EP1194683B1 - Method for controlling the operating mode of an internal combustion engine - Google Patents

Method for controlling the operating mode of an internal combustion engine Download PDF

Info

Publication number
EP1194683B1
EP1194683B1 EP00935153A EP00935153A EP1194683B1 EP 1194683 B1 EP1194683 B1 EP 1194683B1 EP 00935153 A EP00935153 A EP 00935153A EP 00935153 A EP00935153 A EP 00935153A EP 1194683 B1 EP1194683 B1 EP 1194683B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
temperature
combustion engine
cell
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00935153A
Other languages
German (de)
French (fr)
Other versions
EP1194683A1 (en
Inventor
Ekkehard Pott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1194683A1 publication Critical patent/EP1194683A1/en
Application granted granted Critical
Publication of EP1194683B1 publication Critical patent/EP1194683B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0808NOx storage capacity, i.e. maximum amount of NOx that can be stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0818SOx storage amount, e.g. for SOx trap or NOx trap

Definitions

  • the invention relates to a method for controlling a working mode Internal combustion engine with those mentioned in the preamble of claim 1 Features.
  • gaseous pollutants are produced in varying proportions, which can act on the one hand as a reducing agent and on the other hand as an oxidizing agent.
  • Reducing agents such as CO, HC or H 2 , arise to an increasing extent under conditions in which a ratio of oxygen to a fuel is sub-stoichiometric or stoichiometric ( ⁇ ⁇ 1; regeneration mode). If, on the other hand, the oxygen in the air-fuel mixture predominates, the internal combustion engine is in lean operation ( ⁇ > 1) and a proportion of the reducing agents in the exhaust gas decrease.
  • oxidizing agents such as NO x and SO x are also formed during a combustion process. These are reduced on the storage catalytic converter in the regeneration mode by the reducing agents. In a lean operation, this is no longer possible to a sufficient degree, but under such conditions the oxidizing agents are stored in the storage catalytic converter. NO X absorption takes place until a NO X desorption temperature is reached or until the storage catalytic converter has no NO X storage capacity. Prior to this time, therefore, a change in the regeneration operation has to take place to a NO x emission downstream of the storage catalytic converter to reduce.
  • EP 0 867 604 A describes a method for controlling regeneration intervals of NO x stores as a function of a calculated or measured temperature of the store and its NO x loading. A locally differentiated temperature calculation of the NO x storage is proposed, for which local temperatures are calculated at different positions within the storage and an average storage temperature is calculated from these.
  • the storage catalytic converter must be heated to a minimum operating temperature in order to ensure sufficient NO x storage capacity. It is known to operate the internal combustion engine in regeneration mode until a predeterminable minimum temperature is reached. In such an operation, an exhaust gas temperature is generally higher than in lean operation. However, additional fuel consumption must be accepted. To reduce fuel consumption, it is therefore necessary to keep the duration of the regeneration operation as short as possible.
  • the invention has for its object to provide a method that in allows an inhomogeneous temperature curve in a particularly simple and flexible manner within the storage catalytic converter in controlling the working mode of the internal combustion engine to consider. This should go hand in hand with fuel consumption be reduced.
  • the lower limit temperature is selected such that the minimum operating temperature is exceeded and there is an overall sufficient NO x storage capacity of the storage catalytic converter.
  • the upper limit temperature is below the NO X desorption temperature. The lean operation of the internal combustion engine can therefore still be maintained if the mean catalyst temperature has already exceeded the upper limit temperature, but is still at least one catalyst cell below the predefinable upper limit temperature, and the internal combustion engine can already start lean operation in at least one catalyst cell after the minimum operating temperature has been exceeded be switched, even if the mean catalyst temperature is below the minimum operating temperature.
  • the NO x storage capacity can be used as a further criterion for maintaining lean operation.
  • a cumulative raw NO x emission of the internal combustion engine over a predefinable period and the NO x desorption of each catalyst cell can be calculated over the same period.
  • a cumulative NO x emission downstream of the storage catalytic converter can be calculated. If the calculated cumulative NO x emission exceeds a predeterminable threshold value, the regeneration operation of the internal combustion engine is also set.
  • the desulfurization is initiated when the cell temperature is exceeded in at least one catalyst cell above the minimum desulfurization temperature.
  • the desulfurization can also be made dependent on a predefinable threshold value for the SO X loading state. In this way, it is possible to initiate the desulfurization even before an average minimum desulfurization temperature is exceeded, thus shortening a heating-up phase.
  • a duration of the heating phase to reach the minimum desulfurization temperature in Catalyst cells located further downstream can depend on the cell temperature
  • Catalyst cells located further upstream are calculated since these are their Excess heat (difference between the cell temperature and the minimum desulfurization temperature) pass downstream during desulfurization. So that becomes a Desulphurization time is shortened and an additional consumption due to desulphurization reduced.
  • a storage catalyst model for a spatial extension, a temperature profile, a profile of a regeneration speed, a profile of the NO x storage capacity, a profile of the NO x -, SO x - or O 2 -load condition or a combination thereof.
  • FIG. 1 shows a schematic representation of an arrangement 10 with a NO x storage catalytic converter 12 in an exhaust gas duct 14 of an internal combustion engine 16.
  • the arrangement 10 is only a greatly simplified exemplary embodiment, and additional NO x storage catalytic converters or precatalysts can also be used in the area of the exhaust duct 14 are arranged. Such arrangements are known and will not be explained in more detail here.
  • sensors are arranged in the exhaust gas channel, which allow a conclusion to be drawn about a current catalytic converter condition, for example by detecting a content of a gas component in an exhaust gas or a temperature.
  • a gas sensor 18 and a temperature sensor 20 are shown in the arrangement 10, which are located downstream of the NO x storage catalytic converter 12.
  • the sensors 18, 20 deliver signals that can be evaluated within an engine control unit 22.
  • means 24 are assigned to the internal combustion engine 16, which enable at least a temporary influencing of at least one operating parameter of the internal combustion engine 16. In this way, an exhaust gas temperature, a working mode of the internal combustion engine 16 and / or the proportion of the individual gas components in the exhaust gas can be varied. Such influencing of the operating parameters of the internal combustion engine 16 is known and will not be explained in more detail in this context.
  • reducing agents such as CO, HC and H 2
  • oxidizing agents such as NO x and SO x
  • a working mode with ⁇ 1 1 rich or stoichiometric atmosphere, regeneration mode
  • a fuel fraction outweighs an oxygen fraction in the air / fuel mixture or these are in stoichiometric ratios.
  • reducing agents are formed to an increased degree.
  • the working mode changes in a range with ⁇ > 1 (lean atmosphere, lean operation)
  • the proportion of reducing agents in the exhaust gas decreases.
  • the reducing agents are oxidized with oxygen. A reduction in a reducing agent emission is therefore always possible to a sufficient extent if an oxygen concentration in the NO x storage catalytic converter 12 is correspondingly high.
  • the oxidizing agents are converted in the NO x storage catalytic converter 12 by the reducing agents. To a sufficient degree, this can only be done in a working mode with ⁇ ⁇ 1.
  • the NO X is absorbed as nitrate and the SO X as sulfate until a NO X desorption temperature is reached or a NO X storage capacity is exhausted. Accordingly, at least one NO x regeneration must be carried out before this point in time.
  • SO X regeneration (desulfurization) generally does not take place during NO X regeneration.
  • the regeneration parameters can be set in a known manner by influencing the operating parameters of the internal combustion engine 16. It is also known to determine a need for regeneration of the NO x storage catalytic converter 12. This will not be explained in more detail in this context.
  • FIG. 2 schematically shows a division of the storage catalytic converter 12 into any number of catalytic converter cells using a predeterminable matrix.
  • the matrix for dividing the storage catalytic converter 12 into the catalyst cells can be determined using a storage catalytic converter model.
  • This model can include, for example, a spatial extension of the storage catalytic converter 12, a temperature profile or a profile of a regeneration speed within the storage catalytic converter 12. It is also conceivable to use a course of the NO x storage capacity and a course of a loading state for NO x , SO x or O 2 within the storage catalytic converter 12.
  • the loading state is a measure of an absorbed NO X , SO X or O 2 mass of a catalyst cell.
  • the storage catalytic converter 12 has been divided into a total of six catalyst cells Z 1 to Z 6 (zones), the cell Z 1 being arranged on a side facing the internal combustion engine 16.
  • FIG. 3 shows a course of the lambda value during the regeneration of the storage catalytic converter 12 (dashed line).
  • a curve of the lambda value according to a conventional method is also shown for clarification.
  • the internal combustion engine 16 is initially in a lean mode for a phase t m1 .
  • the regeneration mode is set in a phase t f1 , at least until the threshold temperature is again fallen below.
  • Lean operation is then started again in a phase t m2 .
  • the course of the lambda value (dashed line) is significantly different.
  • the regeneration operation can be started later on the one hand and ended earlier on the other hand.
  • the mean catalyst temperature may occasionally be above the limit temperature that can be specified using the conventional method, but the temperature in selected catalyst cells (cell temperature) can still be low enough to ensure sufficient NO x storage capacity , The type of control will be explained in more detail below.
  • FIG. 4 shows a course of the lambda value during a heating phase of the storage catalytic converter 12 (dashed line). Again, a solid line shows the course of the lambda value according to a conventional method.
  • a rich or stoichiometric exhaust gas ( ⁇ 1 1) is initially applied to it for a phase t f2 , since the exhaust gas temperatures are generally significantly increased here.
  • the regeneration operation is maintained until the average catalyst temperature has exceeded a minimum temperature.
  • a phase t f2 ' is shortened in the process according to the invention, and lean operation can already be started when selected catalyst cells have exceeded the minimum temperature.
  • FIG. 5 is a flow chart for controlling the working mode of the Internal combustion engine 16 shown.
  • a step S1 Storage catalytic converter 12 in any number according to the predeterminable matrix divided by catalyst cells.
  • a step S2 Cell temperature determined for each catalyst cell. The cell temperature will either measured directly, for example using additional temperature sensors, or it is calculated using known models.
  • a step S3 it is determined whether the cell temperature in a selected number of catalytic converter cells, which is dependent on exhaust gas mass flow and lambda and NOx raw emissions, lies between a predeterminable lower limit temperature G 1 and a predefinable upper limit temperature G 2 .
  • the lower limit temperature G 1 represents the minimum operating temperature of the storage catalytic converter 12, which is necessary in order to allow sufficient NO x storage capacity at all.
  • the upper limit temperature G 2 is selected such that it lies below the NO X desorption temperature so that NO X emissions downstream of the storage catalytic converter 12 are avoided.
  • a heating measure can be initiated in a step S4, for example by changing to regeneration mode.
  • a cooling measure can optionally be carried out in step S4 by influencing the operating parameters of the internal combustion engine 16 in a known manner.
  • step S5 the NO x storage capacity of selected catalyst cells is determined. This can in turn be carried out using known storage catalytic converter models for the NO x , SO x or O 2 loading state. If the NO x storage capacity does not reach a predefinable threshold value S 1 (step S6), the regeneration operation is started in a step S7.
  • a cumulative NO x emission downstream of the storage catalytic converter is calculated in a predeterminable period of time.
  • the catalyst cells shown in Figure 2 Z 4 to Z 6, the downstream further need are arranged in the exhaust passage 14, possibly also accommodate addition to the heat generated by the internal combustion engine 16 NO X -Rohemission NO X that by NO X desorption in earlier lying catalyst cells (Z 1 to Z 3 ) is released.
  • the regeneration operation is started again (step S7). If this is not the case, the internal combustion engine 16 remains in the lean operation or is adjusted to the lean operation (step S10).
  • FIG. 6 shows a flow chart for controlling the operating mode of the internal combustion engine 16 during the desulfurization.
  • steps S1 and S2 - as already explained - the storage catalytic converter 12 is first divided into individual catalytic converter cells and the cell temperature of selected catalytic converter cells is recorded. If the cell temperature in the selected catalyst cells is below a minimum desulfurization temperature (step S11), no further action is taken (step S12). Otherwise it is checked in a step S13 whether the SO X loading state exceeds a predeterminable threshold value S 3 . If necessary, a duration of the heating phase for the desulfurization is then determined in a step S14.
  • the duration of the heating phase for reaching the minimum desulfurization temperature in further downstream catalyst cells can be determined as a function of the cell temperature in further upstream catalyst cells (for example the catalyst cells Z 1 to Z 3 in FIG. 2) become.
  • a heat flow can also take place within the storage catalytic converter 12 between the individual catalyst cells. in general, the further upstream catalyst cells have a higher cell temperature. Overall, the regeneration time during desulfurization can be significantly reduced in this way.
  • the desulfurization is then carried out in a step S15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The invention relates to a method for controlling an operating mode of an internal combustion engine. Elements are allocated to the internal combustion engine which at least temporarily influence at least one operating parameter of the internal combustion engine, based on a calculated or measured catalyst temperature of at least one storage catalyst which is located in an exhaust gas channel, in order to set the operating mode of the internal combustion engine. According to the invention: a) the storage catalyst (12) is divided into a number of catalyst cells according to a predetermined matrix; b) a cell temperature is determined for each catalyst cell and c) the operating mode of the internal combustion engine (16) is determined according to the cell temperature of at least one predetermined catalyst cell.

