EP2253821A1 - Method for cleaning exhaust gases of a combustion motor with a catalytic convertor - Google Patents

Method for cleaning exhaust gases of a combustion motor with a catalytic convertor Download PDF

Info

Publication number
EP2253821A1
EP2253821A1 EP09160947A EP09160947A EP2253821A1 EP 2253821 A1 EP2253821 A1 EP 2253821A1 EP 09160947 A EP09160947 A EP 09160947A EP 09160947 A EP09160947 A EP 09160947A EP 2253821 A1 EP2253821 A1 EP 2253821A1
Authority
EP
European Patent Office
Prior art keywords
lean
catalyst
exhaust gas
pulse
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09160947A
Other languages
German (de)
French (fr)
Other versions
EP2253821B1 (en
Inventor
Martin Votsmeier
Roman Moeller
Christopher Onder
Juergen Gieshoff
Lino Guzzella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT09160947T priority Critical patent/ATE517245T1/en
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Priority to EP09160947A priority patent/EP2253821B1/en
Priority to BRPI1012807A priority patent/BRPI1012807A2/en
Priority to CN2010800222327A priority patent/CN102439278A/en
Priority to JP2012511196A priority patent/JP2012527560A/en
Priority to PCT/EP2010/003111 priority patent/WO2010133370A1/en
Priority to KR1020117027516A priority patent/KR20120024617A/en
Priority to US13/321,769 priority patent/US20120067030A1/en
Priority to RU2011152239/06A priority patent/RU2011152239A/en
Publication of EP2253821A1 publication Critical patent/EP2253821A1/en
Application granted granted Critical
Publication of EP2253821B1 publication Critical patent/EP2253821B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0816Oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry

Definitions

  • the present invention relates to a method for purifying the exhaust gases of an internal combustion engine with a catalyst containing oxygen-storing components.
  • the invention is concerned with restoring the optimum degree of oxygen storage components to a controlled, stoichiometric operation of the engine after it has been operated under lean conditions.
  • the air ratio lambda ( ⁇ ) is often used. This is the normalized to stoichiometric conditions air / fuel ratio.
  • the air / fuel ratio describes how many kilograms of air per kilogram of fuel are supplied to the combustion engine.
  • the stoichiometric combustion air / fuel ratio is 14.7 for common engine fuels.
  • the air ratio lambda at this point is 1.
  • Air / fuel ratios below 14.7, or air numbers below 1 are said to be rich, and air / fuel ratios above 14.7, or air ratios above 1 are referred to as lean.
  • the air ratio of the exhaust gas corresponds to the air ratio of the air / fuel mixture supplied to the engine.
  • OSC Oxygen Storage Components
  • Suitable oxygen-storing components in a catalyst are compounds which permit a change in their oxidation state.
  • Ceria is preferably used which can be present both as Ce 2 O 3 and as CeO 2 .
  • CeO 2 is preferably used, for example, as a mixed oxide with zirconium oxide.
  • the storage capacity of the oxygen-storing components means the mass of oxygen that can be absorbed by the oxygen-storing component per gram. Accordingly, the degree of filling denotes the ratio of the mass of oxygen actually stored to the storage capacity.
  • the storage capacity can be determined experimentally by various methods known to those skilled in the art.
  • the aim of controlling the air ratio is to avoid complete filling or extensive emptying of the oxygen storage.
  • a complete filling of the oxygen storage there is a breakthrough of lean exhaust gas and thus the emission of nitrogen oxides.
  • extensive emptying it comes to fat breakthroughs, ie the emission of carbon monoxide and hydrocarbons.
  • the signal of an oxygen probe (lambda probe) is used, which is arranged in the flow direction of the exhaust gas before the catalyst (Vorkat probe).
  • Vorkat probe the air / fuel mixture supplied to the engine is controlled so that the exhaust gas is stoichiometrically composed before entering the catalyst.
  • This regulation is referred to as lambda control in the context of this invention.
  • an oxygen probe is inserted behind the catalyst into the exhaust line.
  • the target stoichiometry of the lambda control can be readjusted.
  • the Schukat control is used especially for monitoring and adjusting the degree of filling of the oxygen storage of the catalyst.
  • the probes generate an electrical voltage depending on the oxygen content of the exhaust gas.
  • two-point lambda probes which are also referred to as jump lambda probes, are used for this purpose.
  • they In lean exhaust gas they have a voltage of about 0.2 V, which jumps in the transition to rich exhaust gas in a very narrow lambda interval of 0.2 V to about 0.7 V.
  • the Schukat control is designed so that a probe voltage of about 0.65 V results. This point lies on the steep branch of the probe characteristic and corresponds to an optimum filling level of the oxygen storage of about 50%. Deviations from the stoichiometry of the exhaust gas up or down can be easily detected and corrected in this way.
  • An Otto engine is operated predominantly with stoichiometric composite air / fuel mixtures. However, if the engine no longer deliver power, usually the fuel supply is interrupted. In this so-called fuel cut, the engine only air is supplied, so that the exhaust gas composition corresponds to the ambient air.
  • the oxygen-storing components of the catalyst are completely saturated with oxygen, or filled.
  • the Häkat control is not possible.
  • a complete filling of the oxygen storage unit may occur, for example due to control errors of the lambda control.
  • the controlled, stoichiometric operation should be resumed as quickly as possible.
  • the degree of filling of the oxygen storage must be returned to its optimum value of about 50%.
  • the engine usually after a fuel cut is briefly with a rich Operated air / fuel mixture.
  • This short-term operation with a rich air / fuel mixture is also referred to as fat pulse.
  • the regular Schukat control is resumed.
  • the DE 10 2004 038 482 B3 deals with the adjustment of the degree of filling of the oxygen storage after a transient operating state of the engine, such as a fuel cut.
  • a transient operating state of the engine such as a fuel cut.
  • the oxygen storage tank should be emptied quickly to an optimum value of approx. 50% of its filling level.
  • a rich air / fuel ratio ⁇ ⁇ 1 is set for a short time and then fed again at an optimized speed against 1.
  • the DE 10 2004 019 831 A1 avoids unwanted oxygen charging of the catalytic converter during a fuel cut-off phase in that the catalyst, a catalyst mass flow is supplied with a defined, predetermined lambda value.
  • the DE 10 2006 044 458 A1 also deals with fuel injection after a fuel cut.
  • the fuel pulse width is set so that a fuel supply amount is greatly increased in relation to an intake air amount, and the ignition timing is set to a first retarded ignition timing.
  • the fuel pulse width having a smaller increase width of the fuel is set, and the ignition timing is set to the second retarded ignition timing having a retard amount smaller than the first retarded ignition timing.
  • the object of the invention is therefore to provide a method by which the transition from the fuel cut to the regulated, stoichiometric operation can be accelerated.
  • the method relates to the purification of the exhaust gases of an internal combustion engine with a catalyst containing an oxygen storage of oxygen-storing components, wherein the engine is equipped with an electronic engine control and operated for the majority of the operating time with a controlled, stoichiometric air / fuel mixture Depending on the driving situations also temporary lean operating phases occur.
  • the method is characterized in that after a lean lean phase of operation of the engine with a lean air / fuel mixture associated with a substantial filling of the oxygen storage and before resuming the controlled engine operation, the degree of filling of the oxygen storage to an optimal degree of filling for stoichiometric operation thereby is attributed that the engine is supplied with a rich pulse followed by a lean pulse, wherein the amount of the lean pulse supplied to the catalyst oxidative components is lower than would be necessary for complete compensation of the rich with the fat pulse amount of rich exhaust gas components.
  • the invention is based on the observation that after an overrun fuel cutoff for the stoichiometric control of the air / fuel ratio optimal filling level of the oxygen storage can then be set very quickly, if a short fat pulse after the fuel cut a short lean pulse follows. Fat pulse and lean pulse are thereby generated by appropriate control of the engine / air ratio supplied. This is preferably done by providing the pretat lambda probe with a corresponding temporal lambda profile. After expiry of the lambda profile and reaching the optimum filling level of the oxygen storage, recognizable by a Schukat signal voltage of about 0.6 to 0.7 volts, preferably 0.65 volts, the regular lambda control of Vorkat control and Deutschenkat- Regulation resumed.
  • an equilibrium state of the oxygen storage is always with the reducing and oxidizing components of the exhaust gas, that is, in the equilibrium state, the reduction of the oxygen storage by carbon monoxide, hydrogen or hydrocarbons is just compensated by a corresponding oxidation with carbon dioxide and water.
  • This pollutant release can be reduced somewhat if the fat pulse is not abruptly stopped, but slowly returned to the stoichiometric value. However, this increases the time between the end of fuel cut and the resumption of controlled operation with the risk of further pollutant emissions.
  • the fat pulse hits the inlet face of the catalyst first. Even if the fat pulse is sized so that it can only partially empty the entire oxygen storage of the catalyst, it comes in the front part of the catalyst to a deep evacuation of the oxygen storage and therefore in the wake of the pulse to a delayed release of carbon monoxide and hydrogen.
  • the rear part of the catalyst is only partially emptied in this process. In the most favorable case, the carbon monoxide liberated from the front part of the catalyst and the hydrogen can empty the rear part of the catalyst to the desired extent. However, in this case, due to the slowness of carbon monoxide and hydrogen release, it takes 10 to 100 seconds for the oxygen storage to be completely exhausted over the entire length of the catalyst and for the stoichiometry of the exhaust downstream of the catalyst to be stationary.
  • the described carbon monoxide and hydrogen emissions following a deep reduction of the oxygen storage not only have a negative effect after a fuel cut. Even in normal operation, short-term control errors can occur, especially in dynamic operating phases, which lead to a complete filling of the oxygen storage. If the reservoir is largely filled, and at the same time deviates short the stoichiometry of the exhaust gas into the lean, there is a Mager barnbruch, which is registered by the Schukat probe. As described above, the signal of the Schukat probe is used to readjust the target stoichiometry of the lambda control. The Schukat control in this case means that the air / fuel mixture supplied to the engine is refilled.
  • the described problems of conventional methods are thereby reduced or even completely eliminated, that after completion of the lean operating phase, the filling level of the oxygen storage is returned by at least one rich and one lean pulse to the optimum value for the subsequent Schukat control.
  • the amount of rich exhaust gas components supplied with the rich pulse is greater than that needed to set the optimal stoichiometric fill level, but less than the amount of rich exhaust gas components that would be required to completely empty the oxygen storage storage capacity.
  • a fat pulse is first used which is able to empty the catalyst over its entire length.
  • the front part of the memory is deeply emptied.
  • This deep evacuation in the front part is reversed by a smaller lean pulse.
  • the lean pulse will inevitably refill a small zone at the inlet of the catalytic converter beyond the optimum filling level.
  • Another Fat pulse can be compensated, which is chosen so that the amount of fat components provided by it is smaller than is necessary for the complete compensation of the previous lean pulse.
  • the amount of reducing agent in the first fat pulse must therefore be greater than the equivalent amount of oxygen that must be removed from the catalyst during the transition from the fully oxidized state to the stoichiometric operating state.
  • the catalyst is therefore initially deeply emptied.
  • the amount of reducing agent in the first rich pulse is preferably chosen to be smaller than the equivalent amount of oxygen that can be withdrawn from the catalyst by a steady-state rich operation.
  • the pulse sequence is preferably designed depending on the operating state of the engine and the aging state of the catalyst so that after completion of the pulse train, the memory-load distribution of the distribution corresponds, which would occur even with controlled operation of the catalyst at this operating point.
  • An optimal pulse sequence can be recognized by the fact that the voltage of the post-cat probe after the end of the pulse sequence stably assumes the target value of the Schukat control.
  • the amplitude and / or the temporal length of the fat and lean pulses are available. Amplitude and / or time length of the pulses can be optimized depending on the temperature and space velocity of the exhaust gas and / or an aging state of the catalyst.
  • the motor can be supplied with additional fat and lean pulses after the first fat and lean pulse, whereby the quantity supplied with the respective fat pulse Fat components is greater than can be compensated with the oxidative components of the following lean pulse.
  • the optimum number of consecutive rich / lean pulses can be determined in preliminary tests depending on the operating conditions after an overrun fuel cut.
  • the method is preferably used in the exhaust gas purification of stoichiometrically operated internal combustion engines, in which there are fuel cutoffs when no more engine power is requested.
  • the fuel cutoffs constitute the temporary lean operating phases.
  • Temporary lean operating phases may also be caused by unwanted control variations in stoichiometric operation.
  • Another field of application of the invention is the exhaust gas purification of a lean-burn internal combustion engine, which is operated partly stoichiometrically and partly lean.
  • the engine At low power requirements in city traffic, the engine is operated lean to save fuel. If higher powers are required, the motor must be switched to stoichiometric operation.
  • the oxygen storage in the catalytic converter is completely filled. Switching to stoichiometric operation will cause the same problems as after a fuel cut.
  • unwanted temporary lean operating phases due to a control disturbance are detected by the fact that the Schukat probe indicates a lean exhaust gas.
  • a jumping probe can be used. If its signal voltage falls below a predetermined threshold, then there is a temporary lean operating phase according to this invention.
  • the threshold value can be selected depending on the temperature and space velocity of the exhaust gas, the exhaust gas stoichiometry and the aging state of the catalyst. Preferably, these threshold values are stored in a table of the engine control.
  • the oxygen-storing components of the exhaust gas purification catalyst continuously lose thermal storage due to thermal aging.
  • the method makes it possible to determine the remaining storage capacity.
  • the output signal of the arranged behind the catalyst in the exhaust system oxygen probe can be used. If the signal voltage after the jump from the temporary lean operation phase to the regulated stoichiometric operation is below the expected one Voltage, so the remaining oxygen storage capacity of the catalyst is lower than expected. In this way, therefore, the remaining oxygen storage capacity can be determined from the signal voltage in stoichiometric operation after an overrun fuel cutoff. If the remaining oxygen storage capacity falls below a predetermined value, then a corresponding warning signal can be set.
  • the determination of the remaining oxygen storage capacity makes it possible to adapt the amount of the fat and lean components fed to the catalyst with the fat and lean pulses to the remaining oxygen storage capacity and thus to optimize the transition from fuel cut to regulated, stoichiometric operation. This is preferably done by the amplitudes of the fat and lean pulses are reduced by a factor corresponding to the remaining oxygen storage capacity.
  • the factor can be stored as a function of the remaining oxygen storage capacity in a table of engine control.
  • FIG. 1 illustrates the emission of carbon monoxide and hydrogen after a fuel cut and return to stoichiometric operation by a single rich pulse.
  • a conventional three-way catalyst was investigated in a model gas plant.
  • the upper diagram shows the progression of the air ratio lambda as a function of time (lambda profile).
  • a fuel cut with a lambda value of 1.1 was simulated.
  • the two lower diagrams each show the measured course of the hydrogen and carbon monoxide concentration behind the catalyst. Delayed after the fat pulse, the catalyst liberates hydrogen and carbon monoxide. The emission of these two pollutants persists over a period of more than 40 seconds.
  • FIG. 2 shows the result of simulation calculations in the case of a conventional lambda profile after a fuel cut with complete filling of the oxygen storage. The calculations were made for two different fat pulses with a lambda value of 0.9. The lambda profiles before the catalyst are shown in the upper diagram. The lower diagram shows the calculated signal voltages of the Schukat probe.
  • the signal voltage of the Hinterkat probe starts at about 0.1 V, indicating a very lean exhaust gas (lean operation phase) with a high oxygen content.
  • the oxygen storage has almost a 100% -tigen degree of filling.
  • the exhaust gas is briefly enriched before the catalyst.
  • FIG. 3 shows the result of simulation calculations in the case of a lambda profile according to the invention.
  • the exhaust gas before the catalyst in this example case two pairs of rich and lean pulses with a total duration of about 20 s.
  • the diagram with the signal voltage of the Schukat probe reaches the desired 0.65 V after about 4 s and remains at this voltage level.
  • the oxygen storage has thus already after this short time with only one fat / Magerpulsclam averaged over its entire length optimum filling level achieved. Nevertheless, because of the axial distribution of the degree of filling described above, a further fat / lean pair of powders is necessary in order to optimally adjust the degree of filling over the entire catalyst length.
  • Thesselkat control remains switched off at the end of the preceding lean operating phase at time zero until the end of the last rich / lean pair at about 20 s. Only then the Schukat rule is resumed.

