JP3632274B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3632274B2
JP3632274B2 JP02095596A JP2095596A JP3632274B2 JP 3632274 B2 JP3632274 B2 JP 3632274B2 JP 02095596 A JP02095596 A JP 02095596A JP 2095596 A JP2095596 A JP 2095596A JP 3632274 B2 JP3632274 B2 JP 3632274B2
Authority
JP
Japan
Prior art keywords
absorbent
reducing agent
temperature
exhaust gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02095596A
Other languages
Japanese (ja)
Other versions
JPH09209746A (en
Inventor
誠治 大河原
幹夫 村知
拓也 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP02095596A priority Critical patent/JP3632274B2/en
Publication of JPH09209746A publication Critical patent/JPH09209746A/en
Application granted granted Critical
Publication of JP3632274B2 publication Critical patent/JP3632274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
流入する排気ガスの空燃比がリーンのときにNOを吸収し、流入する排気ガスの空燃比がリッチになると吸収したNOを放出するNO吸収剤を機関排気通路内に配置した内燃機関が公知である(特開平6−129235号公報参照)。このNO吸収剤はNO吸収剤の担体上に担持された触媒の温度が例えば200℃から350℃程度の一定範囲のときに高いNO吸収能力を有し、従ってこのNO吸収剤を使用する場合には触媒の温度を一定の範囲内に維持する必要がある。
【0003】
そこでこの内燃機関ではNO吸収剤から流出する排気ガスの温度を検出し、この排気ガスの温度が予め定められた設定温度を越えたときにはNO吸収剤に冷却用空気を供給してNO吸収剤の温度を低下させるようにしている。
【0004】
【発明が解決しようとする課題】
ところで上述の内燃機関ではNO吸収剤の担体上に担持された触媒の温度とNO吸収剤から流出する排気ガスの温度との間には一定の関係があることを前提として、即ちNO吸収剤から流出する排気ガスの温度が高くなればNO吸収剤の担体上に担持された触媒の温度も同様に高くなっているということを前提としてNO吸収剤の温度を制御するようにしている。しかしながら実際にはNO吸収剤の担体上に担持された触媒の温度とNO吸収剤から流出する排気ガスの温度との間には必ずしも一定の関係が存在するとは限らないのである。
【0005】
例えばNO吸収剤において酸化反応が行われた場合、この酸化反応はNO吸収剤の担体上に担持された触媒上において行われるために触媒の温度は急速に上昇する。ところが担体上に分散されている微小粒径の触媒の温度が急速に上昇したとしても担体の温度はただちに上昇せず、従って担体内を通過する排気ガスの温度もただちに上昇しない。即ち、この場合には触媒の温度がかなり高くなっているにもかかわらずに排気ガス温はさほど上昇していないことになる。従って上述の内燃機関におけるように排気ガス温に基いて冷却用空気の供給制御を行うと触媒温度がかなり高くなっても冷却用空気は供給されず、斯くしてNOを良好に吸収しえないという問題を生ずる。
【0006】
また、上述したように触媒の温度が急速に上昇しても担体の温度はただちに上昇せず、従ってNO吸収剤の担体温度を検出してこれに基づき冷却用空気の供給制御を行っても上述の問題と同じ問題を生ずる。即ち、NO浄化能力は担体により担持された触媒の温度により左右されるがこの触媒の温度を検出することはほとんど不可能であるので検出された温度のみに基づいて触媒の温度を一定の範囲内に制御することは困難である。
【0007】
【課題を解決するための手段】
上記問題点を解決するために本発明によれば、流入する排気ガスの空燃比がリーンのときにNOを吸収し、流入する排気ガスの空燃比がリッチになると吸収したNOを放出するNO吸収剤を機関排気通路内に配置すると共に該NO 吸収剤上流の機関排気通路内に還元剤供給弁を配置し、NO 吸収剤からNO を放出すべきときには還元剤供給弁から機関排気通路内に還元剤を供給してNO 吸収剤に流入する排気ガスの空燃比をリッチにするようにした内燃機関の排気浄化装置において、温度センサにより検出される触媒の温度、又は機関負荷又は機関回転数から定まる定常運転時の触媒の温度に還元剤供給時の還元剤供給量に応じた触媒温度上昇量を加算することにより還元剤供給停止後の担体上の触媒温度を予測する予測手段と、該予測手段により予測された還元剤供給停止後の担体上の触媒温度が予め定められた設定値を越えたときにNO吸収剤に冷却用空気を供給する空気供給手段とを具備している。