Description

Die Erfindung betrifft ein Verfahren zur Steuerung eines Arbeitsmodus einer Verbrennungskraftmaschine mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.The invention relates to a method for controlling a working mode Internal combustion engine with those mentioned in the preamble of claim 1 Features.

Zur Steuerung eines Arbeitsmodus einer Verbrennungskraftmaschine ist bekannt, der Verbrennungskraftmaschine Mittel zuzuordnen, die durch eine zumindest temporäre Beeinflussung wenigstens eines Betriebsparameters der Verbrennungskraftmaschine eine Einstellung des Arbeitsmodus erlauben. Ferner ist bekannt, ein Abgas der Verbrennungskraftmaschine durch geeignete Katalysatoren, die in einem Abgaskanal angeordnet sind, zu reinigen. Derartige Katalysatoren umfassen unter anderem NOX-Speicherkatalysatoren.In order to control a working mode of an internal combustion engine, it is known to assign means to the internal combustion engine which allow the working mode to be set by at least temporarily influencing at least one operating parameter of the internal combustion engine. It is also known to clean an exhaust gas from the internal combustion engine by means of suitable catalysts which are arranged in an exhaust gas duct. Such catalysts include NO x storage catalysts.

Während eines Verbrennungsvorganges eines Luft-Kraftstoff-Gemisches in der Verbrennungskraftmaschine entstehen in wechselnden Anteilen gasförmige Schadstoffe, die einerseits als Reduktionsmittel und andererseits als Oxidationsmittel wirken können. Reduktionsmittel, wie CO, HC oder H2, entstehen in einem vermehrten Maße unter Bedingungen, in denen ein Verhältnis von Sauerstoff zu einem Kraftstoff unterstöchiometrisch oder stöchiometrisch ist (λ ≤ 1; Regenerationsbetrieb). Überwiegt dagegen der Sauerstoff im Luft-Kraftstoff-Gemisch, so befindet sich die Verbrennungskraftmaschine in einem Magerbetrieb (λ > 1), und ein Anteil der Reduktionsmittel am Abgas sinkt. In einem dynamischen Betrieb der Verbrennungskraftmaschine ist es meist dennoch möglich, die Reduktionsmittel in dem Katalysator in einem ausreichenden Maße mit Sauerstoff zu oxidieren.During a combustion process of an air-fuel mixture in the internal combustion engine, gaseous pollutants are produced in varying proportions, which can act on the one hand as a reducing agent and on the other hand as an oxidizing agent. Reducing agents, such as CO, HC or H 2 , arise to an increasing extent under conditions in which a ratio of oxygen to a fuel is sub-stoichiometric or stoichiometric (λ ≤ 1; regeneration mode). If, on the other hand, the oxygen in the air-fuel mixture predominates, the internal combustion engine is in lean operation (λ> 1) and a proportion of the reducing agents in the exhaust gas decrease. In dynamic operation of the internal combustion engine, it is usually still possible to oxidize the reducing agents in the catalytic converter to a sufficient extent with oxygen.

