaque de flexion ou des barres de torsion ramenant l'électrode mobile à sa position de repos écartée du substrat.The switch is open in its rest position in the absence of control voltage; maintaining in the closed position of the switch is done by maintaining the control voltage, without consumption of current; the return to the open position is done by removing the control voltage, the restoring force of the bending plate or the bars of torsion bringing the moving electrode back to its rest position away from the substrate.

De préférence, pour augmenter la force d'attraction entre les plaques fixes et les plaques mobiles dans la direction verticale, on prévoit que les plaques fixes reposent sur une couche conductrice continue 50 qui est reliée au même potentiel que les plaques fixes. Cette couche est présente dans l'intervalle entre les plaques fixes et par conséquent tend à attirer uniformément vers le bas toutes les plaques PM constituant l'électrode mobile du fait que ces plaques sont situées juste au-dessus de cette couche.Preferably, to increase the attraction force between the fixed plates and the moving plates in the vertical direction, it is expected that the fixed plates rest on a continuous conductive layer 50 which is connected to the same potential as the fixed plates. This layer is present in the gap between the fixed plates and therefore tends to attract uniformly down all the PM plates constituting the moving electrode because these plates are located just above this layer.

Dans ce qui précède, on a considéré que l'électrode mobile établit un contact entre deux conducteurs 26 et 28 formés sur le substrat lorsque l'extrémité de l'électrode vient toucher le substrat. On pourrait aussi envisager que le contact se fasse entre un plot 30 de l'électrode mobile et un seul contact 28 du substrat, pour établir une connexion entre le plot 30 et le contact 28, à condition d'isoler le chemin de courant ainsi établi du chemin d'application de la tension de commande. Le chemin de courant du contact établi passe alors lui aussi par le pied d'ancrage et les barres de torsion ou plaques de flexion, mais en restant séparé du chemin de courant de la tension de commande.In the foregoing, it has been considered that the moving electrode makes contact between two conductors 26 and 28 formed on the substrate when the end of the electrode touches the substrate. One could also consider that the contact is between a pad 30 of the movable electrode and a single contact 28 of the substrate, to establish a connection between the stud 30 and the contact 28, provided to isolate the current path thus established the application path of the control voltage. The current path of the established contact then also passes through the anchor foot and the torsion bars or bending plates, but remaining separate from the current path of the control voltage.

La figure 4 et la figure 5 représentent schématiquement le détail des forces qui s'exercent entre les plaques conductrices fixes PF et les plaques conductrices mobiles PM (dans le cas où il y a N+1 plaques fixes pour N plaques mobiles, ce qui est préférable pour symétriser les forces qui s'exercent sur les plaques mobiles). Les flèches représentent ces forces, la convention étant que le sens de la flèche représente le sens de la force d'attraction exercée sur une plaque mobile par un élément fixe.The figure 4 and the figure 5 schematically represent the details of the forces exerted between the fixed conductive plates PF and the movable conductive plates PM (in the case where there are N + 1 fixed plates for N movable plates, which is preferable for symmetrizing the forces which are exercise on moving plates). The arrows represent these forces, the convention being that the direction of the arrow represents the direction of the force of attraction exerted on a movable plate by a fixed element.

La figure 4 représente, sous forme de schéma simplifié, une coupe transversale des plaques conductrices, perpendiculaire à la coupe de la figure 2. Les forces horizontales qui s'exercent entre les parties en recouvrement mutuel des plaques se compensent toutes. Les forces qui s'exercent entre les parties qui ne sont pas en recouvrement sont symétriques mais ont une résultante vers le bas. Enfin, une force verticale s'exerce entre le bas des plaques mobiles et le conducteur 50 qui est situé entre les plaques fixes et au même potentiel que ces dernières. Cette dernière force est plus importante lorsque l'interrupteur est dans l'état fermé puisque les plaques mobiles se sont rapprochées du substrat. Elle contribue donc à mieux assurer le maintien de l'interrupteur en position fermée. Mais elle disparaît instantanément lorsque la tension de commande est supprimée, et elle ne s'oppose donc pas au retour de l'interrupteur en position ouverte sous l'effet des forces de rappel élastiques.The figure 4 represents, in simplified schematic form, a cross-section of the conductive plates, perpendicular to the section of the figure 2 . Horizontal forces between the overlapping parts of the plates all offset each other. The forces exerted between the parts that are not overlapping are symmetrical but have a resultant downward. Finally, a vertical force is exerted between the bottom of the movable plates and the conductor 50 which is located between the fixed plates and at the same potential as the latter. This last force is greater when the switch is in the closed state since the moving plates are close to the substrate. It therefore contributes to better ensure the maintenance of the switch in the closed position. But it disappears instantly when the control voltage is removed, and it does not oppose the return of the switch in the open position under the effect of elastic restoring forces.

