EP2264830A1 - Reflector antenna with variable coverage and operating frequencies and a satellite with such antenna - Google Patents

Reflector antenna with variable coverage and operating frequencies and a satellite with such antenna Download PDF

Info

Publication number
EP2264830A1
EP2264830A1 EP10164352A EP10164352A EP2264830A1 EP 2264830 A1 EP2264830 A1 EP 2264830A1 EP 10164352 A EP10164352 A EP 10164352A EP 10164352 A EP10164352 A EP 10164352A EP 2264830 A1 EP2264830 A1 EP 2264830A1
Authority
EP
European Patent Office
Prior art keywords
reflector
motor
source
antenna
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10164352A
Other languages
German (de)
French (fr)
Other versions
EP2264830B1 (en
Inventor
Ludovic Schreider
Pierre Bosshard
Serge Depeyre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2264830A1 publication Critical patent/EP2264830A1/en
Application granted granted Critical
Publication of EP2264830B1 publication Critical patent/EP2264830B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/161Collapsible reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/002Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/20Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is fixed and the reflecting device is movable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Definitions

  • the present invention relates to a reflector antenna with coverage and frequency flexibility and a satellite having such an antenna. It applies in particular to the field of satellite telecommunication antennas.
  • Antennas on board satellites typically have a geometrically shaped, single-source reflector for covering a coverage area pointed at the Earth.
  • a satellite typically includes a transmitting and receiving antenna, or a transmitting antenna and receiving antenna, per coverage area.
  • the geometric shape of the reflector may optionally be defined to be optimized for several orbital positions of the satellite but generally to cover a single geographical coverage.
  • Frequency flexibility over a broadband spectrum for example the Ku, Ku + frequency plan covering frequencies between 10.7GHz and 18.4GHz and a single coverage area, can not be obtained with a single source because no source is currently sufficiently broadband.
  • there is a critical point concerning the diplexing between the transmit and receive tapes and it is necessary to maintain a margin of the order of 250 MHz between the high frequency of the transmission band and the low frequency of the transmission band. reception band.
  • a first known solution is to use two separate antennas to cover the same geographical area, but this solution causes problems of mass, size and cost.
  • a second known solution is to place two sources side by side in front of an oversized reflector so as to minimize the defocusing of the two sources.
  • the phase centers of the two sources are placed in the focal plane of the reflector and their axes of radiation are parallel.
  • the two sources are positioned as close to the focus of the reflector to reduce the defocusing of the sources and the resulting directivity losses of the antenna.
  • this solution is not optimal.
  • the French patent application referenced under the publication number FR2648278 discloses an antenna device comprising two sources and a pivotable auxiliary reflector and provided with two reflective surfaces.
  • this device suffers from the aforementioned disadvantages of defocusing, which degrades the performance of the antenna, on the other hand, the number of degrees of freedom accessible on an auxiliary reflector is quite low, which amounts to limiting the possibilities of deformation of the coverage obtained by beam of the antenna.
  • Another possibility is to use a single source placed at the focus of a reflector, the source being connected to a complex electrical architecture combining two radio frequency chains, the first channel operating in a first frequency plane, the second channel operating in a second plane of frequencies.
  • this architecture induces a complexity generating non-negligible ohmic losses and a significant cost of implementation.
  • the current solutions require the use of two separate and independent antennas each having a deployable reflector, the reflector to be associated with two different sources to fully cover a chosen frequency band, which imposes thus four sources in total, placed on a lateral face of a satellite and a double system of stacking to deploy or store the two reflectors of the two antennas.
  • the object of the invention is to provide an optimal antenna to meet the need for flexibility in coverage and frequency, to eliminate the aberrations and losses due to defocusing, simple to implement, and whose geometry does not result no compromise in performance and reduces the ohmic losses compared to previous solutions.
  • the invention relates to a reflector antenna with a coverage and frequency flexibility comprising a returnable reflector having two distinct reflective surfaces geometrically formed so as to cover respectively a first and a second different geographical area and of predetermined shapes, characterized in that that the two reflective surfaces are fixed back-to-back on a common support, and in that the antenna further comprises at least two independent sources arranged in a fixed configuration and connected to separate radiofrequency power supply channels defining frequency planes different and predetermined operation, the reflector having a first deployment position in which the focus of the first reflective surface is placed in the center of phase of the first source S1 and a second deployment position in which the focus of the second the reflective surface is placed in the center of phase of the second source S2.
  • the active source, S1 or S2 is focused because its phase center is positioned at the focus of the reflector.
  • the antenna comprises reflector deployment means comprising at least a first motor and reflector reversing means comprising at least a second motor, the two motors having axes of rotation perpendicular to each other, the second motor actuating the reversal of the reflector from the first position to the second position by a rotation of a predetermined angle of the common support.
  • the reflector comprises a third deployment position in which the focus of the first reflecting surface is placed at the phase center of the second source and a fourth deployment position in which the focus of the second reflecting surface is placed in the center of phase. from the first source.
  • the antenna further comprises translational means of the reflector comprising a third motor connected to the first motor and the second motor by lever arms, the third motor having an axis of rotation parallel to the axis of rotation of the first motor the first and third motors actuating the translational reflector to change the focus position of the first reflective surface, respectively the second reflective surface, from the first source to the second source.
  • translational means of the reflector comprising a third motor connected to the first motor and the second motor by lever arms, the third motor having an axis of rotation parallel to the axis of rotation of the first motor the first and third motors actuating the translational reflector to change the focus position of the first reflective surface, respectively the second reflective surface, from the first source to the second source.
  • the antenna comprises a single reflector, this reflector being the returnable reflector.
  • This reflector being the returnable reflector.
  • a large number of different covers can thus be produced (although, ultimately, only two covers are accessible on the reflector), for example highly distorted geographical covers, very elongated.
  • the antenna comprises a main reflector associated with an auxiliary reflector (for example an antenna with a Cassegrain type mounting).
  • an auxiliary reflector for example an antenna with a Cassegrain type mounting.
  • the main reflector which has two returnable reflective surfaces, so as to benefit from a maximum of degrees of freedom in the production of covers.
  • the sources can be attached side by side or one above the other.
  • the invention also relates to a telecommunications satellite comprising such an antenna.
  • the passive simple offset antenna comprises a reflector 10 in the stored position on the platform 11 of a satellite, for example on a lateral face parallel to a plane YZ, and two independent sources S1, S2 of radio frequency signals.
  • the reflector 10 comprises two distinct and differently shaped reflective surfaces R1, R2 fixed back-to-back on a common support 15, as represented for example on the figure 1 b. Each reflective surface is geometrically shaped and optimized for a given mission so as to illuminate a ground coverage area having predetermined dimensions when only one source is placed in the home.
  • the sources S1, S2 for example of the horn type, are fixed on an inclined plane 16 arranged on the platform 11 and are arranged in a predetermined fixed configuration for example one next to the other.
  • the sources S1 and S2 may in some cases be placed one above the other or in any other configuration.
  • one of the reflecting surfaces R1, R2 is positioned facing the two sources S1, S2 and is oriented in a predetermined pointing direction 17.
  • the reflector 10 is returnable relative to the plane of the support 15 by a rotation of the assembly consisting of the support 15 and the two reflecting surfaces R1, R2, which allows to change reflective surface and therefore desired coverage area.
  • the invention therefore consists in positioning the two reflecting surfaces R1, R2 on the common support 15 so that in a first position of the reflector 10 corresponding to a first mission of the satellite, the phase center of the source S1 is placed at the focus of the first reflecting surface R1 and so that in a second position of the reflector obtained by a rotation of the reflector and corresponding to a second mission of the satellite, the phase center of the second source S2 is placed at the focus of the second reflecting surface R2.
  • the rotation allowing the reversal of the reflector from the first position to the second position is performed around an axis 22 parallel to the plane of the support 15 and at a predetermined angle depending on the relative positioning of the reflecting surfaces R1, R2 on the support 15.
  • the angle of rotation for the reversal of the reflector is adjustable within a predetermined range of values, for example between 175 ° and 195 °.
  • the reflector deployment mechanism comprises for example a motor M1 having an axis of rotation parallel to the plane YZ and a deployment arm 13 which can be actuated in rotation by the motor M1 between a position in which the reflector 10 is stored against the wall of the platform 11 parallel to the YZ plane of the satellite and a deployment position.
  • the reversal mechanism of the reflector 10 comprises, for example, a second motor M2 axis perpendicular to the axis of the motor M1 and connected to the deployment arm 13 and the reflector 10.
  • the second motor M2 actuates the reversal of the reflector 10 from the first position to the second position by a rotation of a predetermined angle of the common support 15.
  • the two sources S1, S2 are fed respectively via two different channels 2, 3 for supplying radiofrequency RF signals preferably integrated in a box 14.
  • Each RF channel 2, 3 being dedicated to telecommunication functions, the two sources S1, S2 may be fed in different frequency planes F1 and F2, each frequency plan may include one or more frequency subbands on transmission and / or reception.
  • the phase center 5 of the source S1 is positioned at the focus of the first reflecting surface R1 which points in a first pointing direction 17 located on a first land cover area corresponding to a first predetermined mission.
  • the phase center 6 of the source S2 is positioned at the focus of the second reflecting surface R2 which points in a second pointing direction 18 located on a second land cover area different from the first coverage area and corresponding to a second mission predetermined.
  • the transition from the first mission to the second mission is performed by rotating a predetermined angle of the returnable reflector 10, for example 180 °, relative to the plane of the support 15.
  • the rotational drive of the reflector 10 is performed at second motor M2.
  • the desired change of pointing direction between mission 1 and mission 2 determines the relative position of the two reflecting surfaces R1, R2 relative to each other on support 15.
  • the invention consists in selecting one of the sources S1 or S2 as a function of the desired frequency and then moving and orienting the reflector 10 so that the selected source is positioned in the focus of the reflector and that the reflector illuminates the selected coverage area.
  • the phase center of the source S1 is positioned at the focus of the first reflective surface R1 of the reflector 10 which points in a pointing direction 17 located for example on the Earth's equator.
  • the invention consists in switching the power supply from the source S1 to the source S2 and moving the reflector in translation from the source S1 to the source S2 to position the focus of the first reflective surface R1 at the center of phase 6 of the source S2, as shown in FIG.
  • the displacement and orientation of the reflector 10 in front of the source S2 without changing the pointing direction 17 of the antenna can be achieved for example by means of two motors M1, M3, the motor M3 being connected to the motor M1 and the motor M2 by means of corresponding lever arms 20, 21.
  • the two motors M1, M3 have axes of rotation parallel, or almost parallel, between them and almost parallel to the plane YZ of the lateral face of the platform 11 of the satellite which supports the reflector 10.
  • the actuation of the motor M1 in rotation in the opposite direction of the clockwise and at a rotation angle depending on the spacing between the sources S1 and S2, causes the first lever arm 20 to rotate in the same direction which has the effect of moving and to bring the motor M3 and the reflector 10 closer to the platform 11 of the satellite, as shown in FIG. figure 3b and thus move the reflector of the source S1 to the source S2.
  • Actuating the motor M3 in rotation in the clockwise direction at the same angle of rotation as the motor M1 then makes it possible, by means of the lever arm 21, to tilt the reflector 10 in rotation in the direction of rotation.
  • the same operations may be reproduced with one or more additional sources, for example to perform one or more other missions in other frequency plans if each additional source is connected to an RF channel dedicated and optimized for another frequency plan than that of sources S1 and S2.
  • the first mission is carried out by placing the focus of the reflecting surface R1 on the center of phase 5 of the first source S1, for the second mission, the reflector is translated and the center of phase 6 of the second source S2 is at the focus of the reflective surface R1, for the third mission, the reflector is rotated by a predetermined adjustable angle, for example between 175 ° and 195 ° in the exemplary embodiments, and the first source S1 is at the focus of the reflecting surface R2 and for the fourth mission, the second source S2 is at the focus of the reflecting surface R2.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The antenna has a reversible reflector (10) with two separate reflecting surfaces (R1, R2) shaped geometrically to respectively cover different geographical zones. Two independent radiofrequency signal sources (S1, S2) are arranged in a fixed configuration and connected to separate radio-frequency supply chains (2, 3) defining different and predefined operating frequency planes (F1, F2). The reflector occupies two deployment positions in which focal points of the surfaces are located at a phase center (5) and another phase center of the sources by two motors (M1, M2), respectively.