Während eines Verbrennungsvorganges werden daneben auch Oxidationsmittel, wie NOX und SOX, gebildet. Diese werden an dem Speicherkatalysator im Regenerationsbetrieb durch die Reduktionsmittel reduziert. In einem Magerbetrieb ist dies nicht mehr in ausreichendem Maße möglich, jedoch werden unter solchen Bedingungen die Oxidationsmittel in dem Speicherkatalysator eingelagert. Eine NOX-Absorption findet dabei solange statt, bis eine NOX-Desorptionstemperatur erreicht oder eine NOX-Speicherfähigkeit des Speicherkatalysators erschöpft ist. Vor diesem Zeitpunkt muß demnach ein Wechsel in den Regenerationsbetrieb stattfinden, um eine NOX-Emission stromab des Speicherkatalysators zu vermindern. In addition, oxidizing agents such as NO x and SO x are also formed during a combustion process. These are reduced on the storage catalytic converter in the regeneration mode by the reducing agents. In a lean operation, this is no longer possible to a sufficient degree, but under such conditions the oxidizing agents are stored in the storage catalytic converter. NO X absorption takes place until a NO X desorption temperature is reached or until the storage catalytic converter has no NO X storage capacity. Prior to this time, therefore, a change in the regeneration operation has to take place to a NO x emission downstream of the storage catalytic converter to reduce.

Dazu ist es bekannt, den Arbeitsmodus in Abhängigkeit von einer mittleren Katalysatortemperatur zu steuern. Die Katalysatortemperatur kann dabei beispielsweise über zusätzlich in den Abgaskanal eingebrachte Sensoren erfaßt werden oder aber auch in bekannter Weise über geeignete Modelle berechnet werden. Überschreitet dabei die Katalysatortemperatur eine vorgebbare Schwellentemperatur, so wird ein Wechsel in den Regenerationsbetrieb initiiert, um eine NOX-Desorption ohne gleichzeitige Reduktion zu verhindern. Die EP 0 867 604 A beschreibt ein Verfahren zur Steuerung von Regenerationsintervallen von NOX-Speichern in Abhängigkeit von einer berechneten oder gemessenen Temperatur des Speichers und seiner NOX-Beladung. Dabei wird eine örtlich differenzierte Temperaturberechnung des NOX-Speichers vorgeschlagen, wofür an unterschiedlichen Positionen innerhalb des Speichers lokale Temperaturen rechnerisch ermittelt werden und aus diesen eine mittlere Speichertemperatur berechnet wird.For this purpose, it is known to control the working mode as a function of an average catalyst temperature. The catalyst temperature can be detected, for example, via sensors additionally introduced into the exhaust gas duct, or can also be calculated in a known manner using suitable models. If the catalyst temperature exceeds a predefinable threshold temperature, a switch to regeneration mode is initiated in order to prevent NO X desorption without a simultaneous reduction. EP 0 867 604 A describes a method for controlling regeneration intervals of NO x stores as a function of a calculated or measured temperature of the store and its NO x loading. A locally differentiated temperature calculation of the NO x storage is proposed, for which local temperatures are calculated at different positions within the storage and an average storage temperature is calculated from these.

Auf der anderen Seite muß der Speicherkatalysator, um eine ausreichende NOX-Speicherfähigkeit zu gewähren, auf eine Mindestbetriebstemperatur aufgeheizt werden. So ist bekannt, die Verbrennungskraftmaschine bis zum Erreichen einer vorgebbaren Mindesttemperatur im Regenerationsbetrieb zu betreiben. Dabei ist eine Abgastemperatur in einem solchen Betrieb im allgemeinen höher als im Magerbetrieb. Allerdings muß dabei ein Kraftstoffmehrverbrauch in Kauf genommen werden. Zur Minderung des Kraftstoffverbrauches ist es daher notwendig, eine Dauer des Regenerationsbetriebes möglichst gering zu halten.On the other hand, the storage catalytic converter must be heated to a minimum operating temperature in order to ensure sufficient NO x storage capacity. It is known to operate the internal combustion engine in regeneration mode until a predeterminable minimum temperature is reached. In such an operation, an exhaust gas temperature is generally higher than in lean operation. However, additional fuel consumption must be accepted. To reduce fuel consumption, it is therefore necessary to keep the duration of the regeneration operation as short as possible.

Bekannt ist ferner, den Speicherkatalysator je nach Notwendigkeit in bestimmten Abständen zu entschwefeln (SOX-Regeneration). Auch hierzu wird der Regenerationsbetrieb der Verbrennungskraftmaschine eingestellt. Zur Entschwefelung ist jedoch eine wesentlich höhere Mindestentschwefelungstemperatur notwendig. In dem bisherigen Verfahren wird auch hier lediglich eine gemittelte Mindestentschwefelungstemperatur zugrundegelegt, ab der der Wechsel in den Regenerationsbetrieb erfolgt. Gegebenenfalls kann es jedoch sinnvoll sein, die Entschwefelung bereits einzuleiten, wenn nur einzelne Bereiche des Speicherkatalysators die Mindestentschwefelungstemperatur überschritten haben.It is also known to desulfurize the storage catalytic converter as required at certain intervals (SO X regeneration). The regeneration operation of the internal combustion engine is also set for this. However, a significantly higher minimum desulfurization temperature is required for desulfurization. In the previous method, too, only an averaged minimum desulfurization temperature is used here, from which the change to regeneration mode takes place. However, it may make sense to initiate the desulfurization if only individual areas of the storage catalytic converter have exceeded the minimum desulfurization temperature.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Verfügung zu stellen, das in besonders einfacher und flexibler Weise erlaubt, einen inhomogenen Temperaturverlauf innerhalb des Speicherkatalysators bei der Steuerung des Arbeitsmodus der Verbrennungskraftmaschine zu berücksichtigen. Damit einhergehend soll der Kraftstoffverbrauch gemindert werden. The invention has for its object to provide a method that in allows an inhomogeneous temperature curve in a particularly simple and flexible manner within the storage catalytic converter in controlling the working mode of the internal combustion engine to consider. This should go hand in hand with fuel consumption be reduced.

Erfindungsgemäß wird diese Aufgabe durch das Verfahren zur Steuerung des Arbeitsmodus der Verbrennungskraftmaschine mit den im Anspruch 1 genannten Merkmalen gelöst. Dadurch, daß

  • (a) der Speicherkatalysator entsprechend einer vorgebbaren Matrix in einer Anzahl von Katalysatorzellen aufgeteilt wird;
  • (b) eine Zellentemperatur für jede Katalysatorzelle ermittelt wird und
  • (c) der Arbeitsmodus der Verbrennungskraftmaschine in Abhängigkeit von der Zellentemperatur von wenigstens einer vorgebbaren Katalysatorzelle bestimmt wird derart,
    • dass ein Magerbetrieb mit λ > 1 eingestellt wird, wenn in wenigstens einer Katalysatorzelle die Zellentemperatur zwischen einer vorgebbaren unteren Grenztemperatur und einer vorgebbaren oberen Grenztemperatur liegt und/oder
    • dass beim Überschreiten der Zellentemperatur in wenigstens einer Katalysatorzelle über eine Mindestentschwefelungstemperatur eine Entschwefelung eingeleitet wird.
  • According to the invention, this object is achieved by the method for controlling the working mode of the internal combustion engine with the features mentioned in claim 1. As a result of that
  • (a) the storage catalytic converter is divided into a number of catalytic converter cells in accordance with a predeterminable matrix;
  • (b) a cell temperature is determined for each catalyst cell and
  • (c) the working mode of the internal combustion engine is determined as a function of the cell temperature of at least one predefinable catalyst cell,
    • that lean operation is set to λ> 1 if the cell temperature in at least one catalyst cell lies between a predeterminable lower limit temperature and a predeterminable upper limit temperature and / or
    • that when the cell temperature is exceeded in at least one catalyst cell above a minimum desulfurization temperature, desulfurization is initiated.
  • ist es möglich, den Arbeitsmodus der Verbrennungskraftmaschine einem tatsächlichen Katalysatorzustand anzupassen.it is possible to make the working mode of the internal combustion engine an actual one Adapt catalyst state.

    Dabei ist die untere Grenztemperatur derart gewählt, daß die Mindestbetriebstemperatur überschritten wird und eine insgesamt ausreichende NOX-Speicherfähigkeit des Speicherkatalysators besteht. Die obere Grenztemperatur liegt unterhalb der NOX-Desorptionstemperatur. Der Magerbetrieb der Verbrennungskraftmaschine kann daher noch aufrechterhalten werden, wenn die mittlere Katalysatortemperatur bereits die obere Grenztemperatur überschritten hat, aber noch wenigstens eine Katalysatorzelle unterhalb der vorgebbaren oberen Grenztemperatur liegt, und die Verbrennungskraftmaschine kann bereits nach dem Überschreiten der Mindestbetriebstemperatur in wenigstens einer Katalysatorzelle in den Magerbetrieb geschaltet werden, auch wenn die mittlere Katalysatortemperatur unterhalb der Mindestbetriebstemperatur liegt.The lower limit temperature is selected such that the minimum operating temperature is exceeded and there is an overall sufficient NO x storage capacity of the storage catalytic converter. The upper limit temperature is below the NO X desorption temperature. The lean operation of the internal combustion engine can therefore still be maintained if the mean catalyst temperature has already exceeded the upper limit temperature, but is still at least one catalyst cell below the predefinable upper limit temperature, and the internal combustion engine can already start lean operation in at least one catalyst cell after the minimum operating temperature has been exceeded be switched, even if the mean catalyst temperature is below the minimum operating temperature.

