EP2287071B1 - Wing for water vehicles - Google Patents

Wing for water vehicles Download PDF

Info

Publication number
EP2287071B1
EP2287071B1 EP10172836.8A EP10172836A EP2287071B1 EP 2287071 B1 EP2287071 B1 EP 2287071B1 EP 10172836 A EP10172836 A EP 10172836A EP 2287071 B1 EP2287071 B1 EP 2287071B1
Authority
EP
European Patent Office
Prior art keywords
hydrofoil
projection
bodies
end strip
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10172836.8A
Other languages
German (de)
French (fr)
Other versions
EP2287071A2 (en
EP2287071A3 (en
Inventor
Henning Kuhlmann
Thomas Falz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Becker Marine Systems GmbH and Co KG
Original Assignee
Becker Marine Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Becker Marine Systems GmbH and Co KG filed Critical Becker Marine Systems GmbH and Co KG
Publication of EP2287071A2 publication Critical patent/EP2287071A2/en
Publication of EP2287071A3 publication Critical patent/EP2287071A3/en
Application granted granted Critical
Publication of EP2287071B1 publication Critical patent/EP2287071B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/24Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
    • B63B1/248Shape, hydrodynamic features, construction of the foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/38Keels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B41/00Drop keels, e.g. centre boards or side boards ; Collapsible keels, or the like, e.g. telescopically; Longitudinally split hinged keels

Definitions

  • the invention relates to a wing, in particular a rudder, for watercraft, especially ships, with an end bar.
  • Airfoils are used in the present context in vessels used or built-body, which generate buoyancy in fluid mechanics view.
  • hydrofoils are rudders, keels, hydrofoils on hydrofoils, stabilizer fins or other fin-like bodies of watercraft.
  • the wing of the invention is particularly suitable for use as a rudder, wherein the use of one of the aforementioned body or other wing-like body is readily possible.
  • Known wings usually have a direction of flow associated with or aligned in the direction of navigation vehicle nose strip and one of these opposite end bar. Between the leading edge and the end strip side surfaces or side walls of the wing are arranged.
  • the upper end portion of the wing is normally fixed, or rotatable in the case of a rudder, connected to the vessel body, whereas the opposite lower end is normally formed as a free end. In rowing, however, it is also known that these can also be stored at the lower end (for example, when stored in the Stevensohle rudders).
  • the wing body is flowed around in use in a watercraft by the water in the direction of the leading edge of the leading edge.
  • the flow or the flow velocity and the geometric shape of the wing or the end bar of the wing may come behind the wing or at the end bar to vortex shedding in the flow direction, the frequency is characterized by the Strouhal number.
  • the vortexes often arise on either side of the body around which they are flowing, their directions of rotation being opposite to one another. The flow between them runs in the direction of the body around which flows in the opposite direction to the outer flow.
  • This drag-like vortex system consisting of counter-rotating vortices, which forms on the body around which it flows and is driven away by the flow and finally dissipated, is also known as the Kármán vortex street.
  • This phenomenon is particularly noticeable in oars, as they are exposed to the relatively fast propeller flow of a marine propeller.
  • rudders in particular tend to form Karmann vortex streets which have a relatively wide end bar.
  • the Strouhal number and thus the separation frequency of the individual vortices is particularly high, whereby Kármán-vortex streets can arise or are particularly pronounced.
  • Fig. 4 shows the formation of a Kármán vortex street in a known from the prior art wing 200.
  • the wing 200 from the Fig. 4 is a fishtail rudder in which the cross-sectional profile widened towards the end bar 201 again.
  • the end bar 201 runs concavely between the two end regions 2021 a, 2021 b of the side surfaces 202a, 202b.
  • the course of the (propeller) flow is represented by a multitude of arrows. It can be seen that the flow is substantially laminar along the side surfaces 202a, 202b.
  • eddies 210 detach from the flow both in the upper region of the end strip 201 and in its lower region.
  • a counterclockwise rotating vortex 210 In the upper area of the end bar 201 or directly behind the side surface end point 2021a, a counterclockwise rotating vortex 210 has formed. Downstream therefrom, there is another, counterclockwise, namely clockwise, rotating vortex 210b, which has formed on the lower side surface 202b or directly behind it. Downstream there is another counterclockwise rotating slowly dissipating vortex 210c, also from the upper side surface 202a.
  • the vortexes 210a, 210b, 210c together form the vortex system of the so-called Kármán vortex street.
  • the pressure drops significantly in relation to the flow surrounding the Kármánsche vortex street.
  • the formation of the Kármán vortex streets reduces the efficiency of an airfoil or, in the case of oars, reduces the rudder force. Also increases the wing or rudder resistance. On the other hand, the lateral force of a rudder is reduced and it can cause vibrations on the wing. The latter is the case in particular if the frequency of detachment of the vortices essentially corresponds to the natural frequency of the wing body.
  • the body is shown as a wing, as it is used in aircraft.
  • the elements on the end face of the body are made with a hole or slot profile, and the holes are to be flowed through to achieve the aerodynamic effects shown.
  • the elements shown serve as a diffuser body.
  • a projection body is a basically arbitrarily shaped body which protrudes from the end strip of the wing. Since the end bar normally extends in a cross-sectional view substantially transversely to the wing longitudinal direction, the projection bodies are generally, at least roughly, in the downstream direction. That is, the at least two projection bodies protrude from the rear end strip substantially in the longitudinal direction of the wing and / or in the ship's longitudinal direction.
  • the end bar is normally a wing closing surface, which may be rectilinear, concave, convex or otherwise running.
  • the Endologicaln Schl is usually flattened in the invention wings and does not run about point o. The like.
  • the end bar is normally formed continuously from bottom to top or from side to side and therefore forms a single, continuous surface.
  • the protrusion bodies now protrude from this surface, which results in the likelihood of a vortex detachment being reduced. This can reduce the probability of the occurrence of a Kármán vortex street.
  • the effectiveness of the at least two projection bodies depends on various factors, for example an even higher number of projection bodies, the geometric design, as well as the exact arrangement.
  • the at least two projection bodies are thus bodies which in themselves do not belong to the end strip surface, but are arranged on it and project from it.
  • a boss body is in this sense, therefore, no slight bulge out of the Endancen face out z.
  • the at least two projection bodies are therefore not formed out of the wing, or not formed as a recess or recess from the wing.
  • the projection body may be made of metal, for example, in particular steel, and by means of welding or other suitable fastening methods or means to be connected to the end bar.
  • the at least two projection bodies are designed as rigid, non-flexible or non-elastic bodies, since this ensures that the flow behavior of the wing, in particular with regard to vortex formation, remains the same.
  • the provision of the at least two projection bodies reduces the likelihood of occurrence of a Kármán vortex street in an airfoil and thereby improves the aerofoil resistance and thus fuel efficiency.
  • the risk of damage to the wing or the vessel body is reduced by vibrations.
  • the at least two projection bodies are arranged on the end strip, these also do not reduce the effective inflow surface of the wing and, since they are located outside the inflow area and thus outside the main flow, cavitations by detachment of the flow do not trigger. Accordingly, the provision of flow bodies by a relatively low structural complexity and without weakening the cross-section of the actual wing in fluidic terms, the beneficial effect of reducing the vortex formation can be achieved in the end bar.
  • the process of vortex formation is disturbed or impeded, as a result of which a much more stable or laminar flow pattern arises in the flow direction behind the wing.
  • the at least two projection bodies are provided in particular exclusively on the end strip and not on other areas of the wing.
  • the at least two projection bodies are expediently designed such that they do not cover the entire width. Rather, these advantageously only jump out of a partial area with respect to the end strip width. This ensures that a blockage of the vortex flow is achieved. If the at least two projection bodies cover the entire width of the end strip, the projection bodies could fluidly act as a pure extension of the wing and detach the undesired, opposing vertebrae on both sides of the projection body.
  • the at least two projection bodies are plate-shaped or designed as ribs projecting from the end strip, and / or with a rectangular cross-section.
  • the ribs are expediently made of plates, such as steel plates o. The like., Which are fastened with an end face on the end bar. If the plates are elongated, in particular running over a large part or over the entirety of the length of the end strip, the ribs or plates are preferably to be arranged or fastened to the end strip with a longitudinal end face. With such a design results in a strip-shaped arrangement of the ribs. It is expedient to arrange the at least two ribs parallel to one another and parallel to the longitudinal axis of the wing.
  • the ribs could be slightly rounded in their free end or tapering towards its free end o.
  • the ribs are expediently formed continuously, or the rectangular cross-section is expedient over the entire projection body of time constant.
  • the at least two projection bodies according to the invention have no perforations.
  • the at least one projection body extends over at least 50% of the length of the end strip, preferably at least 75%, particularly preferably substantially over the entire length of the end strip.
  • the term "length of the end bar" is to be understood in the present context, the distance between the upper and lower end of the wing in the end bar.
  • the end bar usually runs over the entire height of the wing. Therefore, it is expedient that the at least one projection body extends over as large as possible a region of the end strip, so that the vortex formation is reduced or disturbed as widely as possible in relation to the height of the wing.
  • the at least two projection body can expediently consist of a single body whose length corresponds to the length of the end bar and which are attached to the end bar. Basically it would be However, it is also possible for the at least two projection bodies to be composed of a plurality of partial bodies.
  • the at least two projection bodies may be of arbitrary design in relation to a cross-sectional view. Often, however, it will be expedient that, in a cross-sectional view of the wing, the at least two projection bodies extend substantially parallel to a center line of the wing or along the center line. In this respect, the at least two projection bodies are preferably rectilinear in cross-section. In appropriate tests, it has been found that by means of such an alignment of the at least two projection bodies, a particularly good disturbance of vortex formation or a particularly favorable flow pattern can be achieved. In particular, arranged along the center line at least two projection bodies a particularly even disturbance of the vortex formation is achieved on both sides of the wing.
  • the projection bodies are designed to extend parallel to the center line. However, it is also possible that individual projection body deviate from this orientation. This may be indicated in particular in the case of an arcuate or in the case of a concave or convex end strip.
  • the flow of the at least two projection body in the cross-sectional consideration refers to the course between endologicaln wornem and free end of the at least two projection body.
  • the at least two projection bodies extend substantially parallel to the longitudinal axis of the wing.
  • the longitudinal axis is that axis which extends from the upper wing end to the lower wing end. In rowing, the longitudinal axis will often also be the rudder axis of rotation.
  • the at least two projection bodies may extend substantially parallel to the outer edges of the end strip. The outer edges of the end bar become common also be aligned parallel to the longitudinal axis of the wing. This results in a uniform flow pattern.
  • the at least two projection bodies extend parallel to the longitudinal axis and over the entire length of the end strip. This results in a particularly even flow pattern.
  • the at least two projection bodies project in a substantially perpendicular or orthogonal manner from the surface of the end strip.
  • the right angle is formed between the end bar and the axis along the width of the wing (transverse axis). If the end strip surface is flat, in the case of a plurality of projection bodies, the projection bodies are arranged correspondingly parallel to one another. As a result, the uniformity of the flow in the flow direction behind the wing is further improved.
  • the at least two projection bodies may each be oriented orthogonally with respect to that end strip section to which it is adjacent.
  • the width of the projection body d. H. their distance between end bar and free end, at least half the width of the end bar. Tests have shown that with such dimensions of the at least two projection body particularly good results with respect to the reduction of vortex formation can be achieved.
  • the at least two projection bodies spaced from one another and / or parallel to each other. Due to the spaced arrangement of the at least two projection body vortex formation is further complicated because two independently projecting objects block the vortex flow. The parallel alignment of the two projection bodies in turn improves the evenness of the flow pattern.
  • one of the protrusion bodies is arranged substantially centrally on the end bar, and an even number of protrusion bodies are arranged on each side of the centrally arranged protrusion body.
  • the center line of the wing in the cross-sectional view expediently forms the line of symmetry.
  • the individual projection bodies are arranged spaced from one another and / or parallel to one another.
  • the centrally arranged projection body has the largest width, that is, the maximum width. h., Has the largest distance between end bar and free end.
  • two equal projection body may be arranged in a central region.
  • the width of the other projection bodies can advantageously decrease continuously in the outward direction, so that the outermost projection bodies have the smallest width.
  • the training is provided symmetrically in this case, d. h., The mirror image arranged protrusion body pairs each have a same width. As a result, a gradual blocking of the vortex flow is achieved from the outside inwards.
  • the distances between the individual projection bodies can in principle be different or be the same. Which arrangement is the most favorable in terms of flow technology depends in each case on the circumstances of the individual case, in particular the geometry and width of the end strip, the flow velocity, the precise formation of the projection bodies, etc.
  • the at least two projection bodies are particularly useful provided formed airfoil at a ® as a fishtail or Schilling rudders, in which the profile in a cross-sectional view of one of the trailing edge oppositely disposed leading edge toward the trailing edge to a central region towards which the widest Site of the airfoil profile, widened, from the central region to a rear area, which forms the narrowest point of the airfoil, tapered and widened from the rear to the end bar, in particular dovetailed again, the end bar preferably rectilinear, convex or concave is trained. Due to the Relative width of the end bar in comparison to other airfoils occur in the above-described airfoils particularly frequently on vortices. In this respect, the provision of the at least two projection bodies in such profiles is particularly expedient.
  • the at least two projection bodies are preferably formed as a monolithic body. Furthermore, the at least two projection bodies preferably have a constant cross section.
  • Fig. 1 shows a perspective view of a wing 100.
  • the wing 100 of a rudder with fishtail or Schilling® profile formed.
  • the rudder comprises a nose strip 10 and an end bar 20. Between the nose strip 10 and the end bar 20, the side surface 11 extends at the upper end 12 and at the lower end 13 of the wing 100 each a cover plate 14 is provided. Since the present wing 100 is a rudder with fishtail profile, the end portion 15 of the rudder widens from a narrowest point of the rudder forming rear portion 16 to the end bar 20.
  • On the end bar 20 are a total of five as plate-shaped ribs formed protrusion body 30 is provided, each extending from an upper end 12 to the lower end 13 and are arranged parallel to each other.
  • the middle rib 30a has the largest width.
  • two further ribs 30b, 30c are respectively arranged, wherein the width of these ribs decreases towards the outside.
  • the plate-shaped ribs 30a, 30b, 30c are fixed with their longitudinal end faces on the end bar 20, which is rectilinear or as a flat surface.
  • the ribs 30a, 30b, 30c abut with their transverse end faces on the end plates 14 and are also attached to these.
  • the outer ribs 30c have the shortest width and are offset from the outer edge 21 of the end bar 20 only slightly inward.
  • the plate-shaped ribs 30a, 30b, 30c project in each case substantially perpendicularly from the end bar surface and extend parallel to the outer edge 21 of the end bar 20 or to the longitudinal axis of the wing 100.
  • Fig. 2A shows a plan view of the end portion 15 of the wing of the Fig. 1 , It can be seen that the center of the rib 30a has the largest width b1 and the outer ribs 30c have the smallest width b3, whereas the ribs 30b arranged between the ribs 30a and 30c have a mean width b2. Further, the distances between the ribs 30c and 30b (a2) and the ribs 30b and 30a (a1) are different, wherein the distance a1 is greater than a2. The exact dimensioning of the widths and distances can each be matched to an optimal vortex reduction effect with respect to the respective geometry of the end bar or the ribs 30.
  • the rib 30a extends along the center line 17, whereas the ribs 30b and 30c extend parallel to the center line 17.
  • the centerline 17 also forms the symmetry axis for the fin arrangement.
  • the Fig. 2B to 2E show further examples of embodiments of the end portion 15 of the invention wings 100. So is in the Fig. 2B a central rib 30a arranged along the center line 17 is provided. Furthermore, two further, each arranged on the outside and the same width ribs 30c are provided. The ribs 30c are arranged symmetrically with respect to the center line 17.
  • the end bar 20 is concave in plan view and cross-sectional view.
  • the Fig. 2C is the example only individually shown end bar 20, however, formed rectilinear, or the end bar 20 forms a flat surface.
  • only a single rib 30a is shown, which is arranged along the center line 17.
  • Fig. 2C is the example only individually shown end bar 20, however, formed rectilinear, or the end bar 20 forms a flat surface.
  • FIG. 2D is the end bar 20 in a plan view and cross-sectional view, similar to the Fig. 2B , concave running formed.
  • a middle rib 30a extending along the center line 17 and two outer ribs 30c are provided.
  • the two outer ribs 30c are not parallel to the center line 17 and the middle rib 30a, respectively, but extend at an angle thereto. In particular, they run away from the inside in the direction of the end bar.
  • the Fig. 2E five ribs are also provided, wherein the end bar 20 is formed in a plan view and cross-sectional view convex.
  • the central rib 30a which again has the largest width, runs along the center line 17.
  • the two outer ribs 30c have the smallest width.
  • the ribs 30b and 30c are not arranged parallel to the center line 17 or to the rib 30a, but are each at an angle of approximately 90 ° from the convex shaped end bar 20, so that from the end bar 20 to the free end of the ribs 30a 30b, 30c forms an outwardly extending arrangement of the ribs. All in the Fig. 2A to 2E shown ribs 30a, 30b, 30c are formed as plates.
  • Fig. 3 shows a plan view of an end portion 15 of an airfoil 100 according to the invention.
  • the end bar 20 is formed in a straight plan view and cross-sectional view.
  • the five ribs 30a, 30b, 30c projecting from the end bar 20 are substantially in accordance with the arrangement Fig. 2A arranged and formed, wherein in the illustration shown in FIG Fig. 3 Unlike Fig. 2A the distance between the ribs 30c and 30b is greater than that between the ribs 30b and 30a.
  • the flow pattern is represented by the plurality of arrows.
  • a swirl 40 which is made to rotate counterclockwise.
  • the vortex formation in the spaces between the individual ribs due to the blocking by the ribs 30a, 30b, 30c can not take place.
  • a laminar flow pattern arises over the entire width of the wing 100.
  • only a single vortex 40 is produced, thus suppressing the formation of a Kármán vortex street, each formed by pairs of counter-rotating vertebrae.

