EP2296129B1 - Dispositif et procédé d'aide à l'atterrissage avec indications aidant à la visibilité du monde extérieur - Google Patents

Dispositif et procédé d'aide à l'atterrissage avec indications aidant à la visibilité du monde extérieur Download PDF

Info

Publication number
EP2296129B1
EP2296129B1 EP10166828A EP10166828A EP2296129B1 EP 2296129 B1 EP2296129 B1 EP 2296129B1 EP 10166828 A EP10166828 A EP 10166828A EP 10166828 A EP10166828 A EP 10166828A EP 2296129 B1 EP2296129 B1 EP 2296129B1
Authority
EP
European Patent Office
Prior art keywords
symbol
aircraft
altitude
images
landing assistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10166828A
Other languages
German (de)
English (en)
Other versions
EP2296129A1 (fr
Inventor
Michel Soler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2296129A1 publication Critical patent/EP2296129A1/fr
Application granted granted Critical
Publication of EP2296129B1 publication Critical patent/EP2296129B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids

Definitions

  • the present invention relates to the field of devices for assisting landing, including devices for interactively indicating information that aids in the visibility of the outside world, in particular relating to the position of the runway and the altitude of the aircraft. the aircraft.
  • HUD Head Up Display
  • a system commonly used in some aircraft under the acronym HUD meaning in the aeronautical and Anglo-Saxon terminology “Head Up Display” can display flight information superimposed of the landscape seen through the windshield of the aircraft. cockpit. It facilitates certain critical phases of flight, including landings.
  • a sensor located in the nose of the aircraft can provide a video type image presented in the HUD.
  • This image is a particularly appreciated driving aid, especially during an approach phase. It improves landscape interpretations and the recognition of certain areas. It therefore constitutes a safety gain in landing phases for example.
  • the video image makes it possible to delay the point from which it is considered that visual flight is necessary in particular during a landing. This point is called “vision point” in the remainder of the description. From the piloting point of view, the pilot can decide later on a landing if the conditions allow it.
  • a sensor providing a video image of this type is known in aeronautics under the acronym of EVS, meaning in the English aeronautical terminology "Enhanced Vision System”.
  • EVS is an infrared, single-band or multi-band type camera with the ability to see “better” than the human eye in low light conditions, typically during night flights or bad weather, such as the presence of fog or smoke.
  • This sensor is generally located in the nose of the aircraft and has a field of vision positioned similarly to that of the HUD.
  • This EVS system is generally coupled to the HUD for certain applications, especially in the approach phase to improve the visibility in the field of vision. It thus makes it possible to obtain better operational minima, such as the minimum altitude at which a landing decision must be made or not.
  • An advantage of the image provided by the EVS is that it is of video type, that it covers the whole field of the HUD and that it is presented in overlay of the HUD symbology.
  • the gain provided by the contribution of this piercing vision is thwarted by the overload of the image provided over the real landscape.
  • the invention overcomes the aforementioned drawbacks.
  • the invention makes it possible to generate a symbology extracted from video images superimposed on the landscape seen through the cockpit.
  • the invention makes it possible to extract a symbology from a high quality video image used in particular during a reduced visibility in an approach trajectory.
  • the invention makes it possible to correlate the extracted information with a geographical database, for example a navigation database. The information represented by the symbols generated by the device of the invention is thus verified and displayed thus constituting a safety gain and a landing aid.
  • the invention makes it possible to change the representation of the symbology according to the chronology of the different phases of flight during an approach in order to inform the pilot.
  • a symbol extracted from an EVS-type video image is a landing-strip outline.
  • At least one first symbol comprising landing aid information is generated from the contours of the first form and displayed on the display, the first form is a trapezoidal and the first generated symbol is the outline of a track. landing.
  • the senor may be an infrared camera or a millimetric radar for capturing images in an environment where the visibility is degraded.
  • the device comprises means for validating and comparing the integrity of the data describing the first symbol with data of a geographic data resource.
  • the aircraft landing aid device comprises means for graphically modifying the displayed symbols.
  • the device comprises a radioaltimeter delivering the altitude of the aircraft continuously allowing the graphic modification means to change the appearance of the first displayed symbol according to the altitude of the aircraft.
  • the display shows the first superimposed symbol of a second landing strip symbol generated by the geographical data resource.
  • the device comprises a switch for automatically or manually selecting to display either the images delivered by the image generating means or to display the symbology extracted from the images delivered by the image generation means.
  • the figure 1 represents the different functional blocks of the device of the invention.
  • a component denoted CAPTURE, makes it possible to acquire the video images of a sensor placed generally at the level of the nose of the aircraft.
  • the sensor delivering the video images to the CAPTURE component may be a device such as the EVS.
  • the video images captured by the CAPTURE component are transmitted to a contour extractor, noted EXTRACTION, it may be a dedicated computer or a computer already present in the avionics system of an aircraft.
  • the EXTRACTION component makes it possible to dimension a field of view that is adequate for the extraction of elements that are suitable for landing. For this it is possible to define a field of vision comparable to that defined in the HUD for example or any device display says "head up".
  • the EXTRACTION component allows you to trim each captured outermost element in the field of view to extract the outlines. The shapes thus cut off are compared with known shapes and generated from the navigation database or from a geo-location data source such as a GPS or from another data source. not coming from the video image captured by the CAPTURE component and making it possible to identify a given element.
  • a component noted SYMBOL 1
  • SYMBOL 1 can be a dedicated computer or identical to the EXTRACTION computer or a computer already present in the avionics system of the aircraft, can generate a symbology.
  • Extraction of the outlines of images from the CAPTURE component can start automatically at a programmed altitude or be manually activated by the pilot.
  • contour extraction zones are defined on the basis of avionics information available on board the aircraft in equipment such as the FMS, which means in the aeronautical English terminology “Flight Management System” or an inertial unit such as an IRS, whose acronym stands for “Inertial Reference System”.
  • FMS flight Management System
  • IRS inertial unit
  • This information allows a calculation of relative positioning of the aircraft with respect to the target terrain and an estimate of the contour extraction zone to which the EXTRACTION component must proceed.
  • an external field determining element whose visual recognition by the pilot is required for landing is the landing runway.
  • the extraction of outlines is based on the search for a trapezoidal shape corresponding to the representation of a track viewed in 3D. Extraction of the shape can be performed with a possible standard track layout.
  • Two examples of known runway dimensions are 45mx3000m or 60mx4000m. Nevertheless, the invention applies to all forms of landing strips as soon as they are known.
  • the real time calculation performed by the EXTRACTION component takes into consideration the relative positioning of the aircraft with respect to the target.
  • the positions of the aircraft and the track are delivered by avionics system equipment, such as the GPS computer, the navigation database or the airport database or other location system or radio navigation.
  • the SYMBOL component 1 From the video image captured by the CAPTURE component, the SYMBOL component 1 generates a symbol of an airstrip, denoted PIST 1, a shape of which can be represented on the figure 3 .
  • PIST 1 a symbol of an airstrip
  • the invention makes it possible to generate a trapezoidal shape similar to that usually displayed by the HUD from the navigation database.
  • a HUD head-up display device such as the HUD or an equivalent.
  • An advantage of such a generated form is that it is easily identifiable by the pilot and can easily be compared to the track symbol generated by the navigation database, noted as TRACK 2, and displayed in the HUD.
  • TRACK 2 the navigation database
  • a simple way to compare them is to display them in the same repository, including an aircraft repository in the case of the HUD symbology, where the axis of the runway can be compared to the heading of the aircraft.
  • the TRACK 1 symbol can be compared to a track symbol generated from on-board data of terrain representations, such as the system known in aeronautics under the acronym TAWS or an airport database defining the coordinates of the runway and these dimensions.
  • terrain representations such as the system known in aeronautics under the acronym TAWS or an airport database defining the coordinates of the runway and these dimensions.
  • the TRACK 1 symbol may be compared to a track symbol generated from non-embedded data such as ground-board-accessed electronic map data, for example a link known as SATCOM name in aeronautical terminology.
  • a VALIDATION component makes it possible to compare the two symbols TRACK 1 and TRACK 2, in particular their similarity and their position in the same reference frame. Correlation calculations between the two symbols can be performed based on the track contours generated by the displayed symbology. In particular, the correlation can integrate the width of the track, the length of the track, the axis of the track. In one embodiment, the correlation calculations can advantageously be carried out in a geodetic reference frame of the various databases generating the PISTE 2 symbol or in another embodiment in a reference frame linked to the aircraft, for example that of the HUD.
  • the display criteria are determined from a given tolerance which may relate to the comparison of the two symbols and a tolerance of the dimensions on either side calculated.
  • the data determining the TRACK 1 symbol can be correlated with data from different radio navigation sensors.
  • the VALIDATION component can be a dedicated computer or identical to the SYMBOL 1 computer or a calculator already present in the avionics system of the aircraft.