    Es hat sich als vorteilhaft erwiesen, in Abhängigkeit von dem NOX- und SOX-Beladungszustand und der Zellentemperatur die NOX-Speicherfähigkeit für jede Katalysatorzelle zu ermitteln. Die NOX-Speicherfähigkeit kann als ein weiteres Kriterium für eine Aufrechterhaltung des Magerbetriebes herangezogen werden. Dazu ist es zum einen denkbar, einen Schwellenwert für die NOX-Speicherfähigkeit vorzugeben und beim Überschreiten des Schwellenwertes den Regenerationsbetrieb der Verbrennungskraftmaschine aufzunehmen. Zum anderen kann eine kumulierte NOX-Rohemission der Verbrennungskraftmaschine über einen vorgebbaren Zeitraum sowie die NOX-Desorption jeder Katalysatorzelle über den gleichen Zeitraum berechnet werden. Anschließend kann in Abhängigkeit von der NOX-Speicherfähigkeit, der NOX-Desorption und einer räumlichen Lage jeder Katalysatorzelle sowie der kumulierten NOX-Rohemission eine kumulierte NOX-Emission stromab des Speicherkatalysators berechnet werden. Übersteigt die berechnete kumulierte NOX-Emission einen vorgebbaren Schwellenwert, so wird ebenfalls der Regenerationsbetrieb der Verbrennungskraftmaschine eingestellt.It has proven to be advantageous to determine the NO x storage capacity for each catalyst cell as a function of the NO x and SO x loading state and the cell temperature. The NO x storage capacity can be used as a further criterion for maintaining lean operation. To this end, it is conceivable, on the one hand, to specify a threshold value for the NO x storage capacity and to start the regeneration operation of the internal combustion engine when the threshold value is exceeded. On the other hand, a cumulative raw NO x emission of the internal combustion engine over a predefinable period and the NO x desorption of each catalyst cell can be calculated over the same period. Subsequently, depending on the NO x storage capacity, the NO x desorption and a spatial position of each catalyst cell and the cumulative raw NO x emission, a cumulative NO x emission downstream of the storage catalytic converter can be calculated. If the calculated cumulative NO x emission exceeds a predeterminable threshold value, the regeneration operation of the internal combustion engine is also set.

    Weiterhin ist vorgesehen, beim Überschreiten der Zellentemperatur in wenigstens einer Katalysatorzelle über die Mindestentschwefelungstemperatur die Entschwefelung einzuleiten. Selbstverständlich kann dabei die Entschwefelung zusätzlich abhängig von einem vorgebbaren Schwellenwert für den SOX-Beladungszustand gemacht werden. Auf diese Weise ist es möglich, bereits vor dem Überschreiten einer mittleren Mindestentschwefelungstemperatur die Entschwefelung einzuleiten und so eine Aufheizphase zu verkürzen.It is also provided that the desulfurization is initiated when the cell temperature is exceeded in at least one catalyst cell above the minimum desulfurization temperature. Of course, the desulfurization can also be made dependent on a predefinable threshold value for the SO X loading state. In this way, it is possible to initiate the desulfurization even before an average minimum desulfurization temperature is exceeded, thus shortening a heating-up phase.

    Eine Dauer der Aufheizphase zum Erreichen der Mindestentschwefelungstemperatur in weiter stromab gelegenen Katalysatorzellen kann dabei in Abhängigkeit von der Zellentemperatur weiter stromauf gelegener Katalysatorzellen berechnet werden, da diese ihre Überschußwärme (Differenz aus der Zellentemperatur und der Mindestentschwefelungstemperatur) während der Entschwefelung stromab weiterleiten. Damit wird eine Entschwefelungsdauer verkürzt und ein entschwefelungsbedingter Mehrverbrauch gemindert.A duration of the heating phase to reach the minimum desulfurization temperature in Catalyst cells located further downstream can depend on the cell temperature Catalyst cells located further upstream are calculated since these are their Excess heat (difference between the cell temperature and the minimum desulfurization temperature) pass downstream during desulfurization. So that becomes a Desulphurization time is shortened and an additional consumption due to desulphurization reduced.

    Es hat sich als vorteilhaft erwiesen, die zur Einteilung des Speicherkatalysators benötigte Matrix anhand eines Speicherkatalysatormodells für eine räumliche Erstreckung, einen Temperaturverlauf, einen Verlauf einer Regenerationsgeschwindigkeit, einen Verlauf der NOX-Speicherfähigkeit, einen Verlauf des NOX-, SOX- oder O2-Beladungszustandes oder eine Kombination derselben festzulegen.It has proven to be advantageous to use a storage catalyst model for a spatial extension, a temperature profile, a profile of a regeneration speed, a profile of the NO x storage capacity, a profile of the NO x -, SO x - or O 2 -load condition or a combination thereof.

    Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred refinements of the invention result from the others in the Characteristics mentioned subclaims.

    Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

    Figur 1
    eine Anordnung eines NOX-Speicherkatalysators in einem Abgaskanal einer Verbrennungskraftmaschine;
    Figur 2
    eine schematische Darstellung einer Aufteilung des Speicherkatalysators anhand einer Matrix;
    Figur 3
    eine schematische Darstellung eines Verlaufes eines Lambdawertes während einer NOX-Regeneration;
    Figur 4
    eine schematische Darstellung des Verlaufes des Lambdawertes während einer Aufheizphase kurz nach Start der Verbrennungskraftmaschine;
    Figur 5
    ein Flußdiagramm eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens zur Steuerung eines Arbeitsmodus der Verbrennungskraftmaschine und
    Figur 6
    ein Flußdiagramm eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens zur Steuerung eines Arbeitsmodus der Verbrennungskraftmaschine während einer Entschwefelung.
    The invention is explained in more detail below in exemplary embodiments with reference to the associated drawings. Show it:
    Figure 1
    an arrangement of a NO x storage catalyst in an exhaust duct of an internal combustion engine;
    Figure 2
    a schematic representation of a division of the storage catalyst using a matrix;
    Figure 3
    a schematic representation of a course of a lambda value during a NO X regeneration;
    Figure 4
    a schematic representation of the course of the lambda value during a heating phase shortly after the start of the internal combustion engine;
    Figure 5
    a flowchart of an embodiment of the inventive method for controlling a working mode of the internal combustion engine and
    Figure 6
    a flowchart of an embodiment of the inventive method for controlling a working mode of the internal combustion engine during desulfurization.

    Die Figur 1 zeigt eine schematische Darstellung einer Anordnung 10 mit einem NOX-Speicherkatalysator 12 in einem Abgaskanal 14 einer Verbrennungskraftmaschine 16. Selbstverständlich ist die Anordnung 10 lediglich ein stark vereinfachtes Ausführungsbeispiel, und es können ebenso auch zusätzliche NOX-Speicherkatalysatoren oder Vorkatalysatoren im Bereich des Abgaskanals 14 angeordnet werden. Derartige Anordnungen sind bekannt und sollen hier nicht näher erläutert werden.FIG. 1 shows a schematic representation of an arrangement 10 with a NO x storage catalytic converter 12 in an exhaust gas duct 14 of an internal combustion engine 16. Of course, the arrangement 10 is only a greatly simplified exemplary embodiment, and additional NO x storage catalytic converters or precatalysts can also be used in the area of the exhaust duct 14 are arranged. Such arrangements are known and will not be explained in more detail here.