La figure 5 représente une coupe verticale simplifiée (parallèlement au plan des plaques) dans laquelle on voit une plaque conductrice fixe PF et les traverses d'extrémité 22 et 24 qui relient les plaques mobiles. Les plaques mobiles ne sont pas représentées. Outre la force verticale qui s'exerce entre les traverses et la couche conductrice 50, et les composantes verticales des forces qui s'exercent entre une traverse et une extrémité de plaque fixe, on a des composantes horizontales de forces. Mais ces composantes horizontales sont contrebalancées par des forces horizontales entre l'autre extrémité de la plaque et l'autre traverse. Les plaques sont donc bien maintenues dans leur plan et la résultante globale des forces reste bien verticale.The figure 5 is a simplified vertical section (parallel to the plane of the plates) in which we see a fixed conductive plate PF and the end cross members 22 and 24 which connect the movable plates. Moving plates are not shown. In addition to the vertical force exerted between the cross members and the conductive layer 50, and the vertical components of the forces exerted between a cross member and a fixed plate end, there are horizontal components of forces. But these horizontal components are counterbalanced by horizontal forces between the other end of the plate and the other crosses. The plates are well maintained in their plane and the overall result of the forces remains vertical.

On remarquera qu'un avantage de la structure d'électrodes interdigitées avec recouvrement partiel de la hauteur des plaques fixes et mobiles est le fait que la force d'actionnement verticale créée entre les plaques mobiles et fixes est élevée et ne dépend pas de l'inclinaison de l'électrode mobile dès lors que le bas des plaques conductrices mobiles reste entre les plaques fixes et le haut des plaques fixes reste entre les plaques mobiles.It should be noted that one advantage of the interdigitated electrode structure with partial overlap of the height of the fixed and movable plates is the fact that the vertical actuating force created between the movable and fixed plates is high and does not depend on the inclination of the movable electrode when the bottom of the movable conductive plates remains between the fixed plates and the top of the fixed plates remains between the movable plates.

L'actionneur représenté sur les figures 1 à 3 ne fonctionne pas avec une commande symétrique en ce sens que le basculement est obtenu à partir d'une position de rappel neutre vers une position active par l'application d'une tension de commande, et retour à la position de commande grâce aux forces de rappel élastique de l'articulation lorsque la tension de commande est annulée.The actuator shown on the Figures 1 to 3 does not operate with a symmetrical control in that the tilting is obtained from a neutral return position to an active position by the application of a control voltage, and return to the control position by the forces of elastic return of the joint when the control voltage is canceled.

On peut aussi réaliser un actionneur à commande symétrique ayant une première tension de commande pour faire passer l'actionneur dans un premier état et une deuxième tension de commande pour faire passer l'actionneur dans un autre état. Ceci peut être obtenu en prévoyant deux couples d'électrodes fixes (plaques conductrices PF et PF') et mobiles (plaques conductrices PM et PM'). La figure 6 représente une telle réalisation. Les deux électrodes mobiles sont identiques et articulées de part et d'autre d'une même articulation ART. Les deux électrodes mobiles sont solidaires l'une de l'autre de sorte que le déplacement de l'une vers le bas entraîne le déplacement de l'autre vers le haut. Une première tension de commande est appliquée entre l'électrode fixe et l'électrode mobile d'un couple situé d'un côté de l'articulation et rapproche du substrat l'extrémité distale de cette électrode mobile, éloignant du substrat l'extrémité distale de l'autre électrode mobile. Une deuxième tension de commande peut être appliquée entre l'électrode mobile et l'électrode fixe du deuxième couple, et rapproche du substrat l'extrémité distale de la deuxième électrode mobile, éloignant la première électrode mobile du substrat.It is also possible to realize a symmetrically controlled actuator having a first control voltage for passing the actuator in a first state and a second control voltage to make switch the actuator to another state. This can be achieved by providing two pairs of fixed electrodes (PF and PF 'conductive plates) and mobile pairs (PM and PM' conductive plates). The figure 6 represents such an embodiment. The two mobile electrodes are identical and articulated on both sides of the same joint ART. The two movable electrodes are integral with each other so that the movement of one towards the bottom causes the other to move upwards. A first control voltage is applied between the fixed electrode and the movable electrode of a pair located on one side of the joint and brings the distal end of the moving electrode closer to the substrate, moving the distal end away from the substrate. of the other moving electrode. A second control voltage can be applied between the moving electrode and the fixed electrode of the second pair, and brings the distal end of the second moving electrode closer to the substrate, moving the first moving electrode away from the substrate.

