EP2278556A2 - Apparatus and method for examining value documents - Google Patents
Apparatus and method for examining value documents Download PDFInfo
- Publication number
- EP2278556A2 EP2278556A2 EP10011625A EP10011625A EP2278556A2 EP 2278556 A2 EP2278556 A2 EP 2278556A2 EP 10011625 A EP10011625 A EP 10011625A EP 10011625 A EP10011625 A EP 10011625A EP 2278556 A2 EP2278556 A2 EP 2278556A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- luminescence
- luminescence sensor
- radiation
- detector
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title abstract description 5
- 238000004020 luminiscence type Methods 0.000 claims abstract description 126
- 230000005855 radiation Effects 0.000 claims abstract description 62
- 238000005286 illumination Methods 0.000 claims abstract description 28
- 239000000126 substance Substances 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 20
- 230000003287 optical effect Effects 0.000 claims description 20
- 238000003384 imaging method Methods 0.000 claims description 18
- 238000012360 testing method Methods 0.000 claims description 15
- 230000003595 spectral effect Effects 0.000 claims description 14
- 239000013074 reference sample Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 4
- 238000001748 luminescence spectrum Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 230000003321 amplification Effects 0.000 claims 1
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 238000001228 spectrum Methods 0.000 abstract description 2
- 230000032258 transport Effects 0.000 description 20
- 238000013461 design Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/12—Visible light, infrared or ultraviolet radiation
- G07D7/121—Apparatus characterised by sensor details
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/12—Visible light, infrared or ultraviolet radiation
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/12—Visible light, infrared or ultraviolet radiation
- G07D7/1205—Testing spectral properties
Definitions
- the invention relates to a device and a method for testing, in particular, luminescent value documents, wherein the value document is irradiated with light and the luminescence radiation emanating from the value document is detected spectrally resolved.
- Such luminescent value documents may e.g. Banknotes, checks, coupons or chip cards.
- the present invention is primarily concerned with the validation of banknotes. These typically contain in the paper or in the ink a feature substance or a mixture of several feature substances which exhibit a luminescent behavior, such as e.g. fluoresce or phosphoresce.
- a system is for example from the DE 23 66 274 C2 known.
- This system to check the authenticity of a banknote, ie in particular the test, whether a fluorescent feature substance is actually present in a banknote to be tested, obliquely irradiated and detected the vertically remitted fluorescence spectrally resolved by means of an interference filter.
- the evaluation is carried out by comparing the signals from different photocells of the spectrometer.
- an object of the present invention an apparatus and a method for testing luminescent value documents to provide a safe test with a compact luminescence sensor.
- the devices according to the invention can be used in all types of devices in which optical radiation, in particular luminescence radiation, is tested. Although not limited thereto, the following describes as a preferred variant the checking of banknotes in banknote processing devices, which can serve, for example, for counting and / or sorting and / or depositing and / or paying out banknotes.
- the banknote sorting device 1 in this case has an input compartment 3 for banknotes BN in a housing 2, into which banknotes to be processed BN can either be input manually from the outside or banknotes bundles can be fed automatically, if necessary after a preceding debrapping.
- the banknotes BN entered into the input compartment 3 are separated from the stack by a singler 4 and transported through a sensor device 6 by means of a transport device 5.
- the sensor device 6 can have one or more sensor modules integrated in a common housing or mounted in separate housings. The sensor modules can serve, for example, to check the authenticity and / or the state and / or the nominal value of the banknotes BN being tested.
- the checked banknotes BN are then output sorted into output pockets 9 as a function of the test results of the sensor device 6 and of predetermined sorting criteria via switches 7 and associated spiral stackers 8, from which they are optionally manually removed after previous banding or packaging or can be removed automatically. It can also be a shredder 10 may be provided in order to destroy bills classified as genuine and no longer fit for circulation BN.
- the control of the banknote sorting device 1 takes place by means of a computer-assisted control unit 11.
- the sensor device 6 can have different sensor modules.
- the sensor device 6 is distinguished in particular by a sensor module 12 for testing luminescence radiation, which is referred to below as the luminescence sensor 12 for short.
- FIG. 2 FIG. 4 illustrates, in a schematic cross-sectional view, the internal structure and arrangement of the optical components of a particularly compact luminescence sensor 12 according to an embodiment of the present invention.
- Fig. 3 also shows a top view of a part of these located inside the luminescence sensor 12 components.
- This luminescence sensor 12 is designed to be particularly compact and optimized with regard to high signal-to-noise ratios.
- the luminescence sensor 12 has in particular in a common housing 13 both one or more light sources 14 for exciting luminescence radiation, as well as a detector 30, preferably a spectrometer 30 for the spectrally dispersed detection of the luminescent light.
- the housing 13 is closed so that unauthorized access to the components contained therein is not possible without damaging the housing 13.
- the light source 14 may, for. B. an LED, but preferably be a laser light source such as a laser diode 14.
- the laser diode 14 may emit one or more different wavelengths or wavelength ranges. If you work with several different wavelengths or wavelength ranges, can also be provided that in the same light source housing or in separate light source housings, ie separate light source modules, multiple light sources 14 for different wavelengths or wavelength ranges, for example, are arranged side by side and preferably emit parallel light that can be projected onto the same location or adjacent locations of the banknote BN.
- the light sources 14 can emit light of a plurality of different wavelengths or wavelength ranges, it can be provided that the individual wavelengths or wavelength ranges can be selectively activated.
- the light emanating from the laser diode 14 is irradiated by means of an imaging optical system 15, 16, 17 onto a banknote to be tested.
- the imaging optics include a collimator lens 15, a deflection mirror as a beam splitter 16, in particular a dichroic beam splitter 16, which deflects the emanating from the laser diode 14 and formed by the collimator lens 15 laser beam by 90 °, and a condenser lens 17 with a large opening angle, which the deflected laser beam through a front glass 18 preferably perpendicular to the transported by means of the transport system 5 in the direction T transports to be examined banknote BN and thus the banknote BN to emit emission of luminescent radiation.
- the luminescence radiation emanating from the illuminated banknote BN is then preferably likewise detected in the vertical direction, ie coaxially with the excitation light. This leads to a lower susceptibility due to positional tolerances of the transported banknotes BN on the measurements as in the oblique illumination, for example DE 23 66 274 C2 ,
- the optics for imaging the luminescence radiation onto a photosensitive detector unit 21 likewise comprises the front glass 18, the condenser lens 17 and the mirror 16 at least partially transparent to the luminescence radiation to be measured.
- the optic subsequently has another condenser lens 19 with a large opening, followed by a filter 20, which is designed to block the illumination wavelength of the light source 14 and other wavelengths not to be measured, and a deflection mirror 23.
- the deflecting mirror 23 serves to fold the beam path and to redirect the luminescence radiation to be measured to an imaging grating 24 or another device for spectral decomposition 24.
- the deflection mirror is advantageously mounted parallel or nearly parallel to the image plane of the spectrometer for an extremely compact design (angle ⁇ 15 degrees).
- the imaging grating 24 in this case has a wavelength-dispersing element with a concave mirror 26 which preferably images the luminescence radiation of the first order or minus the first order onto the detector unit 21.
- the detector unit 21 preferably has a detector row 22 of a plurality of photosensitive pixels arranged in series, ie pixels, as they are z. B. in relation to the FIGS. 6 or 7 will be described below by way of example.
- the entrance slit of the spectrometer 30 is in the Fig. 2 denoted by the reference symbol AS.
- the entrance slit AS can be present in the housing 13 in the form of a diaphragm AS in the beam path. However, it is also possible that at this point no aperture is present, but only a "virtual" entrance gap AS is present, which is given by the illumination track of the light source 14 on the banknote BN. The latter variant leads to higher light intensities, but can also lead to an undesirable greater sensitivity to ambient light or stray light.
- the deflecting mirror 23 is positioned with respect to the imaging grating 24 so that the entrance slit AS falls onto the region of the deflecting mirror 23. Since in this way the beam cross section of the radiation to be deflected on the deflection mirror 23 is particularly small, the deflection mirror 23 itself can also have particularly small dimensions. If the deflecting mirror 23 is a component of the detector unit 21, the deflecting mirror 23 can thereby not only according to FIG FIG. 2 above, but also adjacent to the photosensitive areas of the detector unit 21 are attached.
- a particular idea of the present invention is that the light source 14 for the excitation of luminescence radiation generates an elongated illumination surface 35 extending in the transport direction T on the banknote BN to be tested.
- This variant has the advantage that the luminescent, in particular phosphorescent feature substances present in the banknotes BN are usually pumped up longer by the illumination surface extending in the transport direction during the onward transport at the luminescence sensor 12 and, in particular, the radiation intensity of the luminescent phosphorescent feature substances is thereby increased ,
- FIG. 5 illustrates a related snapshot.
- An elongated illumination surface 35 extending in the transport direction T can be understood to mean that the illumination radiation at any given time irradiates an arbitrarily shaped surface, in particular a rectangular track on the banknote, which is significantly larger in the transport direction T than perpendicular to the transport direction T.
- the extent of the illumination surface 35 in the transport direction T at least twice, especially preferably be at least three times, four times or five times as long as the extension perpendicular to the transport direction T.
- Fig. 5 With another hatching also the image surface 36, ie the entrance hatch 36 of the spectrometer 30 is illustrated, ie that region of the banknote BN which is imaged on the spectrometer 30 at the given time in accordance with the dimensions of the entry slit AS. It can be seen that the length and width of the entrance hatch 36 of the spectrometer 30 are preferably smaller than the corresponding dimensions of the illumination surface 35 of the laser diode 14. This allows greater adjustment tolerances for the individual sensor components.
- the illumination surface 35 extends substantially further in the transport direction T as compared to the transport direction T compared to the image surface 36. This is particularly advantageous for exploiting the increased inflation effect.
- the illumination surface 35 and the image surface 36 overlap only partially in the transport direction T.
- the luminescence sensor 6 can be used both in devices 1 in which the banknotes BN are transported in the illustrated transport direction T and in devices 1 in which the banknotes BN be transported in opposite direction -T.
- different detector units 21, 27 are used for detecting the luminescence radiation, in particular the luminescence radiation emanating from the device for spectral decomposition 24, ie, for example, the imaging grating 24.
- a filter may be provided to only one or more given wavelengths or regions to be measured, wherein the measurable spectral regions of the different detector units 21, 27 are preferably different and, for example, only partially or not overlap.
