EP2276037A1 - Procédé d'immobilisation de déchets nucléaires - Google Patents

Procédé d'immobilisation de déchets nucléaires Download PDF

Info

Publication number
EP2276037A1
EP2276037A1 EP10169911A EP10169911A EP2276037A1 EP 2276037 A1 EP2276037 A1 EP 2276037A1 EP 10169911 A EP10169911 A EP 10169911A EP 10169911 A EP10169911 A EP 10169911A EP 2276037 A1 EP2276037 A1 EP 2276037A1
Authority
EP
European Patent Office
Prior art keywords
during
mineral composition
mineral
nuclear waste
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10169911A
Other languages
German (de)
English (en)
Other versions
EP2276037B1 (fr
Inventor
Ludovic Martin
Jean-Jacques Aman
Vincent Bernard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soletanche Freyssinet SA
Original Assignee
Soletanche Freyssinet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0954986A external-priority patent/FR2948224A1/fr
Application filed by Soletanche Freyssinet SA filed Critical Soletanche Freyssinet SA
Publication of EP2276037A1 publication Critical patent/EP2276037A1/fr
Application granted granted Critical
Publication of EP2276037B1 publication Critical patent/EP2276037B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix

Definitions

  • the present invention relates to a process for immobilizing nuclear waste by a matrix based on a mineral composition obtained by preparing a base comprising a predetermined quantity of a mineral material synthesized by at least one part of living structure chosen from the plant, animal and / or microorganism kingdoms.
  • Radioactive or nuclear waste is a radioactive material for which no use is planned and the dispersion of which in the environment is not permitted. Radioactive waste covers a wide variety of substances that differ in particular in their activity and their half-life, but also in their state (solid, liquid, gaseous) and their chemical composition.
  • Nuclear waste liquid or solid
  • nuclear waste may be contaminated on the surface and / or in bulk.
  • the waste of the nuclear industry is specific. On the one hand their activity decreases with time, and on the other hand their diversity requires packaging methods adapted to the volumes and their activities. There are many methods for conditioning waste in the nuclear industry.
  • Compacting is a primary packaging mode where compacted products must be packaged in a package.
  • Blocking or immobilization of waste is a technique commonly used in the nuclear industry where a cement or a polymer serves to immobilize nuclear waste within containers or as a packaging matrix for coating the nuclear waste.
  • cementing is also used to coat waste in solution or in powder form, for example evaporation residues, chemical treatment sludges or ion exchange resins. .
  • waste packages meet strict criteria, in particular with regard to the matrix.
  • the content must be sufficiently stable and not subject to dissemination related to storage conditions.
  • Blocking with a cement is a low cost process and easy to implement but it is not without drawbacks. Interactions between the constituents of some nuclear waste and the cement matrix can lead to swelling and cracking of the package, reducing its durability.
  • Cementation is the most used technique for solid waste.
  • the main reasons for this choice are the abundance of raw materials, the density of the material (biological protection), the mechanical resistance, the good knowledge of its long-term behavior, the robustness of the process and the simplicity of its implementation. .
  • Previously compacted or loose waste are usually placed in a basket, itself deposited in a metal container or concrete; they are then immobilized by cement, responsible for limiting the risk of diffusion of the radioelements to the outside, and thus form a heterogeneous coating.
  • cementation does not guarantee the durability of the packages for certain chemically charged nuclear waste (sulphates, etc.) or reagents containing organic matter.
  • cementing process is an exothermic process that may provoke violent reactions when mixing with certain reactive nuclear waste.
  • the cementitious medium has an alkaline pH of the order of 13 to 14 which may not be compatible with certain nuclear waste.
  • the blocking of the reactive materials generates gases, making it impossible to guarantee the integrity of the packages over long periods, for example periods of at least 300 years.
  • one of the aims of the present invention is to propose another solution that makes it possible to immobilize nuclear waste that does not have the drawbacks of the solutions of the prior art.
  • the immobilization method according to the invention makes it possible to immobilize chemically charged nuclear waste and / or reactive metallic nuclear waste and / or organic nuclear waste that can not be immobilized by conventional cementation.
  • the present invention relates to a method of immobilizing chemically charged nuclear waste or reactive or containing organic matter, and more particularly those which can not be blocked by conventional hydraulic binders.
  • the method according to the invention makes it possible to achieve the encapsulation of this waste in a homogeneous and durable matrix meeting predefined storage criteria.
  • oils resins, ion exchange resins (IREs), graphite, magnesium uranium, aluminum, bitumen, sludge, brine, borate and sulphate products, sludges or concentrates containing organic matter and mixtures thereof.
  • IREs ion exchange resins
  • the mixture of the mineral composition and the water allows the mineral composition to achieve a structural arrangement leading to the creation of a three-dimensional network.
  • the realization of this network leads to a setting in mass of the hydrated mineral composition around the nuclear waste which, after a certain drying time, makes it possible to obtain a compact mass composed of the waste and an immobilization matrix.
  • living structure mineralizing, mineralized or mineralizable, it is necessary to understand any cell structure or cell origin, plant, animal or micro-organic, living and / or resulting from life and / or compounds of biological origin, crystallized or not, such as enzymes, hormones, proteins, DNA.
  • inactivated material is meant material devoid of any biological and / or biomineralising activity, including any pathogenic microbiological activity.
  • mineral should be understood here in the broad sense, namely as including a mineral in its composition.
  • the step of preparing the base may comprise a phase consisting in cultivating the abovementioned living structure during a period and in a medium such that at least one part called “mineral biomass” of said material is then produced or synthesized by this structure.
  • the treatment step may then comprise a phase of inactivation of the living structure.
  • inactivation it is understood to obtain inactivated material, as defined above, from living structure as defined above.
  • a mixing phase may be performed during one of the steps of the manufacturing process.
  • This mixing phase is preferably carried out at least partly simultaneously with another phase of the method according to the invention, for example during the inactivation or after the mixing step.
  • the manufacturing process may be carried out with microorganisms and / or cells, of vegetable or animal origin, alone, or in symbiotic or other association, mineralized, mineralizing or mineralizable.
  • the aforementioned living structure may be a plant and / or animal or part of a plant and / or animal such as a cell, a tissue or an organ.
  • the selected structure is cultured in vivo, in soil, on a rich organic matter layer, by hydroponics, in a petri dish, in a reactor such as fermenter or battery farm, on feet or fish farming, in particular.
  • the structure can be cultured in a suitable nutrient medium known to those skilled in the art such as Knopli's liquid, Earle's solution, Hanks, "199" medium, Sabouraud's medium, MEM-Eagle's medium or the like.
  • a suitable nutrient medium known to those skilled in the art such as Knopli's liquid, Earle's solution, Hanks, "199" medium, Sabouraud's medium, MEM-Eagle's medium or the like.
  • the step of preparing the base may comprise a step of collecting and / or collecting the aforementioned living structure, and incorporating it into the base in proportions such that this input constitutes at least a portion of the required mineral material.
  • the mineral material thus harvested and / or collected may be varied in nature: carbonated, siliceous, saline, fluorinated, baryted, carbonaceous, ferruginous, in the form of, for example, deposition, concretion, actual and / or fossil. It is then incorporated in the base, either during the preparation step, or during the processing step.
  • Fossil and / or other sedimentary rocks such as granite, basalt, pumice or other can be used in the composition of the final material.
  • At least one of the aforementioned biomass, base, material and / or mineral matter is fragmented during the preparation step, and / or during the treatment step.
  • the abovementioned fragmentation is at least partially carried out by dislocation using ultrasound and / or physicochemical means, such as the addition of additives, irradiation, cryogenic and / or thermal treatment, crushing or the pressure variation.
  • One of the phases of the process may be to develop a suspension of the aforementioned biomass, base or material in a liquid, preferably aqueous for spraying or brushing, for example.
  • This liquid can be used in the composition of one of the abovementioned culture media.
  • An optional phase of the preparation and / or treatment step comprises incorporating into at least one of the biomass, the medium, the material, the base and the mineral material, a cohesion and / or texture agent.
  • This cohesion agent and / or texture is preferably metal such as calcium, magnesium, silicon, barium, sodium, fluorine, aluminum, iron, manganese, zinc, or organic such as collagen, mucopolysaccharide and / or polycellulosic compound.
  • the proportions and the composition of the aforementioned texture agent are chosen so that the final material has a predetermined hardness and / or elasticity.