  • the VALIDATION component makes it possible to check and validate the coherence of the data relating to the position of the track in the space and its relative position relative to the heading of the aircraft.
  • a MODIFICATION component makes it possible to perform the status changes of the TRACK symbol 1.
  • the symbol of the track whose primary objective is to represent the direction of the runway facing the heading of the aircraft and to compare it with the TRACK 2 symbol.
  • a second objective of the symbol TRACK 1 according to the invention is to be able to represent the different states of the approach phase, particularly in as regards the altitude of the aircraft and the crossing of certain critical points of the approach phase.
  • the MODIFICATION component is coupled with an altimeter radio, noted RA on the figure 1 .
  • a switch marked ON / OFF allows to activate or deactivate the video display on the HUD and / or the symbology extracted from the captured video images.
  • This display is made by component E of the figure 1 .
  • This component displays the symbology coming from different resources of the avionics system of the aircraft, generally these resources are sensors and calculators of radio navigation. For example, some of these data are aircraft positioning and attitude data from the GPS / IRS component, or data from the navigation database, denoted BD, such as the TRACK 2 symbol or data from the navigation database. component rated LS on the figure 1 .
  • the LS component may comprise avionic equipment such as an ILS receiver, meaning in the English aeronautical terminology “Instrument Landing System” or FLS meaning in the English aeronautical terminology “FMS Landing System” or a GLS meaning in the English aeronautical terminology “GPS Landing System” or MLS means in the terminology of aeronautics Anglo-Saxon “Microwave Landing System", said equipment providing information relating to the method of approach and landing.
  • avionic equipment such as an ILS receiver, meaning in the English aeronautical terminology “Instrument Landing System” or FLS meaning in the English aeronautical terminology “FMS Landing System” or a GLS meaning in the English aeronautical terminology “GPS Landing System” or MLS means in the terminology of aeronautics Anglo-Saxon "Microwave Landing System", said equipment providing information relating to the method of approach and landing.
  • the invention allows the generation and presentation of a new symbol displayed in the HUD that will allow the pilot to use images produced by the function of a sensor such as that of the EVS under the current procedures.
  • the invention makes it possible to change graphically throughout the approach the symbols generated by the component SYMBOL 1, such as the symbol TRACK 1.
  • the changes in graphical states of the symbols inform the pilot of the operational status of the aircraft and its situation in the approach path without any image overload. It also informs it of the altitude of the aircraft and the crossing of certain critical points in the approach path.
  • the graphical state changes of the symbols incorporate a notion of time during the approach phase of the aircraft.
  • certain critical altitudes are regulated in the pilot's decision making.
  • a remarkable altitude is defined especially from the moment when the EVS data must be displayed to continue the approach phase.
  • the track must be able to be seen by the pilot beyond the remarkable altitude defined. It is usually defined by regulation. This point allows the aircraft to descend at altitude and postpone the timing of a landing decision or not.
  • the invention thus has the advantage of being able to extract information from the images coming from the EVS device without overloading the rest of the field of view covered by the HUD, the field of vision comprising the real view seen through the windshield of the cockpit and the EVS device images displayed in overlay of the actual view.
  • An advantage of the invention is to allow switching between the symbology extracted from the video image of a device such as the EVS and the video images themselves from this device.
  • the driver has the choice of displaying from the ON / OFF component. This switching can be done manually and facilitates the identification of visual cues without information overload.
  • a practical use case can be initiated when the visibility is completely obstructed by one or more clouds, the ON / OFF switch is positioned to let the video images from the CAPTURE component. In this case the video images do not conflict with the representation of the outer landscape that is covered by clouds.
  • the switch can filter the video images from the CAPTURE component and display the symbology extracted from the video images from the MODIFICATION component.
  • An advantage of the representation of symbols, according to the invention, extracted from the image capture device such as the EVS and displayed on the HUD, is that in case of non-integrity of the data correlated by the component VALIDATION, the Display symbols extracted from the CAPTURE component can be automatically or manually suspended.
  • the presentation of the symbol generated from the SYMBOL component 1 according to the invention can be either displayed or calculated and not displayed.
  • Symbol representation generated by the SYMBOL 1 component may be similar to symbols already generated by other equipment, such as the airstrip.
  • the VALIDATION component checks the integrity of data from different devices with that of the CAPTURE component. This check allows the pilot to gain security in the information displayed in the HUD.
  • the symbols generated by the SYMBOL component 1 may be different from the symbology already present in the HUD or may include messages indicating good or bad operation.
  • the figure 2 represents different phases of an approach path of an aircraft preparing to land.
  • the aircraft in portion 20 of its flight plan is in cruise flight.
  • the symbology displayed in this phase corresponds to a HUD symbology including among others the display of a speed vector of the aircraft 10, the horizon line 29 and a cursor 28 corresponding to the course to be followed in the flight plan. .
  • a first point 21 intercepted or crossed by the aircraft makes it possible to define the portion of trajectory from which a display of the runway 9 is made and generated from radionavigation data or data from the navigation database.
  • the symbol of the track, noted previously TRACK 2 is displayed on the HUD in the same reference as the symbology representing the horizon line and the aircraft.
  • a second point 22 delimits the portion between the points 21 and 22 in which the aircraft and the pilot navigates from the conventional symbology displayed in the HUD.
  • Point 22 situated at a given altitude and situated on the flight plan of the aircraft.
  • Point 22 defines a boundary from which the EXTRACTION component begins to extract the outlines of images from the CAPTURE component.
  • the extraction can be controlled automatically from a given altitude for example from information from the radio altimeter or it can be manually engaged by the pilot.
  • the new symbol is a track 8 represented in superposition of the symbol 9 already present.
  • the graphic of the symbol 8 is a full track, it is the track symbol 1 described above.
  • the filling of the TRACK 1 symbol has the advantage of intuitively translating important information of the video images, namely the landing runway, and moreover it has the advantage of confirming in a simple way the process state of contour extraction.
  • the regulation allows an aircraft comprising an activated EVS-type device to descend below a given altitude corresponding to the altitude of point 23 to an altitude limit defined by the altitude of a point 26 of the figure 2 .
  • the viewing point 23 can be pushed back to a new vision point 26 since the EVS device allows better visibility.
  • the aircraft must release the throttle.
  • the decision to be able to descend beyond the point 23 and to steal a portion delimited by the points 23 and 26, is thus on the presence or absence of the symbol PIST 1 corresponding to the contour of the track of the images captured by the CAPTURE component. .
  • the symbol TRACK 1 can then be, in the portion 25, represented graphically in another way than in the previous portion the point 23.
  • the TRACK 1 symbol is a track 8 'contained in the TRACK 2 symbol when the aircraft flies the portion 25.
  • the superposition of the two tracks always indicates that the data are intact and the graphical state change of the TRACK symbol 1 indicates that the aircraft is in a critical phase corresponding to the portion 25 involving a decision of the pilot at point 26.
  • Guiding in the portion 25 is solely on the basis of the information provided by the EVS device or an equivalent device such as the CAPTURE component. This information complies with a regulation that defines remarkable altitudes.
  • the symbology extracted from the video images of the CAPTURE component provides continuity with the previous phase and is consistent with the procedures and symbology generally used for the approach phases.
  • the figure 3 represents different graphic states of the TRACK symbol 1.
  • the symbol 30 representing the TRACK symbol 1 is full and located inside the TRACK symbol 2.
  • This representation indicates that there is consistent data provided from different avionics systems and it allows to locate the aircraft in one of the portions of the approach path. In the example of the figure 2 this representation allows the pilot to visually interpret that the aircraft is between point 22 and point 23 and has not yet reached the critical altitude of point 23.
  • the TRACK 1 symbol is represented by a trapezoidal shape 8 'located inside the TRACK 2 symbol.
  • This representation makes it possible to ensure the coherence of the data supplied from different avionic systems and it makes it possible to locate the aircraft in a portions of the approach path. In the latter case the symbol 8 'makes it possible to make the pilot understand that the aircraft is between point 23 and point 26 in the portion 25.
  • An advantage of the invention is that it allows an intuitive reading of the information displayed.
  • the symbols extracted from the SYMBOL component 1 make it possible, in the event of poor visibility, to ensure the coherence of the information coming from different resources of the avionic system, in particular as regards the absolute position of the track, the relative position of the track relative to the track. aircraft and its axis.
  • Another advantage is that the invention makes it possible to adjust different representations of the symbol informing the pilot (s) of the phase in which the aircraft is located.
  • the invention makes it possible not to overload the landscape seen through the windshield of the cockpit by video images.
  • the extracted symbology gives useful information necessary to descend to a lower altitude while preserving the reading of the external landscape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Description