Description

La présente invention concerne une antenne à réflecteur à flexibilité de couverture et de fréquence et un satellite comportant une telle antenne. Elle s'applique notamment au domaine des antennes de télécommunication par satellite.The present invention relates to a reflector antenna with coverage and frequency flexibility and a satellite having such an antenna. It applies in particular to the field of satellite telecommunication antennas.

La durée de vie croissante des satellites de télécommunications et l'évolution des exigences associées aux différentes missions qui peuvent leur être confiées, impose que les charges utiles, et en particulier les antennes, des futures générations de satellites soient flexibles. Cette flexibilité peut être réalisée au niveau de la zone de couverture géographique de l'antenne et/ou au niveau de la polarisation et/ou au niveau de la bande de fréquences de fonctionnement. Cette flexibilité n'a pas pour objectif de couvrir toutes les zones de couverture géographiques simultanément mais d'avoir le choix entre plusieurs couvertures géographiques pouvant être générées par la même antenne et de pouvoir modifier, en orbite, la mission du satellite.The increasing lifespan of telecommunications satellites and the evolution of the requirements associated with the various missions that may be entrusted to them, requires that the payloads, and in particular the antennas, of future generations of satellites be flexible. This flexibility can be achieved at the geographical coverage area of the antenna and / or at the level of the polarization and / or at the level of the frequency band of operation. This flexibility is not intended to cover all geographical coverage areas at the same time but to have the choice of several geographic coverage that can be generated by the same antenna and to be able to modify, in orbit, the mission of the satellite.