    In dem Abgaskanal werden zusätzlich Sensoren angeordnet, die einen Rückschluß auf einen aktuellen Katalysatorzustand erlauben, indem sie beispielsweise einen Gehalt einer Gaskomponente in einem Abgas oder eine Temperatur erfassen. In der Anordnung 10 sind dazu beispielhaft ein Gassensor 18 und ein Temperatursensor 20 dargestellt, die stromab des NOX-Speicherkatalysators 12 liegen. Die Sensoren 18, 20 liefern Signale, die innerhalb eines Motorsteuergerätes 22 ausgewertet werden können. Ferner sind der Verbrennungskraftmaschine 16 Mittel 24 zugeordnet, die eine zumindest temporäre Beeinflussung wenigstens eines Betriebsparameters der Verbrennungskraftmaschine 16 ermöglichen. Auf diese Weise kann eine Abgastemperatur, ein Arbeitsmodus der Verbrennungskraftmaschine 16 und/oder der Anteil der einzelnen Gaskomponenten im Abgas variiert werden. Eine derartige Beeinflussung der Betriebsparameter der Verbrennungskraftmaschine 16 ist bekannt und soll in diesem Zusammenhang nicht näher erläutert werden.In addition, sensors are arranged in the exhaust gas channel, which allow a conclusion to be drawn about a current catalytic converter condition, for example by detecting a content of a gas component in an exhaust gas or a temperature. For this purpose, a gas sensor 18 and a temperature sensor 20 are shown in the arrangement 10, which are located downstream of the NO x storage catalytic converter 12. The sensors 18, 20 deliver signals that can be evaluated within an engine control unit 22. Furthermore, means 24 are assigned to the internal combustion engine 16, which enable at least a temporary influencing of at least one operating parameter of the internal combustion engine 16. In this way, an exhaust gas temperature, a working mode of the internal combustion engine 16 and / or the proportion of the individual gas components in the exhaust gas can be varied. Such influencing of the operating parameters of the internal combustion engine 16 is known and will not be explained in more detail in this context.

    Während eines Verbrennungsvorganges eines Luft-Kraftstoff-Gemisches in der Verbrennungskraftmaschine 16 entstehen in wechselnden Anteilen Reduktionsmittel, wie CO, HC und H2, und Oxidationsmittel, wie NOX und SOX. In einem Arbeitsmodus mit λ ≤ 1 (fette oder stöchiometrische Atmosphäre, Regenerationsbetrieb) überwiegt ein Kraftstoffanteil einen Sauerstoffanteil in dem Luft-Kraftstoff-Gemisch oder diese liegen in stöchiometrischen Verhältnissen vor. Infolgedessen werden in einem erhöhten Maße Reduktionsmittel gebildet. Wechselt der Arbeitsmodus in einem Bereich mit λ > 1 (magere Atmosphäre, Magerbetrieb), so sinkt der Anteil der Reduktionsmittel am Abgas. Im NOX-Speicherkatalysator 12 werden die Reduktionsmittel mit Sauerstoff oxidiert. Damit ist eine Verminderung einer Reduktionsmittelemission in einem ausreichenden Maße immer dann möglich, wenn eine Sauerstoffkonzentration im NOX-Speicherkatalysator 12 entsprechend hoch ist.During a combustion process of an air-fuel mixture in the internal combustion engine 16, reducing agents, such as CO, HC and H 2 , and oxidizing agents, such as NO x and SO x, are produced in varying proportions. In a working mode with λ 1 1 (rich or stoichiometric atmosphere, regeneration mode), a fuel fraction outweighs an oxygen fraction in the air / fuel mixture or these are in stoichiometric ratios. As a result, reducing agents are formed to an increased degree. If the working mode changes in a range with λ> 1 (lean atmosphere, lean operation), the proportion of reducing agents in the exhaust gas decreases. In the NO x storage catalytic converter 12, the reducing agents are oxidized with oxygen. A reduction in a reducing agent emission is therefore always possible to a sufficient extent if an oxygen concentration in the NO x storage catalytic converter 12 is correspondingly high.

    Die Oxidationsmittel werden dagegen in dem NOX-Speicherkatalysator 12 durch die Reduktionsmittel umgesetzt. In einem ausreichenden Maße kann dies nur in einem Arbeitsmodus mit λ ≤ 1 erfolgen. In magerer Atmosphäre wird das NOX als Nitrat und das SOX als Sulfat absorbiert und zwar so lange, bis eine NOX-Desorptionstemperatur erreicht oder eine NOX-Speicherfähigkeit erschöpft ist. Vor diesem Zeitpunkt muß demnach zumindest eine NOX-Regeneration durchgeführt werden.In contrast, the oxidizing agents are converted in the NO x storage catalytic converter 12 by the reducing agents. To a sufficient degree, this can only be done in a working mode with λ ≤ 1. In a lean atmosphere, the NO X is absorbed as nitrate and the SO X as sulfate until a NO X desorption temperature is reached or a NO X storage capacity is exhausted. Accordingly, at least one NO x regeneration must be carried out before this point in time.

    Aufgrund einer höheren SOX-Desorptionstemperatur findet eine SOX-Regeneration (Entschwefelung) im allgemeinen während der NOX-Regeneration nicht statt. Insgesamt sind jedoch für eine Regeneration (NOX- und SOX-Regeneration) ein Arbeitsmodus mit λ ≤ 1 und eine Regenerationstemperatur (in Abhängigkeit von der NOXbeziehungsweise SOX-Desorptionstemperatur) notwendig, die zusammengefaßt die Regenerationsparameter bilden. Eine Einstellung der Regenerationsparameter kann in bekannter Weise durch die Beeinflussung der Betriebsparameter der Verbrennungskraftmaschine 16 erfolgen. Ebenso ist bekannt, eine Regenerationsnotwendigkeit des NOX-Speicherkatalysators 12 zu bestimmen. Dies soll in diesem Zusammenhang nicht näher erläutert werden.Due to a higher SO X desorption temperature, SO X regeneration (desulfurization) generally does not take place during NO X regeneration. An operating mode with λ ≤ 1, and a regeneration temperature (in dependence on the NO X or SO X desorption temperature) necessary to form the combined regeneration parameters - Overall, however, are for regeneration (and SO x regeneration NO X). The regeneration parameters can be set in a known manner by influencing the operating parameters of the internal combustion engine 16. It is also known to determine a need for regeneration of the NO x storage catalytic converter 12. This will not be explained in more detail in this context.

    In der Figur 2 ist in schematischer Weise eine Aufteilung des Speicherkatalysators 12 in eine beliebige Anzahl von Katalysatorzellen anhand einer vorgebbaren Matrix dargestellt. Die Matrix zur Aufteilung des Speicherkatalysators 12 in die Katalysatorzellen kann anhand eines Speicherkatalysatormodells festgelegt werden. Dieses Modell kann beispielsweise eine räumliche Erstreckung des Speicherkatalysators 12, einen Temperaturverlauf oder einen Verlauf einer Regenerationsgeschwindigkeit innerhalb des Speicherkatalysators 12 umfassen. Denkbar ist auch, einen Verlauf der NOX-Speicherfähigkeit und einen Verlauf eines Beladungszustandes für NOX, SOX oder O2 innerhalb des Speicherkatalysators 12 zu nutzen. Der Beladungszustand ist dabei ein Maß für eine absorbierte NOX-, SOX- oder O2-Masse einer Katalysatorzelle. Selbstverständlich ist es möglich, eine Kombination der genannten Parameter in eine Berechnung der Matrix einfließen zu lassen. In dem dargestellten Beispiel ist der Speicherkatalysator 12 in insgesamt sechs Katalysatorzellen Z1 bis Z6 (Zonen) aufgeteilt worden, wobei die Zelle Z1 an einer der Verbrennungskraftmaschine 16 zugewandten Seite angeordnet ist.FIG. 2 schematically shows a division of the storage catalytic converter 12 into any number of catalytic converter cells using a predeterminable matrix. The matrix for dividing the storage catalytic converter 12 into the catalyst cells can be determined using a storage catalytic converter model. This model can include, for example, a spatial extension of the storage catalytic converter 12, a temperature profile or a profile of a regeneration speed within the storage catalytic converter 12. It is also conceivable to use a course of the NO x storage capacity and a course of a loading state for NO x , SO x or O 2 within the storage catalytic converter 12. The loading state is a measure of an absorbed NO X , SO X or O 2 mass of a catalyst cell. Of course it is possible to incorporate a combination of the parameters mentioned in a calculation of the matrix. In the example shown, the storage catalytic converter 12 has been divided into a total of six catalyst cells Z 1 to Z 6 (zones), the cell Z 1 being arranged on a side facing the internal combustion engine 16.