【0009】
【発明の実施の形態】
図1は本発明をディーゼル機関に適用した場合を示している。
図1を参照すると、1は機関本体、2はピストン、3は燃焼室、4は燃料噴射弁、5は吸気弁、6は吸気ポート、7は排気弁、8は排気ポートを夫々示す。吸気ポート6は対応する枝管9を介してサージタンク10に連結され、サージタンク10は吸気ダクト11を介してエアクリーナ12に連結される。一方、排気ポート8は排気マニホルド13および排気管14を介してNO吸収剤15を内蔵したケーシング16に接続される。
【0010】
図1に示されるようにNO吸収剤15上流の排気管14内には還元剤供給弁17が配置され、この還元剤供給弁17は供給ポンプ18を介して還元剤タンク19に連結される。還元剤タンク19内にはガソリン、イソオクタン、ヘキサン、ヘプタン、軽油、灯油のような炭化水素、或いは液体の状態で保存しうるブタン、プロパンのような炭化水素が充填されている。更に、NO吸収剤15上流の排気管14内には空気供給弁20が配置され、この空気供給弁20は例えば電気的に駆動されるエアポンプ21に連結される。
【0011】
電子制御ユニット30はディジタルコンピュータからなり、双方向性バス31によって相互に接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。ケーシング16内にはNO吸収剤15の担体の温度に比例した出力電圧を発生する温度センサ22が取付けられ、この温度センサ22の出力電圧が対応するAD変換器37を介して入力ポート35に入力される。また、入力ポート35には機関回転数を表わす出力パルスを発生する回転数センサ23が接続され、更に入力ポート35にはアクセルペダル24の踏込み量に比例した出力電圧を発生する負荷センサ25が対応するAD変換器37を介して接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁4、還元剤供給弁17、供給ポンプ18、空気供給弁20およびエアポンプ21に接続される。
【0012】
ケーシング16内に収容されているNO吸収剤15は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少くとも一つと、白金Ptのような貴金属とが担持されている。機関吸気通路およびNO吸収剤15上流の排気通路内に供給された空気および燃料(炭化水素)の比をNO吸収剤15への流入排気ガスの空燃比と称するとこのNO吸収剤15は流入排気ガスの空燃比がリーンのときにはNOを吸収し、流入排気ガス中の酸素濃度が低下すると吸収したNOを放出するNOの吸放出作用を行う。
【0013】
このNO吸収剤15を機関排気通路内に配置すればこのNO吸収剤15は実際にNOの吸放出作用を行うがこの吸放出作用の詳細なメカニズムについては明らかでない部分もある。しかしながらこの吸放出作用は第2図に示すようなメカニズムで行われているものと考えられる。次にこのメカニズムについて担体上に白金PtおよびバリウムBaを担持させた場合を例にとって説明するが他の貴金属、アルカリ金属、アルカリ土類、希土類を用いても同様なメカニズムとなる。
【0014】
即ち、流入排気ガスがリーンのときには流入排気ガス中の酸素濃度が高く、従ってこのとき第2図(A)に示されるようにこれら酸素OがO 又はO 2− の形で白金Ptの表面に付着する。一方、このとき流入排気ガス中のNOは白金Ptの表面上でO 又はO 2− と反応し、NOとなる(2NO+O→2NO)。次いで生成されたNOの一部は白金Pt上で酸化されつつ吸収剤内に吸収されて酸化バリウムBaOと結合しながら第2図(A)に示されるように硝酸イオンNO の形で吸収剤内に拡散する。このようにしてNOがNO吸収剤15内に吸収される。流入排気ガス中の酸素濃度が高い限り白金Ptの表面でNOが生成され、吸収剤のNO吸収能力が飽和しない限りNOが吸収剤内に吸収されて硝酸イオンNO が生成される。
【0015】
これに対し流入排気ガス中の酸素濃度が低下してNOの生成量が低下すると反応が逆方向(NO →NO)に進み、斯くして吸収剤内の硝酸イオンNO がNOの形で吸収剤から放出される。即ち、流入排気ガス中の酸素濃度が低下するとNO吸収剤15からNOが放出されることになる。
一方、このとき流入排気ガスの空燃比がリッチとされ、流入排気ガスが多量の未燃HC,COを含むようになるとこれら未燃HC,COは白金Pt上の酸素O 又はO 2− と反応して酸化せしめられる。また、流入排気ガスの空燃比がリッチになると流入排気ガス中の酸素濃度が極度に低下するために吸収剤からNOが放出され、このNOは第2図(B)に示されるように未燃HC,COと反応して還元せしめられる。このようにして白金Ptの表面上にNOが存在しなくなると吸収剤から次から次へとNOが放出される。従って流入排気ガスの空燃比をリッチにすると短時間のうちにNO吸収剤15からNOが放出されることになる。
【0016】