Les antennes placées à bord des satellites comportent typiquement un réflecteur, géométriquement formé, éclairé par une source unique pour couvrir une zone de couverture pointée sur la Terre. Un satellite comporte généralement une antenne d'émission et de réception, ou une antenne d'émission et une antenne de réception, par zone de couverture. La forme géométrique du réflecteur peut éventuellement être définie de façon à être optimisée pour plusieurs positions orbitales du satellite mais généralement pour couvrir une unique couverture géographique.Antennas on board satellites typically have a geometrically shaped, single-source reflector for covering a coverage area pointed at the Earth. A satellite typically includes a transmitting and receiving antenna, or a transmitting antenna and receiving antenna, per coverage area. The geometric shape of the reflector may optionally be defined to be optimized for several orbital positions of the satellite but generally to cover a single geographical coverage.

La flexibilité de fréquence sur un spectre à large bande, par exemple le plan de fréquences Ku, Ku+ couvrant les fréquences comprises entre 10,7GHz et 18,4GHz et une seule zone de couverture, ne peut pas être obtenue avec une seule source car aucune source n'est actuellement suffisamment à large bande. En outre, il existe un point critique concernant le diplexage entre les bandes d'émission et de réception et il est nécessaire de conserver une marge de l'ordre de 250MHz entre la fréquence haute de la bande d'émission et la fréquence basse de la bande de réception.Frequency flexibility over a broadband spectrum, for example the Ku, Ku + frequency plan covering frequencies between 10.7GHz and 18.4GHz and a single coverage area, can not be obtained with a single source because no source is currently sufficiently broadband. In addition, there is a critical point concerning the diplexing between the transmit and receive tapes and it is necessary to maintain a margin of the order of 250 MHz between the high frequency of the transmission band and the low frequency of the transmission band. reception band.

Une première solution connue est d'utiliser deux antennes distinctes pour couvrir la même zone géographique, mais cette solution engendre des problèmes de masse, d'encombrement et de coût.A first known solution is to use two separate antennas to cover the same geographical area, but this solution causes problems of mass, size and cost.

Une deuxième solution connue consiste à placer deux sources côte à côte devant un réflecteur surdimensionné de manière à minimiser la défocalisation des deux sources. Les centres de phase des deux sources sont placés dans le plan focal du réflecteur et leurs axes de rayonnement sont parallèles. Les deux sources sont positionnées au plus près du foyer du réflecteur pour réduire la défocalisation des sources et les pertes en directivité de l'antenne qui en résultent. Cependant cette solution n'est pas optimale.A second known solution is to place two sources side by side in front of an oversized reflector so as to minimize the defocusing of the two sources. The phase centers of the two sources are placed in the focal plane of the reflector and their axes of radiation are parallel. The two sources are positioned as close to the focus of the reflector to reduce the defocusing of the sources and the resulting directivity losses of the antenna. However, this solution is not optimal.

A titre d'exemple, la demande de brevet français référencée sous le numéro de publication FR2648278 divulgue un dispositif antennaire comportant deux sources et un réflecteur auxiliaire pivotable et pourvu de deux surfaces réfléchissantes. D'une part, ce dispositif souffre des inconvénients de défocalisation précités, ce qui dégrade les performances de l'antenne, d'autre part, le nombre de degrés de liberté accessibles sur un réflecteur auxiliaire est assez faible, ce qui revient à limiter les possibilités de déformation de la couverture obtenue par faisceau de l'antenne.For example, the French patent application referenced under the publication number FR2648278 discloses an antenna device comprising two sources and a pivotable auxiliary reflector and provided with two reflective surfaces. On the one hand, this device suffers from the aforementioned disadvantages of defocusing, which degrades the performance of the antenna, on the other hand, the number of degrees of freedom accessible on an auxiliary reflector is quite low, which amounts to limiting the possibilities of deformation of the coverage obtained by beam of the antenna.

Une autre possibilité consiste à utiliser une seule source placée au foyer d'un réflecteur, la source étant reliée à une architecture électrique complexe combinant deux chaînes radiofréquences, la première chaîne fonctionnant dans un premier plan de fréquences, la seconde chaîne fonctionnant dans un second plan de fréquences. Cependant cette architecture induit une complexité engendrant des pertes ohmiques non négligeables et un coût de réalisation important.Another possibility is to use a single source placed at the focus of a reflector, the source being connected to a complex electrical architecture combining two radio frequency chains, the first channel operating in a first frequency plane, the second channel operating in a second plane of frequencies. However, this architecture induces a complexity generating non-negligible ohmic losses and a significant cost of implementation.

Par ailleurs, pour réaliser deux zones de couverture distinctes, les solutions actuelles nécessitent d'utiliser deux antennes distinctes et indépendantes comportant chacune un réflecteur déployable, le réflecteur devant être associé à deux sources différentes pour couvrir entièrement une bande de fréquence choisie, ce qui impose donc quatre sources au total, placées sur une face latérale d'un satellite et un double système de gerbage pour déployer ou stocker les deux réflecteurs des deux antennes.Moreover, to achieve two distinct coverage areas, the current solutions require the use of two separate and independent antennas each having a deployable reflector, the reflector to be associated with two different sources to fully cover a chosen frequency band, which imposes thus four sources in total, placed on a lateral face of a satellite and a double system of stacking to deploy or store the two reflectors of the two antennas.

Le brevet US 6 859 188 décrit une autre solution consistant à utiliser un réflecteur retournable comportant deux surfaces réfléchissantes couvrant deux zones de couvertures différentes le réflecteur étant associé à une seule source. Le positionnement de l'une des surfaces réfléchissantes devant la source permet de sélectionner l'une des zones de couverture, cependant cette solution ne comporte aucune flexibilité de fréquence et ne permet pas un fonctionnement dans un plan de fréquence à large bande.The patent US 6,859,188 discloses another alternative of using a returnable reflector having two reflective surfaces covering two different coverage areas the reflector being associated with a single source. The positioning of one of the reflective surfaces in front of the source makes it possible to select one of the coverage areas, however this solution has no frequency flexibility and does not allow operation in a broadband frequency plan.

Le but de l'invention est de réaliser une antenne optimale permettant de répondre aux besoins de flexibilité en couverture et en fréquence, permettant de supprimer les aberrations et les pertes dues à la défocalisation, simple à mettre en oeuvre, et dont la géométrie ne résulte pas d'un compromis en performances et permet de réduire les pertes ohmiques par rapport aux solutions antérieures.The object of the invention is to provide an optimal antenna to meet the need for flexibility in coverage and frequency, to eliminate the aberrations and losses due to defocusing, simple to implement, and whose geometry does not result no compromise in performance and reduces the ohmic losses compared to previous solutions.