On a ainsi une commande symétrique. On peut s'en servir pour réaliser un interrupteur double symétrique ayant un contact ouvert lorsque l'autre est fermé et réciproquement. La figure 6 représente une telle structure d'interrupteur à commande symétrique et à double contact symétrique. Des contacts 28', 30' correspondant aux références 28 et 30 de la première électrode mobile sont prévus à l'extrémité de la deuxième électrode mobile. Les tensions de commande symétriques sont amenées par exemple aux deux électrodes fixes par un plot 12 et aux deux électrodes mobiles par deux autres plots tels que le plot 14 de la figure 1, un seul de ces deux plots recevant une tension de commande à un moment donné. Les plots de commande ne sont pas représentés sur la figure 6.There is thus a symmetrical command. It can be used to make a symmetrical double switch having an open contact when the other is closed and vice versa. The figure 6 represents such a symmetrically controlled double symmetrical contact switch structure. Contacts 28 ', 30' corresponding to the references 28 and 30 of the first movable electrode are provided at the end of the second movable electrode. The symmetrical control voltages are brought for example to the two fixed electrodes by a stud 12 and to the two mobile electrodes by two other studs such as the stud 14 of the figure 1 , only one of these two pads receiving a control voltage at a given moment. The control pads are not represented on the figure 6 .

Dans une réalisation particulière, on peut prévoir que l'actionneur à commande symétrique, comprenant deux électrodes fixes et deux électrodes mobiles solidaires l'une de l'autre, est à maintien magnétique. Le maintien magnétique peut être obtenu en prévoyant que le matériau ou une partie du matériau des électrodes mobiles est magnétique, avec un aimant situé au-dessus ou au-dessous du substrat, qui maintient le groupe d'électrodes mobiles du côté où il a basculé. L'aimant produit un champ magnétique vertical et le sens d'aimantation de la couche magnétique de l'élément mobile dépend de l'inclinaison (donc du sens de basculement) de l'élément mobile. Le champ magnétique maintient alors de manière stable l'interrupteur dans sa position de basculement. On peut couper la tension de commande après basculement, sans que cette coupure ramène les électrodes mobiles dans leur position de repos, à la condition bien sûr que la force d'aimantation qui agit sur l'électrode mobile pour la maintenir dans le sens où elle est inclinée soit supérieure à la force de rappel de l'articulation élastique. Avec un maintien magnétique, la consommation d'énergie électrique dans un état stable est rigoureusement nulle. La force du contact électrique établi par l'interrupteur dépend de la force d'aimantation. Il faut bien sûr trouver un compromis entre la force d'aimantation en position de maintien et la force électrostatique nécessaire pour sortir d'une position stable de l'interrupteur.In a particular embodiment, it can be provided that the symmetrically controlled actuator, comprising two fixed electrodes and two movable electrodes secured to one another, is magnetically held. The magnetic hold can be achieved by providing that the material or a portion of the moving electrode material is magnetic, with a magnet above or below the substrate, which holds the moving electrode group on the side where it has tilted. . The magnet produces a vertical magnetic field and the magnetization direction of the magnetic layer of the movable element depends on the inclination (and thus the direction of tilting) of the movable element. The magnetic field then steadily maintains the switch in its tilting position. The control voltage can be switched off after switching off, without this cutoff bringing the moving electrodes back to their rest position, provided of course that the magnetizing force acting on the movable electrode to maintain it in the sense that it is inclined is greater than the restoring force of the elastic joint. With a magnetic hold, the electrical energy consumption in a stable state is strictly zero. The force of the electrical contact established by the switch depends on the magnetization force. It is of course necessary to find a compromise between the magnetization force in the holding position and the electrostatic force necessary to leave a stable position of the switch.