    Die Figur 3 zeigt einen Verlauf des Lambdawertes während der Regeneration des Speicherkatalysators 12 (gestrichelte Linie). Zur Verdeutlichung ist auch ein Verlauf des Lambdawertes nach einem herkömmlichen Verfahren (durchgezogene Linie) dargestellt. Hierbei ist die Verbrennungskraftmaschine 16 zunächst für eine Phase tm1 im Magerbetrieb. Nach einem Überschreiten einer vorgebbaren Schwellentemperatur für die gemittelte Katalysatortemperatur des Speicherkatalysators 12 wird in einer Phase tf1 der Regenerationsbetrieb eingestellt, und zwar mindestens solange, bis die Schwellentemperatur wieder unterschritten wird. Anschließend wird wieder in einer Phase tm2 der Magerbetrieb aufgenommen.FIG. 3 shows a course of the lambda value during the regeneration of the storage catalytic converter 12 (dashed line). A curve of the lambda value according to a conventional method (solid line) is also shown for clarification. Here, the internal combustion engine 16 is initially in a lean mode for a phase t m1 . After a predefinable threshold temperature for the average catalyst temperature of the storage catalytic converter 12 has been exceeded, the regeneration mode is set in a phase t f1 , at least until the threshold temperature is again fallen below. Lean operation is then started again in a phase t m2 .

    In dem erfindungsgemäßen Verfahren ist der Verlauf des Lambdawertes (gestrichelte Linie) deutlich abweichend. So kann der Regenerationsbetrieb in einer Phase tf1' zum einen später aufgenommen werden und zum anderen früher beendet werden. Zwar mag in den Magerphasen tm1' und tm2' die mittlere Katalysatortemperatur zeitweise oberhalb der nach dem herkömmlichen Verfahren vorgebbaren Grenztemperatur liegen, jedoch kann die Temperatur in ausgewählten Katalysatorzellen (Zellentemperatur) noch niedrig genug sein, um eine ausreichende NOX-Speicherfähigkeit zu gewähren. Art und Weise der Steuerung werden nachfolgend noch näher erläutert.In the method according to the invention, the course of the lambda value (dashed line) is significantly different. In a phase t f1 ', the regeneration operation can be started later on the one hand and ended earlier on the other hand. In the lean phases t m1 'and t m2 ', the mean catalyst temperature may occasionally be above the limit temperature that can be specified using the conventional method, but the temperature in selected catalyst cells (cell temperature) can still be low enough to ensure sufficient NO x storage capacity , The type of control will be explained in more detail below.

    In der Figur 4 ist ein Verlauf des Lambdawertes während einer Aufheizphase des Speicherkatalysators 12 dargestellt (gestrichelte Linie). Wiederum zeigt eine durchgezogene Linie den Verlauf des Lambdawertes nach einem herkömmlichen Verfahren. Um den Speicherkatalysator 12 kurz nach einem Start der Verbrennungskraftmaschine 16 auf eine notwendige Betriebstemperatur zu bringen, wird dieser zunächst für eine Phase tf2 mit einem fetten oder stöchiometrischen Abgas (λ ≤ 1) beaufschlagt, da hier im allgemeinen die Abgastemperaturen deutlich erhöht sind. Der Regenerationsbetrieb wird solange aufrechterhalten, bis die mittlere Katalysatortemperatur eine Mindesttemperatur überschritten hat. Dagegen wird im erfindungsgemäßen Verfahren eine Phase tf2' verkürzt, und ein Magerbetrieb kann bereits aufgenommen werden, wenn ausgewählte Katalysatorzellen die Mindesttemperatur überschritten haben.FIG. 4 shows a course of the lambda value during a heating phase of the storage catalytic converter 12 (dashed line). Again, a solid line shows the course of the lambda value according to a conventional method. In order to bring the storage catalytic converter 12 to a necessary operating temperature shortly after the internal combustion engine 16 has started, a rich or stoichiometric exhaust gas (λ 1 1) is initially applied to it for a phase t f2 , since the exhaust gas temperatures are generally significantly increased here. The regeneration operation is maintained until the average catalyst temperature has exceeded a minimum temperature. In contrast, a phase t f2 'is shortened in the process according to the invention, and lean operation can already be started when selected catalyst cells have exceeded the minimum temperature.

    In der Figur 5 ist ein Flußdiagramm zur Steuerung des Arbeitsmodus der Verbrennungskraftmaschine 16 dargestellt. Zunächst wird in einem Schritt S1 der Speicherkatalysator 12 entsprechend der vorgebbaren Matrix in eine beliebige Anzahl von Katalysatorzellen aufgeteilt. Nachfolgend wird in einem Schritt S2 die Zellentemperatur für jede Katalysatorzelle ermittelt. Die Zellentemperatur wird entweder direkt gemessen, beispielsweise über zusätzlich eingebrachte Temperatursensoren, oder sie wird anhand bekannter Modelle berechnet.FIG. 5 is a flow chart for controlling the working mode of the Internal combustion engine 16 shown. First, in a step S1 Storage catalytic converter 12 in any number according to the predeterminable matrix divided by catalyst cells. Subsequently, in a step S2 Cell temperature determined for each catalyst cell. The cell temperature will either measured directly, for example using additional temperature sensors, or it is calculated using known models.

    In einem Schritt S3 wird ermittelt, ob die Zellentemperatur in einer ausgewählten, von Abgasmassenstrom und Lambda und NOx-Rohemissionen abhängigen Anzahl von Katalysatorzellen zwischen einer vorgebbaren unteren Grenztemperatur G1 und einer vorgebbaren oberen Grenztemperatur G2 liegt. Die untere Grenztemperatur G1 stellt dabei die Mindestbetriebstemperatur des Speicherkatalysators 12 dar, die notwendig ist, um überhaupt eine ausreichende NOX-Speicherfähigkeit zu gewähren. Die obere Grenztemperatur G2 ist derart gewählt, daß sie unterhalb der NOX-Desortionstemperatur liegt, damit NOX-Emissionen stromab des Speicherkatalysators 12 vermieden werden. Liegt die Zellentemperatur in den ausgewählten Katalysatorzellen unterhalb der unteren Grenztemperatur G1, so kann gegebenenfalls in einem Schritt S4 eine Heizmaßnahme, beispielsweise durch Wechsel in Regenerationsbetrieb, initiiert werden. Ist die Zellentemperatur in den ausgewählten Katalysatorzellen oberhalb der oberen Grenztemperatur G2, so kann gegebenenfalls in dem Schritt S4 eine Abkühlmaßnahme durch eine Beeinflussung der Betriebsparameter der Verbrennungskraftmaschine 16 in bekannter Weise erfolgen.In a step S3, it is determined whether the cell temperature in a selected number of catalytic converter cells, which is dependent on exhaust gas mass flow and lambda and NOx raw emissions, lies between a predeterminable lower limit temperature G 1 and a predefinable upper limit temperature G 2 . The lower limit temperature G 1 represents the minimum operating temperature of the storage catalytic converter 12, which is necessary in order to allow sufficient NO x storage capacity at all. The upper limit temperature G 2 is selected such that it lies below the NO X desorption temperature so that NO X emissions downstream of the storage catalytic converter 12 are avoided. If the cell temperature in the selected catalyst cells is below the lower limit temperature G 1 , a heating measure can be initiated in a step S4, for example by changing to regeneration mode. If the cell temperature in the selected catalyst cells is above the upper limit temperature G 2 , a cooling measure can optionally be carried out in step S4 by influencing the operating parameters of the internal combustion engine 16 in a known manner.

    In einem Schritt S5 wird die NOX-Speicherfähigkeit ausgewählter Katalysatorzellen ermittelt. Dies kann wiederum anhand von bekannten Speicherkatalysatormodellen für den NOX-, SOX- oder O2-Beladungszustand durchgeführt werden. Erreicht die NOX-Speicherfähigkeit nicht einen vorgebbaren Schwellenwert S1 (Schritt S6), so wird in einem Schritt S7 der Regenerationsbetrieb aufgenommen.In a step S5, the NO x storage capacity of selected catalyst cells is determined. This can in turn be carried out using known storage catalytic converter models for the NO x , SO x or O 2 loading state. If the NO x storage capacity does not reach a predefinable threshold value S 1 (step S6), the regeneration operation is started in a step S7.