Pour cela, l'invention concerne une antenne à réflecteur à flexibilité de couverture et de fréquence comportant un réflecteur retournable ayant deux surfaces réfléchissantes distinctes formées géométriquement de façon à couvrir respectivement une première et une deuxième zones géographiques différentes et de formes prédéterminées, caractérisée en ce que les deux surfaces réfléchissantes sont fixées dos à dos sur un support commun , et en ce que l'antenne comporte en outre au moins deux sources indépendantes disposées dans une configuration fixe et reliées à des chaînes d'alimentation radiofréquence distinctes définissant des plans de fréquences de fonctionnement différents et prédéfinis, le réflecteur comportant une première position de déploiement selon laquelle le foyer de la première surface réfléchissante est placé au centre de phase de la première source S1 et une deuxième position de déploiement selon laquelle le foyer de la deuxième surface réfléchissante est placé au centre de phase de la deuxième source S2.For this purpose, the invention relates to a reflector antenna with a coverage and frequency flexibility comprising a returnable reflector having two distinct reflective surfaces geometrically formed so as to cover respectively a first and a second different geographical area and of predetermined shapes, characterized in that that the two reflective surfaces are fixed back-to-back on a common support, and in that the antenna further comprises at least two independent sources arranged in a fixed configuration and connected to separate radiofrequency power supply channels defining frequency planes different and predetermined operation, the reflector having a first deployment position in which the focus of the first reflective surface is placed in the center of phase of the first source S1 and a second deployment position in which the focus of the second the reflective surface is placed in the center of phase of the second source S2.

Ainsi, quelle que soit la configuration dans laquelle l'antenne selon l'invention est utilisée, la source active, S1 ou S2, est focalisée car son centre de phase est positionné au foyer du réflecteur.Thus, whatever the configuration in which the antenna according to the invention is used, the active source, S1 or S2, is focused because its phase center is positioned at the focus of the reflector.

Avantageusement, l'antenne comporte des moyens de déploiement du réflecteur comportant au moins un premier moteur et des moyens de retournement du réflecteur comportant au moins un deuxième moteur, les deux moteurs ayant des axes de rotation perpendiculaires entre eux, le deuxième moteur actionnant le retournement du réflecteur de la première position à la deuxième position par une rotation d'un angle prédéterminé du support commun.Advantageously, the antenna comprises reflector deployment means comprising at least a first motor and reflector reversing means comprising at least a second motor, the two motors having axes of rotation perpendicular to each other, the second motor actuating the reversal of the reflector from the first position to the second position by a rotation of a predetermined angle of the common support.

Avantageusement, le réflecteur comporte une troisième position de déploiement selon laquelle le foyer de la première surface réfléchissante est placé au centre de phase de la deuxième source et une quatrième position de déploiement selon laquelle le foyer de la deuxième surface réfléchissante est placé au centre de phase de la première source.Advantageously, the reflector comprises a third deployment position in which the focus of the first reflecting surface is placed at the phase center of the second source and a fourth deployment position in which the focus of the second reflecting surface is placed in the center of phase. from the first source.

Avantageusement, l'antenne comporte en outre des moyens de translation du réflecteur comportant un troisième moteur relié au premier moteur et au deuxième moteur par des bras de levier, le troisième moteur ayant un axe de rotation parallèle à l'axe de rotation du premier moteur, le premier et le troisième moteur actionnant le réflecteur en translation permettant un changement de la position du foyer de la première surface réfléchissante, respectivement de la deuxième surface réfléchissante, de la première source à la deuxième source. L'antenne selon l'invention bénéficie ainsi d'une cinématique spécifique, grâce notamment aux trois moteurs placés judicieusement, et permet d'atteindre des performances RF optimales sur deux couvertures distinctes et sur deux plans de fréquences différents.Advantageously, the antenna further comprises translational means of the reflector comprising a third motor connected to the first motor and the second motor by lever arms, the third motor having an axis of rotation parallel to the axis of rotation of the first motor the first and third motors actuating the translational reflector to change the focus position of the first reflective surface, respectively the second reflective surface, from the first source to the second source. The antenna according to the invention thus benefits from a specific kinematics, thanks in particular to the three judiciously placed motors, and makes it possible to achieve optimal RF performance on two distinct covers and on two different frequency planes.

Selon un mode de réalisation, l'antenne comporte un unique réflecteur, ce réflecteur étant le réflecteur retournable. Un grand nombre de couvertures différentes peuvent ainsi être produites (bien que, in fine, uniquement deux couvertures soient accessibles sur le réflecteur), par exemple des couvertures géographiques très déformées, très allongées.According to one embodiment, the antenna comprises a single reflector, this reflector being the returnable reflector. A large number of different covers can thus be produced (although, ultimately, only two covers are accessible on the reflector), for example highly distorted geographical covers, very elongated.

Selon un autre mode de réalisation, l'antenne comporte un réflecteur principal associé à un réflecteur auxiliaire (par exemple une antenne avec un montage de type Cassegrain). Dans ce cas, c'est de préférence le réflecteur principal qui comporte deux surfaces réfléchissantes retournables, de manière à bénéficier d'un maximum de degrés de libertés dans la production des couvertures.According to another embodiment, the antenna comprises a main reflector associated with an auxiliary reflector (for example an antenna with a Cassegrain type mounting). In this case, it is preferably the main reflector which has two returnable reflective surfaces, so as to benefit from a maximum of degrees of freedom in the production of covers.

Avantageusement, les sources peuvent être fixées côte à côte ou l'une au-dessus de l'autre.Advantageously, the sources can be attached side by side or one above the other.

L'invention concerne également un satellite de télécommunications comportant une telle antenne.The invention also relates to a telecommunications satellite comprising such an antenna.

D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :

  • figure 1 a : un schéma en perspective d'un exemple d'antenne à réflecteur à flexibilité de couverture, montée sur la plate-forme d'un satellite, le réflecteur étant dans une position stockée, selon l'invention;
  • figure 1b : un schéma en perspective du réflecteur en position déployée montrant les deux surfaces réfléchissantes du réflecteur montées sur un support commun, selon l'invention ;
  • figures 2a, 2b: deux schémas de la même antenne pour deux directions de pointage différentes, selon l'invention ;
  • figures 3a, 3b : deux schémas de la même antenne dans une deuxième et une troisième positions selon lesquelles la source S1, respectivement la source S2, est au foyer du réflecteur pointé dans une même direction, selon l'invention ;
Other features and advantages of the invention will become clear in the following description given by way of purely illustrative and non-limiting example, with reference to the attached schematic drawings which represent:
  • figure 1 a: a perspective diagram of an example of a reflector antenna with flexibility of coverage, mounted on the platform of a satellite, the reflector being in a stored position, according to the invention;
  • figure 1b : a perspective diagram of the reflector in the deployed position showing the two reflecting surfaces of the reflector mounted on a common support, according to the invention;
  • Figures 2a , 2b : two diagrams of the same antenna for two different pointing directions, according to the invention;
  • figures 3a , 3b : two diagrams of the same antenna in a second and a third positions according to which the source S1, respectively the source S2, is at the focus of the reflector pointed in the same direction, according to the invention;