  • La présente invention concerne le domaine des dispositifs d'aide à l'atterrissage, notamment des dispositifs permettant d'indiquer de manière interactive des informations aidant à la visibilité du monde extérieur, notamment relatives à la position de la piste et à l'altitude de l'aéronef.
  • Actuellement, de nombreux aéronefs utilisent des dispositifs d'aide au pilotage permettant de faciliter l'interprétation de données liées à l'aéronef, au sol ou à l'environnement dans lequel évolue l'aéronef.
  • Par exemple, un système couramment utilisé dans certains aéronefs sous l'acronyme HUD, signifiant dans la terminologie aéronautique et anglo-saxonne "Head Up Display" permet d'afficher des informations de vol en superposition du paysage vu au travers le pare-brise du cockpit. Il permet de faciliter certaines phases critiques de vol, notamment les atterrissages.
  • Le calcul et la représentation de symboles, appelée également symbologie dans la terminologie aéronautique, présentée au pilote en superposition au paysage est couramment utilisé.
  • Afin d'améliorer la vue extérieur du cockpit, lorsque les conditions de visibilité sont mauvaises, un capteur localisé dans le nez d'aéronef peut fournir une image de type vidéo présentée dans le HUD. Cette image constitue une aide au pilotage particulièrement appréciée notamment lors d'une phase d'approche. Elle permet d'améliorer les interprétations du paysage et la reconnaissance de certaines zones. Elle constitue donc un gain de sécurité dans des phases d'atterrissage par exemple.
  • En outre, l'image vidéo permet de retarder le point à partir duquel on considère que le vol à vue est nécessaire notamment lors d'un atterrissage. Ce point est appelé "point de vision" dans la suite de la description. Au point de vue pilotage, le pilote peut décider plus tardivement d'un atterrissage si les conditions le permettent.
  • Le fait d'augmenter la durée pendant laquelle le pilote attend d'avoir une visibilité de la piste à vue permet de se rapprocher de la piste et d'obtenir plus de chance d'avoir un champ de vision dégagé à proximité de la piste, par exemple en cas d'intempéries.
  • Si le pilote ne peut pas voir la piste au point de vision alors il est contraint de ne pas atterrir dans ces conditions. La présence d'une image vidéo permet au pilote de repousser dans le temps, donc a une altitude plus basse, la position du point de vision dans sa procédure d'approche.
  • Un capteur fournissant une image vidéo de ce type est connu en aéronautique sous l'acronyme d'EVS, signifiant dans la terminologie anglo-saxonne aéronautique "Enhanced Vision System".
  • L'EVS est une camera de type infrarouge, mono-bande ou multi-bandes ayant la capacité de voir « mieux » que l'oeil humain dans des conditions de faibles luminosité, typiquement lors de vols de nuit ou de mauvais temps, tel que la présence de brouillard ou de fumée.
  • Ce capteur est généralement localisé dans le nez d'aéronef et a un champ de vision positionné de façon similaire à celui du HUD.
  • Ce système EVS est généralement couplé au HUD pour certaines applications notamment en phase d'approche pour améliorer la visibilité dans le champ de vision. Il permet de ce fait d'obtenir de meilleurs minima opérationnels, tel que l'altitude minimale à laquelle une décision d'atterrissage doit être prise ou non.
  • Un avantage de l'image fournie par l'EVS est qu'elle est de type vidéo, qu'elle couvre l'ensemble du champ du HUD et qu'elle est présentée en superposition de la symbologie HUD.
  • Bien que cette vision synthétique, assez proche en termes de rendu de la vision réelle, facilite la perception du monde extérieur en mauvaises conditions météorologiques, des inconvénients persistent.
  • Parmi eux, le gain fourni par l'apport de cette vision perçante est contrecarré par la surcharge de l'image fournie par-dessus le vrai paysage.
  • Cela rend l'image peu exploitable et peut générer une confusion d'interprétation entre le monde réel et l'imagerie EVS notamment lors de l'identification requise d'éléments extérieurs dans la procédure finale d'atterrissage. Le pilote doit enclencher la remise des gaz si la visibilité ne permet pas d'identifier les éléments nécessaires à l'atterrissage, telle que le seuil de la piste d'atterrissage par exemple.
  • On connaît de l'état de la technique le document WO00/54217 . Ce document décrit un dispositif d'affichage HUD sur lequel des images provenant de plusieurs sources de mesure peuvent être affichées séparément ou en même temps par fusion des images captées. Ce document divulgue une méthode de création d'une image synthétique améliorée grâce à un traitement de détection de contour. Selon cette solution les moyens de génération d'une image ont pour but de créer une image plus complète que celle captée ou une image entièrement synthétique représentant le fond de paysage. Le désavantage majeur de cette solution est le problème de surcharge de l'image affichée.
  • L'invention permet de pallier aux inconvénients précités.
  • L'invention permet de générer une symbologie extraite des images vidéo se superposant au paysage vu à travers le cockpit. L'invention permet d'extraire une symbologie à partir d'une image vidéo de haute qualité utilisée notamment lors d'une visibilité réduite dans une trajectoire d'approche. L'invention permet de corréler les informations extraites avec une base de données de géographiques, par exemple une base de données de navigation. Les informations représentées par les symboles générés par le dispositif de l'invention sont de ce fait vérifiées et affichées constituant ainsi un gain de sécurité et une aide à l'atterrissage.
  • L'invention permet de faire évoluer la représentation de la symbologie selon la chronologie des différentes phases de vol lors d'une approche afin d'en informer le pilote.
  • Un symbole extrait d'une image vidéo de type EVS est un contour de piste d'atterrissage.
  • Le dispositif d'aide à l'atterrissage pour aéronef comprend :
    • ■ des moyens de génération d'images vidéo d'une portion du champ de vision, le dispositif comprenant un capteur situé devant l'aéronef destiné à la prise de vue lors de mauvaises conditions de visibilité ;
    • ■ des moyens d'extraction de contours d'images vidéo délivrée par les moyens de génération d'images permettant de délimiter au moins une première forme connue comprise dans chaque image ;
    • ■ un premier afficheur, dit "tête-haute", dont la zone d'affichage occupe une portion de la visière du cockpit en superposition du paysage extérieur ;
    • ■ des moyens de génération d'une symbologie générant des informations représentées par des symboles destinés à l'aide au pilotage s'affichant sur l'afficheur.
  • Au moins un premier symbole comprenant des informations d'aide à l'atterrissage est généré à partir des contours de la première forme et affiché sur l'afficheur, la première forme est une trapézoïdale et le premier symbole généré est le contour d'une piste d'atterrissage.
  • Avantageusement, le capteur peut-être une caméra infrarouge ou un radar millimétrique permettant de capturer des images dans un environnement où la visibilité est dégradée.
  • Avantageusement, le dispositif comprend des moyens de validation et de comparaison de l'intégrité des données décrivant le premier symbole avec des données d'une ressource de données géographiques.
  • Avantageusement, la ressource de données géographiques peut-être:
    • ■ une base de données de navigation ou ;
    • ■ un ensemble d'images satellites ou ;
    • ■ un calculateur de base de données de terrain ou ;