  • the manufacturing process may comprise a total or partial dehydration phase of the inactivation salt (s) comprising the abovementioned base and / or mineral material.
  • This dehydration phase may be at least partially carried out by filtration, centrifugation, heat treatment and / or cryogenics.
  • an additive for example foaming, fibrous, agglomerating, insulating, flame retardant or the like may be incorporated in the base and / or the aforementioned mineral material.
  • Any plant cell even that which is not very symbiotic, is susceptible, by the process just mentioned, to be mineralized and / or super-mineralized if it is put in contact with such microorganisms.
  • the living structure may also be an animal, or part of an animal such as a cell, a tissue and / or an organ, chosen from invertebrate protozoa or metazoans such as sponges, lamellibranchs and echinoderms, or from vertebrates.
  • an animal or part of an animal such as a cell, a tissue and / or an organ, chosen from invertebrate protozoa or metazoans such as sponges, lamellibranchs and echinoderms, or from vertebrates.
  • One or more compatible living symbiotic or cooperating structures can be cultivated within the same medium, whether of plant, animal and / or micro-organic origin.
  • the first preparation step is intended to obtain a mineral base, that is to say an intermediate product.
  • the step of preparing the base comprises a phase consisting in cultivating the abovementioned living structure during a period and in a medium such that at least one so-called “mineral biomass” portion of said material is then produced or synthesized by this structure.
  • the second step is to treat said base after its demineralization, so as to transform it into a deactivated or inactivated mineral material and predefined texture.
  • the living structure When the abovementioned living structure is a part of a plant such as a cell, tissue or organ, the living structure may originate from a so-called superior monocotyledonous plant, such as water or dicotyledonous Lentils, and especially from the Daucales, the Lianes. , Bignoniaceae, Moreae, Comrnaceae, Cactaceae.
  • the plant-derived structure may be an alga and in particular Rhodophyceae, Chlorophyceae, Charophyceae, Schyzophyceae, Cyanophyceae, Pheophyceae and / or a Protophyte, and other media may be envisioned.
  • the living structure is an animal, or part of an animal such as cell, tissue and / or organ, and in particular a protozoa with sandy, carbonate, siliceous or chitinous test, mesoglées of spongiaries with calcareous spicules or silicones, corallary cells, epidermal shell cells, or cells that cause bone structures in vertebrates.
  • the mineral biomasses can be obtained by in vitro culture of the tissue cells and / or organs involved in the mineral biosynthesis of the animal kingdom.
  • micro-organisms are also abundantly cultivable in commercial industrial fermenters, and in particular tangential filtration ultrafermentors, which make it possible to obtain continuous production.
  • One or more compatible living structures can be grown in the same medium, possibly with at least one other compatible structure of plant, animal and / or microorganic origin.
  • the second step is to treat said base after its demineralization so as to transform it into an inactivated mineral material and predefined texture.
  • the treatment step then comprises a phase of inactivation of the living structure.
  • This inactivation phase may be carried out by adding at least one salt, such as, for example, magnesium oxide, magnesium sulphate, calcium chloride or barium chloride, preferably in anhydrous form.
  • at least one salt such as, for example, magnesium oxide, magnesium sulphate, calcium chloride or barium chloride, preferably in anhydrous form.
  • Biomass is stabilized, that is, inactivated, so that any cell development is interrupted. Such a result can be obtained by adding in suitable proportions, one or more of the above salts, or substances having similar effects on the living structure retained.
  • the respective proportions (in mass units) of 1 part of magnesium sulphate, 0.5 part of calcium chloride, 0.5 part of barium chloride, 2 parts of magnesium oxide, preferably anhydrous, are acceptable.
  • these proportions may vary, especially in a range of 20% to 50%.
  • a mixing phase may be performed during one of the steps of the manufacturing process. Preferably this mixing phase is carried out at least partly simultaneously with another phase of the process, and in particular during inactivation.
  • Two inactivation phases can be used: one during the production of the product, the other during use, for example during the mixing state of the process according to the invention.
  • the total inactivation of the living structures of the base is then carried out by mixing the biomass and salts mentioned, with a supply of water in equal amounts, to ensure a good mixture thereof.
  • the base can be added to the salts mentioned in proportions ranging from 0.5 base per 1 of salts to 4 bases per 1 of salts.
  • the step of preparing the base may comprise a phase consisting of harvesting or collecting either the abovementioned living structure or the sedimentary mineral material, and incorporating it into the base in proportions such that this input constitutes at least a portion of the required mineral material.
  • the mineral material in the form of, for example, deposition, actual and / or fossil concretion, and to incorporate it into the base either during the preparation step or during the treatment step.
  • the living structure is chosen so that its associated mineral matter contains at least one carbonate, siliceous, selenitic or similar mineralogical constituent.
  • Clearing or other agricultural operations (harvesting such as haying, harvesting, harvesting, etc.) generate significant amounts of mineralized or mineralizable or mineralisers and suitable for over-mineralization (hay, straw, stubble, etc.).
  • Some industrial operations generate waste of plant origin, such as sawdust, which can be mineralized.
  • the cells of relatively rigid plants and particularly those of lianas are mentioned, for example Syngonium podophyllum, Syngonium auritum syn. Philodendron trifolium and Syngonium hastifolium. Ivy and fig trees are a potential source of mineral substrates. The same is true for coastal algae deposits such as Maerl.
  • At least one of the aforementioned biomass, base, material and / or mineral matter is fragmented during the preparation step, and optionally during the inactivating treatment step.
  • the fragmentation phase is carried out until a determined texture or malleability is obtained.
  • the purpose of the fragmentation is to obtain a more or less loose material, and preferably with a given particle size.
  • the abovementioned fragmentation is at least partially carried out by dislocation using ultrasound and / or physicochemical means, such as the addition of additives, cryogenic and / or thermal treatment, grinding or pressure variation. .
  • one of the phases of the manufacturing process may be to develop a suspension of the aforementioned biomass or fragmented material in a liquid, preferably aqueous. It is possible during a phase of the process to incorporate at least one of the culture medium, the biomass, the material, the base and the mineral material. This substance is possibly an element of biomass.
  • a preparation and / or treatment step may consist in incorporating into at least one of the biomass, the medium, the material, the base and the mineral material, a cohesion or texture agent.
  • This agent is preferably a particularly metallic binder such as calcium, magnesium, silicon, barium, sodium, fluorine, aluminum, iron, manganese, zinc, or organic such as collagen, mucopolysaccharide and poly-cellulosic compound.
  • this agent is optionally used as an inactivation compound, in the case of a base comprising a living structure, cultivated or collected.
  • the proportions and the composition of the above-mentioned cohesion and / or texture agent are chosen so that the final material has a predetermined hardness or elasticity.
  • an additive for example foaming, fibrous, agglomerating, insulating, flame retardant or the like may be incorporated in the base and / or in the aforementioned mineral material.
  • the method may comprise a phase of at least partial dehydration of one or more components of the base and / or the aforementioned mineral material.
  • This dehydration phase can be at least partially carried out by filtering, irradiation, centrifugation, heat treatment and / or cryogenics.
  • the mineral composition comprises at least 50% and at most 80% by weight of calcium carbonate and at least 10% and at most 30% by weight of silica.
  • the mineral composition according to the invention may be in the form of a divided solid, which, after incorporation of a predetermined amount of water and an intimate kneading step, leads to a dough known as petrifying mix.
  • the viscosity of the Mix paste is adjustable by adjusting the proportions of mineral composition and water.
  • the production of the blocking matrix is possible after thorough mixing of the mineral composition and water at room temperature.
  • the fluidity of the mixture, the mechanical properties and the setting time depend on the water content. It is adaptable to the nature of the material and makes it possible to block nuclear waste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Steroid Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Procédé d'immobilisation de déchets nucléaires comprenant : –  une étape de mélange au cours de laquelle des déchets nucléaires sont mélangés à une composition minérale et de l'eau, –  une étape de séchage au cours de laquelle le mélange obtenu lors de l'étape de mélange est séché de sorte à former une matrice d'immobilisation, remarquable en ce que la composition minérale soit obtenue par un procédé de fabrication comprenant les étapes consistant à : –  préparer une base comprenant une quantité prédéterminée d'un matériau minéral synthétisé par au moins une partie de structure vivante choisie parmi le règne végétal, animal et/ou les micro-organismes ; et –  traiter ladite base de façon à la transformer en une matière inactivée et de texture prédéfinie.