    In einem Schritt S8 wird in Abhängigkeit von der NOX-Speicherfähigkeit, der NOX-Desorption und einer räumlichen Lage jeder Katalysatorzelle sowie einer NOX-Rohemission der Verbrennungskraftmaschine 16 in einem vorgebbaren Zeitraum eine kumulierte NOX-Emission stromab des Speicherkatalysators berechnet. So müssen die in der Figur 2 gezeigten Katalysatorzellen Z4 bis Z6, die weiter stromab im Abgaskanal 14 angeordnet sind, gegebenenfalls neben der durch die Verbrennungskraftmaschine 16 erzeugten NOX-Rohemission auch NOX aufnehmen, das durch NOX-Desorption in weiter vorne liegenden Katalysatorzellen (Z1 bis Z3) freigesetzt wird. Überschreitet die berechnete kumulierte NOX-Emission stromab des Speicherkatalysators 12 einen vorgebbaren Schwellenwert S2, so wird wiederum der Regenerationsbetrieb (Schritt S7) aufgenommen. Ist dies nicht der Fall, so verbleibt die Verbrennungskraftmaschine 16 in dem Magerbetrieb beziehungsweise wird auf den Magerbetrieb eingeregelt (Schritt S10).In a step S8, depending on the NO x storage capacity, the NO x desorption and a spatial position of each catalyst cell and a NO x raw emission of the internal combustion engine 16, a cumulative NO x emission downstream of the storage catalytic converter is calculated in a predeterminable period of time. Thus, the catalyst cells shown in Figure 2 Z 4 to Z 6, the downstream further need are arranged in the exhaust passage 14, possibly also accommodate addition to the heat generated by the internal combustion engine 16 NO X -Rohemission NO X that by NO X desorption in earlier lying catalyst cells (Z 1 to Z 3 ) is released. If the calculated cumulative NO x emission downstream of the storage catalytic converter 12 exceeds a predeterminable threshold value S 2 , the regeneration operation is started again (step S7). If this is not the case, the internal combustion engine 16 remains in the lean operation or is adjusted to the lean operation (step S10).

    Die Figur 6 zeigt ein Flußdiagramm zur Steuerung des Arbeitsmodus der Verbrennungskraftmaschine 16 während der Entschwefelung. In den Schritten S1 und S2 wird - wie bereits erläutert - zunächst der Speicherkatalysator 12 in einzelne Katalysatorzellen aufgeteilt und die Zellentemperatur ausgewählter Katalysatorzellen erfaßt. Liegt die Zellentemperatur in den ausgewählten Katalysatorzellen unterhalb einer Mindestentschwefelungstemperatur (Schritt S11), so wird keine weitere Maßnahme ergriffen (Schritt S12). Ansonsten wird in einem Schritt S13 überprüft, ob der SOX-Beladungszustand einen vorgebbaren Schwellenwert S3 überschreitet. Gegebenenfalls wird dann in einem Schritt S14 eine Dauer der Aufheizphase für die Entschwefelung festgelegt. Die Dauer der Aufheizphase zum Erreichen der Mindestentschwefelungstemperatur in weiter stromab gelegenen Katalysatorzellen (beispielsweise den Katalysatorzellen Z4 bis Z6 der Figur 2) kann in Abhängigkeit von der Zellentemperatur weiter stromauf gelegener Katalysatorzellen (beispielsweise den Katalysatorzellen Z1 bis Z3 der Figur 2) bestimmt werden. Neben einem Wärmefluß über das Abgas kann nämlich auch ein Wärmefluß innerhalb des Speicherkatalysators 12 zwischen den einzelnen Katalysatorzellen stattfinden. im allgemeinen weisen die weiter stromauf liegenden Katalysatorzellen eine höhere Zellentemperatur auf. Insgesamt kann auf diese Weise die Regenerationsdauer während der Entschwefelung deutlich verkürzt werden. In einem Schritt S15 wird dann die Entschwefelung durchgeführt.FIG. 6 shows a flow chart for controlling the operating mode of the internal combustion engine 16 during the desulfurization. In steps S1 and S2 - as already explained - the storage catalytic converter 12 is first divided into individual catalytic converter cells and the cell temperature of selected catalytic converter cells is recorded. If the cell temperature in the selected catalyst cells is below a minimum desulfurization temperature (step S11), no further action is taken (step S12). Otherwise it is checked in a step S13 whether the SO X loading state exceeds a predeterminable threshold value S 3 . If necessary, a duration of the heating phase for the desulfurization is then determined in a step S14. The duration of the heating phase for reaching the minimum desulfurization temperature in further downstream catalyst cells (for example the catalyst cells Z 4 to Z 6 in FIG. 2) can be determined as a function of the cell temperature in further upstream catalyst cells (for example the catalyst cells Z 1 to Z 3 in FIG. 2) become. In addition to a heat flow through the exhaust gas, a heat flow can also take place within the storage catalytic converter 12 between the individual catalyst cells. in general, the further upstream catalyst cells have a higher cell temperature. Overall, the regeneration time during desulfurization can be significantly reduced in this way. The desulfurization is then carried out in a step S15.

    Claims (7)

    1. Method for controlling an operating mode of a combustion engine (16), wherein means are allocated to the combustion engine (16), which, in dependence upon a calculated or measured catalyst temperature of at least one storage catalyst (12) arranged in an exhaust duct, influence at least one operating parameter of the combustion engine (16) in order to adjust the operating mode of the combustion engine (16) at least temporarily, characterised in that
      (a) the storage catalyst (12) is subdivided according to a preselectable matrix into a number of catalyst cells;
      (b) a cell temperature is determined for each catalyst cell;
      (c) the operating mode of the combustion engine (16) is determined in dependence upon the cell temperature of at least one preselectable catalyst cell in such a manner that
      a lean operating mode with λ > 1 is set, whenever the cell temperature in at least one catalyst cell, lies between a preselectable lower threshold temperature (G1) and a preselectable upper threshold temperature (G2) and/or
      desulfuration is initiated whenever the cell temperature in at least one catalyst cell rises above a minimum desulfuration temperature.
    2. Method according to claim 1, characterised in that
      (a) an NOx storage capacity for each catalyst cell is determined in dependence upon a NOx and SOx loading status and the cell temperature, and
      (b) the operating mode of the combustion engine (16) is determined in dependence upon the NOx storage capacity of at least one preselectable catalyst cell.
    3. Method according to claim 2, characterised in that a threshold value (S1) for the NOx storage capacity is preselected and that whenever the threshold value (S1) of at least one catalyst cell is exceeded, a regeneration mode of the combustion engine (16) with λ ≤ 1 is adjusted.
    4. Method according to claim 2 or 3, characterised in that
      (a) a cumulative NOx raw emission from the combustion engine (16) and an alteration of the NOx loading status of selected catalyst cells are calculated for a preselectable period;
      (b) a cumulative NOx emission downstream of the storage catalyst (12) is calculated in dependence upon the NOx storage capacity, the alteration of the NOx loading status, a spatial location of the selected catalyst cells and the cumulative NOx raw emission;
      (c) a threshold value (S2) for the cumulative NOx emission is preselected and
      (d) whenever the threshold value (S2) is exceeded, the regeneration operating mode of the combustion engine (16) is set.
    5. Method according to any one of the preceding claims, characterised in that the desulfuration is initiated in dependence upon a preselectable threshold value (S3) for the SOx loading status.
    6. Method according to any one of the preceding claims, characterised in that a duration of a warm-up phase to reach the minimum desulfuration temperature in catalyst cells located further downstream is determined in dependence upon the cell temperature of catalyst cells located further upstream.
    7. Method according to any one of the preceding claims, characterised in that the matrix for subdivision of the storage catalyst (12) into catalyst cells is established on the basis of a storage-catalyst model for a spatial extension, a temperature characteristic, a characteristic for a regeneration rate, a characteristic for the NOx storage capacity, a characteristic for the NOx, SOx or O2 loading status or a combination of the same.
    EP00935153A 1999-06-25 2000-05-31 Method for controlling the operating mode of an internal combustion engine Expired - Lifetime EP1194683B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19929292A DE19929292A1 (en) 1999-06-25 1999-06-25 Control of the operating condition of motor vehicle internal combustion engine dependent upon the catalyst cell temperature uses set detected threshold levels to vary engine control parameters
    DE19929292 1999-06-25
    PCT/EP2000/004978 WO2001000972A1 (en) 1999-06-25 2000-05-31 Method for controlling the operating mode of an internal combustion engine

    Publications (2)

    Publication Number Publication Date
    EP1194683A1 EP1194683A1 (en) 2002-04-10
    EP1194683B1 true EP1194683B1 (en) 2004-04-21

    Family

    ID=7912621

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00935153A Expired - Lifetime EP1194683B1 (en) 1999-06-25 2000-05-31 Method for controlling the operating mode of an internal combustion engine

    Country Status (5)

    Country Link
    EP (1) EP1194683B1 (en)
    JP (1) JP4707292B2 (en)
    CN (1) CN1185407C (en)
    DE (2) DE19929292A1 (en)
    WO (1) WO2001000972A1 (en)