    • ■ une base de données d'aéroport décrivant les différents éléments d'un aéroport.
  • Ces différentes ressources de données peuvent également être combinées.
  • Avantageusement, le dispositif d'aide à l'atterrissage pour aéronef comprend des moyens de modification graphique des symboles affichés. Le dispositif comprend un radioaltimètre délivrant l'altitude de l'aéronef en continu permettant aux moyens de modification graphique de modifier l'apparence du premier symbole affiché en fonction de l'altitude de l'aéronef.
  • Avantageusement, l'afficheur affiche le premier symbole en superposition d'un second symbole de piste d'atterrissage généré par la ressource de données géographique.
  • Avantageusement, le premier symbole comprend deux états graphiques dont :
    • ■ le premier état est une trapézoïdale pleine remplissant l'intérieur du second symbole, le symbole s'affichant entre une première et une seconde altitude données ;
    • ■ le second état est le contour d'une piste trapézoïdale, de même forme que le second symbole et plus petite de manière à ce qu'elle soit insérée à l'intérieur du second symbole, ledit symbole s'affichant entre la seconde altitude et une troisième altitude donnée ;
  • Avantageusement, le dispositif comprend un commutateur permettant de choisir automatiquement ou manuellement d'afficher soit les images délivrées par les moyens de génération d'images, soit d'afficher la symbologie extraite des images délivrées par les moyens de génération d'images.
  • Avantageusement, le procédé d'aide à l'atterrissage pour aéronef est mis en oeuvre par le dispositif de l'invention, ledit procédé comprend :
    • ■ une première étape d'extraction d'un contour de la piste à partir d'une image vidéo délivrée par les moyens de génération d'images ;
    • ■ une seconde étape de génération du premier symbole définissant une piste à partir de moyens d'extraction d'une première forme trapézoïdale des images vidéo ;
    • ■ une troisième étape de comparaison du premier symbole avec des données d'une base de données géographique, la comparaison donnant une première condition d'intégrité des données ;
    • ■ une quatrième étape, réalisée selon la valeur de la première condition, d'affichage du premier symbole sur un afficheur ;
    • ■ une cinquième étape de comparaison d'au moins une altitude prédéfinie et l'altitude de l'aéronef délivrée par un radioaltimètre, de telle manière que lorsque l'aéronef franchit l'altitude prédéfinie, l'état graphique du premier symbole change indiquant au pilote le franchissement de ladite altitude.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit, faite en regard des dessins annexés qui représentent :
    • ■ la figure 1 : un schéma fonctionnel de la génération d'une symbologie d'aide à l'atterrissage selon l'invention ;
    • ■ la figure 2 : la symbologie générée par le dispositif de l'invention dans les différentes phases d'approche ;
    • ■ la figure 3 : la superposition d'une symbologie provenant de la base de données de l'aéronef et celle générée à partir d'une caméra.
  • La figure 1 représente les différents blocs fonctionnels du dispositif de l'invention.
  • Nous appellerons dans la suite de la description indifféremment un calculateur ou une application réalisant une fonction déterminée "un composant".
  • Un composant, noté CAPTURE, permet d'acquérir les images vidéos d'un senseur placé généralement au niveau du nez de l'aéronef. Le senseur délivrant les images vidéo au composant CAPTURE peut être un dispositif tel que l'EVS.
  • Les images vidéo capturées par le composant CAPTURE sont transmises à un extracteur de contour, noté EXTRACTION, il peut s'agir d'un calculateur dédié ou un calculateur déjà présent dans l'avionique système d'un aéronef.
  • Le composant EXTRACTION permet notamment de dimensionner un champ de vision adéquate à l'extraction d'éléments propres à l'atterrissage. Pour cela il est possible de définir un champ de vision comparable à celui qui est défini dans le HUD par exemple ou de n'importe quel dispositif d'affichage dit "tête haute". En outre, le composant EXTRACTION permet de détourer chaque élément distinctif extérieur capturé dans le champ de vision pour en extraire les contours. Les formes ainsi détourées sont comparées à des formes connues et générées à partir de la base de données de navigation ou à partir d'une source de données de géo-localisation tel qu'un GPS ou encore à partir d'une autre source de données ne provenant pas de l'image vidéo capturée par le composant CAPTURE et permettant d'identifier un élément déterminé.
  • A partir des contours générés par le composant EXTRACTION et sélectionnés qui seront conservés, un composant, noté SYMBOL 1, pouvant être un calculateur dédié ou identique au calculateur EXTRACTION ou encore un calculateur déjà présent dans le système avionique de l'aéronef, permet de générer une symbologie.
  • L'extraction des contours des images provenant du composant CAPTURE peut débuter automatiquement à une altitude programmée ou être activé manuellement par le pilote.
  • Les zones d'extraction de contours sont définies à partir d'informations avioniques disponibles à bord de l'aéronef dans des équipements tels que le FMS, signifiant dans la terminologie anglo-saxonne aéronautique "Flight Management System" ou encore une centrale inertielle telle qu'un IRS, dont l'acronyme signifie "Inertial Référence System". Ces informations permettent un calcul de positionnement relatif de l'aéronef par rapport au terrain cible et une estimation de la zone d'extraction de contours à laquelle doit procéder le composant EXTRACTION.
  • Dans un mode de réalisation, un élément déterminant du champ extérieur dont la reconnaissance visuelle par le pilote est nécessaire à l'atterrissage est la piste d'atterrissage.
  • Dans cet exemple, l'extraction de contours se fait sur la base de la recherche d'une forme trapézoïdale correspondant à la représentation d'une piste vue en 3D. L'extraction de la forme peut être réalisée avec une éventuelle mise en forme de piste standard. Deux exemples de dimensions connues de piste d'atterrissage sont 45mx3000m ou 60mx4000m. Néanmoins, l'invention s'applique à tous les formes de pistes d'atterrissage dès lors qu'elles sont connues.
  • Le calcul temps réel effectué par le composant EXTRACTION prend en considération le positionnement relatif de l'aéronef par rapport à la cible. Dans le mode de réalisation concernant l'extraction de la forme d'une piste, les positions de l'aéronef et de la piste sont délivrées par des équipements du système avionique, tel que le calculateur GPS, la base de données de navigation ou la base de données aéroport ou encore d'autres système de localisation ou de radio navigation.
  • A partir de l'image vidéo capturée par le composant CAPTURE, le composant SYMBOL 1 génère un symbole d'une piste d'atterrissage, noté PISTE 1, dont une forme peut être représentée sur la figure 3. L'invention permet de générer une forme trapézoïdale semblable à celle affichée usuellement par le HUD à partir de la base de données de navigation.
  • Dans la suite de la description on notera un HUD un dispositif d'affichage tête haute tel que le HUD ou un équivalent.
  • Un avantage d'une telle forme générée est qu'elle est facilement identifiable par le pilote et qu'elle peut être facilement comparée au symbole de la piste générée par la base de données de navigation, noté PISTE 2, et affichée dans le HUD. Par exemple, un moyen simple de les comparer est de les afficher dans un même référentiel, notamment un référentiel avion dans le cas de la symbologie HUD, où l'axe de la piste peut être comparé au cap de l'aéronef.