Description

    Procédé d'immobilisation de déchets nucléaires
  • La présente invention concerne un procédé d'immobilisation de déchets nucléaires par une matrice à base d'une composition minérale obtenue par la préparation d'une base comprenant une quantité prédéterminée d'un matériau minéral synthétisé par au moins une partie de structure vivante choisie parmi le règne végétal, animal et/ou les micro-organismes.
  • Un déchet radioactif ou nucléaire est une matière radioactive dont aucun usage n'est prévu et dont la dispersion dans l'environnement n'est pas autorisée. Les déchets radioactifs couvrent une grande diversité de substances qui se distinguent notamment par leur activité et leur période radioactive, mais également par leur état (solide, liquide, gazeux) et leur composition chimique.
  • L'élimination des déchets, en particulier les déchets d'origine nucléaires, est un problème environnemental majeur. Les déchets nucléaires (liquides ou solides) peuvent être contaminés en surface et / ou en masse.
  • Les déchets de l'industrie nucléaire sont spécifiques. D'une part leur activité diminue avec le temps, et d'autre part leur diversité nécessite des méthodes de conditionnement adaptées aux volumes et à leurs activités. Il existe de nombreuses méthodes pour conditionner les déchets de l'industrie nucléaire.
  • Deux principaux modes de conditionnement sont utilisés pour les déchets nucléaires, le compactage ou le blocage.
  • Le compactage est un mode de conditionnement primaire où les produits compactés doivent être conditionnés dans un colis.
  • Le blocage ou l'immobilisation des déchets est une technique couramment utilisée dans l'industrie nucléaire où un ciment ou un polymère sert à immobiliser des déchets nucléaires au sein de conteneurs ou comme matrice de conditionnement pour enrober les déchets nucléaires.
  • Outre son utilisation pour bloquer des déchets solides massifs dans des conteneurs, la cimentation est également utilisée pour enrober des déchets en solution ou sous forme pulvérulente, par exemple des résidus d'évaporation, des boues de traitement chimique ou encore des résines échangeuses d'ions.
  • Quelque soit le niveau de contamination des déchets nucléaires, ils doivent être stockés dans des installations sûres pendant des périodes assez longues, par exemple plusieurs centaines d'années. Pendant la durée du stockage, il est nécessaire de garantir l'intégrité du colis de stockage, en particulier de l'emballage et du contenu composé du déchet et de la matrice.
  • Ces colis de déchets obéissent à des critères stricts, en particulier en ce qui concerne la matrice. Le contenu doit être suffisamment stable et ne pas être sujet à une dissémination liée aux conditions du stockage.
  • Le blocage par un ciment est un procédé à faible coût et de mise en oeuvre facile mais il n'est pas dénué d'inconvénients. Les interactions entre les constituants de certains déchets nucléaires et la matrice cimentaire peuvent conduire à un gonflement et une fissuration du colis, réduisant sa durabilité.
  • La cimentation est la technique la plus utilisée pour les déchets solides. Les raisons principales de ce choix résident dans l'abondance des matières premières, la densité du matériau (protection biologique), la résistance mécanique, la bonne connaissance de son comportement à long terme, la robustesse du procédé et la simplicité de sa mise en oeuvre. Les déchets préalablement compactés ou en vrac sont généralement placés dans un panier, lui-même déposé dans un conteneur métallique ou en béton ; ils sont ensuite immobilisés par du ciment, chargé de limiter le risque de diffusion des radioéléments vers l'extérieur, et forment ainsi un enrobage hétérogène.
  • Cependant, la cimentation ne permet pas de garantir la durabilité des colis pour certains déchets nucléaires chargés chimiquement (sulfates,..) ou réactifs contenant de la matière organique.
  • En effet, le processus de cimentation est un processus exothermique qui risque de provoquer des réactions violentes lors du mélange avec certains déchets nucléaires réactifs.
  • De plus, le milieu cimentaire a un pH alcalin de l'ordre de 13 à 14 pouvant ne pas être compatible avec certains déchets nucléaires.
  • Par ailleurs, le blocage des matériaux réactifs génère des gaz, rendant impossible la garantie de l'intégrité des colis sur des longues périodes, par exemple des périodes d'au moins 300 ans.
  • Ainsi, un des buts de la présente invention est de proposer une autre solution qui permette d'immobiliser des déchets nucléaires ne présentant pas les inconvénients des solutions de l'art antérieur.
  • L'invention propose ainsi un procédé d'immobilisation des déchets nucléaires comprenant :
    • ■ une étape de mélange, au cours de laquelle des déchets nucléaires sont mélangés à une composition minérale et de l'eau,
    • ■ une étape de séchage, au cours de laquelle le mélange obtenu lors de l'étape de mélange est séché de sorte à former une matrice d'immobilisation, où la composition minérale est obtenue par un procédé de fabrication comprenant les étapes consistant à :
    • ■ préparer une base comprenant une quantité prédéterminée d'un matériau minéral synthétisé par au moins une partie de structure vivante choisie parmi le règne végétal, animal et/ou les micro-organismes ; et
    • ■ traiter ladite base de façon à la transformer en une matière inactivée et de texture prédéfinie.
  • Avantageusement, le procédé d'immobilisation selon l'invention permet d'immobiliser des déchets nucléaires chargés chimiquement et/ou des déchets nucléaires métalliques réactifs et/ou des déchets nucléaires organiques qui ne peuvent pas être immobilisés par cimentation classique.
  • Un procédé d'immobilisation selon l'invention peut en outre comporter une ou plusieurs des caractéristiques optionnelles ci-dessous, considérées individuellement ou selon toutes les combinaisons possibles :
    • la composition minérale est choisie de sorte à ce que, mélangée avec de l'eau, elle présente un pH compris entre 11 et 12,5, par exemple entre 11 et 12 ;
    • la composition minérale est choisie de sorte que la réaction entre ladite composition minérale et l'eau soit sensiblement athermique ;
    • le rapport de la quantité massique de la composition minérale et de la quantité massique d'eau est supérieur ou égal à 1, par exemple supérieur ou égal à 1,5, et inférieur ou égal à 85/15 ;
    • la composition minérale est choisie de sorte à ce que la matrice d'immobilisation présente une résistance aux contraintes de compression supérieure ou égale à 8 MPa à 8 jours ;
    • au cours de l'étape de mélange, du sable peut être rajouté de sorte que le rapport de la quantité massique de la composition minérale et de la quantité massique de sable soit supérieur ou égal à 1,5 et inférieur ou égal à 10 ;
    • l'étape de mélange comprend :
      • ■ une étape de pré-mélange au cours de laquelle la composition minérale et l'eau sont mélangées,
      • ■ une étape de malaxage au cours de laquelle le mélange obtenu au cours de l'étape de pré-mélange est malaxé, et
      • ■ une étape d'injection au cours de laquelle le mélange malaxé est injecté dans un emballage contenant les déchets à immobiliser ;
    • l'étape de mélange comprend :
      • ■ une étape de pré-mélange au cours de laquelle les déchets nucléaires, la composition minérale et l'eau sont mélangés,
      • ■ une étape de malaxage au cours de laquelle le mélange obtenu au cours de l'étape de pré-mélange est malaxé, et
      • ■ une étape d'injection au cours de laquelle le mélange malaxé est injecté dans un emballage destiné à contenir les déchets nucléaires.
    • la composition minérale comprend au moins 50% et au plus 80% en masse de carbonate de calcium ;
    • la composition minérale comprend au moins 10% et au plus 30% en masse de silice ;
    • la quantité massique des déchets nucléaires dans la matrice d'immobilisation, dépend de la forme et de la densité, est supérieure ou égale à 10% et inférieure ou égale à 80%.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple.
  • La présente invention se rapporte à un procédé d'immobilisation des déchets nucléaires chargés chimiquement ou réactifs ou contenant de la matière organique, et plus particulièrement ceux qui ne peuvent pas être bloqués par les liants hydrauliques classiques.
  • Avantageusement, le procédé, selon l'invention, permet de pouvoir réaliser l'encapsulation de ces déchets dans une matrice homogène et durable répondant à des critères de stockage prédéfinis.
  • Parmi les déchets nucléaires pouvant être bloqués par le procédé selon l'invention, on peut citer, sans que cela ne constitue une limitation : les huiles, les résines, les résines échangeuses d'ions (REI), le graphite, le magnésium, l'uranium, l'aluminium, le bitume, les boues, l'eau glycolée, les produits à base de borate et de sulfate, les boues ou les concentrats contenant de la matière organique et leurs mélanges.