- a plurality of further detector units 27 may be present, which measure in different wavelengths or ranges.
- the plurality of further detector units 27 may be spaced apart from each other or may be in a sandwich structure, as shown in FIG DE 1 0127 837 A1 is described by way of example.
- the detector line 22 is designed for spectrally resolved measurement of the luminescence of the banknote BN, by means of the at least one further detector unit 27 thus at least one other measurement of the luminescence, such as additionally or alternatively also a measurement of the broadband non-spectrally resolved zeroth order of the spectrometer 30 and / or the decay behavior of the luminescence radiation are performed.
- the further detector unit 27 can also be designed to check another optical property of the at least one feature substance of the banknote BN. This can be done, for example, by the measurements mentioned at other wavelengths or wavelength ranges.
- the further detector unit 27 can also be designed to check another feature substance of the banknote BN. So z. B. the detector line 22 for measuring the optical properties of a first feature substance of the banknote BN and the further detector unit 27 for measuring another feature substance of the banknote BN, in particular in a different spectral range than the detector line 22, be designed.
- the detectors 22, 27 will preferably have filters to suppress unwanted scattered light or higher order light in the measurement.
- this further detector unit 27 in particular when it is designed for measuring zeroth order of the spectrometer 30, tilted with respect to the imaging grating 24 and the detector line 22 may be arranged to avoid a disturbing back reflection on the concave mirror 26 ,
- a radiation-absorbing light trap such as a black-colored surface at the end of the beam path of the outgoing radiation from the further detector unit 27 may be present.
- a reference sample 32 with one or more luminescent feature substances which may have an identical or different chemical composition to the luminescent feature substances to be tested in the banknotes BN.
- this reference sample 32 may be integrated in the housing 13 itself and be applied, for example, as a film 32 on a further light source (LED 31), which is arranged opposite to the laser diode 14 with respect to the beam splitter 16.
- the reference sample 32 may instead be, for example, a separate component between the LED 31 and the angle mirror 16.
- the reference sample 32 can then be excited by irradiation by means of the LED 31 to a defined luminescence, which is mapped by parasitic reflection on the dichroic beam splitter 16 on the detector line 22 and evaluated.
- the luminescent feature substances of the reference sample 32 can preferably emit broadband, for example over the entire spectral range detectable by the spectrometer 30.
- the luminescent feature substances of the reference sample 32 may alternatively or additionally also have a specific characteristic emit spectral signature with narrowband peaks to perform wavelength calibration.
- the reference sample 32 can therefore also be mounted outside of the housing 13, in particular on the side opposite to the banknote BN to be measured, and e.g. be integrated in a counter element, such as a plate 28.
- an additional detector unit 33 may be present as a separate component or integrated in the plate 28.
- the additional detector unit 33 may be e.g. one or more photocells for measuring the radiation of the laser diode 14 and / or the luminescence radiation of the banknote BN which has passed through the front glass 18 and possibly through the banknote BN.
- the plate 28 may be slidably mounted in a guide in the direction P, so that either either the reference sample 32 or the photocell 33 can be brought into alignment with the illumination radiation of the laser diode 14.
- the plate 28 is preferably connected to the housing 13 via a dotted connection element 55, which lies outside the transport plane of the banknotes BN.
- a dotted connection element 55 which lies outside the transport plane of the banknotes BN.
- horizontally extending cross-sectional plane is then in an approximately U-shaped form of housing 13, connecting surface 55 and plate 28 before.
- This attachment of the plate 28, also in an alternative variant without reference sample 32 and photocell 33, has the advantage that a light protection against unwanted leakage of the laser radiation of the laser diode 14 is given. If the plate 28 for maintenance purposes or for removing jams releasably on the housing 13th is fixed, it can be provided that when dissolved or removed plate 28, the laser diode 14 is deactivated.
- FIG. 4 shows a schematic cross-sectional view of an alternative and very compact luminescence sensor 6, which in the banknote sorting device according to Fig.1 can be used. Same components are given the same reference numerals as in Fig. 2 characterized.
- the arrangement of the optical components in the luminescence sensor 6 according to Fig. 4 differs from the luminescence sensor 6 after Fig. 2 in particular the fact that it is possible to dispense with the deflecting mirror 23. It should be noted that the luminescence sensor 6 after Fig. 4 also has no further detector units 31, 33, although this would also be possible.
- the dichroic beam splitter 16 does not deflect the illumination radiation but the luminescence radiation in a mirrored manner.
- the light source 14 has two laser diodes 51, 52 arranged perpendicular to one another which emit at different wavelengths, the radiation of the individual laser diodes 51, 52 being e.g. can be coupled by a further dichroic beam splitter 53, so that the same illumination surface 35 or overlapping or spaced illumination surfaces 35 can be irradiated on the banknote BN.
- the radiation of the individual laser diodes 51, 52 being e.g. can be coupled by a further dichroic beam splitter 53, so that the same illumination surface 35 or overlapping or spaced illumination surfaces 35 can be irradiated on the banknote BN.
- the elevationally visible photosensitive detector elements ie, the detector row 22, are asymmetrically mounted on the carrier as described with respect to FIG. 7 will be explained in more detail.
- the luminescence sensor 6 preferably has in the housing 13 itself a control unit 50 which serves for signal processing of the measured values of the spectrometer 30 and / or for power control of the individual components of the luminescence sensor 6.
- a conventional detector line 22 is shown in sections, which usually has more than 100 juxtaposed photosensitive picture elements (referred to as pixels 40 for short) (of which FIG Fig. 6 only the first seven left pixels 40 are shown) which are of equal size and spaced apart on or in a substrate 41 which is approximately equal to the width of the pixels 40.
- a modified detector line 22 is used with a significantly smaller number of pixels 40, with a larger pixel area and a reduced proportion of non-photosensitive areas, as shown by way of example in US Pat Fig. 7 is illustrated.
- a modified detector row 22 has the advantage of a significantly greater signal-to-noise ratio than the conventional detector row 22 of FIG Fig. 6 exhibit.
- the modified detector rows 22 are constructed to have only between 10 and 32, more preferably between 10 and 20, individual pixels 40 in or on a substrate 41.
- the individual pixels 40 may have dimensions of at least 0.5 mm ⁇ 0.5 mm, preferably 0.5 mm ⁇ 1 mm, particularly preferably 1 mm ⁇ 1 mm.
- the detector array 22 has twelve pixels 40 of 2 mm height and 1 mm width, the non-photosensitive area 41 between adjacent pixels 40 having an extension of about 50 ⁇ m.
- individual pixels 40 have different dimensions, in particular in the direction of dispersion of the luminescence radiation to be measured, as described in US Pat Fig. 7 is shown. Since usually not all wavelengths of the spectrum, but specifically only individual wavelengths or wavelength ranges are evaluated, the pixels 40 can be constructed adapted to the respective wavelengths (ranges) to be evaluated.
- the detector line 22 may consist of a different material in the cases mentioned.
- detectors made of silicon which are sensitive below about 1100 nm, and particularly suitable for measurement in the infrared spectral range detector array 22 of InGaAs, which are sensitive above 900 nm.
- such an InGaAs detector array 22 will be deposited directly on a silicon substrate 42, most preferably comprising an amplifier stage made in silicon technology for amplifying the analog signals of the pixels 40 of the InGaAs detector array 22. This also provides a particularly compact design with short signal paths and increased signal / noise ratio.
- the detector line 22 with a few pixels 40 (eg after Fig. 7 ), preferably only a relatively small spectral range of less than 500 nm, more preferably less than or of about 300 nm is detected. It can also be provided that the detector line 22 has at least one pixel 40 which is photosensitive outside the luminescence spectrum of the banknotes BN to be measured in order to carry out normalizations such as baseline determination in the evaluation of the measured luminescence spectrum.
- the imaging grating 24 is preferably more than about 300, more preferably more than about 500 lines / mm, i. Have diffraction elements in order to still allow a sufficient dispersion of the luminescence radiation on the detector element 21 despite the compact construction of the luminescence sensors 6 according to the invention.
- the distance between the imaging grating 24 and the detector element 21 may preferably be less than approximately 70 mm, particularly preferably less than approximately 50 mm.
- a readout of the individual pixels 40 of the detector line 22 may be z. B. using a shift register serial. Preferably, however, a parallel readout of individual pixels 40 and / or pixel groups of the detector row 22 will take place.
- the three left-hand pixels 40 are read out one at a time by the measuring signals of these pixels 40 by means of an amplifier stage 45 which, for example, is part of the silicon substrate 42 Fig. 7 can be amplified and each supplied to an analog / digital converter 46.
- the two right-hand pixels in the schematic representation of Fig. 9 in turn, first amplified by separate amplifier stages 45, then a common multiplexing unit 47, which may optionally include a sample & hold circuit, and then a common analog / digital converter 46 is supplied, which is connected to the multiplexing unit 47.
- the parallel readout of a plurality of pixels 40 or pixel groups thereby made possible short integration times and a synchronized measurement of the banknote BN. This measure also contributes to an increase in the signal-to-noise ratio.
- Deflection mirror 23 for deflecting the luminescence radiation to be detected on the spectrometer 30 may be connected directly to the detector unit 21, as for example in Fig. 2 is shown.
- Fig. 7 shows a modified variant in which the deflection mirror 23 is applied directly on a common carrier with the detector line 22, that is, in particular on the silicon substrate 42.
- the deflection mirror 23 may be applied, for example, on a cover glass of the detector unit 21.
- a photodetector such as a photocell 56
- a photocell 56 may be present below the deflecting mirror 23 below the deflecting mirror 23 .
- This preferred variant is exemplary in the FIG. 8 pictured, which is a cross section along the line II of FIG. 7 shows.
- the deflecting mirror 23 applied to the photocell 56 is at least partially transparent to the wavelengths to be measured by the photocell 56.
- the photocell 56 can in turn be used for calibration purposes and / or for evaluating other properties of the luminescence radiation.
- the detector array 22 preferably asymmetrically on the support, that is applied to the silicon substrate 42.
- this can also be done by an active mechanical adjustment of the optical components of the luminescence sensor 12, the adjustment depending on measured values of the luminescence sensor 12 e.g. by an external control unit 11 or preferably by an internal control unit 50 can be controlled.
- the component of the imaging grating 24 can be displaceably mounted in the direction S.