Pour une telle réalisation, le matériau conducteur qui constitue les plaques conductrices des deux électrodes mobiles peut être réalisé en matériau magnétique tel que du fer-nickel qui est à la fois magnétique et électriquement conducteur. Un revêtement des électrodes mobiles conductrices par une couche magnétique peut aussi être suffisant. De plus, pour que l'effet de maintien magnétique soit plus efficace, il est souhaitable de prévoir une couche de matériau magnétique (appelée couche douce, de préférence en FeNi), de l'autre côté de l'électrode mobile. Cette couche peut être déposée sur le substrat 10 avant la formation des électrodes fixes et mobiles. L'aimant crée un champ magnétique qui aimante l'électrode mobile préférentiellement dans le sens du côté fermé, ce qui permet le maintien magnétique.For such an embodiment, the conductive material that constitutes the conductive plates of the two mobile electrodes may be made of magnetic material such as iron-nickel which is both magnetic and electrically conductive. A coating of the conductive mobile electrodes by a magnetic layer may also be sufficient. In addition, for the magnetic holding effect to be more efficient, it is desirable to provide a layer of magnetic material (called a soft layer, preferably FeNi) on the other side of the moving electrode. This layer may be deposited on the substrate 10 before the formation of the fixed and mobile electrodes. The magnet creates a magnetic field that magnets the moving electrode preferentially in the closed-side direction, which allows magnetic retention.

La figure 7 représente une structure avec un aimant permanent 60 placé au-dessus des électrodes fixes et mobiles et une couche magnétique douce 102 en Fer-nickel déposée sur le substrat 10 au-dessous de ces électrodes.The figure 7 represents a structure with a permanent magnet 60 placed above the fixed and movable electrodes and a soft magnetic iron-nickel layer 102 deposited on the substrate 10 below these electrodes.

Au lieu d'un aimant placé au-dessus ou au-dessous de la structure avec une couche magnétique douce renforçant son action, on peut prévoir que des aimants sont intégrés directement dans le substrat. On sait déposer en couche mince des aimants à la surface d'un substrat ou dans des puits creusés dans la surface du substrat. On donne à ces aimants une aimantation d'orientation verticale. On peut par exemple prévoir un aimant à chaque extrémité de l'électrode mobile, ou un unique aimant sous l'ensemble de l'électrode mobile. Les aimants peuvent être en composé NdFeB (néodyme-fer-bore) ou en samarium -cobalt et on peut atteindre des inductions rémanentes de l'ordre d'un dixième de Tesla à un Tesla. Le dépôt se fait par électro-déposition ou pulvérisation cathodique. Des dépôts de couches aimantées de 10 à 50 micromètres d'épaisseur sont techniquement réalisables et permettent d'assurer un maintien magnétique suffisant. Ces couches aimantées nécessitent un recuit à des températures d'environ 700°C, et on les réalisera donc avant de former les empilements de couches constituant les électrodes fixes et mobiles.Instead of a magnet placed above or below the structure with a soft magnetic layer reinforcing its action, it can be provided that magnets are integrated directly into the substrate. It is known to deposit magnets on the surface of a substrate in thin layers or in wells dug in the surface of the substrate. These magnets are given a magnetization of vertical orientation. For example, it is possible to provide a magnet at each end of the moving electrode, or a single magnet under the whole of the moving electrode. Magnets can be in NdFeB compound (neodymium-iron-boron) or in samarium-cobalt and one can reach residual inductions of the order of a tenth of Tesla to a Tesla. Deposition is by electro-deposition or sputtering. Deposits of magnetic layers 10 to 50 micrometers thick are technically feasible and provide sufficient magnetic retention. These magnetized layers require annealing at temperatures of about 700 ° C, and will therefore be realized before forming the stacks of layers constituting the fixed and mobile electrodes.

La figure 8 représente une structure à aimants intégrés, à deux aimants 62 et 62' incorporés au substrat et placés respectivement à l'aplomb de l'extrémité des deux électrodes mobiles.The figure 8 represents a structure with integrated magnets, with two magnets 62 and 62 'incorporated in the substrate and placed respectively vertically above the end of the two mobile electrodes.

L'avantage des aimants intégrés est que l'encombrement est plus faible car on peut supprimer l'aimant 60 et les moyens de fixation de cet aimant sur la structure. De plus on n'a plus besoin de prévoir une étape de formation d'une couche magnétique douce (102, figure 7) sur le substrat. Enfin, le comportement en radiofréquence (pour les applications en radiofréquence) est meilleur.The advantage of integrated magnets is that the footprint is smaller because it can remove the magnet 60 and the fastening means of this magnet on the structure. In addition, it is no longer necessary to provide a step of forming a soft magnetic layer (102, figure 7 ) on the substrate. Finally, the radiofrequency behavior (for radiofrequency applications) is better.