Sur l'exemple représenté sur la figure 1a, l'antenne passive simple offset comporte un réflecteur 10 en position stockée sur la plate-forme 11 d'un satellite, par exemple sur une face latérale parallèle à un plan YZ, et deux sources indépendantes S1, S2 de signaux radiofréquence. Un mécanisme de déploiement 12 visible sur les figures suivantes, permet de déployer le réflecteur 10 pour que dans une position déployée, les deux sources S1, S2 soient disposées devant le réflecteur, dans son plan focal. Le réflecteur 10 comporte deux surfaces réfléchissantes R1, R2 distinctes et de formes différentes fixées dos à dos sur un support commun 15, comme représenté par exemple sur la figure 1 b. Chaque surface réfléchissante est formée géométriquement et optimisée pour une mission donnée de façon à illuminer une zone de couverture au sol ayant des dimensions prédéterminées lorsqu'une seule source est placée à son foyer. Cette forme a approximativement l'allure d'une parabole et n'en diffère que légèrement. Les sources S1, S2, par exemple de type cornets, sont fixées sur un plan incliné 16 aménagé sur la plate-forme 11 et sont disposées selon une configuration fixe prédéterminée par exemple l'une à côté de l'autre. Les sources S1 et S2 peuvent dans certains cas être placées l'une au dessus de l'autre ou dans toute autre configuration.In the example shown on the figure 1a the passive simple offset antenna comprises a reflector 10 in the stored position on the platform 11 of a satellite, for example on a lateral face parallel to a plane YZ, and two independent sources S1, S2 of radio frequency signals. A deployment mechanism 12 visible in the following figures, deploys the reflector 10 so that in an extended position, the two sources S1, S2 are arranged in front of the reflector in its focal plane. The reflector 10 comprises two distinct and differently shaped reflective surfaces R1, R2 fixed back-to-back on a common support 15, as represented for example on the figure 1 b. Each reflective surface is geometrically shaped and optimized for a given mission so as to illuminate a ground coverage area having predetermined dimensions when only one source is placed in the home. This shape looks like a parabola and differs only slightly. The sources S1, S2, for example of the horn type, are fixed on an inclined plane 16 arranged on the platform 11 and are arranged in a predetermined fixed configuration for example one next to the other. The sources S1 and S2 may in some cases be placed one above the other or in any other configuration.

En position déployée, l'une des surfaces réfléchissantes R1, R2 est positionnée en regard des deux sources S1, S2 et est orientée selon une direction de pointage prédéterminée 17. Le réflecteur 10 est retournable par rapport au plan du support 15 par une rotation de l'ensemble constitué par le support 15 et les deux surfaces réfléchissantes R1, R2, ce qui permet de pouvoir changer de surface réfléchissante et donc de zone de couverture souhaitée. L'invention consiste donc à positionner les deux surfaces réfléchissantes R1, R2 sur le support commun 15 de façon que dans une première position du réflecteur 10 correspondant à une première mission du satellite, le centre de phase de la source S1 soit placé au foyer de la première surface réfléchissante R1 et de façon que dans une deuxième position du réflecteur obtenue par une rotation du réflecteur et correspondant à une deuxième mission du satellite, le centre de phase de la deuxième source S2 soit placée au foyer de la deuxième surface réfléchissante R2. La rotation permettant le retournement du réflecteur de la première position à la deuxième position est réalisée autour d'un axe 22 parallèle au plan du support 15 et sur un angle prédéterminé dépendant du positionnement relatif des surfaces réfléchissantes R1, R2 sur le support 15. A titre d'exemple non limitatif, l'angle de rotation pour le retournement du réflecteur est réglable dans une fourchette de valeurs prédéterminée, par exemple entre 175° et 195°.In the deployed position, one of the reflecting surfaces R1, R2 is positioned facing the two sources S1, S2 and is oriented in a predetermined pointing direction 17. The reflector 10 is returnable relative to the plane of the support 15 by a rotation of the assembly consisting of the support 15 and the two reflecting surfaces R1, R2, which allows to change reflective surface and therefore desired coverage area. The invention therefore consists in positioning the two reflecting surfaces R1, R2 on the common support 15 so that in a first position of the reflector 10 corresponding to a first mission of the satellite, the phase center of the source S1 is placed at the focus of the first reflecting surface R1 and so that in a second position of the reflector obtained by a rotation of the reflector and corresponding to a second mission of the satellite, the phase center of the second source S2 is placed at the focus of the second reflecting surface R2. The rotation allowing the reversal of the reflector from the first position to the second position is performed around an axis 22 parallel to the plane of the support 15 and at a predetermined angle depending on the relative positioning of the reflecting surfaces R1, R2 on the support 15. A As a non-limiting example, the angle of rotation for the reversal of the reflector is adjustable within a predetermined range of values, for example between 175 ° and 195 °.

Le mécanisme de déploiement du réflecteur comporte par exemple un moteur M1 ayant un axe de rotation parallèle au plan YZ et un bras de déploiement 13 pouvant être actionné en rotation par le moteur M1 entre une position dans laquelle le réflecteur 10 est stocké contre la paroi de la plate-forme 11 parallèle au plan YZ du satellite et une position de déploiement. Le mécanisme de retournement du réflecteur 10 comporte par exemple un deuxième moteur M2 d'axe perpendiculaire à l'axe du moteur M1 et relié au bras de déploiement 13 et au réflecteur 10. Le deuxième moteur M2 actionne le retournement du réflecteur 10 de la première position à la deuxième position par une rotation d'un angle prédéterminé du support commun 15.The reflector deployment mechanism comprises for example a motor M1 having an axis of rotation parallel to the plane YZ and a deployment arm 13 which can be actuated in rotation by the motor M1 between a position in which the reflector 10 is stored against the wall of the platform 11 parallel to the YZ plane of the satellite and a deployment position. The reversal mechanism of the reflector 10 comprises, for example, a second motor M2 axis perpendicular to the axis of the motor M1 and connected to the deployment arm 13 and the reflector 10. The second motor M2 actuates the reversal of the reflector 10 from the first position to the second position by a rotation of a predetermined angle of the common support 15.

Les deux sources S1, S2 sont alimentées respectivement par l'intermédiaire de deux chaînes 2, 3 différentes d'alimentation en signaux radiofréquence RF de préférence intégrées dans un boîtier 14. Chaque chaîne RF 2, 3 étant dédiée à des fonctions de télécommunication, les deux sources S1, S2 peuvent être alimentées dans des plans de fréquence différents F1 et F2, chaque plan de fréquence pouvant comporter une ou plusieurs sous-bandes de fréquence à l'émission et/ou à la réception.The two sources S1, S2 are fed respectively via two different channels 2, 3 for supplying radiofrequency RF signals preferably integrated in a box 14. Each RF channel 2, 3 being dedicated to telecommunication functions, the two sources S1, S2 may be fed in different frequency planes F1 and F2, each frequency plan may include one or more frequency subbands on transmission and / or reception.