- a mechanical adjustment of other optical components such. B. the detector 21 can be achieved, the z. B. in the direction of arrow D in Fig. 2 actively controlled can be displaced. It is also possible to perform an adjustment of the optical components in more than one direction.
- an evaluation of the measured values of the luminescence sensor 12 is carried out and in the presence of deviations of the measured values (eg the detector row 22, the further detector unit 27 or the photocell 33) or of quantities derived therefrom
- Reference values or areas an active mechanical adjustment of one or more of the optical components of the luminescence sensor 12 are performed to achieve increased signal efficiency and compensation of undesirable changes, for example due to caused by the lighting or electronics temperature fluctuations or aging phenomena of optical components. This is particularly important for a detector unit 21 with few pixels 40.
- the laser diode 14 is driven only with high power when a bill BN just in the field of the measuring window, d. H. of the front glass 18 is located.
- a Plangitter can be used.
- the structure of such a luminescence sensor 12 is exemplary in the FIG. 10 illustrated.
- the radiation emitted by the banknote BN to be tested and detected by an entrance window 18 also falls in this case through a collimating lens 17 onto a beam splitter 16, from which the light is deflected by 90 °, via a lens 19 and a filter 20 for illumination suppression on a first spherical collimator mirror 70 falls. From this mirror 70, the radiation is deflected onto a screen grid 71.
- the spectrally dispersed light is then directed to a detector array 21 via a second spherical collimator mirror 72 and a cylindrical lens 73.
- the luminescence sensor 12 of FIG. 10 is further characterized in that the illumination light is coupled by means of a fiber optic coupling.
- the light generated by a laser light source 68 is irradiated via a light guide 69, a beam shaping optics 66, the beam splitter 16, the collimating lens 17 and the entrance window 18 on the bill to be tested. Since light guides 69 are flexible and deformable and thus the illumination beam path can (largely) run as desired, it is only possible, for example, to fasten the light source in a particularly space-saving location in the housing 13.
- FIG. 11 shows an associated schematic example in which a light source 68 radiates into a light guide 69, which leads into the housing 13 of a luminescence sensor 12.
- the housing 13 may be constructed as an example of how the FIG. 10 with the only difference that the light source 68 is thus outside of the housing 13 and the light guide 69 thus also extends outside of the housing 13.
- FIG. 11 Another special feature of the light coupling, for example FIG. 11 it is that the light source 69 and the housing 13 connecting optical fiber 69 in a in the FIG. 11 schematically shown in a cross-sectional view middle portion 70 is spirally wound.
- the light source 68 radiates into the light guide 69, a series of total reflections occurs in the light guide 69.
- the beam cross section of the coupled-in laser radiation of the light source 68 is spatially homogenized.
- the optical fiber does not necessarily have to be spirally wound in a plane for this purpose. Rather, it is only important that the light guide has a certain length.
- the light conductor 69 will preferably have a length of 1 m to 20 m.
- the irradiation of the banknote to be tested exclusively via outside of the housing 13 existing optical Components takes place and the luminescence sensor 12 inside the housing 13 includes only the optical components, which are used for the measurement of emanating from the illuminated banknote radiation.
- a so-called DFB laser in which an additional grid is built into the resonator of the laser, or a so-called DFR laser can be used, in which an additional grid is installed outside the resonator of the laser.
- a grating spectrometer i. a spectrometer 30 with imaging grating 24
- a grating spectrometer 30 with prism for spectral dispersion can be used or a measurement with the aid of different filters for filtering out different wavelengths to be detected or wavelength ranges of the luminescence radiation can be carried out. This can be used in particular for a multi-track or a high-sensitivity measurement.
- FIG. 12 An example of a luminescence sensor 1 without a grating spectrometer is shown in FIG. 12 illustrated.
- FIG. 12 shows in a schematic way only the detection part of a luminescence sensor. All other components such as the housing, the lighting and the imaging optics are omitted for the sake of clarity.
- the outgoing from the banknote to be tested BN beam is deflected via a pivotable about a rotation axis 58 deflecting mirror 57 selectively to individual detectors 59, which are sensitive to different wavelengths or wavelength ranges. This can be done by the choice of photosensitive in different wavelength ranges Detector surfaces of the detectors 59 take place.
- filters 60 for different wavelength ranges upstream of the detectors 59 and preferably also be attached to these themselves.
- a detector 61 is depicted in a very schematic manner according to yet another example.
- the detector has a row or an array of similar photosensitive pixels 63 on a substrate 62.
- a filter 64 is mounted above the pixels 63, which has a direction indicated by the arrow gradient of the filter wavelength. This means that as seen in the direction of the arrow at different points of the filter 64 different wavelengths are filtered out.
- the use of such a filter with wavelength gradients filter 64 has the advantage that the light to be tested are irradiated directly to the detector 61 and on wavelength dispersing elements such as the grating 24 or the deflecting mirrors 23, 57 can be omitted.
- the structure of the luminescence sensor 1 can thereby be designed particularly simple and with fewer components.
- the active optical adjustment of individual components can be used not only in the particularly preferred example of a luminescence sensor, but also in other, in particular other optical sensors with advantage.
- the special design of the spectrometer is also advantageous if the luminescence sensor itself has no light source for exciting luminescent radiation.
- the system according to the invention can also be designed so that the measured values of the luminescence sensor 12 of a banknote BN are still evaluated, while at the same time measured values of a subsequent banknote BN are already recorded.
- the evaluation of the measured values of the preceding banknote BN must be carried out so quickly that the individual points 7 of the transport path 5 can still be switched sufficiently fast in order to divert the preceding banknote BN into the respectively assigned storage compartment 9.
- the devices and methods according to the invention enable a simple and reliable testing and differentiation of luminescent value documents.
- the test can be carried out, for example, by generating a light having a first wavelength with a predetermined intensity by means of the light source 14 for a specific time period 0-tp for the excitation of the feature substance.
- the feature substance of the banknote BN to be checked and which has been transported past the front glass 18 in the direction T is excited, whereupon the feature substance emits luminescent light of a second wavelength.
- the intensity of the emitted luminescent light increases during the time period 0-tp of the excitation according to a certain law.
- the manner of increase and decrease in the intensity of the emitted luminescent light depends on the feature substance used and on the exciting light source 14, ie its intensity and wavelength or wavelength distribution. After completion of the excitation at time tp, the intensity of the emitted luminescence light decreases according to a certain law.
- the luminescent light emanating from the bank notes BN is detected and evaluated.
- the signal of the detector unit 21 at one or more specific times t 2 , t 3, it can be checked particularly reliably whether a genuine banknote BN is present, since only the feature substance used for the banknote BN or the combination of feature substances used has such a decay behavior .
- the verification of the decay behavior can take place by means of the above-described comparison of the intensity of the luminescence light at one or more specific times with given intensities for genuine banknotes BN. It can also be provided that the course of the intensity of the luminescence light is compared with predetermined progressions for known banknotes BN.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Prüfung insbesondere von lumineszierenden Wertdokumenten, wobei das Wertdokument mit Licht bestrahlt und die vom Wertdokument ausgehende Lumineszenzstrahlung spektral aufgelöst erfaßt wird.The invention relates to a device and a method for testing, in particular, luminescent value documents, wherein the value document is irradiated with light and the luminescence radiation emanating from the value document is detected spectrally resolved.
Solche lumineszierende Wertdokumente können z.B. Banknoten, Schecks, Coupons oder Chipkarten sein. Obwohl nicht darauf beschränkt, beschäftigt sich die vorliegende Erfindung vor allem mit der Prüfung von Banknoten. Diese enthalten typischerweise im Papier oder in der Druckfarbe einen Merkmalsstoff oder eine Mischung von mehreren Merkmalsstoffen, die ein Lumineszenzverhalten zeigen, wie z.B. fluoreszieren oder phosphoreszieren.Such luminescent value documents may e.g. Banknotes, checks, coupons or chip cards. Although not limited thereto, the present invention is primarily concerned with the validation of banknotes. These typically contain in the paper or in the ink a feature substance or a mixture of several feature substances which exhibit a luminescent behavior, such as e.g. fluoresce or phosphoresce.
Es gibt eine Reihe von bekannten Systemen zur Echtheitsprüfung solcher Wertdokumente. Ein System ist beispielsweise aus der
Dieses System arbeitet in den meisten Fällen sehr zuverlässig. Allerdings besteht Bedarf nach einem Lumineszenzsensor, der noch kompakter konstruiert und auch bei sehr geringen Intensitäten der zu erfassenden Lumineszenzstrahlung noch ausreichend zuverlässig prüfen kann.This system works very reliably in most cases. However, there is a need for a luminescence sensor which is even more compact in design and can still test sufficiently reliably even at very low intensities of the luminescence radiation to be detected.
Davon ausgehend ist eine Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein Verfahren zur Prüfung von lumineszierenden Wertdokumenten bereitzustellen, welche eine sichere Prüfung mit einem kompakten Lumineszenzsensor ermöglichen.On this basis, an object of the present invention, an apparatus and a method for testing luminescent value documents to provide a safe test with a compact luminescence sensor.
Diese Aufgabe wird durch die unabhängigen Ansprüche gelöst. Die abhängigen Ansprüche und die nachfolgende Beschreibung erläutern bevorzugte Ausgestaltungen.This object is solved by the independent claims. The dependent claims and the following description illustrate preferred embodiments.
Indem das in eine Transportrichtung am Lumineszenzsensor vorbeitransportierte zu prüfende Wertdokument mit einer Beleuchtungsfläche beleuchtet wird, die sich in die Transportrichtung erstreckt, ist eine effektive Messung auch von Wertdokumenten möglich, die nur sehr wenig Lumineszenzstrahlung emittieren. Dadurch wird insbesondere die Messung von Phosphoreszenzstrahlung wesentlich verbessert.By illuminating the document of value to be checked, which is transported past in a transport direction on the luminescence sensor, with an illumination surface which extends in the transport direction, an effective measurement of documents of value which emit only very little luminescence radiation is possible. As a result, in particular the measurement of phosphorescence radiation is substantially improved.
Es sei besonders betont, daß die Merkmale der abhängigen Ansprüche und der in der nachstehenden Beschreibung genannten Ausführungsbeispiele in Kombination oder auch unabhängig voneinander und vom Gegenstand der Hauptansprüche, d.h. z.B. auch bei Vorrichtungen, die keine in Transportrichtung sich erstreckende Beleuchtungsfläche erzeugen oder eine Messung von anderer Strahlung als Lumineszenzstrahlung durchführen, vorteilhaft verwendet werden können.It should be particularly emphasized that the features of the dependent claims and the embodiments mentioned in the following description, taken in combination or independently of one another and the subject of the main claims, i. e.g. Even with devices that produce no in the transport direction extending illumination surface or perform a measurement of radiation other than luminescence, can be used advantageously.