Landscapes

  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)
  • Metal Rolling (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Traffic Control Systems (AREA)
  • Road Paving Machines (AREA)
  • Shovels (AREA)

Description

Die Erfindung betrifft einen Tragflügel, insbesondere ein Ruder, für Wasserfahrzeuge, insbesondere Schiffe, mit einer Endleiste.The invention relates to a wing, in particular a rudder, for watercraft, especially ships, with an end bar.

Tragflügel sind im vorliegenden Zusammenhang bei Wasserfahrzeugen eingesetzte bzw. eingebaute Körper, die in strömungsmechanischer Sicht Auftrieb erzeugen. Beispiele für Tragflügel sind Ruder, Kiele, Tragflügelkufen bei Tragflügelbooten, Stabilisatorflossen oder sonstige flossenartige Körper von Wasserfahrzeugen. Der erfindungsgemäße Tragflügel ist insbesondere zum Einsatz als Ruder geeignet, wobei auch der Einsatz als eines der vorgenannten Körper bzw. eines sonstigen tragflügelartigen Körpers ohne Weiteres möglich ist.Airfoils are used in the present context in vessels used or built-body, which generate buoyancy in fluid mechanics view. Examples of hydrofoils are rudders, keels, hydrofoils on hydrofoils, stabilizer fins or other fin-like bodies of watercraft. The wing of the invention is particularly suitable for use as a rudder, wherein the use of one of the aforementioned body or other wing-like body is readily possible.

Bekannte Tragflügel weisen normalerweise eine einer Strömungsrichtung zugeordneten bzw. in Wasserfahrzeugfahrtrichtung ausgerichtete Nasenleiste und eine dieser gegenüberliegende Endleiste auf. Zwischen Nasenleiste und Endleiste sind Seitenflächen bzw. Seitenwandungen des Tragflügels angeordnet. Der obere Endbereich des Tragflügels ist normalerweise fest, bzw. im Falle eines Ruders drehbar, mit dem Wasserfahrzeugkörper verbunden, wohingegen das gegenüberliegende untere Ende normalerweise als freies Ende ausgebildet ist. Bei Rudern ist jedoch auch bekannt, dass diese am unteren Ende ebenfalls gelagert sein können (beispielsweise bei in der Stevensohle gelagerten Rudern).Known wings usually have a direction of flow associated with or aligned in the direction of navigation vehicle nose strip and one of these opposite end bar. Between the leading edge and the end strip side surfaces or side walls of the wing are arranged. The upper end portion of the wing is normally fixed, or rotatable in the case of a rudder, connected to the vessel body, whereas the opposite lower end is normally formed as a free end. In rowing, however, it is also known that these can also be stored at the lower end (for example, when stored in the Stevensohle rudders).