Toutes ces structures d'actionneurs simples ou doubles, à commande simple ou symétrique peuvent être utilisées non seulement pour des interrupteurs électriques mais aussi pour d'autres applications où un petit déplacement de la partie mobile (quelques micromètres) est utile, notamment pour des interrupteurs optiques. Dans ce cas, l'électrode mobile peut porter un miroir de renvoi placé sur le trajet d'un faisceau lumineux et qui modifie ou interrompt le chemin optique de ce faisceau lumineux en fonction de l'état de basculement de l'électrode mobile donc en fonction de l'angle que forme la surface du miroir avec le plan du substrat.All these structures of simple or double actuators, with simple or symmetrical control, can be used not only for electrical switches but also for other applications where a small displacement of the moving part (a few micrometers) is useful, in particular for switches optics. In this case, the moving electrode may carry a reflecting mirror placed in the path of a light beam and which modifies or interrupts the optical path of this light beam depending on the tilting state of the moving electrode, so that function of the angle that forms the surface of the mirror with the plane of the substrate.

Pour réaliser les plaques conductrices interdigitées selon l'invention, on peut par exemple procéder de la manière suivante, dans le cas d'un actionneur à maintien magnétique :

  • On part d'un substrat semiconducteur en silicium 100 (figure 9) et on dépose sur ce substrat une couche magnétique mince 102 en nickel-fer qui servira à répartir le champ magnétique de l'aimant qu'on placera ultérieurement au-dessus ou au-dessous du substrat.
In order to produce the interdigitated conductive plates according to the invention, it is possible, for example, to proceed in the following manner, in the case of a magnetic holding actuator:
  • We start from a silicon semiconductor substrate 100 ( figure 9 and a thin nickel-iron magnetic layer 102 is deposited on this substrate, which will be used to distribute the magnetic field of the magnet which will be placed later on above or below the substrate.

On dépose ensuite et on grave des couches isolantes et conductrices 104 servant à établir un motif d'interconnexion entre les plaques fixes et un plot de commande, ainsi que la couche conductrice éventuellement présente entre les plaques fixes. Le détail de ces couches n'est pas représenté. On dépose ensuite une couche de silicium polycristallin 106 servant à fabriquer les plaques fixes. On recouvre l'ensemble d'une couche d'oxyde de silicium 108 et d'une couche de résine 110 qu'on photograve pour définir le motif de plaques conductrices fixes. Figure 9A.Insulating and conductive layers 104 serving to establish an interconnection pattern between the fixed plates and a control pad, as well as the conductive layer possibly present between the fixed plates, are then deposited and etched. The detail of these layers is not represented. A polycrystalline silicon layer 106 is then deposited for manufacturing the fixed plates. The assembly is covered with a layer of silicon oxide 108 and a resin layer 110 that is photogravred to define the pattern of fixed conductive plates. Figure 9A .

On grave dans la couche d'oxyde 108 et dans la couche de silicium 106 le motif de plaques parallèles conductrices fixes. Figure 9B.The pattern of fixed conductive parallel plates is etched in the oxide layer 108 and in the silicon layer 106. Figure 9B .

On dépose une couche isolante 112 (dans le même matériau que la couche 108), qui servira d'espaceur latéral entre les plaques mobiles et les plaques fixes et d'espaceur vertical entre les plaques mobiles et le substrat. Le profil de cette couche comporte des ouvertures entre les plaques parallèles conductrices fixes, ouvertures qui serviront à recevoir le matériau des plaques conductrices mobiles. Figure 9C.An insulating layer 112 (in the same material as the layer 108) is deposited, which will serve as a lateral spacer between the movable plates and the fixed plates and vertical spacer between the movable plates and the substrate. The profile of this layer has openings between the fixed conductive parallel plates, openings which will serve to receive the material of the conductive conductive plates. Figure 9C .

On dépose une fine couche de nickel 114 (0,1 micromètre) sur la couche 112 ; cette couche de nickel constitue un germe de croissance (en anglais "seed layer") qui permettra ultérieurement une croissance électrolytique de nickel-fer. Figure 9D.A thin layer of nickel 114 (0.1 micrometer) is deposited on layer 112; this nickel layer constitutes a growth seed (in English "seed layer") which will subsequently electrolytic growth of nickel-iron. Figure 9D .

On fait croître électrolytiquement une couche de nickel-fer (80%/20%) 116 d'environ 8 à 10 micromètres d'épaisseur qui vient remplir les ouvertures de la couche 112 pour constituer les plaques conductrices mobiles entre les plaques fixes. Figure 9E.A nickel-iron (80% / 20%) layer 116 of about 8 to 10 microns in thickness is electrolytically grown to fill the openings of the layer 112 to form the conductive plates movable between the fixed plates. Figure 9E .