  • Dans un autre mode de réalisation, le symbole PISTE 1 peut être comparé à un symbole de piste généré à partir de données embarquées de représentations de terrain, tel que le système connu en aéronautique sous l'acronyme TAWS ou encore une base de données Aéroport définissant les coordonnées de la piste d'atterrissage ainsi que ces dimensions.
  • Dans d'autres modes de réalisation, le symbole PISTE 1 peut être comparé à un symbole de piste généré à partir de données non embarquées telles que les données d'une cartographie électronique accessibles par liaisons sol/ bord, par exemple une liaison connue sous le nom SATCOM en terminologie aéronautique.
  • Un composant VALIDATION permet de comparer les deux symboles PISTE 1 et PISTE 2, notamment leur similitude et leur position dans un même référentiel. Les calculs de corrélation entre les deux symboles peuvent être effectués sur la base des contours des pistes générées par la symbologie affichée. Notamment, la corrélation peut intégrer la largeur de la piste, la longueur de la piste, l'axe de la piste. Dans un mode de réalisation, les calculs de corrélation peuvent être effectués avantageusement dans un référentiel géodésique des différentes bases de données générant le symbole PISTE 2 ou dans un autre mode de réalisation dans un référentiel lié à l'aéronef, par exemple celui du HUD.
  • Ainsi, si les deux symboles se superposent, il y a bien une cohérence de données provenant de deux sources différentes, à savoir la base de données de navigation ou une autre base de données et les données provenant de la capture vidéo du composant CAPTURE.
  • Les critères d'affichages sont déterminés à partir d'une tolérance donnée qui peut porter sur la comparaison des deux symboles et d'une tolérance des dimensions de part et d'autre calculée.
  • Dans différents modes de réalisations, les données déterminant le symbole PISTE 1 peuvent être corrélées à des données provenant de différents capteurs de radio navigation.
  • Le composant VALIDATION peut être un calculateur dédié ou identique au calculateur SYMBOL 1 ou encore un calculateur déjà présent dans le système avionique de l'aéronef.
  • Le composant VALIDATION permet de vérifier et valider la cohérence des données relatives à la position de la piste dans l'espace et sa position relative par rapport au cap de l'aéronef.
  • Un composant MODIFICATION permet de réaliser les changements d'état du symbole PISTE 1. Le symbole de la piste ayant pour premier objectif de représenté la direction de la piste en regard du cap de l'aéronef et de le comparer avec le symbole PISTE 2.
  • Un second objectif du symbole PISTE 1 selon l'invention est de pouvoir représenter les différents états de phase d'approche, notamment en ce qui concerne l'altitude de l'aéronef et du franchissement de certains points critiques de la phase d'approche. Dans ce cas le composant MODIFICATION est couplé avec un radio altimètre, noté RA sur la figure 1.
  • Un interrupteur noté ON/OFF permet d'activer ou de désactiver l'affichage vidéo sur le HUD et/ ou la symbologie extraite des images vidéos capturées.
  • Ainsi il est possible d'afficher les images vidéo capturées sur le HUD, ou bien d'afficher la symbologie extraite de cette vidéo ou bien les deux, l'affichage des images et/ou de la symbologie étant superposées au champ de vision extérieur du cockpit.
  • Cet affichage est réalisé par le composant E de la figure 1. Ce composant affiche la symbologie provenant de différentes ressources du système avionique de l'aéronef, généralement ces ressources sont des capteurs et calculateurs de radio navigation. Par exemple, certaines de ces données sont des données de positionnement et d'attitude avion provenant du composant GPS / IRS, ou des données provenant de la base de données de navigation, notée BD, tel que le symbole PISTE 2 ou encore des données du composant noté LS sur la figure 1.
  • Le composant LS peut comprendre des équipements avioniques tels qu'un récepteur ILS, signifiant dans la terminologie aéronautique anglo-saxonne "Instrument Landing System" ou un FLS signifiant dans la terminologie aéronautique anglo-saxonne "FMS Landing System" ou un GLS signifiant dans la terminologie aéronautique anglo-saxonne "GPS Landing System ou un MLS signifiant dans la terminologie aéronautique anglo-saxonne "Microwave Landing System", lesdits équipements délivrant des informations relatives à la méthode d'approche et d'atterrissage.
  • L'invention permet la génération et la présentation d'un nouveau symbole affiché dans le HUD qui permettra au pilote d'utiliser des images produites par la fonction d'un capteur telle que celle de l'EVS dans le cadre des procédures actuelles.
  • L'invention permet de faire évoluer d'un point de vue graphique tout au long de l'approche les symboles générés par le composant SYMBOL 1, tel que le symbole PISTE 1. Les changements d'états graphiques des symboles informent le pilote du statut fonctionnel de l'aéronef et de sa situation dans la trajectoire d'approche et ceci sans surcharge d'images. Elle l'informe également de l'altitude de l'aéronef et du franchissement de certains points critiques dans la trajectoire d'approche.
  • Les changements d'états graphiques des symboles, provenant des données du composant CAPTURE, intègrent une notion de temps pendant la phase d'approche de l'aéronef.
  • Notamment, certaines altitudes critiques sont réglementées dans la prise de décision d'atterrissage par le pilote. Une altitude remarquable est notamment définie à partir du moment où les données EVS doivent être affichées pour continuer la phase d'approche. Notamment, la piste doit pouvoir être vue par le pilote au-delà de l'altitude remarquable définie. Elle est généralement définie par une réglementation. Ce point permet à l'aéronef de descendre en altitude et de repousser le moment d'une décision d'atterrissage ou pas.
  • L'invention présente donc un avantage de pouvoir extraire des informations des images provenant du dispositif EVS sans surcharger le reste du champ de vision couvert par le HUD, le champ de vision comprenant la vue réelle vue à travers le pare-brise du cockpit et les images du dispositif EVS affichées en superposition de la vue réelle.
  • Un avantage de l'invention est de permettre une commutation entre la symbologie extraite de l'image vidéo d'un dispositif tel que l'EVS et les images vidéo elles-mêmes provenant de ce dispositif. Le pilote a le choix entre de l'affichage à partir du composant ON/OFF. Cette commutation peut être réalisée manuellement et facilite l'identification des repères visuels sans surcharge d'informations.
  • Un cas pratique d'utilisation peut être engagé lorsque la visibilité est complètement obstruée par un ou des nuages, le commutateur ON/OFF est positionné de manière à laisser passer les images vidéos provenant du composant CAPTURE. Dans ce cas les images vidéo ne sont pas en conflit avec la représentation du paysage extérieur qui est couvert par les nuages.
  • A contrario, lorsque la visibilité est partiellement obstruée par des intempéries, les images vidéo vont recouvrir des parties du paysage vues au travers du cockpit et peuvent constituer un désagrément important pour le pilote. Dans ce dernier cas, le commutateur peut filtrer les images vidéo provenant du composant CAPTURE et laisser s'afficher la symbologie extraite des images vidéo provenant du composant MODIFICATION.
  • Un avantage de la représentation de symboles, selon l'invention, extraits du dispositif de capture d'images tel que l'EVS et affichés sur le HUD, est qu'en cas de non intégrité des données corrélées par le composant VALIDATION, l'affichage des symboles extraits du composant CAPTURE peut être automatiquement ou manuellement suspendu.