Der Tragflügelkörper wird im Einsatz bei einem Wasserfahrzeug vom Wasser in Richtung von der Nasenleiste zur Endleiste hin umströmt. In Abhängigkeit der Reynoldszahl, der Strömung bzw. der Strömungsgeschwindigkeit und der geometrischen Form des Tragflügels bzw. der Endleiste des Tragflügels kann es in Strömungsrichtung hinter dem Tragflügel bzw. an dessen Endleiste zu Wirbelablösungen kommen, deren Frequenz durch die Strouhal-Zahl charakterisiert ist. Die Wirbel entstehen häufig jeweils zu beiden Seiten des umströmten Körpers, wobei ihre Drehsinne entgegengesetzt zueinander verlaufen. Die Strömung zwischen ihnen verläuft in Richtung zum umströmten Körper gegenläufig zur äußeren Strömung. Dieses schleppenartige Wirbelsystem aus jeweils gegenläufigen Wirbeln, das sich am umströmten Körper bildet und von der Strömung fortgetrieben und schließlich dissipiert wird, ist auch als sogenannte Kármánsche-Wirbelstraße bekannt. Dieses Phänomen tritt insbesondere bei Rudern auf, da diese der relativ schnellen Propellerströmung eines Schiffspropellers ausgesetzt sind. Des Weiteren neigen insbesondere solche Ruder zur Bildung von Kármánschen-Wirbelstraßen, die eine relativ breite Endleiste aufweisen. Dies sind insbesondere Ruder mit einem Fishtail- oder auch Schilling®-Profil, bei denen sich der Endbereich des Ruderblattes in Strömungsrichtung betrachtet zur Endleiste hin, insbesondere schwalbenschwanzartig, verbreitert. Bei derartigen Geometrien ist die Strouhal-Zahl und damit die Ablösefrequenz der einzelnen Wirbel besonders hoch, wodurch Kármánsche-Wirbelstraßen entstehen können bzw. besonders ausgeprägt vorhanden sind.The wing body is flowed around in use in a watercraft by the water in the direction of the leading edge of the leading edge. Depending on the Reynolds number, the flow or the flow velocity and the geometric shape of the wing or the end bar of the wing may come behind the wing or at the end bar to vortex shedding in the flow direction, the frequency is characterized by the Strouhal number. The vortexes often arise on either side of the body around which they are flowing, their directions of rotation being opposite to one another. The flow between them runs in the direction of the body around which flows in the opposite direction to the outer flow. This drag-like vortex system, consisting of counter-rotating vortices, which forms on the body around which it flows and is driven away by the flow and finally dissipated, is also known as the Kármán vortex street. This phenomenon is particularly noticeable in oars, as they are exposed to the relatively fast propeller flow of a marine propeller. Furthermore, such rudders in particular tend to form Karmann vortex streets which have a relatively wide end bar. These are, in particular, rudders with a Fishtail or Schilling® profile, in which the end area of the rudder blade, viewed in the direction of flow, widens toward the end bar, in particular dovetailed. In such geometries, the Strouhal number and thus the separation frequency of the individual vortices is particularly high, whereby Kármán-vortex streets can arise or are particularly pronounced.

Fig. 4 zeigt die Ausbildung einer Kármánschen-Wirbelstraße bei einem aus dem Stand der Technik bekannten Tragflügel 200. Der Tragflügel 200 aus der Fig. 4 ist ein Fishtail-Ruder, bei dem sich das Querschnittsprofil zur Endleiste 201 hin wieder verbreitert. Der Übersichtlichkeit halber ist nur der Endbereich des Tragflügels 200 dargestellt. Die Endleiste 201 verläuft konkav zwischen den beiden Endbereichen 2021 a, 2021 b der Seitenflächen 202a, 202b. Der Verlauf der (Propeller-)Strömung ist durch eine Vielzahl von Pfeilen dargestellt. Es ist erkennbar, dass die Strömung im Wesentlichen laminar an den Seitenflächen 202a, 202b entlangläuft. Passiert die Strömung die Endbereiche 2021a, 2021b der Seitenflächen 202a, 202b, lösen sich sowohl im oberen Bereich der Endleiste 201 als auch in deren unterem Bereich Wirbel 210 von der Strömung ab. Im oberen Bereich der Endleiste 201 bzw. direkt hinter dem Seitenflächenendpunkt 2021a hat sich ein gegen den Uhrzeigersinn drehender Wirbel 210 ausgebildet. In Strömungsrichtung schräg darunter ist ein weiterer, gegenläufig, nämlich mit dem Uhrzeigersinn drehender Wirbel 210b vorhanden, der sich an der unteren Seitenfläche 202b bzw. direkt dahinter gebildet hat. Stromabwärts ist ein weiterer gegen den Uhrzeigersinn drehender, sich langsam dissipierender Wirbel 210c vorhanden, der ebenfalls von der oberen Seitenfläche 202a stammt. Die Wirbel 210a, 210b, 210c bilden zusammen das Wirbelsystem der sogenannten Kármánschen-Wirbelstraße. Im Bereich der Wirbel bzw. zwischen den Wirbeln sinkt der Druck gegenüber der die Kármánsche-Wirbelstraße umgebenden Strömung deutlich ab. Fig. 4 shows the formation of a Kármán vortex street in a known from the prior art wing 200. The wing 200 from the Fig. 4 is a fishtail rudder in which the cross-sectional profile widened towards the end bar 201 again. For the sake of clarity, only the end region of the wing 200 is shown. The end bar 201 runs concavely between the two end regions 2021 a, 2021 b of the side surfaces 202a, 202b. The course of the (propeller) flow is represented by a multitude of arrows. It can be seen that the flow is substantially laminar along the side surfaces 202a, 202b. If the flow passes through the end regions 2021a, 2021b of the side surfaces 202a, 202b, eddies 210 detach from the flow both in the upper region of the end strip 201 and in its lower region. In the upper area of the end bar 201 or directly behind the side surface end point 2021a, a counterclockwise rotating vortex 210 has formed. Downstream therefrom, there is another, counterclockwise, namely clockwise, rotating vortex 210b, which has formed on the lower side surface 202b or directly behind it. Downstream there is another counterclockwise rotating slowly dissipating vortex 210c, also from the upper side surface 202a. The vortexes 210a, 210b, 210c together form the vortex system of the so-called Kármán vortex street. In the area of the vortexes or between the vertebrae, the pressure drops significantly in relation to the flow surrounding the Kármánsche vortex street.

Durch die Ausbildung der Kármánschen-Wirbelstraßen wird zum einen der Wirkungsgrad eines Tragflügels reduziert bzw. im Fall von Rudern die Ruderkraft verringert. Auch erhöht sich der Tragflügel- bzw. Ruderwiderstand. Zum anderen wird die Seitenkraft eines Ruders verringert und es kann zu Vibrationen am Tragflügel kommen. Letzteres ist insbesondere der Fall, wenn die Ablösefrequenz der Wirbel im Wesentlichen der Eigenfrequenz des Tragflügelkörpers entspricht.The formation of the Kármán vortex streets, on the one hand reduces the efficiency of an airfoil or, in the case of oars, reduces the rudder force. Also increases the wing or rudder resistance. On the other hand, the lateral force of a rudder is reduced and it can cause vibrations on the wing. The latter is the case in particular if the frequency of detachment of the vortices essentially corresponds to the natural frequency of the wing body.

Aus der US 5,265,830 A ist eine Ausführung eines Tragflügels mit einer einzelnen, von der Endleiste hervorspringenden Lippe bekannt, die unter einem Winkel von weniger als 90°, dass heißt schräg von der Endleistenfläche, an dieser angeordnet ist. Der gezeigte Tragflügel ist aus dem Flugzeugbau bekannt, und der einzelne als Lippe ausgeführte Vorsprungskörper wird zur aerodynamischen Beeinflussung der Umströmung der Tragfläche genutzt.From the US 5,265,830 A is an embodiment of an airfoil with a single, protruding from the end bar lip is known, which is at an angle of less than 90 °, that is obliquely arranged by the Endleistenfläche, at this. The illustrated wing is known from the aircraft industry, and the individual designed as a lip projection body is used to aerodynamically influence the flow around the wing.

In der GB 1,019,061 A sind beispielhaft verschiedene Strömungskörper gezeigt, die jeweils eine Endseite aufweisen, an der Elemente angeordnet sind, um dasIn the GB 1,019,061 A For example, various flow bodies are shown, each having an end side on which elements are arranged to the

Verhalten einer den Körper umströmenden Luft zu beeinflussen. Beispielhaft ist der Körper als Tragfläche gezeigt, wie diese im Flugzeugbau Verwendung findet. Die Elemente an der Endseite des Körpers sind mit einem Loch- oder Schlitzprofil ausgeführt, und die Löcher sollen durchströmt werden, um die dargestellten aerodynamischen Effekte zu erzielen. Die gezeigten Elemente dienen dabei als Diffusorkörper.Behavior of an air flowing around the body to influence. By way of example, the body is shown as a wing, as it is used in aircraft. The elements on the end face of the body are made with a hole or slot profile, and the holes are to be flowed through to achieve the aerodynamic effects shown. The elements shown serve as a diffuser body.

Die US 5,449,136 A beschreibt einen Strömungskörper mit Ausformungen beziehungsweise Vertiefungen in der Endleiste, um in diesen Verwirbelungen aufzunehmen. Folglich ist lediglich das geometrische Profil der Endleiste modifiziert.The US 5,449,136 A describes a flow body with indentations or depressions in the end bar to accommodate in this turbulence. Consequently, only the geometric profile of the end bar is modified.

Daher ist es Aufgabe der vorliegenden Erfindung, einen Tragflügel anzugeben, bei dem die negativen Effekte der Wirbelbildung in Strömungsrichtung hinter dem Tragflügel bzw. der Kármánschen-Wirbelstraßen reduziert werden.It is therefore an object of the present invention to provide a wing in which the negative effects of vortex formation in the flow direction behind the wing or the Karmann vortex streets are reduced.

Die Lösung dieser Aufgabe gelingt mit einem Tragflügel mit den Merkmalen des Anspruches 1.The solution of this problem is achieved with a wing with the features of claim 1.