    Families Citing this family (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10115962B4 (en) * 2001-03-27 2009-03-05 Volkswagen Ag Process for the desulfurization of an arranged in the exhaust line of an internal combustion engine NOx storage catalyst
    DE10117434A1 (en) 2001-04-03 2002-10-10 Volkswagen Ag Method for controlling an operating mode of a lean-burn internal combustion engine
    US6860101B2 (en) * 2001-10-15 2005-03-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
    DE10221568A1 (en) * 2002-05-08 2003-12-04 Volkswagen Ag Method for controlling a NO¶x¶ storage catalytic converter
    JP3855920B2 (en) * 2002-11-29 2006-12-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
    DE10305451A1 (en) * 2002-12-31 2004-07-29 Volkswagen Ag Method and device for operating an internal combustion engine
    US8122044B2 (en) 2003-03-12 2012-02-21 Microsoft Corporation Generation of business intelligence entities from a dimensional model
    FR2856741B1 (en) * 2003-06-30 2005-09-30 Renault Sa METHOD AND DEVICE FOR ESTIMATING A MASS OF STORED NITROGEN OXIDES IN A CATALYTIC TRAPPING DEVICE OF A MOTOR VEHICLE
    US7363758B2 (en) * 2004-11-09 2008-04-29 Ford Global Technologies, Llc Lean burn engine control NOx purging based on positional loading of oxidants in emission control device
    US7673445B2 (en) * 2004-11-09 2010-03-09 Ford Global Technologies, Llc Mechanical apparatus having a catalytic NOx storage and conversion device
    US7565799B2 (en) * 2005-02-09 2009-07-28 Gm Global Technology Operations, Inc. Controlling lean NOx trap (LNT) catalyst performance
    JP4615001B2 (en) * 2007-11-05 2011-01-19 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
    WO2011118095A1 (en) * 2010-03-25 2011-09-29 Udトラックス株式会社 Engine exhaust purification device and engine exaust purification method
    CN102207015B (en) * 2011-05-20 2015-02-25 潍柴动力股份有限公司 Temperature prediction device and method for selective catalytic reduction (SCR) catalytic converter
    JP5849858B2 (en) 2012-06-01 2016-02-03 トヨタ自動車株式会社 Catalyst protection device for internal combustion engine
    JP6065870B2 (en) * 2014-03-28 2017-01-25 マツダ株式会社 Deterioration diagnosis method and apparatus for exhaust gas purification device
    CN110284952A (en) * 2019-06-28 2019-09-27 潍柴动力股份有限公司 A kind for the treatment of method and apparatus of diesel engine post-processing system catalyst sulfur poisoning
    CN112065541B (en) * 2020-09-14 2021-11-09 安徽江淮汽车集团股份有限公司 Method for controlling desorption of nitrogen oxides by NSC

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4310961C1 (en) * 1993-04-03 1994-03-10 Mtu Friedrichshafen Gmbh Selective catalytic nitrogen oxide(s) redn. in exhaust gas - by stepwise reductant supply to catalyst sections on attaining minimum temp. after engine starting

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2736099B2 (en) * 1989-02-06 1998-04-02 株式会社日本触媒 Diesel engine exhaust gas purification catalyst
    RU2062891C1 (en) * 1990-03-19 1996-06-27 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Method of and device for control of internal combustion engines
    JP2605586B2 (en) * 1992-07-24 1997-04-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
    JP2851433B2 (en) * 1992-08-17 1999-01-27 エミテツク ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Function monitoring method of catalytic converter
    DE4308661A1 (en) * 1993-03-18 1994-09-22 Emitec Emissionstechnologie Method and device for monitoring the function of a catalytic converter
    DE69405929T2 (en) * 1993-05-25 1998-01-29 Grace W R & Co Combined, electrically heatable converter
    JP3285877B2 (en) * 1995-09-29 2002-05-27 シーメンス アクチエンゲゼルシヤフト Method and apparatus for converting harmful substances in exhaust gas at a catalyst
    JP3632274B2 (en) * 1996-02-07 2005-03-23 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
    JPH108950A (en) * 1996-06-28 1998-01-13 Denso Corp Exhaust gas purifier for internal combustion engine
    US5894725A (en) * 1997-03-27 1999-04-20 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
    DE19851564C2 (en) * 1998-11-09 2000-08-24 Siemens Ag Method for operating and checking a NOx storage reduction catalytic converter of a lean-burn internal combustion engine

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4310961C1 (en) * 1993-04-03 1994-03-10 Mtu Friedrichshafen Gmbh Selective catalytic nitrogen oxide(s) redn. in exhaust gas - by stepwise reductant supply to catalyst sections on attaining minimum temp. after engine starting

    Also Published As

    Publication number Publication date
    JP2003503622A (en) 2003-01-28
    CN1185407C (en) 2005-01-19
    DE50006166D1 (en) 2004-05-27
    DE19929292A1 (en) 2000-12-28
    EP1194683A1 (en) 2002-04-10
    JP4707292B2 (en) 2011-06-22
    WO2001000972A1 (en) 2001-01-04
    CN1358254A (en) 2002-07-10

    Similar Documents

    Publication Publication Date Title
    EP1194683B1 (en) Method for controlling the operating mode of an internal combustion engine
    EP0930930B1 (en) PROCESS FOR REMOVING NOx FROM EXHAUST FUMES
    EP1105629B1 (en) Method for periodically desulfating a nitrogen oxide or sulfur oxide accumulator of an exhaust gas cleaning system
    WO2000064566A1 (en) System for purifying exhaust gases of an internal combustion engine and method for operating such a system
    WO1998045586A1 (en) PROCESS AND DEVICE FOR MONITORING A NOx ACCUMULATOR
    EP1050675B1 (en) Exhaust gas purification device comprising a nitrogen oxide adsorber and method for desulphatizing therefore
    EP1058578B1 (en) Regeneration of a nox storage catalytic converter of an internal combustion engine
    EP2253821B1 (en) Method for cleaning exhaust gases of a combustion motor with a catalytic convertor
    EP1196684B1 (en) METHOD FOR CONTROLLING NOx STORAGE CATALYST REGENERATION
    DE10003903B4 (en) Device and method for controlling an operation of a multi-cylinder engine for motor vehicles with a multi-flow exhaust gas purification system
    EP1422410B1 (en) Method for operating a multi-cylinder internal combustion engine with nox-catalyst
    DE10226873B4 (en) Method for controlling the mode selection of an internal combustion engine
    WO2000070203A1 (en) Desulphurisation method
    EP1235977B1 (en) Method and device for controlling a heating phase of at least one catalytic converter in an exhaust channel of an internal combustion engine
    DE10130053B4 (en) Method and device for desulphurisation of a NOX storage catalytic converter
    EP1544430B1 (en) Method for operating a NOx storage catalyst
    DE10010031B4 (en) Method and device for carrying out a NOx regeneration of an arranged in an exhaust passage of an internal combustion engine NOx storage catalyst
    EP1210509B1 (en) Method for regulating a combustion process in an internal combustion engine during the regeneration of a storage catalyst
    DE10321311B4 (en) Method for heating a catalytic converter and engine with control unit
    EP1435444A2 (en) Method for operating an internal combustion engine with stabilized emissions and vehicle with stabilized emissions
    WO2004109081A1 (en) Method for operating an internal combustion engine
    WO2001065098A1 (en) METHOD AND DEVICE FOR CARRYING OUT AN NOx REGENERATION OF AN NOx STORAGE-TYPE CATALYTIC CONVERTER MOUNTED IN AN EXHAUST GAS CHANNEL OF AN INTERNAL COMBUSTION ENGINE
    WO2001065097A1 (en) METHOD AND DEVICE FOR CARRYING OUT AN NOx REGENERATION OF AN NOx STORAGE-TYPE CATALYTIC CONVERTER MOUNTED IN AN EXHAUST GAS CHANNEL OF AN INTERNAL COMBUSTION ENGINE

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020125

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 20020930

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20040421

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50006166

    Country of ref document: DE

    Date of ref document: 20040527

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040802

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050124

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20120531

    Year of fee payment: 13

    Ref country code: FR

    Payment date: 20120618

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R084

    Ref document number: 50006166

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50006166

    Country of ref document: DE

    Representative=s name: ,

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R084

    Ref document number: 50006166

    Country of ref document: DE

    Effective date: 20130202

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20130531

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130531

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140531

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50006166

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151201