Weitere Vorteile der vorliegenden Erfindung werden nachfolgend anhand der beigefügten Zeichnungen exemplarisch näher erläutert. Dabei zeigt
- Fig.
- 1 eine schematische Ansicht einer Banknotensortiervorrichtung;
- Fig. 2
- eine schematische Ansicht von der Seite auf das Innere eines erfin- dungsgemäßen Lumineszenzsensors, der in der Banknotensortiervor- richtung nach
Fig.1 eingesetzt werden kann; - Fig. 3
- Bauteile des Lumineszenzsensors der
Fig. 2 in Aufsicht; - Fig. 4
- eine schematische Ansicht von der Seite auf das Innere eines alterna- tiven erfindungsgemäßen Lumineszenzsensors, der in der Banknoten- sortiervorrichtung nach
Fig. 1 eingesetzt werden kann; - Fig. 5
- eine schematische Ansicht einer Banknote zur Erläuterung der Ver- wendung des Lumineszenzsensors der
Fig. 2 und3 ; - Fig. 6
- eine Ansicht von oben auf ein Beispiel einer Detektorzeile zur Ver- wendung im Lumineszenzsensor der
Fig. 2 ; - Fig. 7
- eine Ansicht von oben auf ein weiteres Beispiel einer Detektorzeile zur Verwendung im Lumineszenzsensor der
Fig. 2 ; - Fig. 8
- eine Querschnittsansicht entlang der Linie I-I in
Fig. 7 ; - Fig. 9
- eine schematische Darstellung zur Auslesung der Daten aus einer De- tektorzeile des Lumineszenzsensors der Fig. 20 der
Fig. 4 ; - Fig. 10
- eine schematische Ansicht von der Seite auf das Innere eines alterna- tiven erfindungsgemäßen Lumineszenzsensors;
- Fig. 11
- eine schematische Ansicht auf einen erfindungsgemäßen Lumines- zenzsensor mit externer Lichtquelle;
- Fig. 12
- eine schematische Ansicht auf einen Teil eines weiteren erfindungs- gemäßen Lumineszenzsensors und
- Fig. 13
- eine schematische Ansicht auf einen Detektorteil noch eines weiteren erfindungsgemäßen Lumineszenzsensors.
- FIG.
- 1 is a schematic view of a banknote sorting apparatus;
- Fig. 2
- a schematic view from the side of the interior of a luminescence according to the invention, in the Banknotensortiervor- direction according to
Fig.1 can be used; - Fig. 3
- Components of the luminescence sensor of
Fig. 2 in supervision; - Fig. 4
- a schematic view from the side of the interior of an alternative luminescence according to the invention, in the banknote sorting apparatus according to
Fig. 1 can be used; - Fig. 5
- a schematic view of a banknote for explaining the use of the luminescence of the
Fig. 2 and3 ; - Fig. 6
- a top view of an example of a detector array for use in the luminescence of the
Fig. 2 ; - Fig. 7
- a top view of another example of a detector line for use in the luminescence of the
Fig. 2 ; - Fig. 8
- a cross-sectional view taken along the line II in FIG
Fig. 7 ; - Fig. 9
- a schematic representation for reading the data from a detector tektorzeile the luminescence sensor of Fig. 20 of
Fig. 4 ; - Fig. 10
- a schematic view from the side of the interior of an alternative inventive luminescence sensor;
- Fig. 11
- a schematic view of a luminescence sensor according to the invention with external light source;
- Fig. 12
- a schematic view of a part of another inventive luminescence and
- Fig. 13
- a schematic view of a detector part of yet another inventive luminescence sensor.
Die erfindungsgemäßen Vorrichtungen können in allen Arten von Vorrichtungen verwendet werden, in denen optische Strahlung, insbesondere Lumineszenzstrahlung geprüft wird. Obwohl nicht darauf beschränkt, wird im folgenden als bevorzugte Variante die Prüfung von Banknoten in Banknotenbearbeitungsvorrichtungen beschrieben, die beispielsweise zum Zählen und/oder Sortieren und/oder Einzahlen und/oder Auszahlen von Banknoten dienen können.The devices according to the invention can be used in all types of devices in which optical radiation, in particular luminescence radiation, is tested. Although not limited thereto, the following describes as a preferred variant the checking of banknotes in banknote processing devices, which can serve, for example, for counting and / or sorting and / or depositing and / or paying out banknotes.
In der
Wie bereits erwähnt wurde, kann die Sensoreinrichtung 6 unterschiedliche Sensormodule aufweisen. Ausgezeichnet ist die Sensoreinrichtung 6 dabei insbesondere durch ein Sensormodul 12 zur Prüfung von Lumineszenzstrahlung, das nachfolgend kurz Lumineszenzsensor 12 genannt wird.
Der Lumineszenzsensor 12 weist im speziellen in einem gemeinsamen Gehäuse 13 sowohl eine oder mehrere Lichtquellen 14 zur Anregung von Lumineszenzstrahlung, als auch einen Detektor 30, bevorzugt ein Spektrometer 30 zur spektral zerlegten Erfassung des Lumineszenzlichts auf. Das Gehäuse 13 ist so verschlossen, daß ein unerlaubter Zugriff auf die darin enthaltenen Komponenten nicht ohne Beschädigung des Gehäuses 13 möglich ist.The
Die Lichtquelle 14 kann z. B. eine LED, vorzugsweise aber eine Laserlichtquelle wie eine Laserdiode 14 sein. Die Laserdiode 14 kann eine oder mehrere unterschiedliche Wellenlängen oder Wellenlängenbereiche emittieren. Wird mit mehreren unterschiedlichen Wellenlängen bzw. Wellenlängenbereichen gearbeitet, kann auch vorgesehen sein, daß es im selben Lichtquellengehäuse oder in separaten Lichtquellengehäusen, d.h. separaten Lichtquellenmodulen, mehrere Lichtquellen 14 für unterschiedliche Wellenlängen bzw. Wellenlängenbereiche gibt, die z.B. nebeneinander angeordnet sind und vorzugsweise paralleles Licht ausstrahlen, das auf die gleiche Stelle oder benachbarte Stellen der Banknote BN projiziert werden kann.The
Sofern die Lichtquellen 14 Licht mehrere unterschiedliche Wellenlängen oder Wellenlängenbereiche emittieren können, kann vorgesehen sein, daß die einzelnen Wellenlängen bzw. Wellenlängenbereiche selektiv aktivierbar sind.If the
Eine weitere Variante wird nachfolgend anhand von
Das von der Laserdiode 14 ausgehende Licht wird mittels einer Abbildungsoptik 15,16,17 auf eine zu prüfende Banknote gestrahlt. Die Abbildungsoptik umfaßt eine Kollimatorlinse 15, einen Umlenkspiegel als Strahlteiler 16, insbesondere einen dichroitischen Strahlteiler 16, der den von der Laserdiode 14 ausgehenden und durch die Kollimatorlinse 15 geformten Laserstrahl um 90° umlenkt, sowie eine Kondensorlinse 17 mit großem Öffnungswinkel, welche den umgelenkten Laserstrahl durch ein Frontglas 18 vorzugsweise senkrecht auf die mittels des Transportsystems 5 in Richtung T vorbeitransportierte zu prüfende Banknote BN abbildet und damit die Banknote BN zur Emission von Lumineszenzstrahlung anregt.The light emanating from the
Mit Hilfe des Spektrometers 30 wird dann die von der beleuchteten Banknote BN ausgehende Lumineszenzstrahlung vorzugsweise ebenfalls in senkrechter Richtung, d.h. koaxial zum Anregungslicht erfaßt. Dies führt zu einer geringeren Störempfindlichkeit durch Lagetoleranzen der vorbeitransportierten Banknoten BN auf die Messungen als bei der schrägen Beleuchtung z.B. nach
Die Optik zur Abbildung der Lumineszenzstrahlung auf eine photosensitive Detektoreinheit 21 umfaßt dabei ebenfalls das Frontglas 18, die Kondensorlinse 17 und den für die zu messende Lumineszenzstrahlung zumindest teilweise transparenten Spiegel 16. Zudem weist die Optik nachfolgend eine weitere Kondensorlinse 19 mit großer Öffnung, ein anschließendes Filter 20, das zur Blockierung der Beleuchtungswellenlänge der Lichtquelle 14 und anderer nicht zu messender Wellenlängen ausgelegt ist, und einen Umlenkspiegel 23 auf. Der Umlenkspiegel 23 dient einer Faltung des Strahlengangs und einer Umlenkung der zu messenden Lumineszenzstrahlung hin auf ein abbildendes Gitter 24 oder eine andere Einrichtung zur Spektralzerlegung 24. Der Umlenkspiegel wird für einen möglichst kompakten Aufbau vorteilhaft parallel oder nahezu parallel zur Bildebene des Spektrometers angebracht (Winkel < 15 Grad). Das abbildende Gitter 24 weist dabei ein wellenlängendispergierendes Element mit Hohlspiegel 26 auf, das vorzugsweise die Lumineszenzstrahlung erster Ordnung oder minus erster Ordnung auf die Detektoreinheit 21 hin abbildet. Es können allerdings auch höhere Ordnungen abgebildet werden. Die Detektoreinheit 21 weist bevorzugt eine Detektorzeile 22 aus mehreren in Reihe angeordneten photosensitiven Pixeln, d.h. Bildpunkten, aufweist, wie sie z. B. in Bezug auf die
Der Eintrittsspalt des Spektrometers 30 ist dabei in der