Kernidee der Erfindung ist es, einen Vorsprungskörper an der Endleiste vorzusehen, durch den die Wirbelbildung reduziert wird. Ein Vorsprungskörper ist im vorliegenden Zusammenhang ein grundsätzlich beliebig gestalteter Körper, der von der Endleiste des Tragflügels vorsteht bzw. vorspringt. Da die Endleiste normalerweise in einer Querschnittsbetrachtung im Wesentlichen quer zur Tragflügellängsrichtung verläuft, stehen die Vorsprungskörper im Allgemeinen, zumindest grob, in stromabwärtiger Richtung vor. Das heißt, die mindestens zwei Vorsprungskörper stehen von der hinteren Endleiste im Wesentlichen in Längsrichtung des Tragflügels und/oder in Schiffslängsrichtung vor.The core idea of the invention is to provide a projection body on the end strip, by which the vortex formation is reduced. In the present context, a projection body is a basically arbitrarily shaped body which protrudes from the end strip of the wing. Since the end bar normally extends in a cross-sectional view substantially transversely to the wing longitudinal direction, the projection bodies are generally, at least roughly, in the downstream direction. That is, the at least two projection bodies protrude from the rear end strip substantially in the longitudinal direction of the wing and / or in the ship's longitudinal direction.

Die Endleiste ist normalerweise eine den Tragflügel abschließende Fläche, die geradlinig, konkav, konvex oder sonstwie verlaufend ausgebildet sein kann. Somit ist der Endleistenbereich bei erfindungsgemäßen Tragflügeln normalerweise abgeflacht und läuft nicht etwa spitz zu o. dgl. Ferner ist die Endleiste normalerweise durchgängig von unten nach oben bzw. von Seite zu Seite ausgebildet und bildet daher eine einzige, durchgehende Fläche. Die Vorsprungskörper stehen nun von dieser Fläche vor, was dazu führt, dass die Wahrscheinlichkeit der Ablösung eines Wirbels verringert wird. Hierdurch kann die Wahrscheinlichkeit des Auftretens einer Kármánschen-Wirbelstraße reduziert werden. Die Wirksamkeit der mindestens zwei Vorsprungskörper hängt von verschiedenen Faktoren, beispielsweise von einer noch höheren Anzahl der Vorsprungskörper, der geometrischen Ausgestaltung, sowie der genauen Anordnung ab.The end bar is normally a wing closing surface, which may be rectilinear, concave, convex or otherwise running. Thus, the Endleistenbereich is usually flattened in the invention wings and does not run about point o. The like. Furthermore, the end bar is normally formed continuously from bottom to top or from side to side and therefore forms a single, continuous surface. The protrusion bodies now protrude from this surface, which results in the likelihood of a vortex detachment being reduced. This can reduce the probability of the occurrence of a Kármán vortex street. The effectiveness of the at least two projection bodies depends on various factors, for example an even higher number of projection bodies, the geometric design, as well as the exact arrangement.

Bei den mindestens zwei Vorsprungskörpern handelt es sich also um Körper, die an sich nicht zur Endleistenfläche gehören, jedoch an dieser angeordnet sind und von dieser vorstehen. Ein Vorsprungskörper ist in diesem Sinne also keine leichte Ausbuchtung aus der Endleistenfläche heraus z. B. konvex verlaufende Endleiste o. dgl., sondern ein im Wesentlichen eigenständiger Körper, der jedoch zweckmäßigerweise fest mit der Endleiste bzw. der Endleistenfläche zu verbinden ist. Die mindestens zwei Vorsprungskörper sind daher nicht aus dem Tragflügel herausgeformt, oder auch nicht als Vertiefung oder Ausnehmung aus dem Tragflügel ausgebildet. Entsprechend können die Vorsprungskörper beispielsweise aus Metall, insbesondere aus Stahl, hergestellt sein und mittels Verschweißung oder sonstiger geeigneter Befestigungsmethoden bzw. -mittel mit der Endleiste verbunden sein. Durch das Vorstehen der Körper aus der Endleistenfläche heraus wird insbesondere vermieden, dass sich zu beiden Seiten des Tragflügels gegenläufige Wirbelpaare bilden, die die Voraussetzung für die Ausbildung einer Kármánschen-Wirbelstraße sind. Ferner ist es bevorzugt, dass die mindestens zwei Vorsprungskörper als starre, nicht-flexible bzw. nicht-elastische Körper ausgebildet sind, da hierdurch sichergestellt ist, dass das Strömungsverhalten des Tragflügels, insbesondere hinsichtlich der Wirbelbildung, gleich bleibt.The at least two projection bodies are thus bodies which in themselves do not belong to the end strip surface, but are arranged on it and project from it. A boss body is in this sense, therefore, no slight bulge out of the Endleisten face out z. B. convex extending end strip o. The like., But a substantially independent body, however, is suitably firmly connected to the end bar or the Endleistenfläche. The at least two projection bodies are therefore not formed out of the wing, or not formed as a recess or recess from the wing. Accordingly, the projection body may be made of metal, for example, in particular steel, and by means of welding or other suitable fastening methods or means to be connected to the end bar. By projecting the body out of the end bar surface, it is particularly avoided that opposing vortex pairs form on both sides of the wing, which are the prerequisite for the formation of a Kármán vortex street. Furthermore, it is preferred that the at least two projection bodies are designed as rigid, non-flexible or non-elastic bodies, since this ensures that the flow behavior of the wing, in particular with regard to vortex formation, remains the same.

Durch die Vorsehung der mindestens zwei Vorsprungskörper wird die Wahrscheinlichkeit des Auftretens einer Kármánschen-Wirbelstraße bei einem Tragflügel reduziert und dadurch der Tragflügelwiderstand und somit auch die Treibstoffeffizienz verbessert. Darüber hinaus wird die Gefahr von Beschädigungen des Tragflügels bzw. des Wasserfahrzeugkörpers durch Vibrationen verringert. Da die mindestens zwei Vorsprungskörper an der Endleiste angeordnet sind, verringern diese auch nicht die wirksame Anströmfläche des Tragflügels und können, da diese sich außerhalb der Anströmfläche und somit außerhalb der Hauptströmung befinden, Kavitationen durch ein Ablösen der Strömung nicht auslösen. Entsprechend kann durch die Vorsehung von Strömungskörpern durch einen relativ geringen baulichen Aufwand und ohne eine Schwächung des Querschnittes des eigentlichen Tragflügels in strömungstechnischer Hinsicht die vorteilhafte Wirkung der Reduzierung der Wirbelbildung im Bereich der Endleiste erreicht werden. Durch die erfindungsgemäßen mindestens zwei Vorsprungskörper wird der Vorgang der Wirbelbildung gestört bzw. behindert, wodurch ein sehr viel stabileres bzw. laminareres Strömungsbild in Strömungsrichtung hinter dem Tragflügel betrachtet entsteht. Die mindestens zwei Vorsprungskörper sind insbesondere ausschließlich an der Endleiste und nicht an anderen Bereichen des Tragflügels vorgesehen.The provision of the at least two projection bodies reduces the likelihood of occurrence of a Kármán vortex street in an airfoil and thereby improves the aerofoil resistance and thus fuel efficiency. In addition, the risk of damage to the wing or the vessel body is reduced by vibrations. Since the at least two projection bodies are arranged on the end strip, these also do not reduce the effective inflow surface of the wing and, since they are located outside the inflow area and thus outside the main flow, cavitations by detachment of the flow do not trigger. Accordingly, the provision of flow bodies by a relatively low structural complexity and without weakening the cross-section of the actual wing in fluidic terms, the beneficial effect of reducing the vortex formation can be achieved in the end bar. As a result of the at least two projection bodies according to the invention, the process of vortex formation is disturbed or impeded, as a result of which a much more stable or laminar flow pattern arises in the flow direction behind the wing. The at least two projection bodies are provided in particular exclusively on the end strip and not on other areas of the wing.

In Bezug auf die Breite der Endleiste sind die mindestens zwei Vorsprungskörper zweckmäßigerweise derart ausgebildet, dass diese nicht die gesamte Breite abdecken. Vielmehr springen diese vorteilhafterweise nur aus einem Teilbereich in Bezug auf die Endleistenbreite hervor. Hierdurch wird sichergestellt, dass eine Blockierung der Wirbelströmung erreicht wird. Würden die mindestens zwei Vorsprungskörper die gesamte Breite der Endleiste abdecken, könnten die Vorsprungskörper strömungstechnisch als reiner Fortsatz des Tragflügels wirken und sich die ungewünschten, gegenläufigen Wirbel zu beiden Seiten des Vorsprungskörpers ablösen.With regard to the width of the end strip, the at least two projection bodies are expediently designed such that they do not cover the entire width. Rather, these advantageously only jump out of a partial area with respect to the end strip width. This ensures that a blockage of the vortex flow is achieved. If the at least two projection bodies cover the entire width of the end strip, the projection bodies could fluidly act as a pure extension of the wing and detach the undesired, opposing vertebrae on both sides of the projection body.

Erfindungsgemäß sind die mindestens zwei Vorsprungskörper plattenförmig bzw. als von der Endleiste vorspringende Rippen, und/oder mit einem rechteckigen Querschnitt ausgebildet. Die Rippen bestehen zweckmäßigerweise aus Platten, beispielsweise aus Stahlplatten o. dgl., die mit einer Stirnseite an der Endleiste befestigt werden. Sind die Platten länglich, insbesondere über einen Großteil oder über die Gesamtheit der Länge der Endleiste verlaufend ausgebildet, sind die Rippen bzw. Platten bevorzugterweise mit einer Längsstirnseite an der Endleiste anzuordnen bzw. zu befestigen. Bei einer derartigen Ausbildung ergibt sich eine streifenförmige Anordnung der Rippen. Es ist zweckmäßig, die mindestens zwei Rippen parallel zueinander und parallel zur Längsachse des Tragflügels anzuordnen. Statt als Platte könnten die Rippen auch in ihrem freien Endbereich leicht abgerundet oder sich zu ihrem freien Ende hin verjüngend o. dgl. ausgebildet sein. Die Rippen sind zweckmäßig durchgehend ausgebildet, bzw. der rechteckige Querschnitt ist zweckmäßig über den gesamten Vorsprungskörper hinweg konstant.According to the invention, the at least two projection bodies are plate-shaped or designed as ribs projecting from the end strip, and / or with a rectangular cross-section. The ribs are expediently made of plates, such as steel plates o. The like., Which are fastened with an end face on the end bar. If the plates are elongated, in particular running over a large part or over the entirety of the length of the end strip, the ribs or plates are preferably to be arranged or fastened to the end strip with a longitudinal end face. With such a design results in a strip-shaped arrangement of the ribs. It is expedient to arrange the at least two ribs parallel to one another and parallel to the longitudinal axis of the wing. Instead of a plate, the ribs could be slightly rounded in their free end or tapering towards its free end o. The like. Be formed. The ribs are expediently formed continuously, or the rectangular cross-section is expedient over the entire projection body of time constant.