  • La présentation du symbole généré à partir du composant SYMBOL 1 selon l'invention peut être soit affichée soit calculée et non affichée. La représentation de symboles générés par le composant SYMBOL 1 peuvent être semblables à des symboles déjà générées par d'autres équipements, tel que la piste d'atterrissage. Le composant VALIDATION vérifie l'intégrité des données provenant de différents équipements avec celles du composant CAPTURE. Cette vérification permet au pilote d'obtenir un gain de sécurité quant aux informations affichées dans le HUD.
  • Dans d'autres modes de réalisation, les symboles générés par le composant SYMBOL 1 peuvent être différents de la symbologie déjà présente dans le HUD ou peuvent comprendre des messages indiquant un bon ou un mauvais fonctionnement.
  • La figure 2 représente différentes phases d'une trajectoire d'approche d'un aéronef s'apprêtant à atterrir.
  • L'aéronef dans la portion 20 de son plan de vol est en vol de croisière. La symbologie affichée dans cette phase correspond à une symbologie HUD comprenant entre autre l'affichage d'un vecteur vitesse de l'aéronef 10, la ligne d'horizon 29 ainsi qu'un curseur 28 correspondant au cap à suivre dans le plan de vol.
  • Un premier point 21 intercepté ou franchi par l'aéronef permet de définir la portion de trajectoire à partir de laquelle un affichage de la piste 9 est réalisée et généré à partir de données de radionavigation ou de données de la base de données de navigation. Le symbole de la piste, notée précédemment PISTE 2 est affichée sur le HUD dans le même référenciel que la symbologie représentant la ligne d'horizon et l'aéronef.
  • Un second point 22 délimite la portion comprise entre les points 21 et 22 dans laquelle l'aéronef et le pilote navigue à partir de la symbologie classique affichée dans le HUD.
  • L'invention permet de définir un point 22, situé à une altitude donnée et situé sur le plan de vol de l'aéronef. Le point 22 définit une limite à partir de laquelle le composant EXTRACTION commence à extraire les contours des images provenant du composant CAPTURE.
  • L'extraction peut être commandée automatiquement à partir d'une altitude donnée par exemple à partir d'une information provenant du radio altimètre ou elle peut être enclenchée manuellement par le pilote.
  • Un point 23, noté point de vision, délimite une portion entre le point 22 et le point 23 du plan de vol ou de son profil vertical dans laquelle un nouveau symbole 8 selon l'invention est généré. Dans l'exemple de la figure 2, le nouveau symbole est une piste 8 représentée en superposition du symbole 9 déjà présent.
  • Dans l'exemple, le graphisme du symbole 8 est une piste pleine, il s'agit du symbole PISTE 1 décrit précédemment. Le remplissage du symbole PISTE 1 présente l'avantage de traduire de façon intuitive une information importante des images vidéo, à savoir la piste d'atterrissage, et par ailleurs il présente l'avantage de confirmer de façon simple l'état de processus d'extraction de contour.
  • A partir du point 23, la réglementation permet à un aéronef comprenant un dispositif de type EVS activé de descendre en dessous d'une altitude donnée correspondant à l'altitude du point 23 jusqu'à une altitude limite définie par l'altitude d'un point 26 de la figure 2.
  • Avec un dispositif de type EVS, le point de vision 23 peut être repoussé jusqu'à un nouveau point de vision 26 puisque le dispositif EVS permet une meilleure visibilité.
  • En revanche, si l'EVS ne présente pas une vue correcte de la piste d'atterrissage ou une représentation des données absolues ou relatives à l'aéronef quant à sa position au niveau du point 26, l'aéronef doit remettre les gaz.
  • La décision de pouvoir descendre au-delà du point 23 et de voler une portion 25 délimitée par les points 23 et 26, se fait donc sur la présence ou non du symbole PISTE 1 correspondant au contour de la piste des images capturées par le composant CAPTURE.
  • Le symbole PISTE 1 peut alors être, dans la portion 25, représenté graphiquement d'une autre manière que dans la portion précédente le point 23.
  • Par exemple dans la figure 2, le symbole PISTE 1 est une piste 8' contenu dans le symbole PISTE 2 lorsque l'aéronef vole la portion 25. La superposition des deux pistes indique toujours que les données sont intègres et le changement d'état graphique du symbole PISTE 1 indique que l'aéronef se trouve dans une phase critique correspondant à la portion 25 impliquant une prise de décision du pilote au point 26.
  • Le guidage dans la portion 25 se fait uniquement sur la base des informations fournies par le dispositif EVS ou un dispositif équivalent tel que le composant CAPTURE. Ces informations sont conformes à une réglementation qui définie des altitudes remarquables.
  • La symbologie extraite des images vidéo du composant CAPTURE assure une continuité avec la phase précédente et est cohérente avec les procédures et la symbologie généralement utilisé pour les phases d'approche.
  • A partir du point 26, l'altitude à laquelle une décision doit être prise par le pilote à partir des informations fournies par le dispositif EVS, toute symbologie définissant une piste doit être supprimée pour une acquisition de repères externes sinon le pilote est contraint d'activer la remise de gaz.
  • Enfin, la fin de la phase d'approche est généralement conclue par une phase de vol a vue jusqu'au touché des roues sur la piste d'atterrissage en utilisant la symbologie HUD à partir du symbole du vecteur vitesse.
  • La figure 3 représente différents états graphiques du symbole PISTE 1. Dans un premier cas, le symbole 30 représentant le symbole PISTE 1 est plein et situé à l'intérieur du symbole PISTE 2. Cette représentation indique qu'il y a bien cohérence des données fournies de différents systèmes avioniques et elle permet de situer l'aéronef dans une des portions de la trajectoire d'approche. Dans l'exemple de la figure 2, cette représentation permet au pilote d'interpréter visuellement que l'aéronef est entre le point 22 et le point 23 et qu'il n'a pas encore atteint l'altitude critique du point 23.
  • Dans un autre mode de représentation de la figure 3, le symbole PISTE 1 est représenté par une forme trapézoïdale 8' située à l'intérieure du symbole PISTE 2. Cette représentation permet de s'assurer de la cohérence des données fournies de différents systèmes avioniques et elle permet de situer l'aéronef dans une des portions de la trajectoire d'approche. Dans ce dernier cas le symbole 8' permet de faire comprendre au pilote que l'aéronef se situe entre le point 23 et le point 26 dans la portion 25.
  • Un avantage de l'invention est qu'il permet une lecture intuitive des informations affichées. Les symboles extraits du composant SYMBOL 1 permettent en cas de mauvaise visibilité, de s'assurer de la cohérence des informations provenant de différentes ressources du système avionique notamment quant à la position absolue de la piste, la position relative de la piste par rapport à l'aéronef et de son axe.
  • Par ailleurs, un autre avantage est que l'invention permet d'ajuster différentes représentations du symbole informant le ou les pilotes de la phase dans laquelle se trouve l'aéronef.
  • Enfin l'invention permet de ne pas surcharger le paysage vu au travers du pare-brise du cockpit par des images vidéo. La symbologie extraite donne les informations utiles et nécessaires pour descendre à une altitude plus basse tout en préservant la lecture du paysage extérieur.