On élimine localement la partie supérieure de cette couche pour ne garder que les plaques conductrices parallèles et les traverses qui les relient ; les traverses ne sont pas visibles sur la figure. On conserve les parties qui peuvent servir à l'articulation de l'électrode mobile, et en particulier l'ancrage de l'articulation sur le substrat. Figure 9F The upper part of this layer is locally removed to keep only the parallel conductive plates and the cross members that connect them; the sleepers are not visible in the figure. Parts that can be used for the articulation of the mobile electrode, and in particular the anchorage of the articulation on the substrate, are retained. Figure 9F

Enfin, on élimine les couches d'oxyde de silicium 108 et 112 pour libérer les plaques mobiles PM formées par la couche 116 ; on aboutit à deux séries de plaques conductrices interdigitées à recouvrement mutuel partiel, dont l'une est solidaire du substrat et l'autre est libre.Finally, the silicon oxide layers 108 and 112 are removed to release the moving plates PM formed by the layer 116; this leads to two sets of interdigitated conductive plates with partial overlap, one of which is integral with the substrate and the other is free.

L'articulation la plus simple dans ce cas est constituée par une plaque de flexion mince verticale, constituée en même temps que les plaques mobiles mais formée dans une ouverture de la couche 112 pour venir en contact avec le substrat fixe.The simplest articulation in this case is constituted by a vertical thin bending plate, constituted at the same time as the movable plates but formed in an opening of the layer 112 to come into contact with the fixed substrate.

Dans le cas où on veut former des aimants intégrés, on ne formera pas la couche magnétique douce 102 mais on formera à la place les aimants intégrés. Les aimants intégrés sont de préférence enfoncés dans le substrat pour affleurer sur sa surface.In the case where it is desired to form integrated magnets, the soft magnetic layer 102 will not be formed, but the integrated magnets will be formed instead. The integrated magnets are preferably embedded in the substrate to flush on its surface.

Dans une première technique (électrodéposition) on peut graver des ouvertures dans le substrat aux emplacements des aimants, déposer une électrode dans ces ouvertures, et placer le substrat dans un bain électrolytique contenant les ions métalliques qui constitueront l'aimant. On peut ainsi former notamment un composé magnétique CoPt qui vient se déposer par voie électrolytique sur les électrodes placées au fond des ouvertures. Un recuit assure une orientation cristalline verticale du matériau, ce qui facilite l'aimantation permanente ultérieure dans le sens vertical.In a first technique (electroplating), openings in the substrate can be etched at the locations of the magnets, an electrode deposited in these openings, and the substrate placed in an electrolytic bath containing the metal ions that will constitute the magnet. It is thus possible to form in particular a magnetic compound CoPt which is deposited electrolytically on the electrodes placed at the bottom of the openings. Annealing provides a vertical crystalline orientation of the material, which facilitates subsequent permanent magnetization in the vertical direction.

Dans une deuxième technique (pulvérisation cathodique) on utilise la condensation sur le substrat d'une phase vapeur des métaux composant la couche aimantée à réaliser, notamment du NdFeB (néodyme, fer, bore). Le procédé de réalisation des aimants peut comprendre les étapes suivantes : à partir d'une plaquette de silicium, on effectue une étape de photolithographie pour définir dans le silicium des ouvertures aux emplacements des aimants, sans enlever la résine de photolithographie ; puis on dépose une couche de SiO2 et une couche de tantale, et on enlève le tantale en dehors des ouvertures en enlevant la résine de photolithographie sur laquelle le tantale repose ; le tantale sert de couche barrière au fond des ouvertures ; on dépose un composé NdFeB, par exemple Nd2Fe14B par pulvérisation cathodique en plasma sous argon ; le dépôt peut être fait à 400°C, produisant une couche amorphe de NdFeB et peut être suivi d'un recuit à 750°C assurant une cristallisation du composé dans un sens vertical propre à faciliter l'aimantation verticale.In a second technique (sputtering), the condensation on the substrate of a vapor phase of the metals composing the magnetic layer to be carried out is used, in particular NdFeB (neodymium, iron, boron). The method for producing the magnets may comprise the following steps: from a silicon wafer, a photolithography step is carried out to define openings in the silicon at the locations of the magnets, without removing the photolithography resin; then a layer of SiO 2 and a layer of tantalum are deposited, and the tantalum is removed outside the openings by removing the photolithography resin on which the tantalum rests; tantalum serves as a barrier layer at the bottom of the openings; depositing an NdFeB compound, for example Nd 2 Fe 14 B, by cathodic sputtering in plasma under argon; the deposition can be done at 400 ° C, producing an amorphous layer of NdFeB and can be followed by annealing at 750 ° C ensuring crystallization of the compound in a vertical direction to facilitate vertical magnetization.