Ferner weisen die mindestens zwei Vorsprungskörper erfindungsgemäß keine Durchbrechungen auf.Furthermore, the at least two projection bodies according to the invention have no perforations.

Um eine möglichst weitgehende Reduzierung der Wirbelbildung zu erreichen, ist es in einer bevorzugten Ausführungsform der Erfindung vorgesehen, dass der mindestens eine Vorsprungskörper über mindestens 50 % der Länge der Endleiste, bevorzugt mindestens 75 %, besonders bevorzugt im Wesentlichen über die Gesamtlänge der Endleiste verläuft. Mit dem Begriff "Länge der Endleiste" ist im vorliegenden Zusammenhang der Abstand zwischen oberem und unterem Ende des Tragflügels im Bereich der Endleiste zu verstehen. Die Endleiste verläuft normalerweise über die gesamte Höhe des Tragflügels. Daher ist es zweckmäßig, dass der mindestens eine Vorsprungskörper über einen möglichst großen Bereich der Endleiste verläuft, so dass in Bezug auf die Höhe des Tragflügels möglichst weitläufig die Wirbelbildung reduziert bzw. gestört wird. Besonders zweckmäßig ist der Verlauf der mindestens zwei Vorsprungskörper von einem Endleistenende zum anderen, da somit eine Störung der Wirbelbildung über die gesamte Höhe des Tragflügels hinweg sichergestellt ist. Die mindestens zwei Vorsprungskörper können dabei zweckmäßigerweise aus einem einzigen Körper bestehen, dessen Länge der Länge der Endleiste entspricht und die an der Endleiste befestigt werden. Grundsätzlich wäre es jedoch auch möglich, dass sich die mindestens zwei Vorsprungskörper aus mehreren Teilkörpern zusammensetzen.In order to achieve the greatest possible reduction of vortex formation, it is provided in a preferred embodiment of the invention that the at least one projection body extends over at least 50% of the length of the end strip, preferably at least 75%, particularly preferably substantially over the entire length of the end strip. The term "length of the end bar" is to be understood in the present context, the distance between the upper and lower end of the wing in the end bar. The end bar usually runs over the entire height of the wing. Therefore, it is expedient that the at least one projection body extends over as large as possible a region of the end strip, so that the vortex formation is reduced or disturbed as widely as possible in relation to the height of the wing. Particularly expedient is the course of the at least two projection body from one Endleistenende to the other, since thus a disturbance of the vortex formation over the entire height of the wing is ensured away. The at least two projection body can expediently consist of a single body whose length corresponds to the length of the end bar and which are attached to the end bar. Basically it would be However, it is also possible for the at least two projection bodies to be composed of a plurality of partial bodies.

Grundsätzlich können die mindestens zwei Vorsprungskörper in Bezug auf eine Querschnittsbetrachtung beliebig verlaufend ausgebildet sein. Häufig wird es jedoch zweckmäßig sein, dass in einer Querschnittsbetrachtung des Tragflügels die mindestens zwei Vorsprungskörper im Wesentlichen parallel zu einer Mittellinie des Tragflügels oder entlang der Mittellinie verlaufen. Insofern verlaufen die mindestens zwei Vorsprungskörper im Querschnitt vorzugsweise geradlinig. In entsprechenden Tests hat es sich gezeigt, dass durch eine derartige Ausrichtung der mindestens zwei Vorsprungskörper eine besonders gute Störung der Wirbelbildung bzw. ein besonders günstiges Strömungsbild erreicht werden kann. Insbesondere bei entlang der Mittellinie angeordneten mindestens zwei Vorsprungskörpern wird eine besonders ebenmäßige Störung der Wirbelbildung auf beiden Seiten des Tragflügels erreicht. Wenn noch mehr Vorsprungskörper vorgesehen sind, sind vorzugsweise alle Vorsprungskörper parallel zur Mittellinie verlaufend ausgebildet. Allerdings ist es auch möglich, dass einzelne Vorsprungskörper von dieser Ausrichtung abweichen. Dies kann insbesondere bei bogenförmig bzw. bei konkav oder konvex verlaufender Endleiste angezeigt sein. Bei der vorliegenden Ausführungsform bezieht sich der Vorlauf der mindestens zwei Vorsprungkörper in der Querschnittsbetrachtung auf den Verlauf zwischen endleistenseitigem und freiem Ende der mindestens zwei Vorsprungskörper.In principle, the at least two projection bodies may be of arbitrary design in relation to a cross-sectional view. Often, however, it will be expedient that, in a cross-sectional view of the wing, the at least two projection bodies extend substantially parallel to a center line of the wing or along the center line. In this respect, the at least two projection bodies are preferably rectilinear in cross-section. In appropriate tests, it has been found that by means of such an alignment of the at least two projection bodies, a particularly good disturbance of vortex formation or a particularly favorable flow pattern can be achieved. In particular, arranged along the center line at least two projection bodies a particularly even disturbance of the vortex formation is achieved on both sides of the wing. If even more projection bodies are provided, preferably all the projection bodies are designed to extend parallel to the center line. However, it is also possible that individual projection body deviate from this orientation. This may be indicated in particular in the case of an arcuate or in the case of a concave or convex end strip. In the present embodiment, the flow of the at least two projection body in the cross-sectional consideration refers to the course between endleistenseitigem and free end of the at least two projection body.

Ferner ist es bevorzugt, dass die mindestens zwei Vorsprungskörper im Wesentlichen parallel zur Längsachse des Tragflügels verlaufen. Die Längsachse ist dabei diejenige Achse, die vom oberen Tragflügelende zum unteren Tragflügelende verläuft. Bei Rudern wird die Längsachse häufig auch die Ruderdrehachse sein. Auch können die mindestens zwei Vorsprungskörper im Wesentlichen parallel zu den Außenkanten der Endleiste verlaufen. Die Außenkanten der Endleiste werden dabei häufig ebenfalls parallel zur Längsachse des Tragflügels ausgerichtet sein. Auf diese Weise ergibt sich ein ebenmäßiges Strömungsbild. Insbesondere ist es bevorzugt, dass die mindestens zwei Vorsprungskörper parallel zur Längsachse und über die gesamte Länge der Endleiste verlaufen. Hierdurch ergibt sich ein besonders ebenmäßiges Strömungsbild.Furthermore, it is preferred that the at least two projection bodies extend substantially parallel to the longitudinal axis of the wing. The longitudinal axis is that axis which extends from the upper wing end to the lower wing end. In rowing, the longitudinal axis will often also be the rudder axis of rotation. Also, the at least two projection bodies may extend substantially parallel to the outer edges of the end strip. The outer edges of the end bar become common also be aligned parallel to the longitudinal axis of the wing. This results in a uniform flow pattern. In particular, it is preferred that the at least two projection bodies extend parallel to the longitudinal axis and over the entire length of the end strip. This results in a particularly even flow pattern.

In einer weiteren bevorzugten Ausführungsform der Erfindung springen die mindestens zwei Vorsprungskörper im Wesentlichen rechtwinklig bzw. orthogonal von der Oberfläche der Endleiste vor. Der rechte Winkel wird dabei zwischen der Endleiste und der Achse entlang der Breite des Tragflügels (Querachse) gebildet. Ist die Endleistenoberfläche eben, sind im Falle von mehreren Vorsprungskörpern die Vorsprungskörper entsprechend parallel zueinander angeordnet. Hierdurch wird die Ebenmäßigkeit der Strömung in Strömungsrichtung hinter dem Tragflügel weiter verbessert. Bei bogenförmig bzw. nicht geradlinig verlaufenden Endleisten können die mindestens zwei Vorsprungskörper jeweils in Bezug auf denjenigen Endleistenabschnitt, an den diese angrenzt, orthogonal ausgerichtet sein.In a further preferred embodiment of the invention, the at least two projection bodies project in a substantially perpendicular or orthogonal manner from the surface of the end strip. The right angle is formed between the end bar and the axis along the width of the wing (transverse axis). If the end strip surface is flat, in the case of a plurality of projection bodies, the projection bodies are arranged correspondingly parallel to one another. As a result, the uniformity of the flow in the flow direction behind the wing is further improved. In arcuate or non-rectilinearly extending end strips, the at least two projection bodies may each be oriented orthogonally with respect to that end strip section to which it is adjacent.

Bevorzugterweise entspricht die Breite der Vorsprungskörper, d. h. deren Abstand zwischen Endleiste und freiem Ende, mindestens der Hälfte der Breite der Endleiste. Tests haben ergeben, dass bei derartigen Dimensionierungen der mindestens zwei Vorsprungskörper besonders gute Ergebnisse bezüglich der Reduzierung der Wirbelbildung erreicht werden können.Preferably, the width of the projection body, d. H. their distance between end bar and free end, at least half the width of the end bar. Tests have shown that with such dimensions of the at least two projection body particularly good results with respect to the reduction of vortex formation can be achieved.

Es ist zweckmäßig, die mindestens zwei Vorsprungskörper beabstandet zueinander und/oder parallel verlaufend zueinander anzuordnen. Durch die beabstandete Anordnung der mindestens zwei Vorsprungskörper wird die Wirbelbildung weiter erschwert, da zwei unabhängig voneinander vorstehende Objekte die Wirbelströmung blockieren. Die parallele Ausrichtung der beiden Vorsprungskörper verbessert wiederum die Ebenmäßigkeit des Strömungsbildes.It is expedient to arrange the at least two projection bodies spaced from one another and / or parallel to each other. Due to the spaced arrangement of the at least two projection body vortex formation is further complicated because two independently projecting objects block the vortex flow. The parallel alignment of the two projection bodies in turn improves the evenness of the flow pattern.