Abstract

The method involves providing an engine with an electronic engine control. Filling degree of an oxygen tank is returned to an optimum filling degree for a stoichiometric operation after a temporary lean-operation phases of the engine, which is connected with a filling of the oxygen tank, and before resuming controlled engine operation. The engine is supplied with rich pulses by a lean pulse, where amount of oxidative components supplied to a catalytic converter is smaller than amount, which is supplied with the rich pulses for complete compensation, of fat exhaust gas components.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Reinigung der Abgase eines Verbrennungsmotors mit einem Katalysator, der Sauerstoff speichernde Komponenten enthält. Besonders befaßt sich die Erfindung mit der Wiederherstellung des optimalen Füllgrades der Sauerstoff speichernden Komponenten für einen geregelten, stöchiometrischen Betrieb des Motors, nachdem er unter mageren Bedingungen betrieben wurde.The present invention relates to a method for purifying the exhaust gases of an internal combustion engine with a catalyst containing oxygen-storing components. In particular, the invention is concerned with restoring the optimum degree of oxygen storage components to a controlled, stoichiometric operation of the engine after it has been operated under lean conditions.

Zur Reinigung der Abgase solcher Motoren werden sogenannte Dreiweg-Katalysatoren verwendet, die gleichzeitig Kohlenmonoxid (CO), Kohlenwasserstoffe (HC) und Stickoxide (NOx) aus dem Abgas entfernen.To clean the exhaust gases of such engines so-called three-way catalysts are used, which simultaneously remove carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) from the exhaust gas.

Zur Beschreibung der Zusammensetzung des dem Motor zugeführten Luft/Kraftstoff-Gemisches wird häufig die Luftzahl Lambda (λ) verwendet. Dabei handelt es sich um das auf stöchiometrische Bedingungen normierte Luft/Kraftstoff-Verhältnis. Das Luft/Kraftstoff-Verhältnis beschreibt, wieviel Kilogramm Luft pro Kilogramm Kraftstoff dem Verbrennungsmotor zugeführt werden. Das Luft/Kraftstoff-Verhältnis für eine stöchiometrische Verbrennung liegt für übliche Motorkraftstoffe bei 14,7. Die Luftzahl Lambda beträgt in diesem Punkt 1. Luft/Kraftstoff-Verhältnisse unter 14,7, beziehungsweise Luftzahlen unter 1, werden als fett und Luft/Kraftstoff-Verhältnisse über 14,7 oder Luftzahlen über 1 werden als mager bezeichnet.To describe the composition of the air / fuel mixture supplied to the engine, the air ratio lambda (λ) is often used. This is the normalized to stoichiometric conditions air / fuel ratio. The air / fuel ratio describes how many kilograms of air per kilogram of fuel are supplied to the combustion engine. The stoichiometric combustion air / fuel ratio is 14.7 for common engine fuels. The air ratio lambda at this point is 1. Air / fuel ratios below 14.7, or air numbers below 1, are said to be rich, and air / fuel ratios above 14.7, or air ratios above 1 are referred to as lean.

Treten im Verbrennungsmotor keine Speichereffekte für bestimmte Komponenten des Abgases auf, so entspricht die Luftzahl des Abgases der Luftzahl des dem Motor zugeführten Luft/Kraftstoff-Gemisches. Um einen hohen Umsetzungsgrad aller drei Schadstoffe zu erreichen, muß die Luftzahl Lambda in einem sehr engen Bereich um λ = 1 (stöchiometrische Bedingung) eingestellt werden. Das Intervall um λ = 1, in dem alle drei Schadstoffe zu wenigstens 80% umgesetzt werden, wird häufig als Lambda-Fenster bezeichnet.If no accumulator effects occur for certain components of the exhaust gas in the internal combustion engine, the air ratio of the exhaust gas corresponds to the air ratio of the air / fuel mixture supplied to the engine. In order to achieve a high degree of conversion of all three pollutants, the air ratio lambda in a very narrow range by λ = 1 (stoichiometric condition) must be set. The interval around λ = 1, in which all three pollutants are converted to at least 80%, is often referred to as the lambda window.

Dreiweg-Katalysatoren enthalten zum Ausgleich von Schwankungen des Sauerstoffgehaltes im Abgas Sauerstoff speichernde Komponenten (OSC = Oxygen Storage Components), die bei magerem Abgas (λ > 1) Sauerstoff speichern und bei fettem Abgas (λ < 1) Sauerstoff abgeben und so die Stöchiometrie des Abgases auf λ = 1 einstellen. Als Sauerstoff speichernde Komponente in einem Katalysator eignen sich Verbindungen, die eine Änderung ihres Oxidationszustandes zulassen. Bevorzugt wird Ceroxid verwendet, welches sowohl als Ce2O3 als auch als CeO2 vorliegen kann. Zur Stabilisierung des Ceroxids wird es zum Beispiel als Mischoxid mit Zirkonoxid eingesetzt.Three-way catalysts to compensate for fluctuations in the oxygen content in the exhaust gas oxygen storage components (OSC = Oxygen Storage Components), which store at lean exhaust gas (λ> 1) oxygen and at rich exhaust (λ <1) release oxygen and so the stoichiometry of Set the exhaust gas to λ = 1. Suitable oxygen-storing components in a catalyst are compounds which permit a change in their oxidation state. Ceria is preferably used which can be present both as Ce 2 O 3 and as CeO 2 . To stabilize the cerium oxide, it is used, for example, as a mixed oxide with zirconium oxide.

Im folgenden wird mit der Speicherkapazität der Sauerstoff speichernden Komponenten die Masse Sauerstoff verstanden, die von der Sauerstoff speichernden Komponente pro Gramm aufgenommen werden kann. Dementsprechend bezeichnet der Füllgrad das Verhältnis der tatsächlich gespeicherten Masse Sauerstoff zur Speicherkapazität. Die Speicherkapazität kann nach verschiedenen, dem Fachmann bekannten Verfahren, experimentell bestimmt werden.In the following, the storage capacity of the oxygen-storing components means the mass of oxygen that can be absorbed by the oxygen-storing component per gram. Accordingly, the degree of filling denotes the ratio of the mass of oxygen actually stored to the storage capacity. The storage capacity can be determined experimentally by various methods known to those skilled in the art.