Claims (12)

  1. An electrostatically controllable micro-electromechanical actuator comprising a stationary substrate (10) and a movable element hinged on the substrate so that a part of the movable element can move in a first chosen direction (Z), a set of parallel conducting plates (PM) on the movable element, the height of which plates extends in the first direction and which are regularly spaced in a second direction perpendicular to the first, and another set of parallel conducting plates (PF) on the stationary substrate, the two sets of plates being symmetrically interdigitated with each other and partially overlapping heightwise so that a control voltage applied between the two sets produces an electrostatic force having a component along the height of the plates in the first direction, the plates having opposite ends in a third direction perpendicular to the first two, characterized in that the opposite ends of the plates of one of the sets are electrically and mechanically secured to the two end crosspieces (22, 24) which lie facing the opposite ends of the plates of the other set.
  2. The actuator as claimed in claim 1, characterized in that the set of plates secured to the crosspieces is the set belonging to the movable element.
  3. The actuator as claimed in either of claims 1 and 2, characterized in that the plates are planar and elongate in the third direction.
  4. The actuator as claimed in one of claims 1 to 3, characterized in that the direction of movement is perpendicular to the surface of the substrate.
  5. The actuator as claimed in one of claims 1 to 4, characterized in that the two secured end crosspieces of one set of plates are located at precisely the same distance from the two opposite ends of a plate of the other set, and this distance is the same for all the plates of the other set.
  6. The actuator as claimed in one of claims 1 to 5, characterized in that the movable element comprises a conducting part (30) that may optionally make contact with at least one conductor borne by the stationary substrate depending on the control voltage applied to the actuator.
  7. The actuator as claimed in one of claims 1 to 6, characterized in that the movable element of the actuator is arranged symmetrically on either side of a hinge of the movable element, like a see-saw, and it comprises two sets of mobile conducting plates each interdigitated with a respective set of stationary conducting plates and means for applying a control voltage either between a first set of mobile conducting plates and a corresponding first set of stationary conducting plates or between a second set of mobile conducting plates and a corresponding second set of stationary conducting plates.
  8. The actuator as claimed in claim 7, characterized in that it comprises two symmetric electrical contacts opened or closed by applying a control voltage, one being open when the other is closed and vice versa.
  9. The actuator as claimed in either of claims 7 and 8, characterized in that it is provided with magnetic retention means for maintaining the movable element in a stable position, comprising a magnetizable material in the movable element and a permanent magnet associated with the stationary element, the magnet creating in the magnetizable material a magnetic field in one direction or in another, depending on the inclination of the movable element relative to the substrate.
  10. The actuator as claimed in claim 9, characterized in that the permanent magnet (60) is placed above the movable element and a layer of magnetic material (102) is placed beneath the stationary element.
  11. The actuator as claimed in claim 9, characterized in that the permanent magnet is integrated into the stationary substrate, beneath the stationary element and the movable element.
  12. The actuator as claimed in one of claims 1 to 11, characterized in that it comprises, formed on the substrate between the stationary conducting plates, a continuous conducting film held at the same voltage as these plates, creating a supplementary electrostatic force of attraction that attracts the conducting plates of the movable element toward the substrate.
EP10175846.4A 2009-09-11 2010-09-08 Electromechanical actuator with interdigital electrodes Not-in-force EP2296157B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0904345A FR2950194B1 (en) 2009-09-11 2009-09-11 ELECTROMECHANICAL ACTUATOR WITH INTERDIGITED ELECTRODES

Publications (2)

Publication Number Publication Date
EP2296157A1 EP2296157A1 (en) 2011-03-16
EP2296157B1 true EP2296157B1 (en) 2014-12-10

Family

ID=42112023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10175846.4A Not-in-force EP2296157B1 (en) 2009-09-11 2010-09-08 Electromechanical actuator with interdigital electrodes

Country Status (4)