In einer weiteren Ausgestaltung wird der Umlenkspiegel 23 in Bezug auf das abbildende Gitter 24 so positioniert, daß der Eintrittsspalt AS auf den Bereich des Umlenkspiegels 23 fällt. Da hierdurch der Strahlquerschnitt der umzulenkenden Strahlung auf dem Umlenkspiegel 23 besonders klein ausfällt, kann auch der Umlenkspiegel 23 selbst besonders kleine Abmessungen haben. Ist der Umlenkspiegel 23 ein Bestandteil der Detektoreinheit 21, kann der Umlenkspiegel 23 hierdurch nicht nur gemäß
Eine besondere Idee der vorliegenden Erfindung ist es, daß die Lichtquelle 14 zur Anregung von Lumineszenzstrahlung eine längliche sich in Transportrichtung T erstreckende Beleuchtungsfläche 35 auf der zu prüfenden Banknote BN erzeugt.A particular idea of the present invention is that the
Diese Variante hat den Vorteil, daß die in den Banknoten BN meist nur in sehr geringen Konzentrationen vorhandenen lumineszierenden, insbesondere phosphoreszierenden Merkmalsstoffe durch die sich in Transportrichtung erstreckende Beleuchtungsfläche beim Vorbeitransport am Lumineszenzsensor 12 länger aufgepumpt werden und dadurch insbesondere die Strahlungsintensität der nachleuchtenden phosphoreszierenden Merkmalsstoffe erhöht wird.This variant has the advantage that the luminescent, in particular phosphorescent feature substances present in the banknotes BN are usually pumped up longer by the illumination surface extending in the transport direction during the onward transport at the
In
Ferner ist in der Momentaufnahme der
Gemäß einer weiteren besonderen Idee der vorliegenden Erfindung werden unterschiedliche Detektoreinheiten 21, 27 zur Erfassung der Lumineszenzstrahlung, insbesondere der von der Einrichtung zur Spektralzerlegung 24, d. h. z. B. dem abbildenden Gitter 24 ausgehenden Lumineszenzstrahlung eingesetzt. So kann auf oder vor der weiteren Detektoreinheit 27 z. B. ein Filter vorgesehen sein, um nur in einem oder mehreren gegebenen Wellenlängen bzw. -bereichen zu messen, wobei die meßbaren Spektralbereiche der unterschiedlichen Detektoreinheiten 21, 27 sich bevorzugt unterscheiden und z.B. nur teilweise oder nicht überlappen. Es sei betont, daß auch mehrere weitere Detektoreinheiten 27 vorhanden sein können, die in unterschiedlichen Wellenlängen bzw. -bereichen messen. Die mehreren weiteren Detektoreinheiten 27 können räumlich voneinander beabstandet oder auch in einer Sandwich-Struktur vorliegen, wie es in der
Während die eine Detektoreinheit 21, d. h. im speziellen die Detektorzeile 22 zur spektralaufgelösten Messung der Lumineszenzstrahlung der Banknote BN ausgelegt ist, kann mittels der zumindest einen weiteren Detektoreinheit 27 somit zumindest eine andere Messung der Lumineszenzstrahlung, wie zusätzlich oder alternativ auch eine Messung der breitbandigen nicht spektral aufgelösten nullten Ordnung des Spektrometers 30 und/ oder des Abklingverhaltens der Lumineszenzstrahlung durchgeführt werden.While one
Weiterhin kann die weitere Detektoreinheit 27 auch ausgelegt sein, um eine andere optische Eigenschaft des zumindest einen Merkmalsstoffs der Banknote BN zu prüfen. Dies kann z.B. durch die genannten Messungen bei anderen Wellenlängen bzw. Wellenlängenbereichen erfolgen. Vorzugsweise kann die weitere Detektoreinheit 27 auch ausgelegt sein, um einen anderen Merkmalsstoff der Banknote BN zu prüfen. So kann z. B. die Detektorzeile 22 zur Messung der optischen Eigenschaften eines ersten Merkmalsstoffs der Banknote BN und die weitere Detektoreinheit 27 zur Messung eines anderen Merkmalsstoffs der Banknote BN, insbesondere auch in einem anderen Spektralbereich als die Detektorzeile 22, ausgelegt sein. Die Detektoren 22, 27 werden bevorzugt Filter aufweisen, um unerwünschtes Streulicht oder Licht höherer Ordnung bei der Messung zu unterdrücken.Furthermore, the
Wie in der Aufsicht der
Zur Kalibrierung und Funktionsprüfung des Lumineszenzsensors 12 kann ferner eine Referenzprobe 32 mit einem oder mehreren lumineszierenden Merkmalsstoffen vorgesehen sein, die eine identisch oder abweichende chemische Zusammensetzung wie die zu prüfenden lumineszierenden Merkmalsstoffe in den Banknoten BN haben können. Wie in der
Zur Intensitätseichung des Spektrometers 30 können die lumineszierenden Merkmalsstoffe der Referenzprobe 32 dabei vorzugsweise breitbandig, z.B. über den gesamten vom Spektrometer 30 erfaßbaren Spektralbereich emittieren. Allerdings können die lumineszierenden Merkmalsstoffe der Referenzprobe 32 alternativ oder zusätzlich auch eine bestimmte charakteristische spektrale Signatur mit schmalbandigen Peaks emittieren, um eine Wellenlängeneichung durchzuführen. Es ist allerdings auch möglich, daß zur Justage des Spektrometers 30 nur die weitere Lichtquelle 31 ohne Referenzprobe 32 eingesetzt wird.For intensity calibration of the
Alternativ oder zusätzlich kann die Referenzprobe 32 deshalb auch außerhalb des Gehäuses 13, insbesondere auf der in Bezug zu der zu messenden Banknote BN gegenüberliegenden Seite angebracht und z.B. in einem Gegenelement, wie einer Platte 28 integriert sein.Alternatively or additionally, the
Außerhalb des Gehäuses 13 kann auch eine zusätzliche Detektoreinheit 33 als separates Bauteil oder in der Platte 28 integriert vorhanden sein. Die zusätzliche Detektoreinheit 33 kann z.B. eine oder mehrere Photozellen zur Messung der durch das Frontglas 18 und gegebenenfalls durch die Banknote BN hindurchgetretenen Strahlung der Laserdiode 14 und/ oder der Lumineszenzstrahlung der Banknote BN sein. In diesem Fall kann die Platte 28 in einer Führung in Richtung P verschiebbar gelagert sein, so daß wahlweise entweder die Referenzprobe 32 oder die Photozelle 33 in Ausrichtung mit der Beleuchtungsstrahlung der Laserdiode 14 gebracht werden kann.Outside the
Die Platte 28 wird vorzugsweise über ein punktiert gezeichnetes Verbindungselement 55, das außerhalb der Transportebene der Banknoten BN liegt, mit dem Gehäuse 13 verbunden sein. In einer in
Die Anordnung der optischen Komponenten im Lumineszenzsensor 6 nach
Weiterhin weist die Lichtquelle 14 zwei senkrecht zueinander angeordnete Laserdioden 51, 52 auf, die bei unterschiedlichen Wellenlängen emittieren, wobei die Strahlung der einzelnen Laserdioden 51, 52 z.B. durch einen weiteren dichroitischen Strahlteiler 53 eingekoppelt werden kann, so daß die gleiche Beleuchtungsfläche 35 oder überlappende oder beabstandete Beleuchtungsflächen 35 auf der Banknote BN bestrahlt werden können. Vorzugsweise kann je nach zu prüfender Banknote wahlweise entweder die eine oder die andere Laserdiode 51, 52 oder beide Laserdioden 51, 52 zugleich oder alternierend zur Strahlungsemission aktiviert werden.Furthermore, the
Die in einem Aufriß erkennbaren photosensitiven Detektorelemente, d.h. die Detektorzeile 22 ist asymmetrisch auf dem Träger angebracht, wie es in Bezug auf
Überdies weist der Lumineszenzsensor 6 vorzugsweise im Gehäuse 13 selbst eine Steuerungseinheit 50 auf, die zur Signalverarbeitung der Meßwerte des Spektrometers 30 und/oder zur Leistungssteuerung der einzelnen Komponenten des Lumineszenzsensors 6 dient.Moreover, the
Anhand der
Im Unterschied dazu wird vorzugsweise allerdings eine modifizierte Detektorzeile 22 verwendet mit einer deutlich geringeren Anzahl von Pixeln 40, mit größerer Pixelfläche und verkleinertem Anteil von nicht-photosensitiven Bereichen, wie es exemplarisch in der
Weiterhin kann auch vorgesehen sein, daß einzelne Pixel 40 unterschiedliche Abmessungen, insbesondere in Dispersionsrichtung der zu messenden Lumineszenzstrahlung haben, wie es in der
Je nach spektral zu erfassendem Wellenlängenbereich kann die Detektorzeile 22 in den genannten Fällen aus einem unterschiedlichen Material bestehen. Für Lumineszenzmessungen im ultravioletten oder sichtbaren Spektralbereich sind Detektoren aus Silizium, die unterhalb von etwa 1100 nm empfindlich sind und zur Messung im infraroten Spektralbereich Detektorzeile 22 aus InGaAs besonders geeignet, die oberhalb von 900 nm empfindlich sind. Vorzugsweise wird eine derartige InGaAs-Detektorzeile 22 direkt auf einem Siliziumsubstrat 42 aufgebracht sein, das besonders bevorzugt eine in Siliziumtechnik hergestellte Verstärkerstufe zur Verstärkung der analogen Signale der Pixel 40 der InGaAs-Detektorzeile 22 aufweist. Hierdurch ist ebenfalls ein besonders kompakter Aufbau mit kurzen Signalwegen und erhöhtem Signal/Rausch-Verhältrus gegeben.Depending on the wavelength range to be detected spectrally, the