Ziel der Regelung der Luftzahl ist es, eine vollständige Füllung oder eine weitgehenden Leerung des Sauerstoffspeichers zu vermeiden. Im Falle einer vollständigen Füllung des Sauerstoffspeichers kommt es zu einem Durchbruch von magerem Abgas und damit zur Emission von Stickoxiden. Im Falle einer weitgehenden Leerung kommt es zu Fett-Durchbrüchen, also zur Emission von Kohlenmonoxid und Kohlenwasserstoffen.The aim of controlling the air ratio is to avoid complete filling or extensive emptying of the oxygen storage. In the case of a complete filling of the oxygen storage, there is a breakthrough of lean exhaust gas and thus the emission of nitrogen oxides. In the case of extensive emptying it comes to fat breakthroughs, ie the emission of carbon monoxide and hydrocarbons.

Zur Regelung der Luftzahl wird das Signal einer Sauerstoffsonde (Lambda-sonde) verwendet, die in Strömungsrichtung des Abgases vor dem Katalysator (Vorkat-Sonde) angeordnet ist. Mit Hilfe dieser Sonde wird das dem Motor zugeführte Luft/Kraftstoff-Gemisch so geregelt, daß das Abgas vor dem Eintritt in den Katalysator stöchiometrisch zusammengesetzt ist. Diese Regelung wird im Rahmen dieser Erfindung als Lambda-Regelung bezeichnet. Gewöhnlich wird zusätzlich zur Vorkat-Sonde eine Sauerstoffsonde hinter dem Katalysator in den Abgasstrang eingefügt. Mit dieser Hinterkat-Sonde kann die Ziel-Stöchiometrie der Lambda-Regelung nachjustiert werden. Man spricht in diesem Fall von einer Hinterkat-Regelung. Die Hinterkat-Regelung dient besonders zur Überwachung und Einstellung des Füllgrades des Sauerstoffspeichers des Katalysators.To control the air ratio, the signal of an oxygen probe (lambda probe) is used, which is arranged in the flow direction of the exhaust gas before the catalyst (Vorkat probe). With the aid of this probe, the air / fuel mixture supplied to the engine is controlled so that the exhaust gas is stoichiometrically composed before entering the catalyst. This regulation is referred to as lambda control in the context of this invention. Usually, in addition to the pre-catalyst probe, an oxygen probe is inserted behind the catalyst into the exhaust line. With this Hinterkat probe, the target stoichiometry of the lambda control can be readjusted. One speaks in this case of a Hinterkat regulation. The Hinterkat control is used especially for monitoring and adjusting the degree of filling of the oxygen storage of the catalyst.

Die Sonden erzeugen in Abhängigkeit vom Sauerstoffgehalt des Abgases eine elektrische Spannung. Konventionell werden zu diesem Zweck ZweiPunkt Lambdasonden, die auch als Sprung-Lambdasonden bezeichnet werden, eingesetzt. Bei magerem Abgas weisen sie eine Spannung von etwa 0,2 V auf, die beim Übergang zu fettem Abgas in einem sehr engen Lambda-Intervall von 0,2 V auf über 0,7 V springt. Die Hinterkat-Regelung wird dabei so ausgelegt, daß sich eine Sondenspannung von etwa 0,65 V ergibt. Dieser Punkt liegt auf dem steilen Ast der Sondenkennlinie und entspricht einem optimalen Füllgrad des Sauerstoffspeichers von etwa 50 %. Abweichungen von der Stöchiometrie des Abgases nach oben oder unten können auf diese Weise leicht erkannt und korrigiert werden.The probes generate an electrical voltage depending on the oxygen content of the exhaust gas. Conventionally, two-point lambda probes, which are also referred to as jump lambda probes, are used for this purpose. In lean exhaust gas they have a voltage of about 0.2 V, which jumps in the transition to rich exhaust gas in a very narrow lambda interval of 0.2 V to about 0.7 V. The Hinterkat control is designed so that a probe voltage of about 0.65 V results. This point lies on the steep branch of the probe characteristic and corresponds to an optimum filling level of the oxygen storage of about 50%. Deviations from the stoichiometry of the exhaust gas up or down can be easily detected and corrected in this way.

Ein Otto-Motor wird überwiegend mit stöchiometrisch zusammengesetzten Luft/Kraftstoff-Gemischen betrieben. Soll der Motor jedoch keine Leistung mehr abgeben, wird gewöhnlich die Kraftstoffzufuhr unterbrochen. Bei dieser sogenannten Schubabschaltung wird dem Motor nur noch Luft zugeführt, so daß die Abgaszusammensetzung der Umgebungsluft entspricht.An Otto engine is operated predominantly with stoichiometric composite air / fuel mixtures. However, if the engine no longer deliver power, usually the fuel supply is interrupted. In this so-called fuel cut, the engine only air is supplied, so that the exhaust gas composition corresponds to the ambient air.

Während der Schubabschaltung werden die Sauerstoff speichernden Komponenten des Katalysators vollständig mit Sauerstoff abgesättigt, beziehungsweise gefüllt. Während der Schubabschaltung ist die Hinterkat-Regelung nicht möglich. Neben der Schubabschaltung kann es auch in anderen Fahrsituationen zu einer vollständigen Füllung des Sauerstoffspeichers kommen, zum Beispiel aufgrund von Regelfehlern der Lambda-Regelung.During the fuel cut, the oxygen-storing components of the catalyst are completely saturated with oxygen, or filled. During the fuel cut the Hinterkat control is not possible. In addition to the overrun fuel cutoff, in other driving situations a complete filling of the oxygen storage unit may occur, for example due to control errors of the lambda control.

Nach Beendigung einer Schubabschaltung soll der geregelte, stöchiometrische Betrieb möglichst schnell wieder aufgenommen werden. Hierzu muß aber zunächst der Füllgrad des Sauerstoffspeichers auf seinen optimalen Wert von etwa 50 % zurückgeführt werden. Aus diesem Grund wird der Motor nach einer Schubabschaltung gewöhnlich kurzzeitig mit einem fetten Luft/Kraftstoff-Gemisch betrieben. Dieser kurzzeitige Betrieb mit einem fetten Luft/Kraftstoff-Gemisch wird auch als Fettpuls bezeichnet. Erst nach Rückführung des Füllgrades des Sauerstoffspeichers auf etwa 50 % wird die reguläre Hinterkat-Regelung wieder aufgenommen. Alternativ hierzu ist es auch bekannt, die Hinterkat-Regelung direkt nach Beendigung der Schubabschaltung wieder einzuschalten. Beide Methoden haben den Nachteil, daß die Einstellung der optimalen Bedingungen für die Lambda-Regelung relativ lange dauert. Während dieser Zeitspanne kann es zu unerwünschten Emissionen kommen.After completion of a fuel cut, the controlled, stoichiometric operation should be resumed as quickly as possible. For this purpose, however, first the degree of filling of the oxygen storage must be returned to its optimum value of about 50%. For this reason, the engine usually after a fuel cut is briefly with a rich Operated air / fuel mixture. This short-term operation with a rich air / fuel mixture is also referred to as fat pulse. Only after returning the filling level of the oxygen storage to about 50%, the regular Hinterkat control is resumed. Alternatively, it is also known to turn the Hinterkat control again immediately after completion of the fuel cut. Both methods have the disadvantage that the setting of the optimal conditions for the lambda control takes a relatively long time. During this period, unwanted emissions may occur.

Die DE 10 2004 038 482 B3 befaßt sich mit der Einstellung des Füllgrades des Sauerstoffspeichers nach einem instationären Betriebszustand des Motors, wie zum Beispiel einer Schubabschaltung. Im Falle der Schubabschaltung soll der Sauerstoffspeicher schnell wieder auf einen optimalen Wert von ca. 50 % seines Befüllungsgrades entleert werden. Dazu wird kurzzeitig ein fettes Luft/Kraftstoff-Verhältnis λ < 1 eingestellt und dann mit optimierter Geschwindigkeit wieder gegen 1 geführt.The DE 10 2004 038 482 B3 deals with the adjustment of the degree of filling of the oxygen storage after a transient operating state of the engine, such as a fuel cut. In the case of overrun fuel cut, the oxygen storage tank should be emptied quickly to an optimum value of approx. 50% of its filling level. For this purpose, a rich air / fuel ratio λ <1 is set for a short time and then fed again at an optimized speed against 1.

Die DE 10 2004 019 831 A1 vermeidet eine unerwünschte Sauerstoffaufladung des Abgaskatalysators während einer Schubabschaltungsphase dadurch, daß dem Katalysator ein Katalysator-Massenstrom mit einem definierten, vorgegebenen Lambdawert zugeführt wird.The DE 10 2004 019 831 A1 avoids unwanted oxygen charging of the catalytic converter during a fuel cut-off phase in that the catalyst, a catalyst mass flow is supplied with a defined, predetermined lambda value.

Die DE 10 2006 044 458 A1 befaßt sich ebenfalls mit der Kraftstoffeinspritzung nach einer Schubabschaltung. Dabei wird bei der ersten Kraftstoffeinspritzung nach Aufhebung der Schubabschaltung die Kraftstoffimpulsbreite so eingestellt, daß eine Kraftstoffzufuhrmenge in Relation zu einer Einlaßluftmenge stark erhöht wird, und der Zündpunkt auf einen ersten spätverstellten Zündpunkt eingestellt wird. Bei der zweiten und nachfolgenden Kraftstoffeinspritzungen wird die Kraftstoffimpulsbreite eingestellt, die eine kleinere Zunahmebreite des Kraftstoffs hat, und der Zündpunkt wird auf den zweiten spätverstellten Zündpunkt eingestellt, der einen kleineren Spätverstellungsbetrag als der erste spätverstellte Zündpunkt hat.The DE 10 2006 044 458 A1 also deals with fuel injection after a fuel cut. At the time of the first fuel injection, after the fuel cutoff is canceled, the fuel pulse width is set so that a fuel supply amount is greatly increased in relation to an intake air amount, and the ignition timing is set to a first retarded ignition timing. In the second and subsequent fuel injections, the fuel pulse width having a smaller increase width of the fuel is set, and the ignition timing is set to the second retarded ignition timing having a retard amount smaller than the first retarded ignition timing.

Von den Erfindern wurde beobachtet, daß es bei den bekannten Verfahren infolge des Fettpulses nach einer Schubabschaltung zu einer zeitlich begrenzten Emission von Kohlenmonoxid und Wasserstoff kommt. Diese Emissionen haben eine Dauer von etwa 100 Sekunden und im Maximum eine Konzentration von 10 bis 500 ppm Kohlenmonoxid, wodurch die Hinterkat-Regelung nach der Schubabschaltung gestört und verzögert wird.It has been observed by the inventors that, in the prior art processes, due to the rich pulse after fuel cut, there is a time-limited emission of carbon monoxide and hydrogen. These emissions have a duration of about 100 seconds and a maximum concentration of 10 to 500 ppm of carbon monoxide, which disturbs and delays Hinterkat control after fuel cut.

Aufgabe der Erfindung ist es daher, ein Verfahren anzugeben, mit dem der Übergang von der Schubabschaltung auf den geregelten, stöchiometrischen Betrieb beschleunigt werden kann.The object of the invention is therefore to provide a method by which the transition from the fuel cut to the regulated, stoichiometric operation can be accelerated.

Die Aufgabe wird durch das im Hauptanspruch definierte Verfahren gelöst. Bevorzugte Ausführungsformen werden in den Unteransprüchen beansprucht.The problem is solved by the method defined in the main claim. Preferred embodiments are claimed in the subclaims.