即ち、流入排気ガスの空燃比をリッチにするとまず初めに未燃HC,COが白金Pt上のO 又はO 2− とただちに反応して酸化せしめられ、次いで白金Pt上のO 又はO 2− が消費されてもまだ未燃HC,COが残っていればこの未燃HC,COによって吸収剤から放出されたNOおよび機関から排出されたNOが還元せしめられる。従って流入排気ガスの空燃比をリッチにすれば短時間のうちにNO吸収剤15に吸収されているNOが放出され、しかもこの放出されたNOが還元されるために大気中にNOが排出されるのを阻止することができることになる。
【0017】
図3は流入排気ガスの空燃比がリーンであるときにNO吸収剤15に吸収されるNOの吸収率Rを示している。なお、横軸TはNO吸収剤15に担持されている触媒の温度を示している。図3からわかるようにNO吸収剤15の触媒温度がTで示される200℃程度よりも低くなるとNOの酸化作用(2NO+O→2NO)が弱まるためにNO吸収率Rが低下する。一方、NO吸収剤15の温度TがTで示される350℃程度よりも高くなるとNO吸収剤15に吸収されているNOが分解してNOがNO吸収剤15から自然放出されるためにNO吸収率Rは低下する。従ってNOはNO吸収剤15の温度Tが一定温度範囲(T<T<T)内にあるときにNO吸収剤15に良好に吸収されることになる。なお、図1に示されるようなディーゼル機関ではNO吸収剤15の触媒温度Tは通常この一定温度範囲(T<T<T)内となっている。
【0018】
図1に示されるディーゼル機関では通常燃焼室3内の混合気は空気過剰のもとで、即ち平均空燃比がリーンの状態で燃焼せしめられており、従ってこのとき機関から排出されたNOはNO吸収剤15に吸収される。一方、平均空燃比がリーンの状態での燃焼が継続するとNOがNO吸収剤15に次第に蓄積し、従ってNO吸収剤15の吸収能力が飽和する前にNO吸収剤15からNOを放出する必要がある。
【0019】
そこで本発明による実施例ではNO吸収剤15からNOを放出するために周期的に、例えば一定時間毎に還元剤供給弁17から還元剤、即ち炭化水素が供給される。このときの還元剤の供給量はNO吸収剤15に流入する流入排気ガスの空燃比が例えば12.0程度のリッチ空燃比となるように制御される。本発明による実施例では還元剤の供給量は還元剤供給弁17の開弁時間を変えることによって制御される。流入排気ガスの空燃比を12.0程度とするのに必要な還元剤供給弁17の開弁時間TRはアクセルペダル24の踏込み量Lおよび機関回転数Nの関数として図4に示すマップの形で予めROM32内に記憶されている。
【0020】
NO吸収剤15からNOを放出すべく還元剤、即ち炭化水素が供給されるとその一部は排気ガス中の酸素によって酸化され、残りの炭化水素はNO吸収剤15の担体上に担持された触媒、即ち白金Pt上で酸化せしめられる。このとき酸化反応熱によって触媒の温度は急速に上昇する。しかしながらこのときNO吸収剤15の担体の温度およびNO吸収剤15から排出される排気ガスの温度はただちに上昇しない。
【0021】
次いで還元剤の供給が停止されるとNO吸収剤15に流入する排気ガスの空燃比は再びリーンとなり、NO吸収剤15によるNOの吸収作用が開始される。ところが還元剤の供給時に酸化反応熱によって触媒の温度Tが図3のTを越えてしまうと還元剤の供給が停止せしめられたときにNO吸収剤15のNO吸収率R(図3)が低くなってしまい、斯くしてNOがNO吸収剤15に十分に吸収されないために多量のNOが大気中に放出されるという問題を生ずる。そこで本発明では還元剤の供給時に酸化反応熱によって触媒の温度が図3のTを越えてしまうと予測されるときには還元剤の供給停止後ただちに空気供給弁20から冷却用空気を供給するようにしている。
【0022】
即ち、本発明による実施例では前述したように図5に示される如く周期的に還元剤供給弁17が開弁せしめられ、その後還元剤供給弁17が閉弁せしめられるとただちに空気制御弁20が開弁せしめられて排気管14内に冷却用空気が供給される。なお、図5にはNO吸収剤15に流入する流入排気ガスの空燃比A/Fの変化も同時に示されている。
【0023】
ところで冒頭で述べたようにNO吸収剤15の担体上に担持された触媒の温度を検出することは困難であり、従って触媒の温度変化は推定しなければならないことになる。次にこの触媒の温度の推定方法について説明する。
通常の運転時にはNO吸収剤15の触媒の温度Tは担体の温度或いはNO吸収剤15から流出する排気ガスの温度にほぼ追従して変化し、従ってこのときには触媒の温度Tを担体の温度或いはNO吸収剤15からの流出排気ガスの温度で代表することができる。図1に示される実施例ではNO吸収剤15の担体の温度TOを温度センサ22により検出しており、従って通常の運転時には温度センサ22により検出された温度TOを触媒の温度Tを示す代表値として用いることができる。
【0024】
一方、通常の運転時には触媒の温度Tは機関負荷および機関回転数が定まるとおおよそ定まる。従って定常運転時における触媒の温度TOとアクセルペダル24の踏込み量、機関回転数との関係を予め実験により求め、この触媒の温度TOをアクセルペダル24の踏込み量Lおよび機関回転数Nの関数として図6(A)に示すようなマップの形で予めROM32内に記憶し、この記憶された値から触媒の温度TOを求めることもできる。
【0025】