  • Selon un mode de réalisation de l'invention, le procédé d'immobilisation comprend :
    • ■ une étape de mélange au cours de laquelle des déchets nucléaires sont mélangés à une composition minérale et de l'eau,
    • ■ une étape de séchage au cours de laquelle le mélange obtenu lors de l'étape de mélange est séché, de sorte à former une matrice d'immobilisation.
  • Le mélange de la composition minérale et de l'eau permet à la composition minérale de réaliser un arrangement structurel conduisant à la création d'un réseau tridimensionnel. La réalisation de ce réseau conduit à une prise en masse de la composition minérale hydratée autour des déchets nucléaires qui, après un certain temps de séchage, permet l'obtention d'une masse compacte composée du déchet et d'une matrice d'immobilisation.
  • La composition minérale, utilisée dans le procédé selon l'invention, est obtenue par un procédé de fabrication comprenant les étapes consistant à :
    • ■ préparer une base comprenant une quantité prédéterminée d'un matériau minéral synthétisé par au moins une partie de structure vivante choisie parmi le règne végétal, animal et/ou les micro-organismes ; et
    • ■ traiter ladite base de façon à la transformer en une matière inactivée et de texture prédéfinie.
  • Les documents FR9405013 , FR9504830 , FR9504831 , FR9504832 et WO95/29250 décrivent des exemples de compositions minérales pouvant être utilisées dans le procédé selon l'invention.
  • Selon un mode de réalisation de l'invention, la composition minérale, utilisée dans le procédé selon l'invention, est une composition minérale obtenue par un procédé de fabrication comprenant les étapes consistant à :
    • ■ préparer une base comprenant une quantité prédéterminée d'un matériau minéral synthétisé par au moins une partie de structure vivante choisie parmi le règne végétal, animal et/ou les micro-organismes ; et
    • ■ traiter ladite base de façon à la transformer en une matière inactivée et de texture prédéfinie.
  • Au sens de l'invention "structure vivante" minéralisatrice, minéralisée ou minéralisable, il faut comprendre toute structure cellulaire ou d'origine cellulaire, végétale, animale ou micro-organique, vivante et/ou résultant de la vie et/ou des composés d'origine biologique, cristallisés ou non, tels des enzymes, des hormones, des protéines, de l'ADN.
  • Par "matière inactivée", il faut comprendre matière dénuée de toute activité biologique et/ou biominéralisatrice, notamment de toute activité microbiologique pathogène.
  • Au sens de l'invention, le terme "minéral" doit être compris ici au sens large, à savoir comme incluant un minéral dans sa composition.
  • L'étape de préparation de la base peut comporter une phase consistant à cultiver la structure vivante précitée durant une période et dans un milieu tels qu'au moins une partie dite "biomasse minérale" dudit matériau est alors produite ou synthétisée par cette structure.
  • L'étape de traitement peut ensuite comprendre une phase d'inactivation de la structure vivante. Par inactivation, il faut comprendre obtention de matière inactivée, telle que définie ci-dessus, à partir de structure vivante telle que définie ci-dessus.
  • Une phase de malaxage peut être exécutée durant l'une des étapes du procédé de fabrication.
  • De préférence, cette phase de malaxage est effectuée au moins en partie simultanément à une autre phase du procédé selon l'invention, par exemple durant l'inactivation ou encore après l'étape de mélange.
  • Le procédé de fabrication peut être mis en oeuvre avec des microorganismes et/ou des cellules, d'origine végétale ou animale, seules, ou en association symbiotique ou autre, minéralisés, minéralisateurs ou minéralisables.
  • La structure vivante précitée peut être un végétal et/ou animal ou partie d'un végétal et/ou animal telle qu'une cellule, un tissu ou un organe.
  • On pourra avoir recours, dans le règne végétal, tout aussi bien à des végétaux supérieurs, dicotylédones, monocotylédones, qu'à des végétaux inférieurs thallophytiques ou microorganiques.
  • Selon les cas, la structure sélectionnée est cultivée in vivo, en terre, sur couche riche en matière organique, par hydroponie, en boîte de Pétri, dans un réacteur tel que fermenteur ou par élevage en batterie, sur pieds ou pisciculture, notamment.
  • La structure peut être cultivée dans un milieu nutritif approprié connu de l'homme de l'art tel que liquide de Knopli, solution d'Earle, Hanks, milieu dit "199", milieu de Sabouraud, milieu MEM-Eagle ou analogues.
  • L'étape de préparation de la base peut comprendre une phase consistant à récolter et/ou collecter la structure vivante précitée, et à l'incorporer à la base dans des proportions telles que cet apport constitue au moins une partie du matériau minéral requis.
  • Le matériau minéral ainsi récolté et/ou collecté pourra être de nature variée: carbonatée, siliceuse, saline, fluorée, barytée, carbonée, ferrugineuse, sous forme par exemple de dépôt, concrétionnement actuels et/ou fossiles. Il est alors incorporé à la base, soit lors de l'étape de préparation, soit lors de l'étape de traitement.
  • Des roches sédimentaires fossiles et/ou autres telles que granite, basalte, pierre ponce ou autres peuvent entrer dans la composition de la matière finale.
  • Durant une phase possible du procédé de fabrication, au moins un parmi la biomasse, la base, le matériau et/ou la matière minérale précitée est fragmenté lors de l'étape de préparation, et/ou lors de l'étape de traitement.
  • La fragmentation précitée est au moins partiellement effectuée par dislocation à l'aide d'ultrasons et/ou de moyens physico-chimiques, tels que l'adjonction d'additifs, l'irradiation, le traitement cryogénique et/ou thermique, le broyage ou la variation de pression.
  • L'une des phases du procédé peut consister à élaborer une suspension de la biomasse, de la base ou du matériau précités dans un liquide, de préférence aqueux pour pulvérisation ou application au pinceau par exemple. Ce liquide peut entrer dans la composition de l'un des milieux de culture précités.
  • Il est possible d'incorporer, lors d'une phase du procédé, au moins à l'un parmi le milieu de culture, la biomasse, le matériau, la base et la matière minérale, une substance colorante de nuance prédéterminée.
  • Une phase éventuelle de l'étape de préparation et/ou de traitement consiste à incorporer à l'un au moins parmi la biomasse, le milieu, le matériau, la base et la matière minérale, un agent de cohésion et/ou de texture.
  • Cet agent de cohésion et/ou de texture est de préférence métallique tel que calcium, magnésium, silicium, baryum, sodium, fluor, aluminium, fer, manganèse, zinc, ou organique tel que collagène, muco-polysaccharide et/ou composé polycellulosique.
  • Avantageusement, les proportions et la composition de l'agent de texture précité sont choisies pour que la matière finale présente une dureté et/ou élasticité prédéterminée.
  • Par ailleurs, le procédé de fabrication peut comprendre une phase de déshydratation totale ou partielle du ou des sels d'inactivation composant la base et/ou la matière minérale précitées.
  • Cette phase de déshydratation peut être au moins partiellement effectuée par filtrage, centrifugation, traitement thermique et/ou cryogénique.
  • Il est envisageable suivant le procédé de fabrication, que les phases d'inactivation, de déshydratation et de fragmentation, soient au moins partiellement effectuées simultanément.
  • Durant l'une des phases ou étapes du procédé de fabrication, un additif, par exemple moussant, fibreux, agglomérant, isolant, ignifuge ou analogues peut être incorporé à la base et/ou à la matière minérale précitée.
  • La classification ci-après donne des exemples non limitatifs de structures aptes à être sélectionnées pour l'application de l'invention:
    1. a) Parmi les Dicotylédones :
      • Les cellules de l'ordre des Daucales, famille des Araliacées, genre Hedera dont Hedera helix;
      • Les cellules de l'ordre des Arales, genre Rhaphidophora, espèce Syngonium podophyllum (Schott), "Albolineatum", espèces Syngonium auritum syn. Philodendron trifolium et espèce Syngonium hastifolium;
      • Les cellules de l'ordre des Solanales, famille des Bignoniacées, espèce Catalpa bignonioidées où il s'agit d'oxalate de calcium sous forme octaédrique, "en oursins", présents en abondance dans les cellules des pétioles, par exemple.
  • Toute cellule végétale, même celle qui serait peu symbiotique, est susceptible, par le procédé que nous venons d'énoncer, d'être minéralisée et/ou surmrinéralisée si on la met en contact avec de tels microorganismes.
  • C'est ainsi le cas des cellules précitées, mais aussi de toutes les cellules végétales issues par exemple de broussailles sous forme de copeaux, de sciure, et qui par ce procédé se pétrifient ou encore se transforment en pierre tufeuse et/ou travertineuse.
    • b) Parmi les Monocotylédones :
      • Les cellules de l'ordre des Pandarales, dont celles de la famille des Typhacées;