Durch die Detektorzeile 22 mit wenigen Pixeln 40 (z.B. nach
Das abbildende Gitter 24 wird bevorzugt mehr als etwa 300, besonders bevorzugt mehr als etwa 500 Linien / mm, d.h. Beugungselemente aufweisen, um trotz des kompakten Aufbaus der erfindungsgemäßen Lumineszenzsensoren 6 noch eine ausreichende Dispersion der Lumineszenzstrahlung auf das Detektorelement 21 zu ermöglichen. Hierbei kann der Abstand zwischen abbildendem Gitter 24 und dem Detektorelement 21 vorzugsweise weniger als etwa 70 mm, besonders bevorzugt weniger als etwa 50 mm betragen.The
Eine Auslesung der einzelnen Pixel 40 der Detektorzeile 22 kann dabei z. B. mit Hilfe eines Schieberegisters seriell erfolgen. Vorzugsweise wird allerdings eine parallele Auslesung einzelner Pixel 40 und/ oder Pixelgruppen der Detektorzeile 22 erfolgen. Nach dem Beispiel der
Das hierdurch ermöglichte parallele Auslesen von mehreren Pixeln 40 bzw. Pixelgruppen ermöglicht kurze Integrationszeiten und eine synchronisierte Messung der Banknote BN. Diese Maßnahme trägt ebenfalls zu einer Erhöhung des Signal-/Rausch-Verhältnisses bei.The parallel readout of a plurality of
Nach einer weiteren unabhängigen Idee der vorliegenden Erfindung erfolgt eine Integration von Komponenten der Abbildungsoptik für die Lumineszenzstrahlung mit Komponenten des Detektor 30. Im speziellen kann der Umlenkspiegel 23 zur Umlenkung der zu erfassenden Lumineszenzstrahlung auf das Spektrometer 30 direkt mit der Detektoreinheit 21 verbunden sein, wie es z.B. in
Weiterhin kann unterhalb des Umlenkspiegels 23 noch ein Photodetektor, wie eine Photozelle 56 vorhanden sein. Diese bevorzugte Variante ist exemplarisch in der
Wie in
Wie erwähnt wurde wird aufgrund der üblicherweise bei der Prüfung von Banknoten BN zu erwartenden nur sehr geringen Signalintensitäten der Lumineszenzstrahlung eine Kalibrierung des Lumineszenzsensors 12 während des laufenden Betriebes, d.h. im speziellen z.B. in den Pausen zwischen zwei Banknoten-Meßzyklen des Lumineszenzsensors 12 erforderlich sein. Eine bereits beschriebene mögliche Maßnahme ist das Verwenden der Referenzproben 32.As has been mentioned, calibration of the
Nach einer weiteren Idee kann dies auch durch eine aktive mechanische Verstellung der optischen Komponenten des Lumineszenzsensors 12 erfolgen, wobei die Verstellung in Abhängigkeit von Meßwerten des Lumineszenzsensors 12 z.B. durch eine externe Steuerungseinheit 11 oder vorzugsweise durch eine interne Steuerungseinheit 50 gesteuert werden kann.According to a further idea, this can also be done by an active mechanical adjustment of the optical components of the
So kann beispielsweise durch ein Stellelement 25 das Bauteil des abbildenden Gitters 24 in Richtung S verschiebbar gelagert sein. Ebenfalls kann durch andere nicht dargestellte Komponenten eine mechanische Verstellung anderer optischer Komponenten, wie z. B. des Detektors 21 erreicht werden, der z. B. in Richtung des Pfeils D in
Somit kann z.B. während des laufenden Betriebs des Lumineszenzsensors 12 eine Auswertung der Meßwerte des Lumineszenzsensors 12 durchgeführt und beim Vorliegen von Abweichungen der Meßwerte (z. B. der Detektorzeile 22, der weiteren Detektoreinheit 27 oder der Photozelle 33) oder von daraus abgeleiteten Größen von bestimmten Referenzwerten bzw. - bereichen eine aktive mechanische Verstellung von einzelnen oder mehrerer der optischen Komponenten des Lumineszenzsensors 12 durchgeführt werden, um eine erhöhte Signalausbeute und eine Kompensation von unerwünschten Änderungen z.B. aufgrund von durch die Beleuchtung oder Elektronik ausgelöste Temperaturschwankungen oder Alterungserscheinungen von optischen Komponenten zu erreichen. Dies ist besonders für eine Detektoreinheit 21 mit wenigen Pixeln 40 wichtig.Thus, for example, during the ongoing operation of the
Zur Erhöhung der Lebensdauer der Lichtquellen des Lumineszenzsensors 12 kann auch vorgesehen sein, daß beispielsweise die Laserdiode 14 nur dann mit hoher Leistung angesteuert wird, wenn sich eine Banknote BN gerade im Bereich des Meßfensters, d. h. des Frontglases 18 befindet.To increase the life of the light sources of the
Zu den bereits vorstehend beschriebenen Varianten sind natürlich noch weitere Alternativen oder Ergänzungen denkbar.Of course, other alternatives or additions are conceivable for the variants already described above.
Während in Bezug auf die
Der Lumineszenzsensor 12 der
Insbesondere bei der Verwendung solcher Lichtleiter kann die Lichtquelle sogar außerhalb des Gehäuses 13 des Lumineszenzsensors 12 angebracht sein. Diese räumliche Trennung hat den Vorteil, daß die von der Lichtquelle 68 erzeugte Wärme deutlich weniger den Betrieb und die Justage der sonstigen im Gehäuse 13 befindlichen optischen Komponenten und insbesondere auch der hochempfindlichen Detektoren 21 stört.
Eine weitere Besonderheit der Lichteinkopplung z.B. nach
Ebenfalls ist alternativ denkbar, daß die Bestrahlung der zu prüfenden Banknote ausschließlich über außerhalb des Gehäuses 13 vorhandene optische Komponenten erfolgt und der Lumineszenzsensor 12 im Innern des Gehäuses 13 nur die optischen Komponenten beinhaltet, welche für die Messung der von der beleuchteten Banknote ausgehenden Strahlung verwendet werden.Also, alternatively, it is conceivable that the irradiation of the banknote to be tested exclusively via outside of the
Zur Stabilisierung des Beleuchtungsstrahls kann z.B. auch ein so genannter DFB-Laser, bei dem ein zusätzliches Gitter in den Resonator des Lasers eingebaut ist, oder ein so genannter DFR-Laser verwendet werden, bei dem ein zusätzliches Gitter außerhalb des Resonators des Lasers eingebaut ist.To stabilize the illumination beam, e.g. also a so-called DFB laser, in which an additional grid is built into the resonator of the laser, or a so-called DFR laser can be used, in which an additional grid is installed outside the resonator of the laser.
Obwohl vorstehend beispielsweise bevorzugte Varianten der Prüfung mit Hilfe eines Gitterspektrometers, d.h. eines Spektrometers 30 mit abbildendem Gitter 24, beschrieben wurde, so kann an sich auch ohne Gitterspektrometer gearbeitet und z.B. ein Spektrometer 30 mit Prisma zur Spektraldispersion eingesetzt werden oder eine Messung mit Hilfe von unterschiedlichen Filtern zum Herausfiltern unterschiedlicher zu erfassender Wellenlängen bzw. Wellenlängenbereichen der Lumineszenzstrahlung durchgeführt werden. Dies kann insbesondere auch für eine mehrspurige oder eine hochempfindliche Messung eingesetzt werden.For example, while preferred variants of the test are described above using a grating spectrometer, i. a
Ein Beispiel für einen Lumineszenzsensor 1 ohne Gitterspektrometer ist in der
Ebenfalls ist es möglich, ein sogenanntes Filterrad mit unterschiedlichen Filtern zu verwenden. Durch Drehen des Filterrad kreuzen dann nacheinander die einzelnen unterschiedlichen Filter den nachfolgend auf den Detektor einfallenden Lichtstrahl der zu prüfenden Banknote BN.It is also possible to use a so-called filter wheel with different filters. By turning the filter wheel, the individual different filters then successively intersect the light beam of the banknote BN to be tested which subsequently impinges on the detector.
In der
Zudem kann beispielsweise auch die aktive optische Verstellung von einzelnen Komponenten nicht nur beim besonders bevorzugten Beispiel eines Lumineszenzsensor, sondern auch bei anderen, insbesondere anderen optischen Sensoren mit Vorteil eingesetzt werden. Außerdem ist z.B. die spezielle Ausgestaltung des Spektrometers auch dann von Vorteil, wenn der Lumineszenzsensor selbst keine Lichtquelle zur Anregung von Lumineszenzstrahlung aufweist.In addition, for example, the active optical adjustment of individual components can be used not only in the particularly preferred example of a luminescence sensor, but also in other, in particular other optical sensors with advantage. In addition, for example, the special design of the spectrometer is also advantageous if the luminescence sensor itself has no light source for exciting luminescent radiation.