次に還元剤を供給したときの触媒の温度Tの推定方法について説明する。還元剤を供給したときには還元剤の供給量、図1に示す実施例では還元剤の供給時間TRが増大するほど触媒温度の上昇量ΔTは大きくなる。即ち、図6(B)に示されるように還元剤の供給時間TRから触媒の温度上昇量ΔTを予測できることになり、従って還元剤供給停止後の触媒温度TはTO+ΔTになるものと予測できることになる。
【0026】
次に触媒温度Tが図3のTを越えると予測されるときに触媒温度Tを図3のTとTとの間まで低下させるのに必要な冷却用空気量について説明する。この冷却用空気量は触媒温度Tの予測上昇温度が高いほど増大せしめられる。図1に示される実施例では冷却用空気量は空気供給弁20の開弁時間を変えることによって制御しており、従ってこの実施例では図6(C)に示されるように触媒温度T(=TO+ΔT)が高くなるほど空気供給時間TAが増大せしめられる。
【0027】
次に図7を参照しつつNO放出および空気供給制御を行うためのルーチンについて説明する。
図7を参照するとまず初めにステップ50においてNO放出実行開始命令が出されているか否かが判別される。この実行開始命令は一定時間毎に出される。実行開始命令が出されるとステップ51に進んで図4に示すマップから還元剤供給時間TRが算出され、次いでステップ52では供給ポンプ18を駆動し、還元剤供給弁17を開弁することによって還元剤の供給処理が行われる。次いでステップ53では還元剤の供給作用が完了したか否かが判別され、還元剤の供給作用が完了したときにはステップ54に進む。
【0028】
ステップ54では図6(B)に基づき算出されるΔTにTOを加算することによって上昇したときの触媒温度Tが算出される。なお、この場合、TOとしては温度センサ22により検出された温度、又は図6(A)のマップから算出された温度が使用される。次いでステップ55では上昇したときの触媒温度Tが図3のTよりも低いか否かが判別される。T≦Tのときには処理サイクルを完了し、従ってこのときには冷却用空気は供給されない。これに対してT>Tのときにはステップ56に進んで図5(C)に示す関係から空気供給時間TAが算出される。次いでステップ57ではエアポンプ21を駆動し、空気供給弁20を開弁させる空気供給処理が行われる。
【0029】
【発明の効果】
NO吸収剤により常時良好にNOを吸収することができる。
【図面の簡単な説明】
【図1】ディーゼル機関の全体図である。
【図2】NOの吸放出作用を説明するための図である。
【図3】NO吸収率Rを示す図である。
【図4】還元剤供給時間TRのマップを示す図である。
【図5】還元剤供給弁および空気供給弁の開閉タイミングを示すタイムチャートである。
【図6】空気供給時間TA等を示す図である。
【図7】NO放出および空気供給制御を行うためのフローチャートである。
【符号の説明】
4…燃料噴射弁
14…排気管
15…NO吸収剤
17…還元剤供給弁
20…空気供給弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an internal combustion engine.
[0002]
[Prior art]
Air-fuel ratio of the exhaust gas flowing absorbs NO X when the lean engine air-fuel ratio of the exhaust gas is arranged the NO X absorbent to release the NO X absorbed and becomes rich in the engine exhaust passage that flows Is known (see JP-A-6-129235). This NO X absorbent has a high NO X absorption capacity when the temperature of the catalyst supported on the NO X absorbent support is within a certain range of, for example, 200 ° C. to 350 ° C. Therefore, the NO X absorbent is When used, it is necessary to keep the temperature of the catalyst within a certain range.
[0003]
So detecting the temperature of the exhaust gas flowing out from the NO X absorbent in this internal combustion engine, NO X by supplying cooling air to the NO X absorbent when exceeding the set temperature at which the temperature of the exhaust gas is predetermined The temperature of the absorbent is lowered.