Das Verfahren betrifft die Reinigung der Abgase eines Verbrennungsmotors mit einem Katalysator, der einen Sauerstoffspeicher aus Sauerstoff speichernde Komponenten enthält, wobei der Motor mit einer elektronischen Motorsteuerung ausgerüstet ist und während der überwiegenden Betriebsdauer mit einem geregelten, stöchiometrischen Luft/Kraftstoff-Gemisch betrieben wird, wobei abhängig von den Fahrsituationen auch temporäre Magerbetriebsphasen auftreten.The method relates to the purification of the exhaust gases of an internal combustion engine with a catalyst containing an oxygen storage of oxygen-storing components, wherein the engine is equipped with an electronic engine control and operated for the majority of the operating time with a controlled, stoichiometric air / fuel mixture Depending on the driving situations also temporary lean operating phases occur.

Das Verfahren ist dadurch gekennzeichnet, daß nach einer temporären Magerbetriebsphase des Motors mit einem mageren Luft/KraftstoffGemisch, welche mit einer weitgehenden Füllung des Sauerstoffspeichers verbunden ist, und vor Wiederaufnahme des geregelten Motorbetriebs, der Füllgrad des Sauerstoffspeichers auf einen optimalen Füllgrad für den stöchiometrischen Betrieb dadurch zurückgeführt wird, daß der Motor mit einem Fettpuls gefolgt von einem Magerpuls versorgt wird, wobei die Menge der mit dem Magerpuls dem Katalysator zugeführten oxidativen Komponenten geringer ist als zur vollständigen Kompensation der mit dem Fettpuls zugeführten Menge an fetten Abgaskomponenten notwendig wäre.The method is characterized in that after a lean lean phase of operation of the engine with a lean air / fuel mixture associated with a substantial filling of the oxygen storage and before resuming the controlled engine operation, the degree of filling of the oxygen storage to an optimal degree of filling for stoichiometric operation thereby is attributed that the engine is supplied with a rich pulse followed by a lean pulse, wherein the amount of the lean pulse supplied to the catalyst oxidative components is lower than would be necessary for complete compensation of the rich with the fat pulse amount of rich exhaust gas components.

Die Erfindung beruht auf der Beobachtung, daß nach einer Schubabschaltung der für die stöchiometrische Regelung des Luft/Kraftstoff-Verhältnisses optimale Füllgrad des Sauerstoffspeichers dann sehr schnell wieder eingestellt werden kann, wenn einem kurzen Fettpuls nach der Schubabschaltung ein kurzer Magerpuls folgt. Fettpuls und Magerpuls werden dabei durch entsprechende Steuerung des dem Motor zugeführten Luft/Kraftstoff-Verhältnisses erzeugt. Bevorzugt geschieht das dadurch, daß der Vorkat-Lambdasonde ein entsprechendes zeitliches Lambda-Profil vorgegeben wird. Nach Ablauf des Lambda-Profils und Erreichen des optimalen Füllgrades des Sauerstoffspeichers, erkennbar an einer Hinterkat-Signalspannung von etwa 0,6 bis 0,7 Volt, bevorzugt 0,65 Volt, wird die reguläre Lambda-Regelung aus Vorkat-Regelung und Hinterkat-Regelung wieder aufgenommen.The invention is based on the observation that after an overrun fuel cutoff for the stoichiometric control of the air / fuel ratio optimal filling level of the oxygen storage can then be set very quickly, if a short fat pulse after the fuel cut a short lean pulse follows. Fat pulse and lean pulse are thereby generated by appropriate control of the engine / air ratio supplied. This is preferably done by providing the pretat lambda probe with a corresponding temporal lambda profile. After expiry of the lambda profile and reaching the optimum filling level of the oxygen storage, recognizable by a Hinterkat signal voltage of about 0.6 to 0.7 volts, preferably 0.65 volts, the regular lambda control of Vorkat control and Hinterkat- Regulation resumed.

Die Erfinder haben gefunden, daß die Oxidation (Befüllung) bzw. Reduktion (Entleerung) des Sauerstoffspeichers im Abgas einen Gleichgewichtsprozeß darstellt. Es wurde ein Artikel der Erfinder mit dem Titel "Is Oxygen Storage in Three Way Catalysts an Equilibrium Controlled Process?" von der Zeitschrift "Applied Catalysis B: Environmental" zur Veröffentlichung angenommen.The inventors have found that the oxidation (filling) or reduction (emptying) of the oxygen storage in the exhaust gas represents an equilibrium process. An article by the inventors entitled "Is Oxygen Storage in Three Way Catalysts to Equilibrium Controlled Process?" adopted by the journal "Applied Catalysis B: Environmental" for publication.

Bei stationärem Betrieb stellt sich immer ein Gleichgewichtszustand des Sauerstoffspeichers ein mit den reduzierenden und oxidierenden Komponenten des Abgases, das heißt im Gleichgewichtszustand wird die Reduktion des Sauerstoffspeichers durch Kohlenmonoxid, Wasserstoff oder Kohlenwasserstoffe gerade kompensiert durch eine entsprechende Oxidation mit Kohlendioxid und Wasser.In stationary operation, an equilibrium state of the oxygen storage is always with the reducing and oxidizing components of the exhaust gas, that is, in the equilibrium state, the reduction of the oxygen storage by carbon monoxide, hydrogen or hydrocarbons is just compensated by a corresponding oxidation with carbon dioxide and water.

Eine wichtige Konsequenz dieses Gleichgewichtsverhaltens ist, daß der maximal erreichbare Entleerungsgrad des Speichers von der Stöchiometrie des Abgases abhängt. So wird zum Beispiel bei Lambda=0,95 der Speicher vollständiger reduziert (entleert) als bei Lambda=0,99.An important consequence of this equilibrium behavior is that the maximum achievable degree of emptying of the accumulator depends on the stoichiometry of the exhaust gas. For example, at lambda = 0.95, the memory is more completely reduced (deflated) than at lambda = 0.99.

Eine weitere Konsequenz des Gleichgewichtsverhaltens ist, daß ein vollständig entleerter Sauerstoffspeicher auch von mäßig fettem Abgas teilweise wieder oxidiert wird, bis sich ein neuer Gleichgewichtszustand mit dem mäßig fetten Abgas einstellt. Hierbei bildet der Sauerstoffspeicher durch Reaktion mit Wasser oder Kohlendioxid die Komponenten Kohlenmonoxid und Wasserstoff. Diese Situation tritt ein, wenn nach einer Schubabschaltung gemäß dem Stand der Technik der Sauerstoffspeicher nur mit einem Fettpuls entleert wird. Durch diesen einzigen Fettpuls wird der Sauerstoffspeicher stark reduziert (tiefentleert). Wird dieser tiefentleerte Sauerstoffspeicher im Anschluß an den Fettpuls mit stöchiometrischem oder leicht fettem Abgas beaufschlagt, erzeugt er für einen Zeitraum von 10 bis zu mehreren 100 Sekunden Kohlenmonoxid und Wasserstoff. Typische Konzentrationen dieser Kohlenmonoxid- und Wasserstoff-Freisetzung liegen bei etwa 10 ppm bis 500 ppm. Diese Schadstofffreisetzung kann etwas verringert werden, wenn der Fettpuls nicht schlagartig beendet wird, sondern langsam wieder auf den stöchiometrischen Wert zurückgeführt wird. Allerdings wird dadurch die Zeitspanne zwischen dem Ende der Schubabschaltung und der Wiederaufnahme des geregelten Betriebs vergrößert mit der Gefahr weiterer Schadstoffemissionen.Another consequence of the equilibrium behavior is that a completely emptied oxygen storage is partially oxidized again by moderately rich exhaust gas until a new equilibrium state with the moderately rich exhaust gas sets. In this case, the oxygen storage forms the components carbon monoxide and hydrogen by reaction with water or carbon dioxide. This situation occurs when after a fuel cut of the prior art, the oxygen storage is emptied only with a rich pulse. Through this single fat pulse, the oxygen storage is greatly reduced (deeply depleted). When stoichiometric or slightly rich exhaust gas is applied to this depleted oxygen storage following the rich pulse, it generates carbon monoxide and hydrogen for a period of time of from 10 to several 100 seconds. Typical concentrations of this carbon monoxide and hydrogen release are about 10 ppm to 500 ppm. This pollutant release can be reduced somewhat if the fat pulse is not abruptly stopped, but slowly returned to the stoichiometric value. However, this increases the time between the end of fuel cut and the resumption of controlled operation with the risk of further pollutant emissions.

Bei genauerer Analyse dieser Vorgänge muß auch die Verteilung von Oxidation und Reduktion des Sauerstoffspeichers längs des Katalysators in Betracht gezogen werden. Der Fettpuls trifft zuerst auf die Eintrittsstirnfläche des Katalysators. Selbst wenn der Fettpuls so bemessen wird, daß er den gesamten Sauerstoffspeicher des Katalysators nur teilweise entleeren kann, kommt es doch im vorderen Teil des Katalysators zu einer Tiefenentleerung des Sauerstoffspeichers und deshalb in der Folge des Pulses zu einer verzögerten Freisetzung von Kohlenmonoxid und Wasserstoff. Der hintere Teil des Katalysators wird bei diesem Vorgang nur teilweise entleert. Im günstigsten Fall kann das von dem vorderen Teil des Katalysators freigesetzte Kohlenmonoxid und der Wasserstoff den hinteren Teil des Katalysators im gewünschten Maß entleeren. Allerdings dauert es in diesem Fall aufgrund der Langsamkeit der Kohlenmonoxid- und Wasserstoff-Freisetzung 10 bis 100 Sekunden, bis der Sauerstoffspeicher über die gesamte Länge des Katalysators vollständig entleert ist und die Stöchiometrie des Abgases hinter Katalysator dem stationären Wert entspricht.On closer analysis of these processes, the distribution of oxidation and reduction of the oxygen storage along the catalyst must also be considered. The fat pulse hits the inlet face of the catalyst first. Even if the fat pulse is sized so that it can only partially empty the entire oxygen storage of the catalyst, it comes in the front part of the catalyst to a deep evacuation of the oxygen storage and therefore in the wake of the pulse to a delayed release of carbon monoxide and hydrogen. The rear part of the catalyst is only partially emptied in this process. In the most favorable case, the carbon monoxide liberated from the front part of the catalyst and the hydrogen can empty the rear part of the catalyst to the desired extent. However, in this case, due to the slowness of carbon monoxide and hydrogen release, it takes 10 to 100 seconds for the oxygen storage to be completely exhausted over the entire length of the catalyst and for the stoichiometry of the exhaust downstream of the catalyst to be stationary.