Sur la figure 2a, le centre de phase 5 de la source S1 est positionné au foyer de la première surface réfléchissante R1 qui pointe dans une première direction de pointage 17 située sur une première zone de couverture terrestre correspondant à une première mission prédéterminée. Sur la figure 2b, le centre de phase 6 de la source S2 est positionné au foyer de la deuxième surface réfléchissante R2 qui pointe dans une deuxième direction de pointage 18 située sur une deuxième zone de couverture terrestre différente de la première zone de couverture et correspondant à une deuxième mission prédéterminée. Le passage de la première mission à la deuxième mission est réalisé par une rotation d'un angle prédéterminé du réflecteur retournable 10, par exemple de 180°, par rapport au plan du support 15. L'entraînement en rotation du réflecteur 10 est réalisé au moyen du deuxième moteur M2. Le changement de direction de pointage souhaité entre la mission 1 et la mission 2 détermine la position relative des deux surfaces réfléchissantes R1, R2 l'une par rapport à l'autre sur le support 15.On the figure 2a the phase center 5 of the source S1 is positioned at the focus of the first reflecting surface R1 which points in a first pointing direction 17 located on a first land cover area corresponding to a first predetermined mission. On the figure 2b , the phase center 6 of the source S2 is positioned at the focus of the second reflecting surface R2 which points in a second pointing direction 18 located on a second land cover area different from the first coverage area and corresponding to a second mission predetermined. The transition from the first mission to the second mission is performed by rotating a predetermined angle of the returnable reflector 10, for example 180 °, relative to the plane of the support 15. The rotational drive of the reflector 10 is performed at second motor M2. The desired change of pointing direction between mission 1 and mission 2 determines the relative position of the two reflecting surfaces R1, R2 relative to each other on support 15.

Outre la flexibilité de couverture obtenue par le retournement du réflecteur 10, il est possible d'obtenir une flexibilité de fréquence sur une même zone de couverture et donc pour une même position et une même direction de pointage du réflecteur, sans pertes ni aberrations dues à une défocalisation. Pour cela, l'invention consiste à sélectionner l'une des sources S1 ou S2 en fonction de la fréquence souhaitée puis à déplacer et orienter le réflecteur 10 de façon que la source sélectionnée soit positionnée au foyer du réflecteur et que le réflecteur illumine la zone de couverture sélectionnée.In addition to the flexibility of coverage obtained by the reversal of the reflector 10, it is possible to obtain a frequency flexibility over the same coverage area and therefore for the same position and the same pointing direction of the reflector, without losses or aberrations due to a defocus. For this, the invention consists in selecting one of the sources S1 or S2 as a function of the desired frequency and then moving and orienting the reflector 10 so that the selected source is positioned in the focus of the reflector and that the reflector illuminates the selected coverage area.

Dans la configuration initiale représentée sur la figure 3a, le centre de phase 5 de la source S1 est positionné au foyer de la première surface réfléchissante R1 du réflecteur 10 qui pointe dans une direction de pointage 17 située par exemple sur l'équateur terrestre. Si la source S1 est par exemple alimentée dans un plan de fréquence F1 par l'intermédiaire d'une première chaîne RF et la source S2 est reliée à une deuxième chaîne RF optimisée pour fonctionner dans un plan de fréquence F2, pour passer du plan de fréquence F1 au plan de fréquence F2 sans changer le pointage de l'antenne, l'invention consiste à commuter l'alimentation de la source S1 à la source S2 et à déplacer le réflecteur en translation de la source S1 vers la source S2 pour positionner le foyer de la première surface réfléchissante R1 au centre de phase 6 de la source S2, comme représenté sur la figure 3b. Le déplacement et l'orientation du réflecteur 10 devant la source S2 sans changer la direction de pointage 17 de l'antenne peut être réalisé par exemple au moyen de deux moteurs M1, M3, le moteur M3 étant relié au moteur M1 et au moteur M2 par l'intermédiaire de bras de levier 20, 21 correspondants. Les deux moteurs M1, M3 ont des axes de rotation parallèles, ou quasiment parallèles, entre eux et quasiment parallèles au plan YZ de la face latérale de la plate-forme 11 du satellite qui supporte le réflecteur 10. L'actionnement du moteur M1 en rotation dans le sens inverse des aiguilles d'une montre et selon un angle de rotation dépendant de l'espacement entre les sources S1 et S2, entraîne le premier bras de levier 20 en rotation dans le même sens ce qui a pour effet de déplacer et de rapprocher le moteur M3 et le réflecteur 10 de la plate-forme 11 du satellite, comme le montre la figure 3b et de déplacer ainsi le réflecteur de la source S1 vers la source S2. L'actionnement en rotation du moteur M3 dans le sens des aiguilles d'une montre selon un même angle de rotation que le moteur M1, permet ensuite, par l'intermédiaire du bras de levier 21, de basculer le réflecteur 10 en rotation dans l'autre sens jusqu'à ce qu'il soit dans une position parallèle à sa position initiale et que le centre de phase 6 de la source S2 soit ainsi positionné au foyer du réflecteur 10 et illumine la même zone de couverture sur la Terre. Les rotations successives des différents moteurs M1, et M3 font ainsi subir une translation au réflecteur 10 telle que le foyer de la surface réfléchissante R1 passe de la source S1 à la source S2. En utilisant un nombre de sources supérieur à deux, les mêmes opérations peuvent être reproduites avec une ou plusieurs sources additionnelles, par exemple pour réaliser une ou plusieurs autres missions dans d'autres plans de fréquence si chacune des sources additionnelles est reliée à une chaîne RF dédiée et optimisée pour un autre plan de fréquence que celui des sources S1 et S2.In the initial configuration shown on the figure 3a , the phase center of the source S1 is positioned at the focus of the first reflective surface R1 of the reflector 10 which points in a pointing direction 17 located for example on the Earth's equator. If the source S1 is for example supplied in a frequency plane F1 via a first RF channel and the source S2 is connected to a second RF channel optimized to operate in a frequency plane F2, to go from the frequency F1 at the frequency plane F2 without changing the pointing of the antenna, the invention consists in switching the power supply from the source S1 to the source S2 and moving the reflector in translation from the source S1 to the source S2 to position the focus of the first reflective surface R1 at the center of phase 6 of the source S2, as shown in FIG. figure 3b . The displacement and orientation of the reflector 10 in front of the source S2 without changing the pointing direction 17 of the antenna can be achieved for example by means of two motors M1, M3, the motor M3 being connected to the motor M1 and the motor M2 by means of corresponding lever arms 20, 21. The two motors M1, M3 have axes of rotation parallel, or almost parallel, between them and almost parallel to the plane YZ of the lateral face of the platform 11 of the satellite which supports the reflector 10. The actuation of the motor M1 in rotation in the opposite direction of the clockwise and at a rotation angle depending on the spacing between the sources S1 and S2, causes the first lever arm 20 to rotate in the same direction which has the effect of moving and to bring the motor M3 and the reflector 10 closer to the platform 11 of the satellite, as shown in FIG. figure 3b and thus move the reflector of the source S1 to the source S2. Actuating the motor M3 in rotation in the clockwise direction at the same angle of rotation as the motor M1, then makes it possible, by means of the lever arm 21, to tilt the reflector 10 in rotation in the direction of rotation. other direction until it is in a position parallel to its initial position and that the center of phase 6 of the source S2 is thus positioned at the focus of the reflector 10 and illuminates the same coverage area on the Earth. The successive rotations of the various motors M1 and M3 thus make a translation to the reflector 10 such that the focal point of the reflecting surface R1 passes from the source S1 to the source S2. Using a number of sources greater than two, the same operations may be reproduced with one or more additional sources, for example to perform one or more other missions in other frequency plans if each additional source is connected to an RF channel dedicated and optimized for another frequency plan than that of sources S1 and S2.