      • Les cellules de graminées dont celles des Lemnacées.
    • c) Parmi les Fougères :
      • Les épidermes chez Equisetum arvense (Prêle commune) sont le théâtre de productions minérales de silice souvent considérées comme des concrétions issues de sécrétions membranaires épidermiques, alors que s'y trouvent impliquées des bactéries en périphérie et/ou dans les cellules d'Equisetum arvense. Celles-ci expliquent les dépôts de silice intra et/ou extracellulaire. Le recouvrement siliceux de la pousse aérienne stérile de l'Equisetum arvense et les dépôts de silice opaline incrustant l'épiderme de ses différents organes aériens est lié à la présence et à la participation symbiotique de bactéries. Il s'agit de bacilles de 0,4 à 0,7 microns de longueur et de 0,1 micron d'épaisseur. Ces bacilles minéralisateurs provoquent un empâtement externe progressif des cellules intéressées au fur et à mesure du développement des voiles bactériens. Ces voiles successifs provoquent un recouvrement siliceux homogène et stratifié.
    • d) Parmi les Algues :
      • Des masses biominérales résultant de la multiplication et de l'accumulation de frustules d'algues, de façon naturelle ou industrielle, sont applicables à l'invention.
        On citera par exemple :
        • Les Rhodophycées avec principalement les Némalionales, les Solénoporacées et les Corallinacées (comportant les Lithothamnium, les Mélobésiées;
        • Les Chlorophycées avec les Siphonales (comportant les Codiacées dont Halimeda) et les Dacycladales (comportant les dacycladacées dont Acétabularia);
        • Les Charophycées avec les characées dont Cladophora et Vaucheria;
        • Les Schizophycées avec les Porostromata et les Spongiostroma dont Rivularia, Oscillatoria, Phormidium, Chroococcus et Gleocapsa sont aptes à être sélectionnés.
    • e) Des Lichens :
      • La masse biominérale peut aussi résulter de la culture d'une association végétale tripartite de type lichénique. Les Lichens sont des associations végétales composites. L'association dite à bénéfice réciproque se compose d'un champignon, d'une algue et de bactéries minéralisantes semblables à celles dont nous avons fait état plus haut.
        Ces bactéries contribuent à des incrustations minérales complexes et pigmentées au sein du mycélium.
        L'existence de dépôts d'acides lichéniques sous forme de cristaux extracellulaires et hydrophobes est dûe à la minéralisation des lichens par lesdites bactéries symbiotes. Les bactéries symbiotes se distinguent des cyanobactéries, parfois citées par leur petite taille et l'absence de pigment.
        La structure vivante peut donc tout simplement être les cellules d'un végétal ainsi physiologiquement équipé.
    • f) Parmi les Champignons :
      • La structure d'origine végétale peut être un végétal inférieur choisi parmi les champignons et leurs spores.
    • g) Parmi les microorganismes :
      • La structure vivante peut être un micro-organisme tel que virus ou bactérie dont bacillus mégathérium, pseudomonas fluorescens, pseudomonas maltophilia, pseudomonas putida, buttauxiella agrestis, rhodococcus, serratia marescens.
        On peut envisager l'emploi d'un virus en tant que structure vivante.
  • La structure vivante peut aussi être un animal, ou une partie d'animal telle qu'une cellule, un tissu et/ou un organe, choisis parmi les protozoaires ou les métazoaires invertébrés tels les spongiaires, les lamellibranches et les échinodermes ou encore parmi les vertébrés.
  • Une ou plusieurs structures vivantes compatibles, symbiotiques ou coopérantes peuvent être cultivées au sein d'un même milieu, qu'elles soient d'origine végétale, animale et/ou micro-organique.
  • La première étape de préparation a pour but d'obtenir une base minérale, c'est-à-dire un produit intermédiaire. De préférence, l'étape de préparation de la base comporte une phase consistant à cultiver la structure vivante précitée durant une période et dans un milieu tels qu'au moins une partie dite "biomasse minérale" dudit matériau est alors produite ou synthétisée par cette structure.
  • La seconde étape consiste à traiter ladite base après sa surminéralisation, de façon à la transformer en une matière minérale désactivée ou inactivée et de texture prédéfinie.
  • A titre d'exemple, l'une ou plusieurs des correspondances entre les structures vivantes et les minéraux et/ou les roches ci-après, peuvent être sélectionnés :
    • Cellules de Hedera helix correspondent à Oxalate de calcium/ Calcaire
    • Cellules de Ficus élastica correspondent à Carbonate de calcium/ Calcaire
    • Cellules d'Equisetum correspondent à Silice / Opaline / Bois silicifié / Grès
    • Cellules de Graminées correspondent à Silice / Opaline / Bois silicifié / Grès
    • Cellules de Typhacées correspondent à Silice / Opaline / Bois silicifié / Grès
    • Champignon Ascomycète correspond à Dipicolinate de calcium/ Calcaire Cellules de Pectascinacées correspondent à Carbonate de calcium/ Calcaire
    • Algue Phéophysée correspond à Silice / Diatomite /
    • Algue Rhodophycée correspond à Carbonate de calcium / Calcaire / Travertin
    • Algue Chlorophycée correspond à Carbonate de calcium / Calcaire / Travertin
    • Algue Cyanophycée correspond à Carbonate de calcium / Calcaire / Travertin
    • Mollusque Lamellibranche correspond à Carbonate de calcium / Calcaire / Grès coquilliers
  • La production de biomasse obéit aux lois usuelles de la croissance des structures vivantes : il n'est pas nécessaire de décrire ici la phase de culture avec précision.
  • L'homme de l'art saura déterminer en fonction de la structure vivante à faire croître, quelle méthode de culture et quel milieu pourront être utilisés avec le plus de succès.
  • Ainsi, il est possible, selon le type de structure sélectionné, de recourir à l'un des procédés élaborés tels que la culture in vivo, en terre, sur couche riche en matière organique, par hydroponie, en boîte de Pétri, dans un réacteur tel que fermenteur ou par élevage en batterie, sur pieds ou pisciculture, notamment.
  • Dans le cas des plantes conservant leur intégrité, les méthodes conventionnelles de culture sont employées de préférence (en terre, en serre, hydroponie, etc).
  • Lorsque la structure vivante précitée est une partie d'un végétal telle que cellule, tissu ou organe, la structure vivante peut avoir pour origine une plante dite supérieure, monocotylédone, comme les Lentilles d'eau ou dicotylédone et notamment parmi les Daucales, les Lianes, les Bignoniacées, les Morées, les Comrnacées, les Cactacées.
  • Pour ce type de structure qui, par exemple produit une matière tufeuse et/ou travertineuse, il est possible d'utiliser le milieu de culture suivant:
    • Eau distillée............1 000 grammes
    • Nitrate de calcium.......0,71
    • Nitrate de potassium.....0,568
    • Sulfate de magnésium.....0,284
    • Phosphate d'ammonium.....0,142
    • Chlorure ferrique........0,112
    • Iodure de potassium......0,0028
    • Acide borique.....0,0005
    • Sulfate de Zinc.....0,0005
    • Sulfate de manganèse.....0,0005
  • Par ailleurs, la structure d'origine végétale peut être une algue et notamment Rhodophycée, Chlorophycée, Charophycée, Schyzophycée, Cyanophycée, Pheophycée et/ou encore un Protophyte, et alors d'autres milieux sont envisageables.
  • Il en va de même si la structure vivante est un animal, ou partie d'animal telle que cellule, tissu et/ou organe, et notamment un protozoaire à test arénacé, carbonaté, siliceux ou chitineux, des mesoglées de spongiaires aux spicules calcaires ou siliceux, des cellules de coralliaires, des cellules épidermiques de coquillages, ou encore des cellules à l'origine de structures osseuses chez les vertébrés. Les biomasses minérales pourront être obtenues par culture in- vitro des cellules tissu et/ou organes impliqués dans les biosynthèses minérales du règne animal.
  • Il est possible par exemple, de recourir à des productions coralliaires actuelles et/ou fossiles pour réaliser des calcaires spécifiques.
  • Les micro-organismes sont également cultivables de façon abondante dans des fermenteurs industriels du commerce, et notamment des ultrafermenteurs à filtrage tangentiel, qui permettent d'obtenir une production en continu.
  • Une ou plusieurs structures vivantes compatibles peuvent être cultivées au sein d'un même milieu, éventuellement avec au moins une autre structure compatible d'origine végétale, animale et/ou microorganique.
  • La seconde étape consiste à traiter ladite base après sa surminéralisation de façon à la transformer en une matière minérale inactivée et de texture prédéfinie.
  • En cas de production de biomasse à partir d'une structure vivante, l'étape du traitement comprend alors une phase d'inactivation de la structure vivante.
  • Cette phase d'inactivation peut être effectuée par adjonction d'au moins un sel, tel que par exemple oxyde de magnésium, sulfate de magnésium, chlorure de calcium, chlorure de baryum sous forme anhydre de préférence.