Die zuvor beschriebenen Kohlenmonoxid- und Wasserstoff-Emissionen an einem nach dem Stand der Technik betriebenen Fahrzeug wirken sich nachteilig aus auf die Stabilität der wieder einsetzenden Hinterkat-Regelung. Für die Hinterkat-Regelung wird eine hinter dem Katalysator angeordneten Sonde eingesetzt. Durch die im Katalysator erzeugten Kohlenmonoxid- und Wasserstoff-Emissionen wird der Hinterkat-Regelung ein insgesamt fettes Abgas vorgetäuscht. Die Hinterkat-Regelung versucht die Fettverschiebung dadurch zu kompensieren, daß das dem Motor zugeführte Luft/Kraftstoff-Gemisch magerer eingestellt wird. Durch diese Abmagerung wird der Sauerstoffspeicher entgegen dem eigentlichen Zweck der Regelung wieder mit Sauerstoff befüllt. Im befüllten Zustand kommt es bei der kleinsten Mager-Abweichung des Abgases zu einem Durchbruch von Stickoxiden. Eine Konsequenz der geschilderten Phänomene ist, daß es sich häufig als schwierig erweist, nach einer Schubabschaltung wieder in einen ordnungsgemäßen Betrieb der Hinterkat-Regelung überzugehen. Eine Lösung dieses Problems besteht darin, die Hinterkat-Regelung für einen gewissen Zeitraum nach einer Schubabschaltung zu deaktivieren. Diese Lösung ist jedoch nicht optimal, weil der Katalysator dann über einen verhältnismäßig langen Zeitraum ungeregelt betrieben wird.The above-described carbon monoxide and hydrogen emissions in a prior art vehicle are detrimental to the stability of the reoccurring Hinterkat control. For the Hinterkat control, a probe arranged behind the catalyst is used. Due to the carbon monoxide and hydrogen emissions generated in the catalytic converter, the after-catalyst control simulates a total rich exhaust gas. The Hinterkat control attempts to compensate for the rich shift by making the air / fuel mixture supplied to the engine leaner. By this emaciation of the oxygen storage is filled contrary to the actual purpose of the scheme again with oxygen. When filled, it comes with the smallest lean deviation of the exhaust gas to a breakthrough of nitrogen oxides. A consequence of the phenomena described is that it often turns out to be difficult to switch back to proper operation of the Hinterkat control after an overrun fuel cut. One solution to this problem is to deactivate the Hinterkat control for a period of time after a fuel cut. However, this solution is not optimal because the catalyst is then operated unregulated for a relatively long period of time.

Die geschilderten Kohlenmonoxid- und Wasserstoff-Emissionen im Anschluss an eine tiefgehende Reduktion des Sauerstoffspeichers wirken sich nicht nur nach einer Schubabschaltung negativ aus. Auch im normalen Betrieb kann es insbesondere in dynamischen Betriebsphasen zu kurzfristigen Regelfehlern kommen, die zu einer vollständigen Füllung des Sauerstoffspeichers führen. Wenn der Speicher weitgehend gefüllt ist, und gleichzeitig die Stöchiometrie des Abgases kurzfristig ins Magere abweicht, kommt es zu einem Magerdurchbruch, der von der Hinterkat-Sonde registriert wird. Wie eingangs beschrieben, wird das Signal der Hinterkat-Sonde dazu verwendet, die Ziel-Stöchiometrie der Lambda-Regelung nachzujustieren. Die Hinterkat-Regelung führt in diesem Fall dazu, daß das dem Motor zugeführte Luft/Kraftstoff-Gemisch wieder angefettet wird. Diese Anfettung hat eine ähnliche Wirkung wie der Fettpuls nach einer Schubabschaltung: der Sauerstoffspeicher wird zunächst sehr tief entleert. Diese Tiefentleerung zieht die zuvor beschriebenen Kohlenmonoxid- und Wasserstoff-Emissionen nach sich. Die Hinterkat-Regelung reagiert darauf mit einer Abmagerung des dem Motor zugeführten Luft/Kraftstoff-Gemisches, was zu einem erneuten Mager-Durchbruch mit einem Absinken der Hinterkat-Sondenspannung führen kann. Das Absinken der Hinterkat-Sondenspannung startet den beschriebenen Prozess aus Kohlenmonoxid- und Wasserstoff-Emissionen, Abmagern und Mager-Durchbruch von neuem. Es kommt also zu einer periodischen Schwingung der Abgasstöchiometrie mit periodischen Mager-Durchbrüchen und entsprechenden Stickoxid-Emissionen. Dieses Schwingungsverhalten ist dem Regelungs-Techniker gut bekannt. Um die Schwingungen zu vermeiden muß durch Einstellung der Regelparameter die Antwortzeit der Regelung heraufgesetzt werden. Diese Lösung ist natürlich nicht optimal, weil durch die verminderte Geschwindigkeit der Regelung die unvermeidlich im Fahrbetrieb entstehenden Lambda-Abweichungen nur mit einer unnötig verlängerten Antwortzeit kompensiert werden können.The described carbon monoxide and hydrogen emissions following a deep reduction of the oxygen storage not only have a negative effect after a fuel cut. Even in normal operation, short-term control errors can occur, especially in dynamic operating phases, which lead to a complete filling of the oxygen storage. If the reservoir is largely filled, and at the same time deviates short the stoichiometry of the exhaust gas into the lean, there is a Magerdurchbruch, which is registered by the Hinterkat probe. As described above, the signal of the Hinterkat probe is used to readjust the target stoichiometry of the lambda control. The Hinterkat control in this case means that the air / fuel mixture supplied to the engine is refilled. This enrichment has a similar effect as the fat pulse after a fuel cut: the oxygen storage is first emptied very deep. This deep evacuation pulls the previously described carbon monoxide and hydrogen emissions. The Hinterkat control responds with a lean of the air / fuel mixture supplied to the engine, which can lead to a renewed lean breakthrough with a decrease in the Hinterkat probe voltage. The decrease in the Hinterkat probe voltage restarts the described process of carbon monoxide and hydrogen emissions, leanness, and lean breakthrough. Thus, there is a periodic oscillation of the exhaust gas stoichiometry with periodic lean breakthroughs and corresponding nitrogen oxide emissions. This vibration behavior is well known to the control engineer. In order to avoid the vibrations, the response time of the control must be increased by setting the control parameters. Of course, this solution is not optimal, because due to the reduced speed of the control, the lambda deviations that inevitably occur during driving can only be compensated with an unnecessarily prolonged response time.

Erfindungsgemäß werden die geschilderten Probleme der konventionellen Verfahren dadurch verringert oder sogar vollständig ausgeschaltet, daß nach Beendigung der Magerbetriebsphase der Füllgrad des Sauerstoffspeichers durch wenigstens einen Fett- und einen Magerpuls auf den optimalen Wert für die nachfolgende Hinterkat-Regelung zurückgeführt wird.According to the invention, the described problems of conventional methods are thereby reduced or even completely eliminated, that after completion of the lean operating phase, the filling level of the oxygen storage is returned by at least one rich and one lean pulse to the optimum value for the subsequent Hinterkat control.

Bevorzugt ist dabei die mit dem Fettpuls zugeführte Menge an fetten Abgaskomponenten größer als zur Einstellung des optimalen Füllgrades für den stöchiometrischen Betrieb benötigt wird, aber kleiner ist als die Menge an fetten Abgaskomponenten, die für eine vollständige Leerung der Speicherkapazität des Sauerstoffspeichers notwendig wäre.Preferably, the amount of rich exhaust gas components supplied with the rich pulse is greater than that needed to set the optimal stoichiometric fill level, but less than the amount of rich exhaust gas components that would be required to completely empty the oxygen storage storage capacity.

Erfindungsgemäß wird also zunächst ein Fettpuls eingesetzt, der in der Lage ist, den Katalysator über seine ganze Länge zu entleeren. Dabei wird der vordere Teil des Speichers tiefentleert. Diese Tiefentleerung im vorderen Teil wird durch einen kleineren Magerpuls rückgängig gemacht. Um auch den hinteren Teil der zuvor tiefentleerten Zone zu befüllen wird der Magerpuls zwangsläufig eine kleine Zone am Eingang des Katalysators über den optimalen Füllgrad hinaus wieder befüllen. Dies kann durch einen weiteren Fettpuls kompensiert werden, der so gewählt wird, daß die von ihm bereitgestellte Menge an Fettkomponenten kleiner ist als für die vollständige Kompensation des vorangegangenen Magerpulses notwendig ist.According to the invention, therefore, a fat pulse is first used which is able to empty the catalyst over its entire length. In doing so, the front part of the memory is deeply emptied. This deep evacuation in the front part is reversed by a smaller lean pulse. In order to fill the rear part of the previously deeply emptied zone, the lean pulse will inevitably refill a small zone at the inlet of the catalytic converter beyond the optimum filling level. This can be done by another Fat pulse can be compensated, which is chosen so that the amount of fat components provided by it is smaller than is necessary for the complete compensation of the previous lean pulse.

Die Reduktionsmittelmenge im ersten Fettpuls muß also größer sein, als die äquivalente Menge Sauerstoff, die dem Katalysator beim Übergang vom vollständig oxidierten Zustand in den stöchiometrischen Betriebszustand entzogen werden muß. Der Katalysator wird also zunächst tiefentleert. Die Reduktionsmittelmenge im ersten Fettpuls wird jedoch bevorzugt kleiner gewählt als die äquivalente Sauerstoffmenge, die dem Katalysator durch einen stationären Fettbetrieb entzogen werden kann.The amount of reducing agent in the first fat pulse must therefore be greater than the equivalent amount of oxygen that must be removed from the catalyst during the transition from the fully oxidized state to the stoichiometric operating state. The catalyst is therefore initially deeply emptied. However, the amount of reducing agent in the first rich pulse is preferably chosen to be smaller than the equivalent amount of oxygen that can be withdrawn from the catalyst by a steady-state rich operation.

Die Pulsfolge wird bevorzugt abhängig vom Betriebszustand des Motors und dem Alterungszustand des Katalysators so ausgelegt, daß nach Beendigung der Pulsfolge die Speicher-Beladungsverteilung der Verteilung entspricht, die sich auch bei geregeltem Betrieb des Katalysators in diesem Betriebspunkt einstellen würde. Eine optimale Pulsfolge kann daran erkannt werden, daß die Spannung der Nachkat-Sonde nach Beendigung der Pulsfolge stabil den Sollwert der Hinterkat-Regelung einnimmt. Als Einflußgrößen für diese Optimierung stehen die Amplitude und/oder die zeitliche Länge der Fett- und Magerpulse zur Verfügung. Amplitude und/oder zeitliche Länge der Pulse können in Abhängigkeit von Temperatur und Raumgeschwindigkeit des Abgases und/oder einem Alterungszustand des Katalysators optimiert werden.The pulse sequence is preferably designed depending on the operating state of the engine and the aging state of the catalyst so that after completion of the pulse train, the memory-load distribution of the distribution corresponds, which would occur even with controlled operation of the catalyst at this operating point. An optimal pulse sequence can be recognized by the fact that the voltage of the post-cat probe after the end of the pulse sequence stably assumes the target value of the Hinterkat control. As influencing variables for this optimization, the amplitude and / or the temporal length of the fat and lean pulses are available. Amplitude and / or time length of the pulses can be optimized depending on the temperature and space velocity of the exhaust gas and / or an aging state of the catalyst.

Sollte die Abfolge eines Fett- und eines Magerpulses für eine vollständige Rückführung des Füllgrades auf den optimalen Wert nicht ausreichen, kann der Motor nach dem ersten Fett- und Magerpuls mit weiteren Fett- und Magerpulsen versorgt wird, wobei die mit dem jeweiligen Fettpuls zugeführte Menge an Fettkomponenten größer ist als mit den oxidativen Komponenten des folgenden Magerpulses kompensiert werden kann. Die optimale Zahl von aufeinanderfolgenden Fett/Mager-Pulsen kann in Vorversuchen in Abhängigkeit von den Betriebsbedingungen nach einer Schubabschaltung ermittelt werden.If the sequence of a rich and a lean pulse is not sufficient for a complete return of the filling level to the optimum value, the motor can be supplied with additional fat and lean pulses after the first fat and lean pulse, whereby the quantity supplied with the respective fat pulse Fat components is greater than can be compensated with the oxidative components of the following lean pulse. The optimum number of consecutive rich / lean pulses can be determined in preliminary tests depending on the operating conditions after an overrun fuel cut.