Claims (13)

  1. Dispositif d'aide à l'atterrissage pour aéronef comprenant :
    ■ des moyens (CAPTURE) de génération d'images vidéo d'une portion du champ de vision, le dispositif comprenant un capteur situé devant l'aéronef destiné à la prise de vue lors de mauvaises conditions de visibilité ;
    ■ des moyens (EXTRACTION) d'extraction de contours d'images vidéo délivrée par les moyens de génération d'images permettant de délimiter au moins une première forme connue comprise dans chaque image ;
    ■ un premier afficheur (E), dit "tête-haute", dont la zone d'affichage occupe une portion de la visière du cockpit en superposition du paysage extérieur ;des moyens de génération d'une symbologie (SYMBOL 1) générant des informations représentées par (des symboles destinés à l'aide au pilotage s'affichant sur l'afficheur, caractérisé en ce qu'au moins un premier symbole comprenant des informations d'aide à l'atterrissage est généré à partir des contours de la première forme et affiché sur l'afficheur et en ce que la première forme est une trapézoïdale et le premier symbole généré est le contour d'une piste d'atterrissage (PISTE 1).
  2. Dispositif d'aide à l'atterrissage pour aéronef selon la revendication 1, caractérisé en ce que le capteur est une caméra infrarouge permettant de capturer des images dans un environnement où la visibilité est dégradée.
  3. Dispositif d'aide à l'atterrissage pour aéronef selon la revendication 1, caractérisé en ce que le capteur est un radar millimétrique.
  4. Dispositif d'aide à l'atterrissage pour aéronef selon la revendication 3, comprenant au moins une ressource de données géographiques, caractérisé en ce qu'il comprend des moyens de validation et de comparaison (VALIDATION) de l'intégrité des données décrivant le premier symbole avec des données d'une ressource de données géographiques.
  5. Dispositif d'aide à l'atterrissage pour aéronef selon la revendication 4, caractérisé en ce que la ressource de données géographiques est une base de données de navigation.
  6. Dispositif d'aide à l'atterrissage pour aéronef selon la revendication 4, caractérisé en ce que la ressource de données géographiques est un ensemble d'images satellites.
  7. Dispositif d'aide à l'atterrissage pour aéronef selon la revendication 4 caractérisé en ce que la ressource de données géographiques est un calculateur de base de données de terrain.
  8. Dispositif d'aide à l'atterrissage pour aéronef selon la revendication 4, caractérisé en ce que la ressource de données géographiques est une base de données d'aéroport décrivant les différents éléments d'un aéroport.
  9. Dispositif d'aide à l'atterrissage pour aéronef selon la revendication 4, comprenant des moyens de modification graphique (MODIFICATION) des symboles affichés, caractérisé en ce qu'il comprend un radioaltimètre délivrant l'altitude de l'aéronef en continu permettant aux moyens de modification graphique de modifier l'apparence du premier symbole affiché en fonction de l'altitude de l'aéronef.
  10. Dispositif d'aide à l'atterrissage pour aéronef selon l'une quelconque des revendications 4 à 9, caractérisé en ce que l'afficheur affiche le premier symbole en superposition d'un second symbole de piste d'atterrissage généré par la ressource de données géographique.
  11. Dispositif d'aide à l'atterrissage pour aéronef selon l'une quelconque des revendications 4 à 10, caractérisé en ce que le premier symbole comprend deux états graphiques dont :
    ■ le premier état est une trapézoïdale pleine remplissant l'intérieur du second symbole, le symbole s'affichant entre une première et une seconde altitude données ;
    ■ le second état est le contour d'une piste trapézoïdale, de même forme que le second symbole et plus petite de manière à ce qu'elle soit insérée à l'intérieur du second symbole, ledit symbole s'affichant entre la seconde altitude et une troisième altitude donnée ;
  12. Dispositif d'aide à l'atterrissage pour aéronef selon l'une quelconque des revendications 4 à 11, caractérisé en ce que le dispositif comprend un commutateur (ON/OFF) permettant de choisir automatiquement ou manuellement d'afficher soit les images délivrées par les moyens de génération d'images, soit d'afficher la symbologie extraite des images délivrées par les moyens de génération d'images.
  13. Procédé d'aide à l'atterrissage pour aéronef mettant en oeuvre le dispositif d'aide à l'atterrissage selon l'une quelconque des revendications précédentes, comprenant :
    ■ une première étape d'extraction d'un contour de la piste à partir d'une image vidéo délivrée par les moyens de génération d'images ;
    ■ une seconde étape de génération du premier symbole définissant une piste à partir de moyens d'extraction d'une première forme trapézoïdale des images vidéo ;
    ■ une troisième étape de comparaison du premier symbole avec des données d'une base de données géographique, la comparaison donnant une première condition d'intégrité des données ;
    ■ une quatrième étape, réalisée selon la valeur de la première condition, d'affichage du premier symbole sur un afficheur ;
    ■ une cinquième étape de comparaison d'au moins une altitude prédéfinie et l'altitude de l'aéronef délivrée par un radioaltimètre, de telle manière que lorsque l'aéronef franchit l'altitude prédéfinie, l'état graphique du premier symbole change indiquant au pilote le franchissement de ladite altitude.
EP10166828A 2009-06-23 2010-06-22 Dispositif et procédé d'aide à l'atterrissage avec indications aidant à la visibilité du monde extérieur Active EP2296129B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0903041A FR2947083B1 (fr) 2009-06-23 2009-06-23 Dispositif et procede d'aide a l'atterrissage