  • La biomasse est stabilisée, c'est-à-dire inactivée, de façon à ce que tout développement cellulaire soit interrompu. Un tel résultat peut être obtenu par ajout dans des proportions convenables, de l'un ou plusieurs des sels ci-dessus, ou de substances ayant des effets analogues sur la structure vivante retenue.
  • Dans le cas de l'utilisation de ces composés, les proportions (en unité de masse) respectives de 1 partie de sulfate de magnésium, 0,5 partie de chlorure de calcium, 0,5 partie de chlorure de baryum, 2 parties d'oxyde de magnésium de préférence anhydres, sont acceptables. Toutefois, ces proportions peuvent varier, notamment dans une gamme de 20% à 50%.
  • D'autres méthodes d'inactivation peuvent être employées, seules ou en complément, dont l'utilisation de composés chimiques, notamment des fluosilicates ou encore l'irradiation et l'élévation à haute température.
  • Une phase de malaxage peut être exécutée durant l'une des étapes du procédé de fabrication. De préférence, cette phase de malaxage est effectuée au moins en partie simultanément à une autre phase du procédé, et notamment lors de l'inactivation.
  • On peut recourir à deux phases d'inactivation : l'une lors de l'élaboration du produit, l'autre lors de l'emploi, par exemple lors de l'état de mélange du procédé selon l'invention.
  • L'inactivation totale des structures vivantes de la base se réalise alors par malaxage de la biomasse et des sels cités, avec un apport d'eau en quantité égale, pour garantir un bon mélange de ceux-ci. A titre d'exemple, on peut ajouter la base aux sels cités dans des proportions allant de 0,5 de base pour 1 de sels à 4 de base pour 1 de sels.
  • L'un des avantages du procédé de fabrication consiste à ce que l'étape de préparation de la base puisse comporter une phase consistant à récolter ou collecter soit la structure vivante précitée, soit du matériau minéral sédimentaire, et à l'incorporer à la base dans des proportions telles que cet apport constitue au moins une partie du matériau minéral requis.
  • Il est possible de collecter le matériau minéral sous forme par exemple de dépôt, concrétionnement actuel et/ou fossile, et de l'incorporer à la base soit lors de l'étape de préparation, soit lors de l'étape de traitement.
  • Par ailleurs, la structure vivante est choisie pour que sa matière minérale associée contienne au moins un constituant minéralogique carbonaté, siliceux, séléniteux ou analogues. De nombreuses autres sources nouvelles de minéral sont utilisables conformément à l'invention. Le débroussaillage ou d'autres opérations agricoles (récoltes dont fenaison, moisson, vendanges et autres) génèrent d'importantes quantités de produits minéralisés ou minéralisables ou minéralisateurs et aptes à une surminéralisation (foin, paille, chaume etc...).
  • Certaines opérations industrielles génèrent des déchets d'origine végétale, telle la sciure, pouvant être minéralisés. On cite les cellules des plantes relativement rigides et particulièrement celles des lianes comme par exemple Syngonium podophyllum, Syngonium auritum syn. Philodendron trifolium et Syngonium hastifolium. Des lierres, des figuiers, constituent une source potentielle de substrats minéraux. Il en va de même pour les dépôts côtiers d'algues marines tels que le Maerl.
  • Durant une phase possible du procédé de fabrication, au moins un parmi la biomasse, la base, le matériau et/ou la matière minérale précitée est fragmenté lors de l'étape de préparation, et éventuellement lors de l'étape de traitement inactivant.
  • Par exemple si lors de la culture d'une structure vivante on obtient des empilements minéraux et/ou stratifiés, que l'on peut éventuellement morceler pour leur emploi au sein de la base. De-même, si une partie ou la totalité du matériau minéral est constitué par des fossiles ou déchets solides, comme expliqué plus haut, les blocs en masses collectés pourront être broyés ou fragmentés.
  • La phase de fragmentation est effectuée jusqu'à obtention d'une texture ou malléabilité déterminée. Autrement dit, la fragmentation a pour but d'obtenir une matière plus ou moins meuble, et de préférence avec une granulométrie donnée.
  • La fragmentation précitée est au moins partiellement effectuée par dislocation à l'aide d'ultrasons et/ou de moyens physico-chimiques, tels que l'adjontion d'additifs, le traitement cryogénique et/ou thermique, le broyage ou la variation de pression.
  • Dans ce cas, l'une des phases du procédé de fabrication peut consister à élaborer une suspension de la biomasse ou du matériau fragmenté précité dans un liquide, de préférence aqueux. Il est possible lors d'une phase du procédé, d'en incorporer au moins un parmi le milieu de culture, la biomasse, le matériau, la base et la matière minérale. Cette substance est éventuellement un élément de la biomasse.
  • Une étape de préparation et/ou de traitement peut consister à incorporer à l'un au moins parmi la biomasse, le milieu, le matériau, la base et la matière minérale, un agent de cohésion ou texture. Cet agent est de préférence un liant notamment métallique tel que calcium, magnésium, silicium, baryum, sodium, fluor, aluminium, fer, manganèse, zinc, ou organique tel que collagène, muco-polysaccharide et composé poly-cellulosique.
  • On comprend déjà que cet agent fait éventuellement office de composé d'inactivation, dans le cas d'une base comportant une structure vivante, cultivée ou collectée.
  • Avantageusement, les proportions et la composition de l'agent de cohésion et/ou de texture précité sont choisies pour que la matière finale présente une dureté ou une élasticité prédéterminée.
  • Durant l'une des phases ou étapes du procédé, un additif par exemple moussant, fibreux, agglomérant, isolant, ignifuge ou analogues peut être incorporé à la base et/ou à la matière minérale précitée.
  • Par ailleurs, le procédé peut comprendre une phase de déshydratation au moins partielle d'un ou plusieurs composants de la base et/ou de la matière minérale précitée.
  • Cette phase de déshydratation peut être au moins partiellement effectuée par filtrage, irradiation, centrifugation, traitement thermique et/ou cryogénique.
  • Il est envisageable suivant le procédé, que les phases d'inactivation, de déshydratation et de fragmentation, soient au moins partiellement effectuées simultanément.
  • Selon un mode de réalisation de l'invention, la composition minérale comprend au moins 50% et au plus 80% en masse de carbonate de calcium et au moins 10% et au plus 30% en masse de silice.
  • La composition minérale selon l'invention peut se présenter sous forme de solide divisé, qui, après incorporation d'une quantité d'eau pré-determinée et une étape de malaxage intime, conduit à une pâte dénommée Mix pétrifiant.
  • La viscosité de la pâte Mix est ajustable en ajustant les proportions de composition minérale et d'eau.
  • La réalisation de la matrice de blocage est possible après malaxage intime de la composition minérale et de l'eau à température ambiante. La fluidité du mélange, les propriétés mécaniques et le temps de prise dépendent de la teneur en eau. Elle est adaptable à la nature du matériau et permet de bloquer des déchets nucléaires.
  • Le séchage de la pâte Mix conduit à une matrice homogène dont les caractéristiques mécaniques et chimiques sont compatibles avec le stockage des déchets nucléaires.
  • Par exemple, les propriétés mécaniques de la matrice d'immobilisation sont :
    • ■ un contrainte de compression supérieure ou égale à 8 MPa, typiquement 25 MPa après 30 jours ; et/ou
    • ■ une absence de dégagement gazeux et de ressuage même sous charge ; et/ou
    • ■ un retrait dimensionnel équivalent aux matrices cimentaires ; et/ou
    • ■ une bonne tenue au rayonnement ; et/ou
    • ■ pas de modification de la tenue à la compression après une irradiation de 1300 kGy.
  • Selon un mode de réalisation de l'invention, l'étape de mélange comprend :
    • ■ une étape de pré-mélange au cours de laquelle la composition minérale et l'eau sont mélangées,
    • ■ une étape de malaxage au cours de laquelle le mélange obtenu au cours de l'étape de pré-mélange est malaxé, et
    • ■ une étape d'injection au cours de laquelle le mélange malaxé est injecté dans un emballage contenant les déchets à immobiliser.
  • Selon un mode de réalisation de l'invention, l'étape de mélange comprend :
    • ■ une étape de pré-mélange au cours de laquelle les déchets nucléaires, la composition minérale et l'eau sont mélangées,
    • ■ une étape de malaxage au cours de laquelle le mélange obtenu au cours de l'étape de pré-mélange est malaxé, et
    • ■ une étape d'injection au cours de laquelle le mélange malaxé est injecté dans un emballage destiné à contenir les déchets nucléaires.
  • L'invention ne se limite pas aux modes de réalisations décrits et doit être interprétée de façon non limitative, et englobant tout mode de réalisation équivalent.