Das Verfahren wird bevorzugt bei der Abgasreinigung von stöchiometrisch betriebenen Verbrennungsmotoren eingesetzt, bei denen es zu Schubabschaltungen kommt, wenn keine Motorleistung mehr angefordert wird. In diesem Fall bilden die Schubabschaltungen die temporären Magerbetriebsphasen. Temporäre Magerbetriebsphasen können jedoch auch durch ungewollte Regelungsschwankungen des stöchiometrischen Betriebs verursacht werden.The method is preferably used in the exhaust gas purification of stoichiometrically operated internal combustion engines, in which there are fuel cutoffs when no more engine power is requested. In this case, the fuel cutoffs constitute the temporary lean operating phases. Temporary lean operating phases, however, may also be caused by unwanted control variations in stoichiometric operation.

Ein weiteres Anwendungsgebiet der Erfindung ist die Abgasreinigung eines mager betriebenen Verbrennungsmotors, der teilweise stöchiometrisch und teilweise mager betrieben wird. Bei geringen Leistungsanforderungen im Stadtverkehr wird der Motor zur Benzineinsparung mager betrieben. Werden höhere Leistungen angefordert, so muß der Motor auf stöchiometrischen Betrieb umgeschaltet werden. Hier kommt es also im Magerbetrieb genau so wie bei einer Schubabschaltung zur vollständigen Füllung des Sauerstoffspeichers im Katalysator. Die Umschaltung auf stöchiometrischen Betrieb führt zu denselben Problemen wie nach einer Schubabschaltung.Another field of application of the invention is the exhaust gas purification of a lean-burn internal combustion engine, which is operated partly stoichiometrically and partly lean. At low power requirements in city traffic, the engine is operated lean to save fuel. If higher powers are required, the motor must be switched to stoichiometric operation. Thus, in lean operation, as in the case of an overrun fuel cutoff, the oxygen storage in the catalytic converter is completely filled. Switching to stoichiometric operation will cause the same problems as after a fuel cut.

Bevorzugt werden ungewollte temporäre Magerbetriebsphasen infolge einer Regelungsstörung dadurch erkannt, daß die Hinterkat-Sonde ein mageres Abgas anzeigt. Zu diesem Zweck kann eine Sprungsonde verwendet werden. Fällt ihre Signalspannung unter einen vorgegebenen Schwellenwert, so liegt eine temporäre Magerbetriebsphase gemäß dieser Erfindung vor. Der Schwellenwert kann in Abhängigkeit von Temperatur und Raumgeschwindigkeit des Abgases, von der Abgasstöchiometrie und vom Alterungszustand des Katalysators gewählt werden. Bevorzugt werden diese Schwellenwerte in einer Tabelle der Motorsteuerung gespeichert.Preferably, unwanted temporary lean operating phases due to a control disturbance are detected by the fact that the Hinterkat probe indicates a lean exhaust gas. For this purpose a jumping probe can be used. If its signal voltage falls below a predetermined threshold, then there is a temporary lean operating phase according to this invention. The threshold value can be selected depending on the temperature and space velocity of the exhaust gas, the exhaust gas stoichiometry and the aging state of the catalyst. Preferably, these threshold values are stored in a table of the engine control.

Die Sauerstoff speichernden Komponenten des Abgasreinigungskatalysators verlieren durch thermische Alterung kontinuierlich an Speicherkapazität. Das Verfahren ermöglicht es, die noch verbliebene Speicherkapazität zu ermitteln. Hierzu kann das Ausgangssignal der hinter dem Katalysator im Abgasstrang angeordneten Sauerstoffsonde eingesetzt werden. Liegt die Signalspannung nach dem Sprung von der temporären Magerbetriebsphase in den geregelten, stöchiometrischen Betrieb unterhalb der erwarteten Spannung, so ist die verbliebene Sauerstoffspeicherkapazität des Katalysators geringer als angenommen. Auf diese Weise kann also aus der Signalspannung im stöchiometrischen Betrieb nach einer Schubabschaltung die verbliebene Sauerstoffspeicherkapazität ermittelt werden. Fällt die verbliebene Sauerstoffspeicherkapazität unter einen vorgegebenen Wert, so kann ein entsprechendes Warnsignal gesetzt werden.The oxygen-storing components of the exhaust gas purification catalyst continuously lose thermal storage due to thermal aging. The method makes it possible to determine the remaining storage capacity. For this purpose, the output signal of the arranged behind the catalyst in the exhaust system oxygen probe can be used. If the signal voltage after the jump from the temporary lean operation phase to the regulated stoichiometric operation is below the expected one Voltage, so the remaining oxygen storage capacity of the catalyst is lower than expected. In this way, therefore, the remaining oxygen storage capacity can be determined from the signal voltage in stoichiometric operation after an overrun fuel cutoff. If the remaining oxygen storage capacity falls below a predetermined value, then a corresponding warning signal can be set.

Die Bestimmung der noch verbliebenen Sauerstoffspeicherkapazität ermöglicht es, die Menge der mit den Fett- und Magerpulsen dem Katalysator zugeführten Fett- und Magerkomponenten an die verbliebene Sauerstoffspeicherkapazität anzupassen und somit den Übergang von der Schubabschaltung auf den geregelten, stöchiometrischen Betrieb zu optimieren. Bevorzugt geschieht dies, indem die Amplituden der Fett- und Magerpulse entsprechend der verbliebenen Sauerstoffspeicherkapazität um einen Faktor vermindert werden. Der Faktor kann als Funktion der verbliebenen Sauerstoffspeicherkapazität in einer Tabelle der Motorsteuerung gespeichert werden.The determination of the remaining oxygen storage capacity makes it possible to adapt the amount of the fat and lean components fed to the catalyst with the fat and lean pulses to the remaining oxygen storage capacity and thus to optimize the transition from fuel cut to regulated, stoichiometric operation. This is preferably done by the amplitudes of the fat and lean pulses are reduced by a factor corresponding to the remaining oxygen storage capacity. The factor can be stored as a function of the remaining oxygen storage capacity in a table of engine control.

Es ist vorteilhaft, einen mittleren Wert für die Sauerstoffspeicherkapazität in der Motorsteuerung zu speichern, aus dem die Sauerstoffspeicherkapazität für die verschiedenen Betriebspunkte des Motors durch einen Korrekturfaktor berechnet werden kann.It is advantageous to store an average value for the oxygen storage capacity in the engine control, from which the oxygen storage capacity for the various operating points of the engine can be calculated by a correction factor.

Die Erfindung wird an Hand der folgenden Figuren näher erläutert. Es zeigen

Figur 1:
Freisetzung von Kohlenmonoxid/Wasserstoff bei stöchiometri- schem Betrieb im Anschluß an einen Fettpuls.
Figur 2:
Konventionelles Lambda-Profil nach einer Schubabschaltung und sich daraus ergebender Verlauf der Spannung der Lambda-Sonde hinter dem Katalysator für zwei verschiedene Fettpulse nach Schubabschaltung
Figur 3:
Erfindungsgemäßes Lambda-Profil nach einer Schubabschaltung und sich daraus ergebender Verlauf der Spannung der Lambda- Sonde hinter dem Katalysator
The invention will be explained in more detail with reference to the following figures. Show it
FIG. 1:
Release of carbon monoxide / hydrogen in stoichiometric operation following a rich pulse.
FIG. 2:
Conventional lambda profile after a fuel cut and resulting curve of the voltage of the lambda probe behind the catalyst for two different rich pulses after fuel cut
FIG. 3:
Lambda profile according to the invention after a fuel cut-off and the resulting course of the voltage of the lambda probe behind the catalytic converter

Figur 1 veranschaulicht die Emission von Kohlenmonoxid und Wasserstoff nach einer Schubabschaltung und Rückkehr in den stöchiometrischen Betrieb durch einen einzigen Fettpuls. Für diese Messungen wurde ein konventioneller Dreiweg-Katalysator in einer Modellgas-Anlage untersucht. FIG. 1 illustrates the emission of carbon monoxide and hydrogen after a fuel cut and return to stoichiometric operation by a single rich pulse. For these measurements, a conventional three-way catalyst was investigated in a model gas plant.

Das obere Diagramm zeigt den Verlauf der Luftzahl Lambda in Abhängigkeit von der Zeit (Lambda-Profil). Während der ersten 10 Sekunden wurde eine Schubabschaltung mit einem Lambda-Wert von 1,1 simuliert. Nach Ablauf der Schubabschaltung wurde der Sauerstoffspeicher des untersuchten Dreiweg-Katalysators durch einen einzigen Fettpuls auf den Füllgrad für den stöchiometrischen Betrieb mit Lambda = 1 entleert. Die beiden unteren Diagramme zeigen jeweils den gemessenen Verlauf der Wasserstoff- und Kohlenmonoxid-Konzentration hinter dem Katalysator. Zeitverzögert nach dem Fettpuls wird durch den Katalysator Wasserstoff und Kohlenmonoxid freigesetzt. Die Emission dieser beiden Schadstoffe hält über eine Dauer von mehr als 40 Sekunden an.The upper diagram shows the progression of the air ratio lambda as a function of time (lambda profile). During the first 10 seconds, a fuel cut with a lambda value of 1.1 was simulated. After expiration of the fuel cut, the oxygen storage of the investigated three-way catalyst was emptied by a single rich pulse to the filling level for the stoichiometric operation with lambda = 1. The two lower diagrams each show the measured course of the hydrogen and carbon monoxide concentration behind the catalyst. Delayed after the fat pulse, the catalyst liberates hydrogen and carbon monoxide. The emission of these two pollutants persists over a period of more than 40 seconds.

Figur 2 zeigt das Ergebnis von Simulationsrechnungen für den Fall eines konventionellen Lambda-Profils nach einer Schubabschaltung mit vollständiger Befüllung des Sauerstoffspeichers. Die Berechnungen wurden für zwei verschieden lange Fettpulse mit einem Lambda-Wert von 0,9 vorgenommen. Die Lambda-Profile vor dem Katalysator sind in dem oberen Diagramm gezeigt. Das untere Diagramm zeigt die berechneten Signalspannungen der Hinterkat-Sonde. FIG. 2 shows the result of simulation calculations in the case of a conventional lambda profile after a fuel cut with complete filling of the oxygen storage. The calculations were made for two different fat pulses with a lambda value of 0.9. The lambda profiles before the catalyst are shown in the upper diagram. The lower diagram shows the calculated signal voltages of the Hinterkat probe.

Die Signalspannung der Hinterkat-Sonde startet bei etwa 0,1 V und zeigt damit ein stark mageres Abgas (Magerbetriebsphase) mit einem hohen Sauerstoffanteil an. Der Sauerstoffspeicher weist nahezu einen 100 %-tigen Füllgrad auf. Zur Entleerung des Sauerstoffspeichers wird das Abgas vor dem Katalysator kurzzeitig angefettet.The signal voltage of the Hinterkat probe starts at about 0.1 V, indicating a very lean exhaust gas (lean operation phase) with a high oxygen content. The oxygen storage has almost a 100% -tigen degree of filling. To empty the oxygen storage, the exhaust gas is briefly enriched before the catalyst.