In einer weiteren bevorzugten Ausführungsform gilt die Formel: Anzahl der Vorsprungskörper = 2n+1, wobei "n" eine natürliche Zahl, einschließlich 1, ist. Besonders bevorzugt ist n = 2, d. h. die Anzahl der Vorsprungskörper ist 5. Ferner ist in einer Querschnittsbetrachtung einer der Vorsprungskörper im Wesentlichen mittig an der Endleiste angeordnet und eine gerade Anzahl von Vorsprungskörpern ist zu jeder Seite des mittig angeordneten Vorsprungskörpers angeordnet. Besonders bevorzugt ergibt sich eine symmetrische Anordnung, wobei die Mittellinie des Tragflügels in der Querschnittsbetrachtung zweckmäßigerweise die Symmetrielinie bildet. Vorteilhafterweise sind die einzelnen Vorsprungskörper beabstandet zueinander und/oder parallel zueinander verlaufend angeordnet. Tests haben ergeben, dass sich durch eine derartige, gleichmäßig verteilte und insbesondere symmetrische Ausbildung, insbesondere bei 5 Vorsprungskörpern, eine besonders gute Wirkung in Bezug auf die Reduzierung der Wirbelbildung einstellt. Ferner ist es bei dieser Ausführungsform bevorzugt, dass der mittig angeordnete Vorsprungskörper die größte Breite, d. h., den größten Abstand zwischen Endleiste und freiem Ende aufweist. Gegebenenfalls können auch zwei gleich große Vorsprungskörper in einem mittleren Bereich angeordnet sein. Des Weiteren kann die Breite der anderen Vorsprungskörper vorteilhafterweise nach außen hin fortlaufend abnehmen, so dass die am weitesten außenliegenden Vorsprungskörper die geringste Breite aufweisen. Zweckmäßigerweise ist auch hierbei die Ausbildung symmetrisch vorgesehen, d. h., die spiegelbildlich angeordneten Vorsprungskörperpaare weisen jeweils eine gleiche Breite auf. Hierdurch wird von außen nach innen ein graduelles Blockieren der Wirbelströmung erreicht.In a further preferred embodiment, the formula is: number of protrusion bodies = 2n + 1, where "n" is a natural number, including 1. Particularly preferred is n = 2, d. H. the number of the protrusion bodies is 5. Further, in a cross-sectional view, one of the protrusion bodies is arranged substantially centrally on the end bar, and an even number of protrusion bodies are arranged on each side of the centrally arranged protrusion body. Particularly preferred results in a symmetrical arrangement, wherein the center line of the wing in the cross-sectional view expediently forms the line of symmetry. Advantageously, the individual projection bodies are arranged spaced from one another and / or parallel to one another. Tests have shown that a particularly good effect with regard to the reduction of vortex formation is achieved by such a uniformly distributed and in particular symmetrical design, in particular with 5 projection bodies. Further, in this embodiment, it is preferable that the centrally arranged projection body has the largest width, that is, the maximum width. h., Has the largest distance between end bar and free end. Optionally, two equal projection body may be arranged in a central region. Furthermore, the width of the other projection bodies can advantageously decrease continuously in the outward direction, so that the outermost projection bodies have the smallest width. Conveniently, the training is provided symmetrically in this case, d. h., The mirror image arranged protrusion body pairs each have a same width. As a result, a gradual blocking of the vortex flow is achieved from the outside inwards.

Wenn mehrere Vorsprungskörper vorgesehen sind, können die Abstände zwischen den einzelnen Vorsprungskörpern grundsätzlich unterschiedlich oder gleich ausgebildet sein. Welche Anordnung strömungstechnisch am günstigsten ist, hängt jeweils von den Umständen des Einzelfalles, insbesondere der Geometrie und Breite der Endleiste, der Strömungsgeschwindigkeit, der genauen Ausbildung der Vorsprungskörper, etc., ab.If a plurality of projection bodies are provided, the distances between the individual projection bodies can in principle be different or be the same. Which arrangement is the most favorable in terms of flow technology depends in each case on the circumstances of the individual case, in particular the geometry and width of the end strip, the flow velocity, the precise formation of the projection bodies, etc.

Besonders zweckmäßig werden die mindestens zwei Vorsprungskörper bei einem als Fishtail- oder Schilling®-Ruder ausgebildeten Tragflügel vorgesehen, bei dem sich das Profil in einer Querschnittsbetrachtung von einer der Endleiste gegenüberliegend angeordneten Nasenleiste in Richtung der Endleiste bis zu einem mittleren Bereich hin, welcher die breiteste Stelle des Tragflügelprofils bildet, verbreitert, vom mittleren Bereich bis zu einem hinteren Bereich hin, welcher die schmalste Stelle des Tragflügelprofils bildet, verjüngt und vom hinteren Bereich bis hin zur Endleiste, insbesondere schwalbenschwanzartig, wieder verbreitert, wobei die Endleiste bevorzugt geradlinig, konvex oder konkav ausgebildet ist. Aufgrund der relativen Breite der Endleiste im Vergleich zu anderen Tragflügelprofilen treten bei den vorstehend beschriebenen Tragflügelprofilen besonders häufig Wirbelbildungen auf. Insofern ist die Vorsehung der mindestens zwei Vorsprungskörper bei derartigen Profilen besonders zweckmäßig.The at least two projection bodies are particularly useful provided formed airfoil at a ® as a fishtail or Schilling rudders, in which the profile in a cross-sectional view of one of the trailing edge oppositely disposed leading edge toward the trailing edge to a central region towards which the widest Site of the airfoil profile, widened, from the central region to a rear area, which forms the narrowest point of the airfoil, tapered and widened from the rear to the end bar, in particular dovetailed again, the end bar preferably rectilinear, convex or concave is trained. Due to the Relative width of the end bar in comparison to other airfoils occur in the above-described airfoils particularly frequently on vortices. In this respect, the provision of the at least two projection bodies in such profiles is particularly expedient.

Ferner sind die mindestens zwei Vorsprungskörper bevorzugt als monolithischer Körper ausgebildet. Weiterhin weisen die mindestens zwei Vorsprungskörper bevorzugt einen konstanten Querschnitt auf.Furthermore, the at least two projection bodies are preferably formed as a monolithic body. Furthermore, the at least two projection bodies preferably have a constant cross section.

Nachstehend wird die Erfindung in der Zeichnung anhand verschiedener Ausführungsbeispiele näher erläutert. Es zeigen schematisch:

Fig. 1
eine perspektivische Ansicht eines Tragflügels mit Endleiste und Vorsprungskörpern,
Fig. 1A
eine Detailansicht des oberen Endbereiches der Endleiste des Tragflügels aus der Fig. 1,
Fig. 2A-2E
Draufsichten von Endbereichen von Tragflügeln mit verschieden ausgebildeten Endleisten und unterschiedlich angeordneten bzw. ausgebildeten Vorsprungskörper(n),
Fig. 3
eine Draufsicht auf den Endbereich eines Tragflügels mit von der Endleiste vorspringenden Vorsprungskörpern mit eingezeichnetem Strömungsverlauf, und
Fig. 4
einen Endbereich eines Tragflügels aus dem Stand der Technik mit eingezeichnetem Strömungsverlauf.
The invention is explained in detail in the drawing with reference to various embodiments. They show schematically:
Fig. 1
a perspective view of a wing with end bar and projection bodies,
Fig. 1A
a detailed view of the upper end portion of the end bar of the wing from the Fig. 1 .
Fig. 2A-2E
Top views of end portions of airfoils with differently shaped end strips and differently arranged or formed projection body (s),
Fig. 3
a plan view of the end portion of a wing with protruding from the end bar projection bodies with drawn flow path, and
Fig. 4
an end portion of a wing from the prior art with marked flow path.

Bei den im Folgenden beschriebenen, verschiedenen Ausführungsformen der Erfindung sind gleiche Bestandteile mit gleichen Bezugszeichen versehen.In the various embodiments of the invention described below, identical components are provided with the same reference numerals.

Fig. 1 zeigt eine perspektivische Ansicht eines Tragflügels 100. Im vorliegenden Fall wird der Tragflügel 100 von einem Ruder mit Fishtail- bzw. Schilling®-Profil gebildet. Das Ruder umfasst eine Nasenleiste 10 sowie eine Endleiste 20. Zwischen Nasenleiste 10 und Endleiste 20 verläuft die Seitenfläche 11. Am oberen Ende 12 sowie auch am unteren Ende 13 des Tragflügels 100 ist jeweils ein Abschlussblech 14 vorgesehen. Da es sich beim vorliegenden Tragflügel 100 um ein Ruder mit Fishtail-Profil handelt, verbreitert sich der Endbereich 15 des Ruders von einem die schmalste Stelle des Ruders bildenden hinteren Bereich 16 bis hin zur Endleiste 20. An der Endleiste 20 sind insgesamt fünf als plattenförmige Rippen ausgebildete Vorsprungskörper 30 vorgesehen, die jeweils von einem oberen Ende 12 bis zum unteren Ende 13 verlaufen und parallel zueinander angeordnet sind. Fig. 1 shows a perspective view of a wing 100. In the present case, the wing 100 of a rudder with fishtail or Schilling® profile formed. The rudder comprises a nose strip 10 and an end bar 20. Between the nose strip 10 and the end bar 20, the side surface 11 extends at the upper end 12 and at the lower end 13 of the wing 100 each a cover plate 14 is provided. Since the present wing 100 is a rudder with fishtail profile, the end portion 15 of the rudder widens from a narrowest point of the rudder forming rear portion 16 to the end bar 20. On the end bar 20 are a total of five as plate-shaped ribs formed protrusion body 30 is provided, each extending from an upper end 12 to the lower end 13 and are arranged parallel to each other.

Wie aus der Detailansicht aus Fig. 1A erkennbar ist, weist die mittlere Rippe 30a die größte Breite auf. Zu beiden Seiten der mittleren Rippe 30a sind jeweils zwei weitere Rippen 30b, 30c angeordnet, wobei die Breite dieser Rippen nach außen hin abnimmt. Die plattenförmigen Rippen 30a, 30b, 30c sind mit ihren Längsstirnseiten an der Endleiste 20, die geradlinig bzw. als ebene Fläche ausgebildet ist, befestigt. Ebenso liegen die Rippen 30a, 30b, 30c mit ihren querseitigen Stirnflächen an den Abschlussblechen 14 an und sind an diesen ebenfalls befestigt. Die äußeren Rippen 30c weisen die kürzeste Breite auf und sind gegenüber der Außenkante 21 der Endleiste 20 nur geringfügig nach innen versetzt. Die plattenförmigen Rippen 30a, 30b, 30c stehen jeweils im Wesentlichen senkrecht von der Endleistenfläche vor und verlaufen parallel zur Außenkante 21 der Endleiste 20 bzw. zur Längsachse des Tragflügels 100.As seen from the detail view Fig. 1A can be seen, the middle rib 30a has the largest width. On both sides of the central rib 30a, two further ribs 30b, 30c are respectively arranged, wherein the width of these ribs decreases towards the outside. The plate-shaped ribs 30a, 30b, 30c are fixed with their longitudinal end faces on the end bar 20, which is rectilinear or as a flat surface. Likewise, the ribs 30a, 30b, 30c abut with their transverse end faces on the end plates 14 and are also attached to these. The outer ribs 30c have the shortest width and are offset from the outer edge 21 of the end bar 20 only slightly inward. The plate-shaped ribs 30a, 30b, 30c project in each case substantially perpendicularly from the end bar surface and extend parallel to the outer edge 21 of the end bar 20 or to the longitudinal axis of the wing 100.