Claims (10)

  1. Procédé d'immobilisation de déchets nucléaires comprenant :
    ■ une étape de mélange au cours de laquelle des déchets nucléaires sont mélangés à une composition minérale et de l'eau,
    ■ une étape de séchage au cours de laquelle le mélange obtenu lors de l'étape de mélange est séché de sorte à former une matrice d'immobilisation,
    caractérisé en ce que la composition minérale est obtenue par un procédé de fabrication comprenant les étapes consistant à :
    ■ préparer une base comprenant une quantité prédéterminée d'un matériau minéral synthétisé par au moins une partie de structure vivante choisie parmi le règne végétal, animal et/ou les micro-organismes ; et
    ■ traiter ladite base de façon à la transformer en une matière inactivée et de texture prédéfinie.
  2. Procédé selon la revendication 1, dans lequel la composition minérale est choisie de sorte à ce que, mélangée avec de l'eau, elle présente un pH compris entre 11 et 12,5.
  3. Procédé selon l'une des revendications 1 ou 2, dans lequel la composition minérale est choisie de sorte que la réaction entre ladite composition minérale et l'eau soit sensiblement athermique.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le rapport de la quantité massique de la composition minérale et de la quantité massique d'eau est supérieur ou égal à 1 et inférieur ou égal à 85/15.
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition minérale est choisie, de sorte à ce que la matrice d'immobilisation présente une résistance aux contraintes de compression supérieure ou égale à 8 MPa à 8 jours.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel, au cours de l'étape de mélange, du sable est rajouté, de sorte que le rapport de la quantité massique de la composition minérale et de la quantité massique de sable soit supérieur ou égal à 1,5 et inférieur ou égal à 10.
  7. Procédé selon l'une quelconque des revendications précédentes dans lequel l'étape de mélange comprend :
    ■ une étape de pré-mélange au cours de laquelle la composition minérale et l'eau sont mélangées,
    ■ une étape de malaxage au cours de laquelle le mélange obtenu au cours de l'étape de pré-mélange est malaxé, et
    ■ une étape d'injection au cours de laquelle le mélange malaxé est injecté dans un emballage contenant les déchets à immobiliser.
  8. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel l'étape de mélange comprend :
    ■ une étape de pré-mélange au cours de laquelle les déchets nucléaires, la composition minérale et l'eau sont mélangées,
    ■ une étape de malaxage au cours de laquelle le mélange obtenu au cours de l'étape de pré-mélange est malaxé, et
    ■ une étape d'injection au cours de laquelle le mélange malaxé est injecté dans un emballage destiné à contenir les déchets nucléaires.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition minérale comprend au moins 50% et au plus 80% en masse de carbonate de calcium et au moins 10% et au plus 30% en masse de silice.
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel la quantité massique des déchets nucléaires dans la matrice d'immobilisation est supérieure ou égale à 10% et inférieure ou égale à 80%.
EP10169911A 2009-07-17 2010-07-16 Procédé d'immobilisation de déchets nucléaires Active EP2276037B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0954986A FR2948224A1 (fr) 2009-07-17 2009-07-17 Procede d'immobilisation de dechets nucleaires avec un biomateriau
FR0955428A FR2948225B1 (fr) 2009-07-17 2009-07-31 Procede d'immobilisation de dechets nucleaires

