EP2294238A2 - Procédé de trempe d'un alliage d'aluminium - Google Patents

Procédé de trempe d'un alliage d'aluminium

Info

Publication number
EP2294238A2
EP2294238A2 EP09770514A EP09770514A EP2294238A2 EP 2294238 A2 EP2294238 A2 EP 2294238A2 EP 09770514 A EP09770514 A EP 09770514A EP 09770514 A EP09770514 A EP 09770514A EP 2294238 A2 EP2294238 A2 EP 2294238A2
Authority
EP
European Patent Office
Prior art keywords
desired shape
controlled temperature
range
degrees
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09770514A
Other languages
German (de)
English (en)
Inventor
Richard J. Morganti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standex International Corp
Original Assignee
Standex International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standex International Corp filed Critical Standex International Corp
Publication of EP2294238A2 publication Critical patent/EP2294238A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • This present invention relates to the manufacture of metallic domes and conical components used in launch vehicles, and in particular, components produced using the aluminum lithium alloy known as 2195.
  • Aluminum lithium alloy, 2195 is used in launch vehicle applications where its lower density, higher modulus and comparable strength, and desirable cryogenic service properties make it attractive. When components are manufactured to industry guidelines for this material, the 2195 aluminum lithium alloy also possesses resistance to stress corrosion cracking. As the mass for launch vehicle payloads continues to grow, use of this alloy for fuel tanks and vehicle structures has become a requirement by NASA and other launch vehicle service providers. In supporting this requirement, it becomes necessary to supply 2195 alloy in its highest strength condition and possessing resistance to stress corrosion cracking.
  • the invention is a method of manufacturing domes and cones using the metal spinning process and alternative heat treatment parameters to achieve the same properties attainable as if the part were cold worked although this step has been eliminated.
  • the preferred embodiment of the method includes the steps of forming and heat treating 2195 aluminum lithium alloy domes and cones. It is an aspect of the invention to provide a method of treating 2195 aluminum lithium alloy in order to achieve the same favorable properties obtained using prior art methods requiring cold working of the produced part.
  • FIG. 1 is an illustration of a multi-stage rocket, which shows the type of components that can be made using the process taught by the invention.
  • FIG. 2 is a flow chart of the preferred embodiment of the method in accordance with the present invention. DETAILED DESCRIPTION OF THE INVENTION
  • the illustration of the multi-stage rocket 10 is a typical structure that has parts that can be made using the method taught herein.
  • Payload 15 is placed within the payload fairing structure.
  • Second stage rocket engine 17 powers payload 15 during the final leg of the journey to achieve a successful orbit.
  • primary tank 12 and secondary tank 14 have a domed top and bottom 16 and 18 respectively. These tanks have an extremely large diameter 11 and are particularly well suited to be manufactured using the present invention.
  • the thrust cone 17 (typically composite materials) is also a component part that would be preferably made using the method disclosed herein.
  • the starting material form 20 is in the mill temper known as the F condition.
  • the material plate 20 is annealed in step 22 in accordance with industry standards for 2195 aluminum lithium alloy.
  • the dome or cone forming is done in step 24 by a spinning process.
  • the dome or cone forming is performed in steps 26, 28 at a controlled temperature of 725°F ⁇ 25°F using the metal spinning process and/or the stretch forming process developed as disclosed in U.S. Patent 6,199,419.
  • the component is solution heat treated, again in accordance with industry standards for 2195 aluminum lithium alloy and rapid quenched in either water or glycol water solution as indicated in step 30.
  • the component may be straightened after solution heat treatment to remove minor distortion resulting from the rapid quench, step 32.
  • the component is then artificially aged in step 34.
  • step 36 the component temperature is raised to 340°F, ⁇ 5°F.
  • the component is then "soaked" (industry term of art meaning to allow it to remain at that temperature) for 32 hours ⁇ 5 minutes.
  • step 38 the component temperature is lowered to 25O 0 F ⁇ 5°F at a decreasing rate of 45° F per hour.
  • the component part is "soaked” again for 72 hours ⁇ 5 minutes in step 40.
  • step 42 the component part is air cooled to room temperature.
  • the component part is tested for its properties beginning in step 44.
  • the various parameters that are tested are hardness, step 46; electrical conductivity, step 48; minimums achieved when practicing the invention, step 50 and, finally in step 52, a SCC Test as specified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