Bei einer Dauer des Fettpulses von nur 1,0 s (gestrichelte Kurven) dauert es etwa 17 Sekunden bis die Signalspannung der Hinterkat-Sonde auf 0,65 V angestiegen ist. Bei einer Dauer des Fettpulses von 1,4 s wird schon nach nur etwa 3,5 s eine Signalspannung von 0,65 V erreicht. In beiden Fällen registriert die Hinterkat-Sonde jedoch eine weitere Verschiebung der Stöchiometrie des Abgases zu fetten Werten. Nach 40 s liegt die Sondenspannung noch immer bei etwa 0,75 V. Diese starke Fettverschiebung wird durch die zuvor beschriebenen Emissionen von Kohlenmonoxid und Wasserstoff verursacht.With a duration of the fat pulse of only 1.0 s (dashed curves), it takes about 17 seconds for the signal of the Hinterkat probe to rise to 0.65 V. With a duration of the fat pulse of 1.4 s, a signal voltage of 0.65 V is reached after only about 3.5 s. In both cases, however, the backcatcher detects a further shift in the stoichiometry of the exhaust to rich values. After 40 seconds, the probe voltage is still at about 0.75 V. This high level of fat shift is caused by the above-described emissions of carbon monoxide and hydrogen.

Figur 3 zeigt das Ergebnis von Simulationsrechnungen für den Fall eines erfindungsgemäßen Lambda-Profils. Zur Entleerung des Sauerstoffspeichers weist das Abgas vor dem Katalysator in diesem Beispielfall zwei Paar Fett- und Magerpulse mit einer Gesamtdauer von etwa 20 s auf. Das Diagramm mit der Signalspannung der Hinterkat-Sonde erreicht schon nach etwa 4 s die gewünschten 0,65 V und bleibt auf diesem Spannungsniveau. Der Sauerstoffspeicher hat also schon nach dieser kurzen Zeit mit nur einem Fett/Magerpulspaar ein über seine gesamte Länge gemitteltes optimales Füllniveau erreicht. Trotzdem ist wegen der zuvor beschriebenen axialen Verteilung des Füllgrades ein weiteres Fett/Magerpulspaar notwendig, um den Füllgrad über die gesamte Katalysatorlänge optimal einzustellen. Die Hinterkat-Regelung bleibt nach Beendigung der vorgelagerten Magerbetriebsphase zum Zeitpunkt Null bis zum Ablauf des letzten Fett/Magerpulspaares bei etwa 20 s abgeschaltet. Erst danach wird die Hinterkat-Regelung wieder aufgenommen. FIG. 3 shows the result of simulation calculations in the case of a lambda profile according to the invention. To empty the oxygen storage, the exhaust gas before the catalyst in this example case, two pairs of rich and lean pulses with a total duration of about 20 s. The diagram with the signal voltage of the Hinterkat probe reaches the desired 0.65 V after about 4 s and remains at this voltage level. The oxygen storage has thus already after this short time with only one fat / Magerpulspaar averaged over its entire length optimum filling level achieved. Nevertheless, because of the axial distribution of the degree of filling described above, a further fat / lean pair of powders is necessary in order to optimally adjust the degree of filling over the entire catalyst length. The Hinterkat control remains switched off at the end of the preceding lean operating phase at time zero until the end of the last rich / lean pair at about 20 s. Only then the Hinterkat rule is resumed.

Claims (13)

Verfahren zur Reinigung der Abgase eines Verbrennungsmotors mit einem Katalysator, der einen Sauerstoffspeicher aus Sauerstoff speichernde Komponenten enthält, wobei der Motor mit einer elektronischen Motorsteuerung ausgerüstet ist und während der überwiegenden Betriebsdauer mit einem geregelten, stöchiometrischen Luft/KraftstoffGemisch betrieben wird, wobei abhängig von den Fahrsituationen auch temporäre Magerbetriebsphasen auftreten,
dadurch gekennzeichnet,
daß nach einer temporären Magerbetriebsphase des Motors, welche mit einer weitgehenden Füllung des Sauerstoffspeichers verbunden ist, und vor Wiederaufnahme des geregelten Motorbetriebs, der Füllgrad des Sauerstoffspeichers auf einen optimalen Füllgrad für den stöchiometrischen Betrieb dadurch zurückgeführt wird, daß der Motor mit einem Fettpuls gefolgt von einem Magerpuls versorgt wird, wobei die Menge der mit dem Magerpuls dem Katalysator zugeführten oxidativen Komponenten geringer ist als zur vollständigen Kompensation der mit dem Fettpuls zugeführten Menge an fetten Abgaskomponenten notwendig wäre.
A method for purifying the exhaust gases of an internal combustion engine with a catalyst containing an oxygen reservoir of oxygen-storing components, wherein the engine is equipped with an electronic engine control and operated with a regulated, stoichiometric air / fuel mixture during the predominant operating period, depending on the driving situations also temporary lean operating phases occur,
characterized,
that after a temporary lean operating phase of the engine, which is associated with a substantial filling of the oxygen storage, and before resuming the regulated engine operation, the degree of filling of the oxygen storage is returned to an optimum degree of filling for stoichiometric operation characterized in that the engine with a rich pulse followed by a Magerpuls is supplied, wherein the amount of the lean pulse supplied to the catalyst oxidative components is lower than would be necessary for complete compensation of the supplied with the rich pulse amount of rich exhaust gas components.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die mit dem Fettpuls zugeführte Menge an fetten Abgaskomponenten größer ist als zur Einstellung des optimalen Füllgrades für den stöchiometrischen Betrieb benötigt wird, aber kleiner ist als die Menge an fetten Abgaskomponenten, die für eine vollständige Leerung der Speicherkapazität des Sauerstoffspeichers notwendig wäre.
Method according to claim 1,
characterized,
that the amount of rich exhaust gas components supplied with the rich pulse is greater than that needed to set the optimum stoichiometric fill level, but less than the amount of rich exhaust gas components that would be required to completely empty the oxygen storage storage capacity.
Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
daß der Motor nach dem ersten Fett- und Magerpuls mit weiteren Fett- und Magerpulsen versorgt wird, wobei die mit dem jeweiligen Fettpuls zugeführte Menge an Fettkomponenten größer ist als mit den oxidativen Komponenten des folgenden Magerpulses kompensiert werden könnte.
Method according to claim 2,
characterized,
that the motor is supplied after the first fat and lean pulse with further fat and lean pulses, wherein the amount of fat components supplied with the respective fat pulse is greater than could be compensated with the oxidative components of the following lean pulse.
Verfahren nach Anspruch 1 oder 2
dadurch gekennzeichnet,
daß Fett- und Magerpuls eine Amplitude und eine zeitliche Länge aufweisen und Amplitude und/oder zeitliche Länge in Abhängigkeit von Temperatur und Raumgeschwindigkeit des Abgases und/oder einem Alterungszustand des Katalysators angepaßt werden.
Method according to claim 1 or 2
characterized,
in that the fat and lean pulses have an amplitude and a temporal length and amplitude and / or time length are adapted as a function of the temperature and space velocity of the exhaust gas and / or an aging state of the catalyst.
Verfahren nach Anspruch 4,
dadurch gekennzeichnet,
daß die Amplituden der Fett- und Magerpulse entsprechend dem Alterungszustand des Katalysators um einen Faktor vermindert werden.
Method according to claim 4,
characterized,
that the amplitudes of the fat and lean pulses are reduced by a factor corresponding to the aging state of the catalyst.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die temporäre Magerbetriebsphase eine Schubabschaltung ist.
Method according to claim 1,
characterized,
that the temporary lean operating phase is a fuel cut.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die temporäre Magerbetriebsphase eine Magerbetriebsphase eines abhängig von der Fahrsituation sowohl stöchiometrisch als auch mager betriebenen Verbrennungsmotors ist.
Method according to claim 1,
characterized,
that the temporary lean operating phase is a phase of a lean operation dependent both stoichiometric and lean-burn internal combustion engine of the driving situation.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die temporäre Magerbetriebsphase durch Regelungsschwankungen des stöchiometrischen Betriebs verursacht wird.
Method according to claim 1,
characterized,
that the temporary lean operation phase is caused by control fluctuations of the stoichiometric operation.
Verfahren nach Anspruch 8,
dadurch gekennzeichnet,
daß die temporäre Magerbetriebsphase dadurch erkannt wird, daß eine hinter dem Katalysator angeordnete Sauerstoffsonde ein mageres Abgas anzeigt, wenn ihre Signalspannung einen Schwellenwert unterschreitet.
Method according to claim 8,
characterized,
in that the temporary lean operating phase is recognized by an oxygen probe arranged behind the catalytic converter indicating a lean exhaust gas when its signal voltage falls below a threshold value.
Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
daß der Schwellenwert in Abhängigkeit von Temperatur und Raumgeschwindigkeit des Abgases, von der Abgasstöchiometrie und vom Alterungszustand des Katalysators gewählt wird.
Method according to claim 9,
characterized,
that the threshold value is selected as a function of the temperature and space velocity of the exhaust gas, the exhaust gas stoichiometry and the aging state of the catalyst.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß hinter dem Katalysator eine Sauerstoffsonde im Abgasstrang angeordnet ist und ihre tatsächlich erreichte Signalspannung nach dem Sprung von der temporären Magerbetriebsphase in den geregelten, stöchiometrischen Betrieb benutzt wird, um daraus eine verbliebene Sauerstoffspeicherkapazität des Sauerstoffspeichers zu ermitteln.
Method according to claim 1,
characterized,
that behind the catalyst, an oxygen probe is arranged in the exhaust line and their actual signal voltage is used after the jump from the temporary lean operating phase in the controlled, stoichiometric operation to determine therefrom a remaining oxygen storage capacity of the oxygen storage.
Verfahren nach Anspruch 11,
dadurch gekennzeichnet,
daß ein Signal gesetzt wird, wenn die verbliebene Sauerstoffspeicherkapazität unter einen vorgegebenen Wert gesunken ist.
Method according to claim 11,
characterized,
that a signal is set when the remaining oxygen storage capacity has dropped below a predetermined value.
Verfahren nach Anspruch 12,
dadurch gekennzeichnet,
daß die Menge der mit den Fett- und Magerpulsen dem Katalysator zugeführten Fett- und Magerkomponenten an die verbliebene Sauerstoffspeicherkapazität angepaßt wird.
Method according to claim 12,
characterized,
that the amount of air supplied with the rich and lean pulses to the catalyst rich and lean components is matched to the remaining oxygen storage capacity.
EP09160947A 2009-05-22 2009-05-22 Method for cleaning exhaust gases of a combustion motor with a catalytic convertor Active EP2253821B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP09160947A EP2253821B1 (en) 2009-05-22 2009-05-22 Method for cleaning exhaust gases of a combustion motor with a catalytic convertor
AT09160947T ATE517245T1 (en) 2009-05-22 2009-05-22 METHOD FOR CLEANING THE EXHAUST GASES OF A COMBUSTION ENGINE WITH A CATALYST
CN2010800222327A CN102439278A (en) 2009-05-22 2010-05-20 Method for purifying the exhaust gases of an internal combustion engine having a catalytic converter
JP2012511196A JP2012527560A (en) 2009-05-22 2010-05-20 Method for purifying exhaust gas of an internal combustion engine having a catalytic converter
BRPI1012807A BRPI1012807A2 (en) 2009-05-22 2010-05-20 method for purifying exhaust gases of an internal combustion engine having a catalytic converter
PCT/EP2010/003111 WO2010133370A1 (en) 2009-05-22 2010-05-20 Method for purifying the exhaust gases of an internal combustion engine having a catalytic converter
KR1020117027516A KR20120024617A (en) 2009-05-22 2010-05-20 Method for purifying the exhaust gases of an internal combustion engine having a catalytic converter
US13/321,769 US20120067030A1 (en) 2009-05-22 2010-05-20 Method for purifying the exhaust gases of an internal combustion engine having a catalytic converter
RU2011152239/06A RU2011152239A (en) 2009-05-22 2010-05-20 METHOD FOR CLEANING EXHAUST GASES OF THE INTERNAL COMBUSTION ENGINE EQUIPPED WITH A CATALYTIC NEUTRALIZER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09160947A EP2253821B1 (en) 2009-05-22 2009-05-22 Method for cleaning exhaust gases of a combustion motor with a catalytic convertor