Weiterhin kann das erfindungsgemäße System auch so ausgelegt sein, daß die Meßwerte des Lumineszenzsensors 12 einer Banknote BN noch ausgewertet werden, während gleichzeitig schon Meßwerte einer nachfolgenden Banknote BN aufgenommen werden. Die Auswertung der Meßwerte der vorhergehenden Banknote BN muß allerdings so schnell erfolgen, daß die einzelnen Weichen 7 der Transportstrecke 5 noch ausreichend schnell geschaltet werden können, um die vorhergehende Banknote BN in das jeweils zugeordnete Ablagefach 9 umzulenken.Furthermore, the system according to the invention can also be designed so that the measured values of the
Die erfindungsgemäßen Vorrichtungen und Verfahren ermöglicht folglich eine einfache und sichere Prüfung und Unterscheidung von lumineszierenden Wertdokumenten. Die Prüfung kann dabei z.B. erfolgen, indem mittels der Lichtquelle 14 während einer bestimmten Zeitdauer 0-tp für die Anregung des Merkmalsstoffs ein Licht mit einer ersten Wellenlänge mit einer vorgegebenen Intensität erzeugt wird. Durch das Licht der Lichtquelle 14 wird der Merkmalsstoff der zu überprüfenden und am Frontglas 18 in Richtung T vorbeitransportierten Banknote BN angeregt, woraufhin der Merkmalsstoff Lumineszenzlicht einer zweiten Wellenlänge emittiert. Die Intensität des emittierten Lumineszenzlichts steigt während der Zeitdauer 0-tp der Anregung nach einer bestimmten Gesetzmäßigkeit an. Die Art und Weise des Anstiegs und der Abnahme der Intensität des emittierten Lumineszenzlichts ist abhängig vom verwendeten Merkmalsstoff und von der anregenden Lichtquelle 14, d. h. deren Intensität und Wellenlänge bzw. Wellenlängenverteilung. Nach Beendigung der Anregung zum Zeitpunkt tp nimmt die Intensität des emittierten Lumineszenzlichts nach einer bestimmten Gesetzmäßigkeit ab.Consequently, the devices and methods according to the invention enable a simple and reliable testing and differentiation of luminescent value documents. In this case, the test can be carried out, for example, by generating a light having a first wavelength with a predetermined intensity by means of the
Mit Hilfe des Spektrometers 30 wird nun das senkrecht, d.h. parallel zum Anregungslicht, von der Banknoten BN ausgehende Lumineszenzlicht erfaßt und ausgewertet. Durch Auswertung des Signals der Detektoreinheit 21 zu einem oder mehreren bestimmten Zeitpunkten t2, t3 kann besonders sicher überprüft werden, ob eine echte Banknote BN vorliegt, da nur der für die Banknote BN verwendete Merkmalsstoff oder die Kombination von verwendeten Merkmalsstoffen ein derartiges Abklingverhalten aufweist. Die Überprüfung des Abklingverhaltens kann mittels des oben beschriebenen Vergleichs der Intensität des Lumineszenzlichts zu einem oder mehreren bestimmten Zeitpunkten mit vorgegebenen Intensitäten für echte Banknoten BN erfolgen. Es kann auch vorgesehen sein, daß der Verlauf der Intensität des Lumineszenzlichts mit vorgegebenen Verläufen für bekannte Banknoten BN verglichen wird.With the aid of the
Claims (24)
dadurch gekennzeichnet, daß
der Lumineszenzsensor (12) eine oder mehrere Lichtquellen (14, 51, 52, 68) aufweist, die bei unterschiedlichen Wellenlängen emittieren, wobei vorzugsweise einzelne Wellenlängen selektiv aktivierbar sind.Device (1) for testing luminescent value documents (BN), comprising a light source (14, 51, 52, 68) for exciting luminescence radiation and a luminescence sensor (12) to detect the luminescence radiation emitted by the value document (BN) in a spectrally resolved manner,
characterized in that
the luminescence sensor (12) has one or more light sources (14, 51, 52, 68) which emit at different wavelengths, wherein preferably individual wavelengths are selectively activatable.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004035494A DE102004035494A1 (en) | 2004-07-22 | 2004-07-22 | Device and method for checking value documents |
EP05770995A EP1784795A1 (en) | 2004-07-22 | 2005-07-19 | Device and method for verifying value documents |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05770995.8 Division | 2005-07-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2278556A2 true EP2278556A2 (en) | 2011-01-26 |
EP2278556A3 EP2278556A3 (en) | 2012-01-25 |
Family
ID=35094077
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10011627.6A Active EP2278558B1 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP10011629.2A Active EP2275998B1 (en) | 2004-07-22 | 2005-07-19 | Apparatus for checking value documents |
EP10011628A Ceased EP2282298A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP05770995A Ceased EP1784795A1 (en) | 2004-07-22 | 2005-07-19 | Device and method for verifying value documents |
EP10011625A Ceased EP2278556A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP10011626A Ceased EP2278557A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10011627.6A Active EP2278558B1 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP10011629.2A Active EP2275998B1 (en) | 2004-07-22 | 2005-07-19 | Apparatus for checking value documents |
EP10011628A Ceased EP2282298A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP05770995A Ceased EP1784795A1 (en) | 2004-07-22 | 2005-07-19 | Device and method for verifying value documents |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10011626A Ceased EP2278557A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
Country Status (11)
Country | Link |
---|---|
US (1) | US7737417B2 (en) |
EP (6) | EP2278558B1 (en) |
JP (1) | JP4919355B2 (en) |
KR (4) | KR101277935B1 (en) |
CN (2) | CN102169607B (en) |
AU (2) | AU2005266522B2 (en) |
DE (1) | DE102004035494A1 (en) |
ES (2) | ES2598357T3 (en) |
IL (1) | IL180847A (en) |
RU (4) | RU2375751C2 (en) |
WO (1) | WO2006010537A1 (en) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10346636A1 (en) * | 2003-10-08 | 2005-05-12 | Giesecke & Devrient Gmbh | Device and method for checking value documents |
WO2007118655A1 (en) | 2006-04-12 | 2007-10-25 | Giesecke & Devrient Gmbh | Apparatus and method for optically examining security documents |
DE102006017256A1 (en) * | 2006-04-12 | 2007-10-18 | Giesecke & Devrient Gmbh | Optical examination device for value documents, has coverage area, spectrographic equipment, detection device terminating in spatial direction for detecting spectral components |
DE102006045626A1 (en) | 2006-09-27 | 2008-04-03 | Giesecke & Devrient Gmbh | Device and method for the optical examination of value documents |
RU2358882C1 (en) | 2008-04-18 | 2009-06-20 | Общество С Ограниченной Ответственностью "Новые Энергетические Технологии" | Device for documents authentication |
DE102008028690A1 (en) * | 2008-06-17 | 2009-12-24 | Giesecke & Devrient Gmbh | Sensor device for the spectrally resolved detection of value documents and a method relating to them |
DE102008028689A1 (en) * | 2008-06-17 | 2009-12-24 | Giesecke & Devrient Gmbh | Sensor device for the spectrally resolved detection of value documents and a method relating to them |
KR100882396B1 (en) * | 2008-10-01 | 2009-02-05 | 한국조폐공사 | Counterfeit detector |
US8780206B2 (en) | 2008-11-25 | 2014-07-15 | De La Rue North America Inc. | Sequenced illumination |
US8265346B2 (en) | 2008-11-25 | 2012-09-11 | De La Rue North America Inc. | Determining document fitness using sequenced illumination |
US8749767B2 (en) | 2009-09-02 | 2014-06-10 | De La Rue North America Inc. | Systems and methods for detecting tape on a document |
US8400509B2 (en) * | 2009-09-22 | 2013-03-19 | Honeywell International Inc. | Authentication apparatus for value documents |
US8194237B2 (en) | 2009-10-15 | 2012-06-05 | Authentix, Inc. | Document sensor |
US8433124B2 (en) * | 2010-01-07 | 2013-04-30 | De La Rue North America Inc. | Systems and methods for detecting an optically variable material |
US8509492B2 (en) * | 2010-01-07 | 2013-08-13 | De La Rue North America Inc. | Detection of color shifting elements using sequenced illumination |
KR101104522B1 (en) * | 2010-03-10 | 2012-01-12 | 엘지엔시스(주) | Apparatus and method for media kind distinction |
WO2011114455A1 (en) * | 2010-03-17 | 2011-09-22 | グローリー株式会社 | Genuine/counterfeit distinguishing unit, genuine/counterfeit distinguishing method, and fluorescent sensor |
DE102010047061A1 (en) * | 2010-09-30 | 2012-04-05 | Carl Zeiss Microlmaging Gmbh | Optical spectrometer has several optoelectronic detection elements arranged in detector in series along incident direction of diffracted light, which have optoelectronic transducers to detect different spectral detection ranges |
DE102011016509A1 (en) * | 2011-04-08 | 2012-10-11 | Giesecke & Devrient Gmbh | Method for checking value documents |
US20120313747A1 (en) * | 2011-06-09 | 2012-12-13 | Pawlik Thomas D | Method for authenticating security markers |
US20120313749A1 (en) * | 2011-06-09 | 2012-12-13 | Pawlik Thomas D | Authentication of a security marker |
US20120313748A1 (en) * | 2011-06-09 | 2012-12-13 | Pawlik Thomas D | Authentication of a security marker |
DE102011106523A1 (en) | 2011-07-04 | 2013-01-10 | Giesecke & Devrient Gmbh | Test apparatus and method for calibrating a tester |
CN102865999B (en) * | 2011-07-08 | 2015-03-04 | 中国科学院微电子研究所 | LED optical characteristic detection method and detection device |
FR2978937B1 (en) * | 2011-08-08 | 2018-12-07 | Banque De France | LUMINESCENT ANIME SECURITY DEVICE FOR A DOCUMENT, DETECTION METHOD AND CORRESPONDING DETECTION DEVICE. |
DE102011110895A1 (en) | 2011-08-17 | 2013-02-21 | Giesecke & Devrient Gmbh | Sensor and method for operating the sensor |
DE102011110894A1 (en) * | 2011-08-17 | 2013-02-21 | Giesecke & Devrient Gmbh | Sensor and method for operating the sensor |
RU2573754C2 (en) * | 2011-08-25 | 2016-01-27 | Глори Лтд. | Paper sheet recognition apparatus, light guide and light guide casing for use in spectrometric measurement of paper sheet |
DE102011082174A1 (en) * | 2011-09-06 | 2013-03-07 | Bundesdruckerei Gmbh | Device for mobile recognition of a document |
EP3456219B1 (en) | 2012-03-06 | 2022-12-28 | Hydrapak LLC | Flexible container |
US20150018642A1 (en) | 2013-07-12 | 2015-01-15 | Sandeep Gulati | Tissue pathlength resolved noninvasive analyzer apparatus and method of use thereof |
US9053596B2 (en) | 2012-07-31 | 2015-06-09 | De La Rue North America Inc. | Systems and methods for spectral authentication of a feature of a document |
CN103414838B (en) * | 2013-06-20 | 2015-12-23 | 威海华菱光电股份有限公司 | Image-scanning device and control method thereof |
US9913653B2 (en) | 2013-07-11 | 2018-03-13 | Covidien Lp | Devices, systems, and methods for tissue morcellation |
CN104183054B (en) * | 2014-07-29 | 2016-04-06 | 苏州佳世达光电有限公司 | Image identification device |