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned internal combustion engine, it is assumed that there is a certain relationship between the temperature of the catalyst carried on the NO X absorbent carrier and the temperature of the exhaust gas flowing out from the NO X absorbent, that is, NO X. The temperature of the NO X absorbent is controlled on the assumption that the temperature of the exhaust gas flowing out from the absorbent increases and the temperature of the catalyst supported on the NO X absorbent carrier also increases. ing. However, in practice, there is not always a certain relationship between the temperature of the catalyst supported on the NO X absorbent carrier and the temperature of the exhaust gas flowing out from the NO X absorbent.
[0005]
For example, when the oxidation reaction is performed in the NO X absorbent, the oxidation reaction temperature of the catalyst to be done on catalyst supported on a carrier of the NO X absorbent is rapidly increased. However, even if the temperature of the catalyst having a small particle diameter dispersed on the carrier rises rapidly, the temperature of the carrier does not rise immediately, and therefore the temperature of the exhaust gas passing through the carrier does not rise immediately. That is, in this case, the exhaust gas temperature does not rise so much even though the temperature of the catalyst is considerably high. Therefore, if the supply control of the cooling air is performed based on the exhaust gas temperature as in the above-described internal combustion engine, the cooling air is not supplied even if the catalyst temperature becomes considerably high, and therefore, NO X can be absorbed well. Cause the problem of not.
[0006]
Further, as described above, even if the temperature of the catalyst rapidly rises, the temperature of the carrier does not rise immediately. Therefore, even if the carrier temperature of the NO X absorbent is detected and the supply control of the cooling air is performed based on this. This causes the same problem as described above. That, NO X purifying capacity range depends on the temperature of the supported catalyst is the temperature of the catalyst constant based only on the detected temperature so it is almost impossible to detect the temperature of the catalyst by a carrier It is difficult to control inside.