Publications (2)

Publication Number Publication Date
EP2253821A1 true EP2253821A1 (en) 2010-11-24
EP2253821B1 EP2253821B1 (en) 2011-07-20

Family

ID=41165669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09160947A Active EP2253821B1 (en) 2009-05-22 2009-05-22 Method for cleaning exhaust gases of a combustion motor with a catalytic convertor

Country Status (9)

Country Link
US (1) US20120067030A1 (en)
EP (1) EP2253821B1 (en)
JP (1) JP2012527560A (en)
KR (1) KR20120024617A (en)
CN (1) CN102439278A (en)
AT (1) ATE517245T1 (en)
BR (1) BRPI1012807A2 (en)
RU (1) RU2011152239A (en)
WO (1) WO2010133370A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704214A (en) * 2012-08-28 2015-06-10 丰田自动车株式会社 Exhaust purification device for spark ignition internal combustion engine
FR3101673A1 (en) * 2019-10-07 2021-04-09 Renault S.A.S. Method of adjusting the richness of a spark-ignition internal combustion engine
US20240026808A1 (en) * 2020-12-09 2024-01-25 Cummins Inc. Adjusting thermal management mode entry and exit temperature thresholds based on aftertreatment system aging

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219689A1 (en) * 2016-10-11 2018-04-12 Robert Bosch Gmbh Method and control device for controlling an oxygen loading of a three-way catalytic converter
IT201800003891A1 (en) * 2018-03-22 2019-09-22 Fpt Ind Spa METHOD OF MANAGING A POWER SUPPLY OF AN INTERNAL COMBUSTION ENGINE WITH COMMANDED IGNITION AND IMPLEMENTING POWER SUPPLY SYSTEM SAID METHOD

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228286A (en) * 1991-05-17 1993-07-20 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device of engine
DE10240833A1 (en) * 2002-09-04 2004-03-18 Robert Bosch Gmbh Method for reducing exhaust gas emissions from an internal combustion engine
DE102004038482B3 (en) 2004-08-07 2005-07-07 Audi Ag Regulation method for air/fuel ratio for automobile engine with exhaust catalyzer providing limitation of maximum filling or discharge rate for oxygen reservoir within catalyzer
WO2005083250A1 (en) * 2004-02-27 2005-09-09 Siemens Aktiengesellschaft Method for determining the actual oxygen load of a 3-path catalyst of a lambda-controlled internal combustion engine
DE102004019831A1 (en) 2004-04-23 2005-11-17 Audi Ag Operation method e.g. for internal-combustion engine of motor vehicle, involves having internal-combustion engine with outlet side and catalyst mechanism connected with waste gas catalyst
DE102005003020A1 (en) * 2004-07-09 2006-02-09 Mitsubishi Denki K.K. Air-fuel ratio control device for internal combustion engine
DE102006044458A1 (en) 2005-09-21 2007-04-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control of an internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3572961B2 (en) * 1998-10-16 2004-10-06 日産自動車株式会社 Engine exhaust purification device
US7198952B2 (en) * 2001-07-18 2007-04-03 Toyota Jidosha Kabushiki Kaisha Catalyst deterioration detecting apparatus and method
JP4280584B2 (en) * 2003-08-29 2009-06-17 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP2005090388A (en) * 2003-09-18 2005-04-07 Nissan Motor Co Ltd Exhaust emission purification controller for internal combustion engine
JP2005299587A (en) * 2004-04-15 2005-10-27 Toyota Motor Corp Air fuel ratio control device for internal combustion engine
EP1767762B1 (en) * 2004-06-25 2019-11-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
JP2006125279A (en) * 2004-10-28 2006-05-18 Mitsubishi Electric Corp Internal combustion engine control device
US7793489B2 (en) * 2005-06-03 2010-09-14 Gm Global Technology Operations, Inc. Fuel control for robust detection of catalytic converter oxygen storage capacity
JP2007075666A (en) * 2005-09-09 2007-03-29 Mazda Motor Corp Manifold catalyst converter, and exhaust system
JP4226612B2 (en) * 2006-04-03 2009-02-18 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP4687681B2 (en) * 2007-03-30 2011-05-25 トヨタ自動車株式会社 Catalyst deterioration determination device for internal combustion engine
JP2010084670A (en) * 2008-09-30 2010-04-15 Denso Corp Air-fuel ratio control device of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228286A (en) * 1991-05-17 1993-07-20 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device of engine
DE10240833A1 (en) * 2002-09-04 2004-03-18 Robert Bosch Gmbh Method for reducing exhaust gas emissions from an internal combustion engine
WO2005083250A1 (en) * 2004-02-27 2005-09-09 Siemens Aktiengesellschaft Method for determining the actual oxygen load of a 3-path catalyst of a lambda-controlled internal combustion engine
DE102004019831A1 (en) 2004-04-23 2005-11-17 Audi Ag Operation method e.g. for internal-combustion engine of motor vehicle, involves having internal-combustion engine with outlet side and catalyst mechanism connected with waste gas catalyst
DE102005003020A1 (en) * 2004-07-09 2006-02-09 Mitsubishi Denki K.K. Air-fuel ratio control device for internal combustion engine
DE102004038482B3 (en) 2004-08-07 2005-07-07 Audi Ag Regulation method for air/fuel ratio for automobile engine with exhaust catalyzer providing limitation of maximum filling or discharge rate for oxygen reservoir within catalyzer
DE102006044458A1 (en) 2005-09-21 2007-04-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control of an internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704214A (en) * 2012-08-28 2015-06-10 丰田自动车株式会社 Exhaust purification device for spark ignition internal combustion engine
EP2891777A4 (en) * 2012-08-28 2016-01-27 Toyota Motor Co Ltd Exhaust purification device for spark ignition internal combustion engine
CN104704214B (en) * 2012-08-28 2017-06-27 丰田自动车株式会社 The emission-control equipment of spark-ignited internal combustion engine
FR3101673A1 (en) * 2019-10-07 2021-04-09 Renault S.A.S. Method of adjusting the richness of a spark-ignition internal combustion engine
US20240026808A1 (en) * 2020-12-09 2024-01-25 Cummins Inc. Adjusting thermal management mode entry and exit temperature thresholds based on aftertreatment system aging

Also Published As

Publication number Publication date
KR20120024617A (en) 2012-03-14
BRPI1012807A2 (en) 2018-01-16
CN102439278A (en) 2012-05-02
WO2010133370A1 (en) 2010-11-25
ATE517245T1 (en) 2011-08-15
JP2012527560A (en) 2012-11-08
EP2253821B1 (en) 2011-07-20
RU2011152239A (en) 2013-06-27
US20120067030A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
EP1227231B1 (en) Method of operation of a three-way catalyst, which comprises an oxygen storing element
EP1088157B1 (en) METHOD FOR DESULPHATIZING AN NO x? ACCUMULATOR CATALYTIC CONVERTER
EP1183453B1 (en) METHOD FOR DESULFURIZATION OF AT LEAST ONE NOx STORAGE CATALYST MOUNTED IN THE EXHAUST GAS DUCT OF AN INTERNAL COMBUSTION ENGINE
EP2253821B1 (en) Method for cleaning exhaust gases of a combustion motor with a catalytic convertor
EP1194683B1 (en) Method for controlling the operating mode of an internal combustion engine
EP1718853A1 (en) Method for determining the actual oxygen load of a 3-path catalyst of a lambda-controlled internal combustion engine
EP2122135B1 (en) Method for desulfurizing nitrogen oxide storage catalysts in the exhaust gas system of a lean mix engine
EP1106798B1 (en) Apparatus and method for NOx- and/or SOx-regeneration of an NOx storage catalyst
DE10361286B4 (en) Process for the regeneration of a nitrogen oxide storage catalyst
DE102006035283A1 (en) Method for determining the sulfur discharge of a NOx storage catalyst
EP1158146B1 (en) Method for operating an exhaust gas cleaning device in a spark-ignition engine
EP1204815B1 (en) Method for regulating the exhaust gas temperature of a lean combustion engine during the desulphurization of a catalyst
EP1196684B1 (en) METHOD FOR CONTROLLING NOx STORAGE CATALYST REGENERATION
DE102004017886B3 (en) Lambda regulating process for engine with catalytic converter involves setting lambda regulator to preset degree of filling in oxygen store
DE10123148B4 (en) Method and device for desulfurization of a precatalyst
EP1209332B1 (en) Method and device for regenerating a NOx catalytic converter
DE10202935A1 (en) Operating process for removal of sulfur deposits from the pre-catalyst in an IC engine exhaust system by periodic inducing of high temperature with alternating lean and rich lambda conditions
DE10057938A1 (en) Regenerating nitrogen oxides storage catalyst in I.C. engine involves extrapolating oxygen-dependent signal from oxygen-sensitive measuring device
DE102004038482B3 (en) Regulation method for air/fuel ratio for automobile engine with exhaust catalyzer providing limitation of maximum filling or discharge rate for oxygen reservoir within catalyzer
DE10010031B4 (en) Method and device for carrying out a NOx regeneration of an arranged in an exhaust passage of an internal combustion engine NOx storage catalyst
DE10347446B4 (en) Method for heating and desulfating a main catalytic converter of a multi-flow exhaust gas layer of a multi-cylinder internal combustion engine of a vehicle, in particular of a motor vehicle
DE10321311B4 (en) Method for heating a catalytic converter and engine with control unit
DE102004013505A1 (en) Method for running of internal combustion engine of motor vehicle entails comparing actual value for oxygen loading of catalyser with set value predetermined for special running condition deviating from norm
WO2004109081A1 (en) Method for operating an internal combustion engine
EP1365131A2 (en) Method for controling a NOx storage catalyst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009000982

Country of ref document: DE

Effective date: 20110915

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111120

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111021

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

26N No opposition filed

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009000982

Country of ref document: DE

Effective date: 20120423

BERE Be: lapsed

Owner name: UMICORE A.G. & CO. KG

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090522

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 517245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140522

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230330

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 15

Ref country code: FR

Payment date: 20230411

Year of fee payment: 15

Ref country code: DE

Payment date: 20230331

Year of fee payment: 15