Avec une seule antenne comportant deux surfaces réfléchissantes interchangeables, trois moteurs et deux sources S1, S2, il est ainsi possible de déployer l'antenne en orbite, de la positionner de manière à remplir au choix une mission parmi quatre missions possibles. Les deux surfaces réfléchissantes étant interchangeables et mécaniquement solidarisées entre elles, les quatre missions différentes sont remplies en utilisant une seule structure mécanique de support et de déploiement. La première mission est réalisée en plaçant le foyer de la surface réfléchissante R1 sur le centre de phase 5 de la première source S1, pour la deuxième mission, le réflecteur est translaté et le centre de phase 6 de la deuxième source S2 est au foyer de la surface réfléchissante R1, pour la troisième mission, le réflecteur est tourné d'un angle réglable prédéterminé, par exemple compris entre 175° et 195° sur les exemples de réalisation, et la première source S1 est au foyer de la surface réfléchissante R2 et pour la quatrième mission, la deuxième source S2 est au foyer de la surface réfléchissante R2.With a single antenna comprising two interchangeable reflective surfaces, three motors and two sources S1, S2, it is thus possible to deploy the antenna in orbit, to position it so as to fulfill one of four possible missions. The two reflective surfaces being interchangeable and mechanically joined together, the four different missions are fulfilled using a single mechanical structure of support and deployment. The first mission is carried out by placing the focus of the reflecting surface R1 on the center of phase 5 of the first source S1, for the second mission, the reflector is translated and the center of phase 6 of the second source S2 is at the focus of the reflective surface R1, for the third mission, the reflector is rotated by a predetermined adjustable angle, for example between 175 ° and 195 ° in the exemplary embodiments, and the first source S1 is at the focus of the reflecting surface R2 and for the fourth mission, the second source S2 is at the focus of the reflecting surface R2.

Grâce aux trois moteurs, il est ainsi possible de focaliser les sources S1 ou S2 au foyer de l'une des surfaces réfléchissantes R1, R2 du réflecteur 10 ce qui permet d'obtenir des performances optimales sur tout le plan de fréquence. En ajoutant des sources supplémentaires, des missions additionnelles dans des plans de fréquence différents deviennent également possibles.Thanks to the three motors, it is thus possible to focus the sources S1 or S2 at the focus of one of the reflective surfaces R1, R2 of the reflector 10 which allows to obtain optimum performance over the entire frequency plan. By adding additional sources, additional missions in different frequency schemes also become possible.

Bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with particular embodiments, it is obvious that it is not limited thereto and that it includes all the technical equivalents of the means described and their combinations if they are within the scope of the invention.

Claims (6)

Antenne à réflecteur à flexibilité de couverture et de fréquence comportant un réflecteur retournable (10) ayant deux surfaces réfléchissantes (R1, R2) distinctes formées géométriquement de façon à couvrir respectivement une première et une deuxième zones géographiques différentes et de formes prédéterminées, caractérisée en ce que les deux surfaces réfléchissantes (R1, R2) sont fixées dos à dos sur un support commun (15) et en ce que l'antenne comporte en outre au moins deux sources indépendantes (S1, S2) disposées dans une configuration fixe et reliées à des chaînes d'alimentation radiofréquence distinctes (2, 3) définissant des plans de fréquence de fonctionnement (F1, F2) différents et prédéfinis, le réflecteur (10) comportant une première position de déploiement selon laquelle le foyer de la première surface réfléchissante (R1) est placé au centre de phase (5) de la première source (S1) et une deuxième position de déploiement selon laquelle le foyer de la deuxième surface réfléchissante (R2) est placé au centre de phase (6) de la deuxième source (S2).A reflective antenna with a coverage and frequency flexibility comprising a returnable reflector (10) having two distinct reflecting surfaces (R1, R2) geometrically shaped so as to respectively cover first and second different geographical areas and predetermined shapes, characterized in that that the two reflecting surfaces (R1, R2) are fixed back-to-back on a common support (15) and that the antenna further comprises at least two independent sources (S1, S2) arranged in a fixed configuration and connected to distinct radiofrequency power supply chains (2, 3) defining different and predefined operating frequency planes (F1, F2), the reflector (10) having a first deployment position in which the focal point of the first reflecting surface (R1 ) is placed at the phase center (5) of the first source (S1) and a second deployment position according to the which focus of the second reflecting surface (R2) is placed at the phase center (6) of the second source (S2). Antenne selon la revendication 1, caractérisée en ce qu'elle comporte des moyens de déploiement du réflecteur (10) comportant au moins un premier moteur (M1) et des moyens de retournement du réflecteur (10) comportant au moins un deuxième moteur (M2), les deux moteurs (M1, M2) ayant des axes de rotation perpendiculaires entre eux, le deuxième moteur (M2) actionnant le retournement du réflecteur (10) de la première position à la deuxième position par une rotation d'un angle prédéterminé du support commun (15).Antenna according to claim 1, characterized in that it comprises means for deploying the reflector (10) comprising at least a first motor (M1) and means for turning the reflector (10) comprising at least one second motor (M2). , the two motors (M1, M2) having axes of rotation perpendicular to each other, the second motor (M2) actuating the reversal of the reflector (10) from the first position to the second position by a rotation of a predetermined angle of the support common (15). Antenne selon l'une des revendications 1 ou 2, caractérisée en ce que le réflecteur (10) comporte une troisième position de déploiement selon laquelle le foyer de la première surface réfléchissante (R1) est placé au centre de phase (5) de la deuxième source (S2) et une quatrième position de déploiement selon laquelle le foyer de la deuxième surface réfléchissante (R2) est placé au centre de phase (5) de la première source (S1).Antenna according to one of claims 1 or 2, characterized in that the reflector (10) has a third deployment position in which the focus of the first reflecting surface (R1) is placed in the center of phase (5) of the second source (S2) and a fourth deployment position according to which the focus of the second surface reflective (R2) is placed at the phase center (5) of the first source (S1). Antenne selon la revendication 3, caractérisée en ce qu'elle comporte en outre des moyens de translation du réflecteur (10) comportant un troisième moteur (M3) relié au premier moteur (M1) et au deuxième moteur (M2) par des bras de levier (20, 21), le troisième moteur (M3) ayant un axe de rotation parallèle à l'axe de rotation du premier moteur (M1), le premier et le troisième moteur (M1, M3) actionnant le réflecteur (10) en translation permettant un changement de la position du foyer de la première surface réfléchissante (R1), respectivement de la deuxième surface réfléchissante (R2), de la première source (S1) à la deuxième source (S2).Antenna according to claim 3, characterized in that it further comprises translational means of the reflector (10) comprising a third motor (M3) connected to the first motor (M1) and the second motor (M2) by lever arms (20, 21), the third motor (M3) having an axis of rotation parallel to the axis of rotation of the first motor (M1), the first and the third motor (M1, M3) actuating the reflector (10) in translation allowing a change of the focus position of the first reflective surface (R1), respectively the second reflective surface (R2), the first source (S1) to the second source (S2). Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que les sources (S1, S2) sont fixées côte à côte ou l'une au-dessus de l'autre.Antenna according to any one of the preceding claims, characterized in that the sources (S1, S2) are fixed side by side or one above the other. Satellite de télécommunication, caractérisé en ce qu'il comporte au moins une antenne selon l'une quelconque des revendications précédentes.Telecommunication satellite, characterized in that it comprises at least one antenna according to any one of the preceding claims.
EP10164352.6A 2009-06-19 2010-05-28 Reflector antenna with variable coverage and operating frequnecies and a satellite with such antenna Active EP2264830B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0902995A FR2947104B1 (en) 2009-06-19 2009-06-19 REFLECTING ANTENNA WITH COVER AND FREQUENCY FLEXIBILITY AND SATELLITE COMPRISING SUCH ANTENNA