[0007]
[Means for Solving the Problems]
According to the present invention in order to solve the above problems, the air-fuel ratio of the inflowing exhaust gas absorbs the NO x when the lean air-fuel ratio of the inflowing exhaust gas to release NO x absorbed and becomes rich a reducing agent feed valve in the the NO x absorbent in the engine exhaust passage upstream of place with the the NO x absorbent arranged in the engine exhaust passage, the reducing agent supply valve for when releasing the NO x from the NO x absorbent In an exhaust gas purification apparatus for an internal combustion engine in which a reducing agent is supplied into an engine exhaust passage to make the air-fuel ratio of exhaust gas flowing into the NO x absorbent rich, the temperature of the catalyst detected by a temperature sensor, or the engine Predict the catalyst temperature on the carrier after stopping the supply of reducing agent by adding the amount of increase in the catalyst temperature according to the amount of reducing agent supplied at the time of reducing agent supply to the temperature of the catalyst during steady operation determined from the load or engine speed prediction And means, and an air supply means for supplying cooling air to the NO x absorbent when exceeds a set value the catalyst temperature predetermined on the carrier after stopping predicted reducing agent supply by said prediction means doing.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a case where the present invention is applied to a diesel engine.
Referring to FIG. 1, 1 is an engine body, 2 is a piston, 3 is a combustion chamber, 4 is a fuel injection valve, 5 is an intake valve, 6 is an intake port, 7 is an exhaust valve, and 8 is an exhaust port. The intake port 6 is connected to a surge tank 10 via a corresponding branch pipe 9, and the surge tank 10 is connected to an air cleaner 12 via an intake duct 11. On the other hand, the exhaust port 8 is connected to the casing 16 with a built-in the NO X absorbent 15 via an exhaust manifold 13 and an exhaust pipe 14.
[0010]
As shown in FIG. 1, a reducing agent supply valve 17 is disposed in the exhaust pipe 14 upstream of the NO X absorbent 15, and this reducing agent supply valve 17 is connected to a reducing agent tank 19 via a supply pump 18. . The reducing agent tank 19 is filled with hydrocarbons such as gasoline, isooctane, hexane, heptane, light oil, and kerosene, or hydrocarbons such as butane and propane that can be stored in a liquid state. Further, an air supply valve 20 is disposed in the exhaust pipe 14 upstream of the NO X absorbent 15, and the air supply valve 20 is connected to, for example, an electrically driven air pump 21.
[0011]
The electronic control unit 30 comprises a digital computer and is connected to each other by a bidirectional bus 31. A ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port. 36. A temperature sensor 22 that generates an output voltage proportional to the temperature of the carrier of the NO X absorbent 15 is mounted in the casing 16, and the output voltage of the temperature sensor 22 is connected to the input port 35 via a corresponding AD converter 37. Entered. The input port 35 is connected to a rotational speed sensor 23 that generates an output pulse representing the engine rotational speed. Further, the input port 35 corresponds to a load sensor 25 that generates an output voltage proportional to the depression amount of the accelerator pedal 24. Connected through an AD converter 37. On the other hand, the output port 36 is connected to the fuel injection valve 4, the reducing agent supply valve 17, the supply pump 18, the air supply valve 20, and the air pump 21 through corresponding drive circuits 38.
[0012]
The NO X absorbent 15 accommodated in the casing 16 uses, for example, alumina as a carrier, and an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs, barium Ba, calcium Ca, and the like on the carrier. At least one selected from alkaline earths, lanthanum La, and rare earths such as yttrium Y and a noble metal such as platinum Pt are supported. Engine intake passage and the NO X absorbent 15 upstream of the supply air and fuel into the exhaust passage (hydrocarbon) ratio is referred to as the air-fuel ratio of the exhaust gas flowing into the NO X absorbent 15 Toko of the NO X absorbent 15 air-fuel ratio of the inflowing exhaust gas is absorbed NO X when the lean, the oxygen concentration in the inflowing exhaust gas is performed to absorbing and releasing action of the NO X that releases NO X absorbed and decreases.