Publications (2)

Publication Number Publication Date
EP2276037A1 true EP2276037A1 (fr) 2011-01-19
EP2276037B1 EP2276037B1 (fr) 2012-03-14

Family

ID=43088170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10169911A Active EP2276037B1 (fr) 2009-07-17 2010-07-16 Procédé d'immobilisation de déchets nucléaires

Country Status (6)

Country Link
EP (1) EP2276037B1 (fr)
AT (1) ATE549722T1 (fr)
ES (1) ES2385316T3 (fr)
FR (1) FR2948225B1 (fr)
HK (1) HK1151886A1 (fr)
RU (1) RU2451350C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261564A (zh) * 2014-10-14 2015-01-07 南华大学 一种利用合果芋-黑曲霉共生体系修复低浓度铀污染水体的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2552845C2 (ru) * 2013-05-30 2015-06-10 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) Способ переработки нитратсодержащих жидких радиоактивных отходов
RU2560119C1 (ru) * 2014-06-27 2015-08-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ переработки отработавшего ядерного топлива
RU2574036C1 (ru) * 2014-08-12 2016-01-27 Открытое акционерное общество "Радиевый институт имени В.Г. Хлопина" Способ экстракционной переработки отработанного ядерного топлива аэс
RU2624825C2 (ru) * 2015-08-14 2017-07-07 Анатолий Алексеевич Москальчук Способ переработки жидких радиоактивных отходов
RU174440U1 (ru) * 2017-04-04 2017-10-13 Общество с ограниченной ответственностью "РАОТЕХ" Установка для подготовки гетерогенной составляющей жидких радиоактивных отходов к захоронению

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029250A1 (fr) 1994-04-26 1995-11-02 Paradas Jose Procede de fabrication de matiere minerale inactivee, et matiere inactivee ainsi obtenue
FR2728812A1 (fr) * 1994-12-30 1996-07-05 Electricite De France Procede de conditionnement de metaux et matrice de conditionnement de ces metaux
WO2001097233A1 (fr) * 2000-06-12 2001-12-20 Geomatrix Solutions, Inc. Procedes d'immobilisation de dechets radioactifs et dangereux

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2723080A1 (fr) * 1994-04-26 1996-02-02 Soleilhavoup Francois Procede et fabrication de matiere minerale inactivee et matiere inactivee ainsi obtenue
GB9422062D0 (en) * 1994-11-02 1994-12-21 British Nuclear Fuels Plc Immobilisation of pollutants in and by clay materials
RU2189652C1 (ru) * 2000-12-19 2002-09-20 Московское государственное предприятие - объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды Способ иммобилизации радиоактивных отходов в минеральный матричный блок и устройство для его реализации
RU2271586C2 (ru) * 2004-04-01 2006-03-10 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации - Физико-энергетический институт им. А.И. Лейпунского" Способ иммобилизации концентрированных жидких радиоактивных отходов (варианты)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029250A1 (fr) 1994-04-26 1995-11-02 Paradas Jose Procede de fabrication de matiere minerale inactivee, et matiere inactivee ainsi obtenue
FR2728812A1 (fr) * 1994-12-30 1996-07-05 Electricite De France Procede de conditionnement de metaux et matrice de conditionnement de ces metaux
WO2001097233A1 (fr) * 2000-06-12 2001-12-20 Geomatrix Solutions, Inc. Procedes d'immobilisation de dechets radioactifs et dangereux

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261564A (zh) * 2014-10-14 2015-01-07 南华大学 一种利用合果芋-黑曲霉共生体系修复低浓度铀污染水体的方法

Also Published As

Publication number Publication date
ATE549722T1 (de) 2012-03-15
HK1151886A1 (en) 2012-02-10
FR2948225A1 (fr) 2011-01-21
FR2948225B1 (fr) 2011-07-01
RU2010130270A (ru) 2012-01-27
ES2385316T3 (es) 2012-07-23
EP2276037B1 (fr) 2012-03-14
RU2451350C2 (ru) 2012-05-20

Similar Documents

Publication Publication Date Title
EP2276037B1 (fr) Procédé d'immobilisation de déchets nucléaires
BE1000246A5 (fr) Milieu de croissance pour plantes.
AU2013200671B2 (en) Biocementation of particulate material in suspension
EP2328850B1 (fr) Utilisation d'une composition minerale solide pour accroitre la fertilite d'un sol de culture ou de prairie
CN102446569A (zh) 固化核废料的方法
US9711249B2 (en) Method of immobilizing nuclear waste
CA2965072A1 (fr) Procede d'obtention d'une substance minerale cimentaire
JP2013174557A (ja) 微生物及び腐植質を利用した放射性物質除染剤及び放射性物質除染方法
EP0708836B1 (fr) Procede de fabrication de matiere minerale inactivee, et matiere inactivee ainsi obtenue
EP2647614B1 (fr) Procédé de préparation de complexes végétaux activés et de complexes végétaux/matières organiques dopés ou surdopés, carbonés et leurs applications notamment en méthanisation ou fabrication de biogaz
FR2880344A1 (fr) Compositions pour la bacterisation d'engrais organiques (eo) et organo-mineraux (eom) granules.
CA2715409C (fr) Procede d'immobilisation de dechets nucleaires
FR2948224A1 (fr) Procede d'immobilisation de dechets nucleaires avec un biomateriau
FR2723080A1 (fr) Procede et fabrication de matiere minerale inactivee et matiere inactivee ainsi obtenue
CN106946431A (zh) 一种水产养殖池塘改底剂及其制备方法
CN101617689B (zh) 一种促进河蟹养殖池塘中水草生根制剂及其制备方法
CA1203991A (fr) Procede de fabrication d'une matiere inerte pour sols ou plans de culture
JP7401072B2 (ja) 微細藻類増殖促進剤及びその製造方法
FR2931817A1 (fr) Sols anthropogeniques dits "terra preta"
FR2723084A1 (fr) Procede de production de substance nutritive des sols par biomineralisation
Mishra et al. Rice Husk: From Agro-Industrial to Modern Applications
CN110117209A (zh) 含氨基酸有机质液态肥的制造方法
JP7100076B2 (ja) 土壌改良材およびその製造方法
KR20220069828A (ko) 친환경 폐자원을 활용한 박테리아 자기치유 콘크리트 조성물 및 이의 용도
FR2723081A1 (fr) Procede de production biologique de substrats mineraux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110114

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1151886

Country of ref document: HK

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 549722

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010001019

Country of ref document: DE

Effective date: 20120516

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120314

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2385316

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 549722

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120714

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120716

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1151886

Country of ref document: HK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

26N No opposition filed

Effective date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010001019

Country of ref document: DE

Effective date: 20121217

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120716

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120716

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100716

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 14

Ref country code: FR

Payment date: 20230621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 14

Ref country code: ES

Payment date: 20230801

Year of fee payment: 14

Ref country code: CH

Payment date: 20230801

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 14