Publications (2)

Publication Number Publication Date
EP2264830A1 true EP2264830A1 (en) 2010-12-22
EP2264830B1 EP2264830B1 (en) 2018-08-29

Family

ID=41426844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10164352.6A Active EP2264830B1 (en) 2009-06-19 2010-05-28 Reflector antenna with variable coverage and operating frequnecies and a satellite with such antenna

Country Status (5)

Country Link
US (1) US8384610B2 (en)
EP (1) EP2264830B1 (en)
CA (1) CA2706761C (en)
ES (1) ES2699484T3 (en)
FR (1) FR2947104B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067535B1 (en) * 2017-06-09 2023-03-03 Airbus Defence & Space Sas TELECOMMUNICATIONS SATELLITE, METHOD FOR BEAM FORMING AND METHOD FOR MAKING A SATELLITE PAYLOAD
FR3073347B1 (en) * 2017-11-08 2021-03-19 Airbus Defence & Space Sas SATELLITE PAYLOAD INCLUDING A DOUBLE REFLECTIVE SURFACE REFLECTOR

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648278A1 (en) 1989-06-13 1990-12-14 Europ Agence Spatiale Antenna with switchable beams
WO2001001520A1 (en) * 1999-06-29 2001-01-04 Lockheed Martin Missiles And Space Apparatus and method for reconfiguring antenna contoured beams by switching between shaped-surface subreflectors
FR2853995A1 (en) * 2003-03-27 2004-10-22 Lockheed Corp Antenna system for use in geostationary-earth-orbiting satellite, has two reflectors rotated to reflect RF waves from antenna supply towards one target zone, where one of reflectors is rotated to direct waves towards another zone

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795034B2 (en) * 2002-07-10 2004-09-21 The Boeing Company Gregorian antenna system for shaped beam and multiple frequency use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648278A1 (en) 1989-06-13 1990-12-14 Europ Agence Spatiale Antenna with switchable beams
WO2001001520A1 (en) * 1999-06-29 2001-01-04 Lockheed Martin Missiles And Space Apparatus and method for reconfiguring antenna contoured beams by switching between shaped-surface subreflectors
FR2853995A1 (en) * 2003-03-27 2004-10-22 Lockheed Corp Antenna system for use in geostationary-earth-orbiting satellite, has two reflectors rotated to reflect RF waves from antenna supply towards one target zone, where one of reflectors is rotated to direct waves towards another zone
US6859188B1 (en) 2003-03-27 2005-02-22 Lockheed Martin Corporation Rotationally configurable offset reflector antenna

Also Published As

Publication number Publication date
FR2947104B1 (en) 2011-07-29
FR2947104A1 (en) 2010-12-24
EP2264830B1 (en) 2018-08-29
CA2706761A1 (en) 2010-12-19
US20100321266A1 (en) 2010-12-23
ES2699484T3 (en) 2019-02-11
CA2706761C (en) 2016-08-02
US8384610B2 (en) 2013-02-26

Similar Documents

Publication Publication Date Title
EP2270922B1 (en) Antenna with mission flexibility, satellite comprising such an antenna and method for controlling mission changes in such an antenna
EP2654126B1 (en) Directive mobile antenna with polarisation switching by moving radiant panels
EP2415120B1 (en) Multilayer pillbox antenna having parallel planes, and corresponding antenna system
EP1790032B1 (en) Reflector network antenna with an area of coverage, the form of which can be reconfigured with or without a charger
EP1702388A1 (en) Configurable and orientable antenna and corresponding base station
EP2194602A1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
EP2264830B1 (en) Reflector antenna with variable coverage and operating frequnecies and a satellite with such antenna
EP1554777A1 (en) Multibeam antenna with photonic bandgap material
EP3639409B1 (en) Satellite payload comprising a dual reflective surface reflector
EP0131512A1 (en) Dual reflector antenna with quasitoroidal coverage
FR2775146A1 (en) Satellite high frequency radiometer system
EP0638956A1 (en) Active antenna with electronic scanning in azimuth and elevation, particularly for microwave imaging by satellite
FR2674377A1 (en) Radio frequency antenna with multi-focal reflector
FR2967305A1 (en) Centered deployable antenna for use in satellites for telemetry and telecommunication applications, has peripheral and auxiliary panels that are arranged perpendicular to central panel when main reflector is in folded state
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
EP3220181B1 (en) Hybrid optical system with reduced size for imaging array antenna
EP0088681B1 (en) Dual-reflector antenna with incorporated polarizer
EP2351148B1 (en) Deployable structure and antenna system with membranes comprising such a structure
FR2596208A1 (en) Two-frequency antenna with independent steerable beams
EP0992080B1 (en) Antenna with high scanning capacity
WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
FR2782193A1 (en) RECEPTION ANTENNA WITH EXCENTRE REFLECTOR SCANNED BY THE RECEPTION HEAD, IN PARTICULAR FOR THE RECEPTION OF SEVERAL TELEVISION SATELLITES AND ITS PROCESS FOR IMPLEMENTATION
FR2854735A1 (en) Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band
FR2854734A1 (en) Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110617

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180419

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOSSHARD, PIERRE

Inventor name: SCHREIDER, LUDOVIC

Inventor name: DEPEYRE, SERGE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1036244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010053088

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2699484

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190211

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1036244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010053088

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100528

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230427

Year of fee payment: 14

Ref country code: FR

Payment date: 20230421

Year of fee payment: 14

Ref country code: ES

Payment date: 20230605

Year of fee payment: 14

Ref country code: DE

Payment date: 20230418

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230413

Year of fee payment: 14