[0013]
If this NO X absorbent 15 is disposed in the engine exhaust passage, this NO X absorbent 15 actually performs the NO X absorption / release action, but there are some unclear parts about the detailed mechanism of this absorption / release action. However, this absorption / release action is considered to be performed by the mechanism shown in FIG. Next, this mechanism will be described by taking as an example the case where platinum Pt and barium Ba are supported on the support, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths, and rare earths.
[0014]
That is, when the inflowing exhaust gas is lean, the oxygen concentration in the inflowing exhaust gas is high. Therefore, as shown in FIG. 2 (A), these oxygen O 2 is platinum in the form of O 2 or O 2 2−. It adheres to the surface of Pt. On the other hand, at this time, NO in the inflowing exhaust gas reacts with O 2 or O 2 2− on the surface of platinum Pt to become NO 2 (2NO + O 2 → 2NO 2 ). Next, a part of the generated NO 2 is oxidized on platinum Pt while being absorbed in the absorbent and combined with barium oxide BaO in the form of nitrate ions NO 3 as shown in FIG. 2 (A). Diffuses in the absorbent. In this way, NO X is absorbed into the NO X absorbent 15. The oxygen concentration in the inflowing exhaust gas is NO 2 is produced on the surface of as high as platinum Pt, as long as NO 2 to NO X absorbing capacity of the absorbent is not saturated is absorbed in the absorbent and nitrate ions NO 3 - are produced The
[0015]
On the other hand, when the oxygen concentration in the inflowing exhaust gas decreases and the amount of NO 2 produced decreases, the reaction proceeds in the reverse direction (NO 3 → NO 2 ), and thus the nitrate ions NO 3 in the absorbent It is released from the absorbent in the form of NO 2. That is, when the oxygen concentration in the inflowing exhaust gas is lowered the NO X absorbent 15 from the NO X is to be released.
On the other hand, when the air-fuel ratio of the inflowing exhaust gas is rich at this time and the inflowing exhaust gas contains a large amount of unburned HC and CO, these unburned HC and CO are oxygen O 2 or O 2 2 on platinum Pt. - reaction to be oxidized with. Further, when the air-fuel ratio of the inflowing exhaust gas becomes rich, the oxygen concentration in the inflowing exhaust gas extremely decreases, so that NO 2 is released from the absorbent, and this NO 2 is as shown in FIG. 2 (B). It reacts with unburned HC and CO and is reduced. When NO 2 no longer exists on the surface of platinum Pt in this way, NO 2 is released from the absorbent to the next. Therefore NO X from the NO X absorbent 15 in a short time when the air-fuel ratio of the inflowing exhaust gas is made rich, that is released.
[0016]
That is, when the air-fuel ratio of the inflowing exhaust gas is made rich, first, unburned HC and CO are immediately reacted with O 2 or O 2 2− on platinum Pt and oxidized, and then O 2 on platinum Pt. or O 2 2-still unburned HC be consumed, any remaining CO is the unburned HC, NO X discharged from the NO X and engine released from the absorbent by CO is made to reduction. Therefore NO X that is absorbed in the NO X absorbent 15 in a short period of time if the air-fuel ratio of the inflowing exhaust gas is made rich is released, yet NO to the atmosphere for the released NO X is reduced X can be prevented from being discharged.
[0017]
Figure 3 shows the absorption rate R of the NO X absorbed in the NO X absorbent 15 when the air-fuel ratio of the inflowing exhaust gas is lean. The horizontal axis T indicates the temperature of the catalyst supported on the NO X absorbent 15. As can be seen from FIG. 3, when the catalyst temperature of the NO X absorbent 15 becomes lower than about 200 ° C. indicated by T 1 , the NO X oxidation rate (2NO + O 2 → 2NO 2 ) is weakened, so the NO X absorption rate R decreases. To do. On the other hand, the NO X absorbent 15 temperature T is higher than about 350 ° C. represented by T 2 of the the NO X absorbed in the absorbent 15 is in which NO X is decomposed NO X is the NO X absorbent 15 spontaneously emitted from NO X absorbing ratio R to be decreases. Therefore NO X will be the temperature T of the NO X absorbent 15 is absorbed well in the NO X absorbent 15 when in a certain temperature range (T 1 <T <T 2 ) within. In the diesel engine as shown in FIG. 1, the catalyst temperature T of the NO X absorbent 15 is usually within this constant temperature range (T 1 <T <T 2 ).