L'invention concerne un procédé de trempe de grands éléments constitutifs en alliage aluminium-lithium pour obtenir une capacité de résistance élevée et une résistance à la fissuration par corrosion sous tension sans recourir à l'étape de l'état antérieur de la technique de formage à froid des éléments constitutifs en alliage. Le procédé permet d'obtenir les propriétés de matériaux souhaitées à travers l'utilisation de deux nouvelles durées de maintien et l'utilisation d'une nouvelle sélection de température contrôlée lors des deux durées de maintien respectives ainsi qu'à travers le contrôle soigneux de la baisse de température d'une durée de maintien à l'autre.
EP09770514A 2008-06-26 2009-06-15 Procédé de trempe d'un alliage d'aluminium Withdrawn EP2294238A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13320708P 2008-06-26 2008-06-26
US12/387,966 US20090320972A1 (en) 2008-06-26 2009-05-08 Method for tempering an aluminum alloy
PCT/US2009/003566 WO2009157975A2 (fr) 2008-06-26 2009-06-15 Procédé de trempe d'un alliage d'aluminium

Publications (1)

Publication Number Publication Date
EP2294238A2 true EP2294238A2 (fr) 2011-03-16

Family

ID=41445139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09770514A Withdrawn EP2294238A2 (fr) 2008-06-26 2009-06-15 Procédé de trempe d'un alliage d'aluminium

Country Status (4)

Country Link
US (1) US20090320972A1 (fr)
EP (1) EP2294238A2 (fr)
JP (1) JP2012500330A (fr)
WO (1) WO2009157975A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104384281B (zh) * 2014-11-26 2016-09-14 沈阳飞机工业(集团)有限公司 铝锂合金钣金零件热成形加工方法
CN110423961B (zh) * 2019-08-29 2020-09-11 四川航天长征装备制造有限公司 一种金属旋压件的制作方法
CN111997787A (zh) * 2020-09-03 2020-11-27 湖北三江航天江北机械工程有限公司 一种自保护特性的导流器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076859A (en) * 1989-12-26 1991-12-31 Aluminum Company Of America Heat treatment of aluminum-lithium alloys
US5597529A (en) * 1994-05-25 1997-01-28 Ashurst Technology Corporation (Ireland Limited) Aluminum-scandium alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009157975A2 *

Also Published As

Publication number Publication date
WO2009157975A3 (fr) 2012-05-10
WO2009157975A2 (fr) 2009-12-30
JP2012500330A (ja) 2012-01-05
US20090320972A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
US7699943B2 (en) Method for manufacturing high-strength spring
GB2527486A (en) A method of forming complex parts from sheet metal alloy
CN109252120A (zh) 一种均匀细化gh4169合金锻件组织的方法
US20120227873A1 (en) Method for tempering an aluminum alloy
US20090320972A1 (en) Method for tempering an aluminum alloy
JPS6324048A (ja) 部分的に再結晶した状態のジルカロイ2又はジルカロイ4ストリツプの製法及び該製法で製造されたストリツプ
US6146478A (en) Heat treatment process for material bodies made of a high-temperature-resistant iron-nickel superalloy, and heat-treatment material body
CN107130195A (zh) 一种2a70铝合金锻件热处理工艺
CN112281095B (zh) 一种提高钛合金性能的热处理方法
JP6252730B2 (ja) バネ用ステンレス鋼帯及びその製造方法
CN115627430B (zh) 改善高温钛合金锻坯晶粒尺寸及取向分布均匀性的方法
CN114561527B (zh) 一种316h钢锻件固溶处理晶粒度主动控制方法
CN114438428B (zh) 一种耐腐蚀铝合金的制备方法
JP2012117129A (ja) 硬引き線、ばね、及び硬引き線の製造方法
CN105861804A (zh) 一种铁路车辆车轴预先完全退火的热处理方法
US5066341A (en) Method of conditioning an article of shape memory metallic alloy having two reversible shape memory states
JP2004323912A (ja) 高強度コイルばね及びその製造方法
US3929517A (en) Process for producing a steel having a superb combination of high strength and substantial toughness
US3542607A (en) Method of refining alloys
CN116043153B (zh) 一种提高亚稳β钛合金双性能结构件强度和塑性的方法
US7105067B2 (en) Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures
CN110983218B (zh) 一种组织均匀的小规格纯铌棒材的制备方法
JPS5913024A (ja) 直接球状化処理鋼材の製造方法
GB2267507A (en) Heat treatment process for a nickel based superalloy
JP2006328473A (ja) 非調質高強度ボルトの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101214

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20120510

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130103