Fig. 2A zeigt eine Draufsicht auf den Endbereich 15 des Tragflügels aus der Fig. 1. Es ist erkennbar, dass die Mitte der Rippe 30a die größte Breite b1 und die äußeren Rippen 30c die kleinste Breite b3 aufweisen, wohingegen die zwischen den Rippen 30a und 30c angeordneten Rippen 30b eine mittlere Breite b2 aufweisen. Ferner sind die Abstände zwischen den Rippen 30c und 30b (a2) und den Rippen 30b und 30a (a1) unterschiedlich, wobei der Abstand a1 größer ist als a2. Die genaue Dimensionierung der Breiten und Abstände kann jeweils auf eine optimale Wirbelreduzierungswirkung in Bezug auf die jeweilige Geometrie der Endleiste bzw. der Rippen 30 abgestimmt werden. Die Rippe 30a verläuft entlang der Mittellinie 17, wohingegen die Rippen 30b und 30c parallel zur Mittellinie 17 verlaufen. Die Mittellinie 17 bildet ebenfalls die Symmetrieachse für die Rippenanordnung. Fig. 2A shows a plan view of the end portion 15 of the wing of the Fig. 1 , It can be seen that the center of the rib 30a has the largest width b1 and the outer ribs 30c have the smallest width b3, whereas the ribs 30b arranged between the ribs 30a and 30c have a mean width b2. Further, the distances between the ribs 30c and 30b (a2) and the ribs 30b and 30a (a1) are different, wherein the distance a1 is greater than a2. The exact dimensioning of the widths and distances can each be matched to an optimal vortex reduction effect with respect to the respective geometry of the end bar or the ribs 30. The rib 30a extends along the center line 17, whereas the ribs 30b and 30c extend parallel to the center line 17. The centerline 17 also forms the symmetry axis for the fin arrangement.

Die Fig. 2B bis 2E zeigen weitere Beispiele von Ausgestaltungen des Endbereiches 15 von erfindungsgemäßen Tragflügeln 100. So ist bei der Fig. 2B eine mittige, entlang der Mittellinie 17 angeordnete Rippe 30a vorgesehen. Ferner sind zwei weitere, jeweils außen angeordnete und gleich breit ausgebildete Rippen 30c vorgesehen. Die Rippen 30c sind in Bezug auf die Mittellinie 17 symmetrisch angeordnet. Bei der Drei-Rippen-Ausbildung aus der Fig. 2B ist die Endleiste 20 in einer Draufsicht bzw. Querschnittsansicht konkav verlaufend ausgebildet. Bei der Fig. 2C ist die beispielhaft lediglich einzeln gezeigte Endleiste 20 dagegen geradlinig verlaufend ausgebildet, bzw. die Endleiste 20 bildet eine ebene Fläche. Als weiteres Beispiel ist damit nur eine einzige Rippe 30a gezeigt, die entlang der Mittellinie 17 angeordnet ist. Bei der Fig. 2D ist die Endleiste 20 in einer Draufsicht bzw. Querschnittsansicht, ähnlich wie bei der Fig. 2B, konkav verlaufend ausgebildet. Ebenfalls sind eine mittlere Rippe 30a, die entlang der Mittellinie 17 verläuft, sowie zwei außenliegende Rippen 30c vorgesehen. Im Unterschied zu der Fig. 2B, bei der alle drei Rippen parallel ausgerichtet sind, ebenso wie bei der Fig. 2A, sind die beiden äußeren Rippen 30c nicht parallel zur Mittellinie 17 bzw. zur mittleren Rippe 30a ausgebildet, sondern verlaufen in einem Winkel dazu. Insbesondere verlaufen Sie in Richtung von der Endleiste weg von außen nach innen. Bei der Fig. 2E sind ebenfalls fünf Rippen vorgesehen, wobei die Endleiste 20 in einer Draufsicht bzw. Querschnittsansicht konvex verlaufend ausgebildet ist. Die mittlere Rippe 30a, die wiederum die größte Breite aufweist, verläuft entlang der Mittellinie 17. Die beiden äußeren Rippen 30c weisen die geringste Breite auf. Die jeweils rechts und links der Mittellinie 17 angeordneten Rippen 30b, 30c sind entlang der Mittellinie 17 symmetrisch zueinander angeordnet. Im Unterschied zu der Darstellung aus der Fig. 2A sind die Rippen 30b und 30c nicht parallel zur Mittellinie 17 bzw. zur Rippe 30a angeordnet, sondern stehen jeweils in einem Winkel von ca. 90° von der konvex geformten Endleiste 20 ab, so dass sich von der Endleiste 20 zum freien Ende der Rippen 30a, 30b, 30c hin betrachtet eine nach außen verlaufende Anordnung der Rippen bildet. Sämtliche in den Fig. 2A bis 2E gezeigten Rippen 30a, 30b, 30c sind als Platten ausgebildet.The Fig. 2B to 2E show further examples of embodiments of the end portion 15 of the invention wings 100. So is in the Fig. 2B a central rib 30a arranged along the center line 17 is provided. Furthermore, two further, each arranged on the outside and the same width ribs 30c are provided. The ribs 30c are arranged symmetrically with respect to the center line 17. In the three-rib training from the Fig. 2B the end bar 20 is concave in plan view and cross-sectional view. In the Fig. 2C is the example only individually shown end bar 20, however, formed rectilinear, or the end bar 20 forms a flat surface. As a further example, only a single rib 30a is shown, which is arranged along the center line 17. In the Fig. 2D is the end bar 20 in a plan view and cross-sectional view, similar to the Fig. 2B , concave running formed. Also, a middle rib 30a extending along the center line 17 and two outer ribs 30c are provided. Unlike the Fig. 2B in which all three ribs are aligned in parallel, as well as in the Fig. 2A , the two outer ribs 30c are not parallel to the center line 17 and the middle rib 30a, respectively, but extend at an angle thereto. In particular, they run away from the inside in the direction of the end bar. In the Fig. 2E five ribs are also provided, wherein the end bar 20 is formed in a plan view and cross-sectional view convex. The central rib 30a, which again has the largest width, runs along the center line 17. The two outer ribs 30c have the smallest width. The right and left respectively the center line 17 arranged ribs 30 b, 30 c are arranged along the center line 17 symmetrical to each other. In contrast to the representation from the Fig. 2A the ribs 30b and 30c are not arranged parallel to the center line 17 or to the rib 30a, but are each at an angle of approximately 90 ° from the convex shaped end bar 20, so that from the end bar 20 to the free end of the ribs 30a 30b, 30c forms an outwardly extending arrangement of the ribs. All in the Fig. 2A to 2E shown ribs 30a, 30b, 30c are formed as plates.

Fig. 3 zeigt eine Draufsicht auf einen Endbereich 15 eines erfindungsgemäßen Tragflügels 100. Die Endleiste 20 ist in einer Draufsicht bzw. Querschnittsbetrachtung geradlinig ausgebildet. Die fünf von der Endleiste 20 vorstehenden Rippen 30a, 30b, 30c sind im Wesentlichen gemäß der Anordnung aus Fig. 2A angeordnet und ausgebildet, wobei bei der gezeigten Darstellung in Fig. 3 anders als bei Fig. 2A der Abstand zwischen den Rippen 30c und 30b größer ist als derjenige zwischen den Rippen 30b und 30a. Der Strömungsverlauf ist durch die Vielzahl der eingezeichneten Pfeile dargestellt. So stellt sich mit der erfindungsgemäßen Tragflügelausbildung im Bereich der Seitenwände 11 stromabwärts vom Tragflügel 100 ein im Wesentlichen laminares Strömungsbild ein. Zwischen der oberen Rippe 30b und der mittleren Rippe 30a bildet sich ein Wirbel 40, der gegen den Urzeigersinn drehend ausgebildet ist. Darüber hinaus ist erkennbar, wie die Wirbelbildung in den Zwischenräumen zwischen den einzelnen Rippen aufgrund der Blockierung durch die Rippen 30a, 30b, 30c nicht stattfinden kann. In Strömungsrichtung bereits kurz hinter dem Wirbel 40 stellt sich auf der gesamten Breite des Tragflügels 100 ein laminares Strömungsbild ein. Ferner wird nur ein einziger Wirbel 40 produziert und somit das Ausbilden einer Kármánschen-Wirbelstraße, die jeweils durch Paare von gegenläufig rotierenden Wirbeln gebildet wird, unterdrückt. Fig. 3 shows a plan view of an end portion 15 of an airfoil 100 according to the invention. The end bar 20 is formed in a straight plan view and cross-sectional view. The five ribs 30a, 30b, 30c projecting from the end bar 20 are substantially in accordance with the arrangement Fig. 2A arranged and formed, wherein in the illustration shown in FIG Fig. 3 Unlike Fig. 2A the distance between the ribs 30c and 30b is greater than that between the ribs 30b and 30a. The flow pattern is represented by the plurality of arrows. Thus, with the hydrofoil formation according to the invention in the area of the side walls 11, downstream of the wing 100, a substantially laminar flow pattern arises. Between the upper rib 30b and the middle rib 30a, there is formed a swirl 40 which is made to rotate counterclockwise. In addition, it can be seen how the vortex formation in the spaces between the individual ribs due to the blocking by the ribs 30a, 30b, 30c can not take place. In the direction of flow, just behind the vortex 40, a laminar flow pattern arises over the entire width of the wing 100. Further, only a single vortex 40 is produced, thus suppressing the formation of a Kármán vortex street, each formed by pairs of counter-rotating vertebrae.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

100100
TragflügelHydrofoil
1010
Nasenleisteleading edge
1111
Seitenflächeside surface
1212
oberes Endetop end
1313
unteres Endelower end
1414
Abschlussblechclosing panel
1515
Endbereichend
1616
hinterer Bereichthe backstage area
1717
Mittelliniecenter line
2020
Endleisteend strip
2121
Außenkanteouter edge
200200
Tragflügel (Stand der Technik)Wing (prior art)
201201
Endleisteend strip
202a, 202b202a, 202b
Seitenflächenfaces
2021 a, 2021 b2021 a, 2021 b
SeitenflächenendpunkteSide face endpoints
210210
Wirbelwhirl
3030
Vorsprungskörperprojection body
4040
Wirbelwhirl

Claims (13)