Publications (2)

Publication Number Publication Date
EP2296129A1 EP2296129A1 (fr) 2011-03-16
EP2296129B1 true EP2296129B1 (fr) 2012-11-14

Family

ID=42083938

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10166828A Active EP2296129B1 (fr) 2009-06-23 2010-06-22 Dispositif et procédé d'aide à l'atterrissage avec indications aidant à la visibilité du monde extérieur

Country Status (3)

Country Link
US (1) US8462205B2 (fr)
EP (1) EP2296129B1 (fr)
FR (1) FR2947083B1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8396616B1 (en) * 2010-06-24 2013-03-12 Rockwell Collins, Inc. System, module, and method for presenting surface symbology on an aircraft display unit
US8914166B2 (en) * 2010-08-03 2014-12-16 Honeywell International Inc. Enhanced flight vision system for enhancing approach runway signatures
US9377324B2 (en) * 2010-09-27 2016-06-28 Honeywell International Inc. Computer assisted human machine interface display
US8589071B2 (en) * 2011-08-15 2013-11-19 Honeywell International Inc. Aircraft vision system including a runway position indicator
US9129521B2 (en) * 2013-05-29 2015-09-08 Honeywell International Inc. System and method for displaying a runway position indicator
CN103366483B (zh) * 2013-06-27 2016-02-24 深圳市智美达科技有限公司 监控报警系统
FR3030097B1 (fr) * 2014-12-16 2021-04-02 Bull Sas Dispositif et procede d'aide au pilotage d'un aeronef lors d'une phase d'atterrissage
FR3058252B1 (fr) 2016-11-03 2019-01-25 Airbus Operations Procede et dispositif d'aide a l'atterrissage d'un aeronef en phase de descente en vue d'un atterrissage sur une piste d'atterrissage.
FR3062720B1 (fr) * 2017-02-08 2019-03-15 Airbus Helicopters Systeme et procede d'aide a l'atterrissage d'un aeronef, et aeronef correspondant
IL267211A (en) * 2019-06-10 2019-08-29 Elbit Systems Ltd System and method for video display
FR3103050B1 (fr) * 2019-11-07 2021-11-26 Thales Sa Procede et dispositif d'aide a l'atterrissage d'aeronef en conditions de visibilite degradee
US11479365B2 (en) * 2021-01-22 2022-10-25 Honeywell International Inc. Computer vision systems and methods for aiding landing decision
US11590845B2 (en) * 2021-04-29 2023-02-28 Toyota Research Institute, Inc. Systems and methods for controlling a head-up display in a vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554545A (en) * 1980-10-30 1985-11-19 Mcdonnell Douglas Corporation Conformal head-up display
US5719567A (en) * 1995-05-30 1998-02-17 Victor J. Norris, Jr. System for enhancing navigation and surveillance in low visibility conditions
US5745863A (en) * 1995-09-22 1998-04-28 Honeywell Inc. Three dimensional lateral displacement display symbology which is conformal to the earth
US6232602B1 (en) * 1999-03-05 2001-05-15 Flir Systems, Inc. Enhanced vision system sensitive to infrared radiation
EP1616228A4 (fr) * 2003-03-31 2013-05-29 Sikorsky Aircraft Corp Conceptions techniques ameliorant l'evitement d'obstacles et les operations en blackout partiel d'helicopteres
US20050232512A1 (en) * 2004-04-20 2005-10-20 Max-Viz, Inc. Neural net based processor for synthetic vision fusion
CA2691375C (fr) * 2007-07-18 2014-05-20 Elbit Systems Ltd. Aide a l'atterrissage pour aeronef

Also Published As

Publication number Publication date
FR2947083B1 (fr) 2011-11-11
US20100321488A1 (en) 2010-12-23
FR2947083A1 (fr) 2010-12-24
US8462205B2 (en) 2013-06-11
EP2296129A1 (fr) 2011-03-16

Similar Documents

Publication Publication Date Title
EP2296129B1 (fr) Dispositif et procédé d'aide à l'atterrissage avec indications aidant à la visibilité du monde extérieur
CA2464791C (fr) Dispositif d'affichage dans un cockpit d'aeronef d'informations concernant le trafic environnant
EP3226062B1 (fr) Procede de representation synthetique d elements d'interet dans un systeme de visualisation pour aeronef
EP3270365B1 (fr) Dispositif d'aide au pilotage d'un giravion, giravion associe et procede d'aide au pilotage correspondant
US20120176497A1 (en) Assisting vehicle navigation in situations of possible obscured view
EP2161544A1 (fr) Dispositif de visualisation pour aéronef comprenant des moyens d'affichage de balises de radionavigation et procédé associé
EP2950049B1 (fr) Procédé contributeur de la sécurisation d'une représentation graphique synthétique de la vue extérieure d'un aéronef
FR2988510A1 (fr) Procede et dispositif d'affichage d'informations meteorologiques sur un ecran d'aeronef.
FR2848662A1 (fr) Dispositif d'affichage pour equipement anticollision terrain embarque a bord d'aeronef
FR3062720A1 (fr) Systeme et procede d'aide a l'atterrissage d'un aeronef, et aeronef correspondant
US10382746B1 (en) Stereoscopic augmented reality head-worn display with indicator conforming to a real-world object
FR3065801B1 (fr) Procede de visualisation du trafic aux environs d'un aeronef de reference dans une zone d'affichage conforme, produit programme d'ordinateur et systeme de visualisation associes
EP3705848A1 (fr) Procédé et système de perception 3d augmentée d'environnement lié au sol autour d'un aéronef et d'anticipation des menaces potentielles d'environnement
EP1936330B1 (fr) Procédé et système de traitement et de visualisation d'images de l'environnement d'un aéronef
WO2016096415A1 (fr) Dispositif d'affichage et de mise a jour d'un motif de trajectoire aerienne en regard d'une zone au sol, notamment pour une mission de largage
FR3109630A1 (fr) Dispositif électronique et procédé d'aide à la configuration d'un vol d'un aéronef, programme d'ordinateur associé
FR2981779A1 (fr) Systeme embarque d'aide a la circulation d'un aeronef sur les voies d'aeroport
WO2009034166A1 (fr) Procede de presentation dans un viseur tete haute pour aeronef d'informations sur le trafic aerien
FR3061343A1 (fr) Systeme d'aide a l'atterrissage d'un aeronef a voilure tournante sur une plateforme offshore
FR3036529A1 (fr) Procede pour afficher une image d'une scene exterieure a un aeronef dans un contexte de realite augmentee
CN112037585A (zh) 航空器、增强型飞行视觉系统和显示进场跑道区域的方法
EP3029420A1 (fr) Systeme de visualisation synthetique comprenant des moyens d'adaptation du paysage affiche
WO2020064956A1 (fr) Système d'affichage tête haute, procédé d'affichage et produit programme d'ordinateur associés
EP4066079B1 (fr) Système de pilotage d'aéronef
FR3122408A1 (fr) Syteme et procede d’assistance d’approche d’aeroports

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110429

17Q First examination report despatched

Effective date: 20120618

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 584339

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010003580

Country of ref document: DE

Effective date: 20130110

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 584339

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130314

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010003580

Country of ref document: DE

Effective date: 20130815

BERE Be: lapsed

Owner name: THALES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100622

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121114

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200609

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010003580

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230523

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230518

Year of fee payment: 14