WO2016071771A2 (en) * | 2014-11-03 | 2016-05-12 | American University Of Beirut | Smart anti-counterfeiting optical system (sacos) for the detection of fraud using advanced spectroscopy-based technique |
DE102014018726A1 (en) * | 2014-12-16 | 2016-06-16 | Giesecke & Devrient Gmbh | Apparatus and method for testing feature substances |
JP2016151893A (en) | 2015-02-17 | 2016-08-22 | 株式会社東芝 | Image processing apparatus, article processing apparatus, and image processing method |
DE102016000012A1 (en) | 2016-01-05 | 2017-07-06 | Giesecke & Devrient Gmbh | Authenticity check of value documents |
US10918409B2 (en) | 2017-12-05 | 2021-02-16 | Covidien Lp | Morcellator with auger tissue feeder |
US10952787B2 (en) | 2017-12-07 | 2021-03-23 | Covidien Lp | Energy-based surgical device and system facilitating tissue removal |
CN112567216A (en) * | 2018-06-14 | 2021-03-26 | ams国际有限公司 | Integrated sensor module for detecting chemical substances |
DE102018004884A1 (en) * | 2018-06-20 | 2019-12-24 | Giesecke+Devrient Currency Technology Gmbh | Method and sensor for checking documents |
RU2703795C1 (en) * | 2019-03-13 | 2019-10-22 | Акционерное общество "ГОЗНАК" | Protective element based on luminescent material |
DE102020000968A1 (en) * | 2020-02-14 | 2021-08-19 | Giesecke+Devrient Currency Technology Gmbh | Optical sensor for checking documents of value |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2366274C2 (en) | 1972-05-03 | 1982-09-09 | GAO Gesellschaft für Automation und Organisation mbH, 8000 München | Testing device for testing the authenticity features in securities or the like |
US4936684A (en) * | 1989-03-24 | 1990-06-26 | Pacific Scientific Company | Spectrometer with photodetector array detecting uniform bandwidth intervals |
DE10127837A1 (en) | 2001-06-08 | 2003-01-23 | Giesecke & Devrient Gmbh | Device and method for examining documents |
US20040051862A1 (en) * | 2000-10-13 | 2004-03-18 | Alcock Robin Daniel | Detection of printing and coating media |
US20040061855A1 (en) * | 2000-12-21 | 2004-04-01 | Hansjorg Klock | Optical sensor device and method for spectral analysis |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3922090A (en) * | 1974-06-28 | 1975-11-25 | Teknekron Inc | Method and apparatus for authenticating documents |
DE3303779A1 (en) * | 1983-02-04 | 1984-08-16 | Hoechst Ag, 6230 Frankfurt | METHOD FOR PRODUCING A CATALYTICALLY EFFECTIVE ELECTRODE MATERIAL FOR OXYGEN CONSUMPTION ELECTRODES |
DE3315377A1 (en) * | 1983-02-19 | 1984-08-23 | Dr. Bruno Lange Gmbh, 1000 Berlin | Colorimeter |
GB8311795D0 (en) * | 1983-04-29 | 1983-06-02 | De La Rue Syst | Detecting luminescent security features |
US4807006A (en) * | 1987-06-19 | 1989-02-21 | International Business Machines Corporation | Heterojunction interdigitated schottky barrier photodetector |
US5050990A (en) * | 1990-08-24 | 1991-09-24 | Xerox Corporation | Variable detector geometry for resolving and sensing apparatus for filtering and other applications |
JPH04137232A (en) * | 1990-09-27 | 1992-05-12 | Sharp Corp | Optical pickup device |
US5825402A (en) * | 1993-03-26 | 1998-10-20 | Symbol Technologies, Inc. | Method and appratus for reading and writing indicia such as bar codes using a scanned laser beam |
US5915518A (en) | 1994-01-04 | 1999-06-29 | Mars, Incorporated | Detection of counterfeit objects, for instance counterfeit banknotes |
DE19517194A1 (en) * | 1995-05-11 | 1996-11-14 | Giesecke & Devrient Gmbh | Device and method for checking sheet material, e.g. Banknotes or securities |
US6721104B2 (en) * | 1995-05-12 | 2004-04-13 | Pc Lens Corp | System and method for focusing an elastically deformable lens |
EP0777379B1 (en) * | 1995-11-21 | 2002-02-20 | STMicroelectronics S.r.l. | Adaptive optical sensor |
DE19651101A1 (en) * | 1996-12-09 | 1998-06-10 | Giesecke & Devrient Gmbh | Device and method for the detection of fluorescent and phosphorescent light |
DE19710621A1 (en) * | 1997-03-14 | 1998-09-17 | Giesecke & Devrient Gmbh | Device for the optical detection of sheet material |
RU2225030C2 (en) * | 1998-02-12 | 2004-02-27 | Хкр Сенсорсистем Гмбх | Method and device for verifying genuineness of marking |
JP2001102676A (en) * | 1999-09-27 | 2001-04-13 | Toshiba Electronic Engineering Corp | Optical integrated unit, optical pickup and optical recording medium driver |
US6473165B1 (en) * | 2000-01-21 | 2002-10-29 | Flex Products, Inc. | Automated verification systems and methods for use with optical interference devices |
DE60040595D1 (en) * | 2000-05-16 | 2008-12-04 | Sicpa Holding Sa | Method, device and system for authenticating a marker |
US6416183B1 (en) | 2000-12-04 | 2002-07-09 | Barco N.V. | Apparatus and method for three-dimensional movement of a projected modulated beam |
RU2206919C2 (en) * | 2001-05-14 | 2003-06-20 | Подгорнов Владимир Аминович | Method for authentication of paper documents |
JP4096521B2 (en) * | 2001-05-18 | 2008-06-04 | 富士ゼロックス株式会社 | Recording / reading method and recording / reading apparatus |
JP4580602B2 (en) * | 2001-09-21 | 2010-11-17 | 株式会社東芝 | Paper sheet processing equipment |
US20030164456A1 (en) * | 2002-02-25 | 2003-09-04 | Emerge Interactive, Inc. | Apparatus and method for detecting fecal and ingesta contamination on hands using an lllumination imaging device |
US6998623B2 (en) * | 2002-02-28 | 2006-02-14 | Nidec Copal Corporation | Sheets fluorescence detecting sensor |
US6695270B1 (en) * | 2002-08-15 | 2004-02-24 | Ole Falk Smed | Flat panel display system |
JP3736523B2 (en) | 2002-12-20 | 2006-01-18 | セイコーエプソン株式会社 | ELECTRO-OPTICAL DEVICE WITH MOUNTING CASE, PROJECTION TYPE DISPLAY DEVICE, AND MOUNTING CASE |
US7110093B2 (en) * | 2003-02-28 | 2006-09-19 | Nidec Copal Corporation | Inspection apparatus and inspection method |
JP4188111B2 (en) * | 2003-03-13 | 2008-11-26 | 日立オムロンターミナルソリューションズ株式会社 | Paper sheet authenticity discrimination device |
US20040183004A1 (en) * | 2003-03-20 | 2004-09-23 | Accu-Sort Systems, Inc. | Method and device for identification and authentication of an object |
JP3992005B2 (en) | 2004-03-23 | 2007-10-17 | セイコーエプソン株式会社 | Optical device and projector |
-
2004
- 2004-07-22 DE DE102004035494A patent/DE102004035494A1/en not_active Ceased
-
2005
- 2005-07-19 KR KR1020117030776A patent/KR101277935B1/en active IP Right Grant
- 2005-07-19 EP EP10011627.6A patent/EP2278558B1/en active Active
- 2005-07-19 RU RU2007106554/09A patent/RU2375751C2/en active
- 2005-07-19 US US11/658,005 patent/US7737417B2/en active Active
- 2005-07-19 EP EP10011629.2A patent/EP2275998B1/en active Active
- 2005-07-19 CN CN2011100236010A patent/CN102169607B/en active Active
- 2005-07-19 JP JP2007521891A patent/JP4919355B2/en active Active
- 2005-07-19 AU AU2005266522A patent/AU2005266522B2/en active Active
- 2005-07-19 EP EP10011628A patent/EP2282298A3/en not_active Ceased
- 2005-07-19 KR KR1020077003654A patent/KR101224255B1/en active IP Right Grant
- 2005-07-19 EP EP05770995A patent/EP1784795A1/en not_active Ceased
- 2005-07-19 KR KR1020117030775A patent/KR101277985B1/en active IP Right Grant
- 2005-07-19 KR KR1020117030777A patent/KR101277932B1/en active IP Right Grant
- 2005-07-19 CN CN2005800246265A patent/CN1989528B/en active Active
- 2005-07-19 EP EP10011625A patent/EP2278556A3/en not_active Ceased
- 2005-07-19 WO PCT/EP2005/007872 patent/WO2006010537A1/en active Application Filing
- 2005-07-19 ES ES10011629.2T patent/ES2598357T3/en active Active
- 2005-07-19 ES ES10011627T patent/ES2923700T3/en active Active
- 2005-07-19 EP EP10011626A patent/EP2278557A3/en not_active Ceased
-
2007
- 2007-01-21 IL IL180847A patent/IL180847A/en active IP Right Grant
-
2009
- 2009-07-29 RU RU2009129195/08A patent/RU2428742C2/en active
-
2011
- 2011-03-15 AU AU2011201132A patent/AU2011201132B2/en active Active
- 2011-05-11 RU RU2011118715/08A patent/RU2451339C1/en active
-
2012
- 2012-02-08 RU RU2012104338/08A patent/RU2491641C1/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2366274C2 (en) | 1972-05-03 | 1982-09-09 | GAO Gesellschaft für Automation und Organisation mbH, 8000 München | Testing device for testing the authenticity features in securities or the like |
US4936684A (en) * | 1989-03-24 | 1990-06-26 | Pacific Scientific Company | Spectrometer with photodetector array detecting uniform bandwidth intervals |
US20040051862A1 (en) * | 2000-10-13 | 2004-03-18 | Alcock Robin Daniel | Detection of printing and coating media |
US20040061855A1 (en) * | 2000-12-21 | 2004-04-01 | Hansjorg Klock | Optical sensor device and method for spectral analysis |
DE10127837A1 (en) | 2001-06-08 | 2003-01-23 | Giesecke & Devrient Gmbh | Device and method for examining documents |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2275998B1 (en) | Apparatus for checking value documents | |
EP3234929B1 (en) | Device and method for verifying feature substances | |
EP2304696B1 (en) | Sensor device for the spectrally resolved capture of valuable documents and a corresponding method | |
EP2011092B1 (en) | Apparatus and method for optically examining security documents | |
EP2304697B1 (en) | Sensor device for the spectrally resolved capture of valuable documents and a corresponding method | |
EP1244073A2 (en) | Method and sensor for validation of documents | |
EP2070058A1 (en) | Apparatus and method for the optical examination of value documents | |
EP1160719B1 (en) | Sensor for authentication of bookmarks on documents | |
WO2001061654A2 (en) | Methods and devices for verifying the authenticity of printed objects | |
DE102006017256A1 (en) | Optical examination device for value documents, has coverage area, spectrographic equipment, detection device terminating in spatial direction for detecting spectral components | |
DE102006045624A1 (en) | Device for optically examining security documents, has detection region, in which a security document is located during the examination, and spectrographic device, and device has spatially dispersing optical device | |
DE102004039049A1 (en) | Method and device for measuring sheet material | |
AU2012203003B2 (en) | Device and method for verifying value documents | |
DE102017202636A1 (en) | Microspectrometer, method and controller for operating a microspectrometer | |
DE102008028250A1 (en) | Camera system for use in banknote processing device, has two partial camera systems with light sources, respectively, where sources are arranged on side of object plane for transmission measurement in dark field or bright field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1784795 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G07D 7/12 20060101AFI20111220BHEP |
|
17P | Request for examination filed |
Effective date: 20120725 |
|
17Q | First examination report despatched |
Effective date: 20130529 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20160929 |