  1. Hydrofoil (100), in particular rudder, for watercraft, in particular ships, having a trailing edge (20),
    characterized in that
    at least two projection bodies (30) are provided on the end strip (20) to reduce the vortex formation, said projection bodies are configured as ribs projecting in a plate-shaped manner from the end strip (20), wherein the projection bodies (30) have no openings.
  2. The hydrofoil according to claim 1,
    characterized in that
    the at least one projection body (30) runs over at least 50% of the length of the end strip (20), preferably over at least 75%, particularly preferably substantially over the entire length of the end strip (20).
  3. The hydrofoil according to claim 1 or 2,
    characterized in that
    in a cross-sectional view of the hydrofoil (100) the at least one projection body (30) runs substantially parallel to a centre line (17) of the hydrofoil (100) or along the centre line (17).
  4. The hydrofoil according to any one of the preceding claims,
    characterized in that
    the at least one projection body (30) runs substantially parallel to the longitudinal axis of the hydrofoil (100).
  5. The hydrofoil according to any one of the preceding claims,
    characterized in that
    the at least one projection body (30) projects substantially orthogonally from the surface of the end strip (20).
  6. The hydrofoil according to any one of the preceding claims,
    characterized in that
    the width of the projection body (30) corresponds to at least half the width of the end strip (20).
  7. The hydrofoil according to any one of the preceding claims,
    characterized in that
    the at least two projection bodies (30) are disposed spaced apart and/or running parallel to one another.
  8. The hydrofoil according to any one of the preceding claims,
    characterized in that
    the number of projection bodies (30) is 2n+1, in particular 5, and in a cross-sectional view, one projection body (30a) is disposed substantially centrally on the end strip (20) and an even number of projection bodies (30b, 30c) is disposed on each side of the centrally disposed projection body (30a), in particular symmetrically.
  9. The hydrofoil according to claim 8,
    characterized in that
    the centrally disposed projection body (30a) has the greatest width and optionally the width of the other projection bodies (30b, 30c) decreases continuously outwards.
  10. The hydrofoil according to any one of the preceding claims,
    characterized in that
    a number of projection bodies (30) is provided, wherein the distances between the individual projection bodies (30) are the same or different.
  11. The hydrofoil according to any one of the preceding claims,
    characterized in that
    the profile of the hydrofoil (100) in a cross-sectional view broadens from a leading edge (10) located opposite the end strip (20) in the direction of the end strip (20) as far as a central region which forms the broadest point of the hydrofoil profile, tapers from the central region as far as a rear region (16) which forms the narrowest point of the hydrofoil profile, and broadens again from the rear region (16) towards the end strip (20), in particular in a swallowtail manner.
  12. The hydrofoil according to claim 11,
    characterized in that
    the end strip (20) runs in a straight line, convex or concave.
  13. Watercraft, in particular ship,
    characterized in that
    it has an hydrofoil (100) according to any one of the preceding claims.
EP10172836.8A 2009-08-17 2010-08-13 Wing for water vehicles Not-in-force EP2287071B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202009010904U DE202009010904U1 (en) 2009-08-17 2009-08-17 Hydrofoils for watercraft

Publications (3)

Publication Number Publication Date
EP2287071A2 EP2287071A2 (en) 2011-02-23
EP2287071A3 EP2287071A3 (en) 2011-04-06
EP2287071B1 true EP2287071B1 (en) 2014-04-23

Family

ID=43253974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10172836.8A Not-in-force EP2287071B1 (en) 2009-08-17 2010-08-13 Wing for water vehicles

Country Status (7)

Country Link
EP (1) EP2287071B1 (en)
JP (1) JP5327814B2 (en)
KR (2) KR101421320B1 (en)
CN (1) CN101992852B (en)
DE (1) DE202009010904U1 (en)
HK (1) HK1155130A1 (en)
SG (1) SG169293A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101879935A (en) * 2010-06-25 2010-11-10 哈尔滨工程大学 Drag-reducing device of anti-rolling fin of ship wing flap
KR101324965B1 (en) * 2011-10-06 2013-11-05 삼성중공업 주식회사 Rudder and ship having the same
DE102013204033A1 (en) * 2013-03-08 2014-09-11 Voith Patent Gmbh Watercraft, in particular container or towboat
CN105121272B (en) * 2013-04-18 2017-06-23 罗尼·斯考恩 Stabilizer and active systems stabilisation for ship
JP5950971B2 (en) * 2014-01-06 2016-07-13 ジャパン・ハムワージ株式会社 Ship rudder
CN108386304A (en) * 2018-04-24 2018-08-10 东方电气集团东方电机有限公司 The seat ring of reaction turbine
CN108626055A (en) * 2018-04-24 2018-10-09 东方电气集团东方电机有限公司 The method for preventing the resonance of reaction turbine fixed guide vane from cracking
JP6643404B2 (en) * 2018-06-11 2020-02-12 商船三井テクノトレード株式会社 Ship rudder and ship
KR102095259B1 (en) * 2018-06-28 2020-05-22 삼성중공업 주식회사 Rudder for ship

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE822352C (en) * 1949-07-15 1951-11-26 Guenther Kempf Dr Ing Device for vortex control in bodies flowed around
GB1019061A (en) * 1961-03-29 1966-02-02 Herbert Harry Pearcey Improvements relating to control of fluid flow past bodies and to reduction of drag of such bodies
US4592299A (en) * 1984-11-07 1986-06-03 Christiansen Joseph R Ship's-vessel's rudder with reduced drag effected factors
US5046444A (en) * 1990-04-10 1991-09-10 Michigan Wheel Corp. Base vented subcavitating hydrofoil section
JPH04128999U (en) * 1991-05-17 1992-11-25 ジヤパン・ハムワージ株式会社 ship rudder system
DE4202745C2 (en) * 1991-09-04 1995-04-13 Blohm Voss Ag Wing, in particular stabilizer fin for ships
JPH08237Y2 (en) * 1991-10-29 1996-01-10 川崎重工業株式会社 Anti-vibration device for marine flap ladder
US5265830A (en) * 1992-01-21 1993-11-30 Mcdonnell Douglas Corporation Trailing edge splitter
DE4208751A1 (en) * 1992-02-27 1993-11-11 Fritz Karl Hausser Reducing resistance to aerofoil or hydrofoil passing through medium e.g. air or water - uses array of teeth formed on leading and/or trailing edge of aerofoil or hydrofoil section
ES2064261B1 (en) * 1993-02-25 1998-07-16 Doria Iriarte Jose Javier IMPROVED FUSELAGE IN ORDER TO ACHIEVE STABILIZATION EFFECTS OF TORBELLINOS.
DE9319415U1 (en) * 1993-12-17 1994-06-01 Guergen, Karl-Heinz, 21266 Jesteburg Device for improving the aerodynamic or hydraulic efficiency of components
FR2728864B1 (en) * 1994-12-29 1997-03-14 Havre Chantiers LEVELING EDGE STABILIZATION DEVICE FOR ANTI-ROLL SHIP STABILIZERS
DE19610870B4 (en) * 1996-03-20 2005-02-03 B + V Industrietechnik Gmbh Device for flow guidance
DE19647102A1 (en) * 1996-11-14 1998-05-20 Philippe Arribi Flow body
EP1112928B1 (en) * 1999-12-31 2010-12-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Airfoil with performance enhancing trailing edge
DE10027938A1 (en) * 2000-05-31 2001-12-13 Dlr Ev Aerofoil section with lift-increasing trailing edge, in which trailing edge has spoilers on one or both sides to cause flow breakaway
DE202007017450U1 (en) * 2007-11-16 2008-03-27 Becker Marine Systems Gmbh & Co. Kg High efficiency rudder for ships

Also Published As

Publication number Publication date
KR101421320B1 (en) 2014-07-30
SG169293A1 (en) 2011-03-30
CN101992852A (en) 2011-03-30
EP2287071A2 (en) 2011-02-23
KR20110018276A (en) 2011-02-23
EP2287071A3 (en) 2011-04-06
HK1155130A1 (en) 2012-05-11
JP2011042360A (en) 2011-03-03
CN101992852B (en) 2014-06-04
KR20140003361A (en) 2014-01-09
JP5327814B2 (en) 2013-10-30
DE202009010904U1 (en) 2010-12-30
KR101494107B1 (en) 2015-02-17

Similar Documents

Publication Publication Date Title
EP2287071B1 (en) Wing for water vehicles
EP2060484B1 (en) Rudder for ships
DE10347802B3 (en) Rotor blade for a wind turbine
EP2994379B1 (en) Apparatus to reduce required propulsion power of waterborne vessel
EP3564483A1 (en) Blade base for a turbine blade
EP2774836B1 (en) Watercraft, in particular tugboat
DE4025339C2 (en) Control system
EP0131115A2 (en) Arrangement for influencing the current falling onto a propeller
DE3615619A1 (en) CONTROL DEVICE FOR INFLUENCING THE PROPELLER INFLOW IN SHIPS
DE8207403U1 (en) WING SAIL
EP2679803B1 (en) Wind turbine rotor blade with a thick profile trailing edge
EP2185884B1 (en) Fin for a heat exchanger
DE2636261C2 (en) Annular structure on the stern of the ship
DE4202745C2 (en) Wing, in particular stabilizer fin for ships
EP1153830B1 (en) Device for reducing aerodynamic loads on equipment externally mounted on aircraft
DE69104931T2 (en) Oars.
DE202017103233U1 (en) Rudder blade with a rudder blade hub and rudder blade hub for a rudder blade
EP3409575A1 (en) Rudder blade with a rudder blade hub and rudder blade hub for a rudder blade
DE10261056A1 (en) Tube kite has aerofoil has longitudinally second inflatable tube located at distance from leading edge and together with front tube and cross struts forms lattice-form load bearing frame for kite
EP3296192B1 (en) Impact-reducing flow deflector for the surface of flow bodies impacted by the flow
EP3464045B1 (en) Water vehicle, in particular tugboat
DE102004019496B4 (en) Wing for aircraft with engines
DE3141941A1 (en) Fin for a surfboard
EP3553306B1 (en) Wind energy turbine engine blade with a vortex generator
DE2352802C3 (en) Mast for sailboats

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110810

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BECKER MARINE SYSTEMS GMBH & CO. KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 663661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010006727

Country of ref document: DE

Effective date: 20140605

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BECKER MARINE SYSTEMS GMBH & CO. KG

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20140423

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140823

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010006727

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20150126

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010006727

Country of ref document: DE

Effective date: 20150126

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140813

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150824

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150731

Year of fee payment: 6

Ref country code: NO

Payment date: 20150821

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100813

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 663661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010006727

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20150813

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160813