Country Link
US (1) US8390407B2 (en)
EP (1) EP2296157B1 (en)
JP (1) JP2011060766A (en)
FR (1) FR2950194B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412547B2 (en) 2011-12-21 2016-08-09 Siemens Aktiengesellschaft Contactor
US10132699B1 (en) * 2014-10-06 2018-11-20 National Technology & Engineering Solutions Of Sandia, Llc Electrodeposition processes for magnetostrictive resonators
CN114554020A (en) * 2020-11-24 2022-05-27 西门子(深圳)磁共振有限公司 Calling device of magnetic resonance imaging system and magnetic resonance imaging system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384952B1 (en) * 1997-03-27 2002-05-07 Mems Optical Inc. Vertical comb drive actuated deformable mirror device and method
US6115231A (en) * 1997-11-25 2000-09-05 Tdk Corporation Electrostatic relay
JP2000065855A (en) * 1998-08-17 2000-03-03 Mitsubishi Electric Corp Semiconductor acceleration switch and manufacture thereof
DE19912669A1 (en) * 1999-03-20 2000-09-21 Abb Research Ltd Microrelay operating parallel to the substrate
US6496612B1 (en) 1999-09-23 2002-12-17 Arizona State University Electronically latching micro-magnetic switches and method of operating same
US6506989B2 (en) * 2001-03-20 2003-01-14 Board Of Supervisors Of Louisana State University And Agricultural And Mechanical College Micro power switch
US6798315B2 (en) * 2001-12-04 2004-09-28 Mayo Foundation For Medical Education And Research Lateral motion MEMS Switch
DE10235369A1 (en) * 2002-08-02 2004-02-19 Robert Bosch Gmbh Micromechanical switch for acceleration sensor system, has spring element for inertia mass deflected by acceleration force to allow inertia mass to contact contact element
US7474923B2 (en) * 2003-04-29 2009-01-06 Medtronic, Inc. Micro electromechanical switches and medical devices incorporating same
US7498715B2 (en) * 2005-10-31 2009-03-03 Xiao Yang Method and structure for an out-of plane compliant micro actuator
FR2927466A1 (en) * 2008-06-17 2009-08-14 Commissariat Energie Atomique Bistable actuator for use as bistable double power switch for e.g. motor vehicle, has magnetic maintaining units with magnet for maintaining actuator in stable position, where units generate magnetic field perpendicular to support plane

Also Published As

Publication number Publication date
FR2950194B1 (en) 2011-09-02
FR2950194A1 (en) 2011-03-18
US20110220470A1 (en) 2011-09-15
EP2296157A1 (en) 2011-03-16
JP2011060766A (en) 2011-03-24
US8390407B2 (en) 2013-03-05

Similar Documents

Publication Publication Date Title
EP0780858B1 (en) Miniature device to execute a predetermined function, in particular a microrelay
EP1562207B1 (en) Bistable microelectromechanical system
EP1639613B1 (en) Low power consumption bistable microswitch
EP0602538B1 (en) Reed switch and manufacturing process for suspended three-dimensional metallic microstructures
EP1698041B1 (en) Electrostatic control device
EP2795649B1 (en) Electromagnetic actuator comprising permanent magnets and mechanical load interrupter actuated by such an actuator
US6320145B1 (en) Fabricating and using a micromachined magnetostatic relay or switch
EP2296157B1 (en) Electromechanical actuator with interdigital electrodes
EP1736435A1 (en) Electrostatic actuator with a conducting and suspended pivot member
EP0688033A1 (en) Magnetic microswitch and its manufacturing process
KR20010083923A (en) Microeletromechanical device having single crystalline components and metallic components and associated fabrication methods
EP1836714A1 (en) Microsystem with electromagnetic control
CA2437816A1 (en) Pivoting optical micromirror, array for such micromirrors and method for making same
WO2005015594A2 (en) Bistable micromechanical switch, actuating method and corresponding method for realizing the same
EP1399938B1 (en) Magnetic actuator with reduced response time
FR2927466A1 (en) Bistable actuator for use as bistable double power switch for e.g. motor vehicle, has magnetic maintaining units with magnet for maintaining actuator in stable position, where units generate magnetic field perpendicular to support plane
FR2706075A1 (en) Control device of the moving-component actuator type keeping its orientation in the course of movement
FR2734104A3 (en) Micromechanical actuator
EP2472542A1 (en) Method for manufacturing a micro-contactor that can be actuated by a magnetic field
WO2005069473A1 (en) Electrostatic mems components permitting a large vertical displacement
EP1846320A1 (en) Micromechanical device comprising a mobile beam
FR2970596A1 (en) CONTACTOR AND SWITCH
FR2853449A1 (en) Magnetic actuator, has triggering unit that moves mobile part in manner in which contact surface of mobile part comes in electrical contact with contact surface of fixed part
FR3022691A1 (en) INTEGRATED COMMANDABLE CAPACITIVE DEVICE
KR100346688B1 (en) Moving mirror structure and manufacturing method_

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110701

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140715

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DIEM, BERNARD

Inventor name: SIBUET, HENRI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 701014

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010020842

Country of ref document: DE

Effective date: 20150122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 701014

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141210

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141210

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150310

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150410

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010020842

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

26N No opposition filed

Effective date: 20150911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150908

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150908

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160916

Year of fee payment: 7

Ref country code: DE

Payment date: 20160914

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160928

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010020842

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170908

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210