[0018]
In the diesel engine shown in FIG. 1, the air-fuel mixture in the combustion chamber 3 is usually burned under excess air, that is, the average air-fuel ratio is lean. Therefore, NO X exhausted from the engine at this time is It is absorbed by the NO X absorbent 15. On the other hand, the average air-fuel ratio when the continued combustion in the lean state NO X is gradually accumulated in the NO X absorbent 15, therefore the NO X absorbent 15 NO X from the NO X absorbent 15 before the absorbing capacity is saturated Need to be released.
[0019]
Therefore, in the embodiment according to the present invention, in order to release NO X from the NO X absorbent 15, the reducing agent, that is, hydrocarbons, is supplied from the reducing agent supply valve 17 periodically, for example, at regular intervals. The supply amount of the reducing agent at this time is controlled to be an air-fuel ratio, for example, 12.0 degree of the rich air-fuel ratio of the inflowing exhaust gas flowing into the NO X absorbent 15. In the embodiment according to the present invention, the supply amount of the reducing agent is controlled by changing the opening time of the reducing agent supply valve 17. The opening time TR of the reducing agent supply valve 17 necessary for setting the air-fuel ratio of the inflowing exhaust gas to about 12.0 is a map shown in FIG. 4 as a function of the depression amount L of the accelerator pedal 24 and the engine speed N. Are stored in the ROM 32 in advance.
[0020]
When a reducing agent, that is, a hydrocarbon, is supplied to release NO X from the NO X absorbent 15, a part thereof is oxidized by oxygen in the exhaust gas, and the remaining hydrocarbon is put on the carrier of the NO X absorbent 15. Oxidized on a supported catalyst, ie platinum Pt. At this time, the temperature of the catalyst rapidly rises due to the heat of oxidation reaction. However the temperature of the exhaust gas discharged from the temperature and the NO X absorbent 15 of the carrier at this time the NO X absorbent 15 is not increased immediately.
[0021]
Then the air-fuel ratio of the exhaust gas supply of the reducing agent from flowing into the stops the NO X absorbent 15 becomes lean again, absorption of the NO X by the NO X absorbent 15 is started. However in the NO X absorbent 15 when the temperature T of the catalyst by oxidation reaction heat when the supply of the reducing agent is supplied with the reducing agent exceeds the T 2 of the 3 were allowed to stop NO X absorbing ratio R (FIG. 3 ) Becomes low, and thus NO X is not sufficiently absorbed by the NO X absorbent 15, so that a large amount of NO X is released into the atmosphere. Therefore, as in the present invention to provide a cooling air from immediately air supply valve 20 after stop of the supply of the reducing agent when the temperature of the catalyst is expected exceeds the T 2 of the 3 by oxidation reaction heat when the supply of the reducing agent I have to.
[0022]
That is, in the embodiment according to the present invention, as described above, as shown in FIG. 5, the reducing agent supply valve 17 is periodically opened, and thereafter, immediately after the reducing agent supply valve 17 is closed, the air control valve 20 is turned on. The valve is opened and cooling air is supplied into the exhaust pipe 14. FIG. 5 also shows the change in the air-fuel ratio A / F of the inflowing exhaust gas flowing into the NO X absorbent 15 at the same time.
[0023]
By the way, as described at the beginning, it is difficult to detect the temperature of the catalyst supported on the carrier of the NO X absorbent 15, and therefore the temperature change of the catalyst must be estimated. Next, a method for estimating the temperature of the catalyst will be described.
The temperature T of the catalyst of the NO X absorbent 15 during normal operation is changed in substantially follows the temperature of the exhaust gas flowing out of the temperature or the NO X absorbent 15 of the carrier, thus the temperature of the carrier temperature T of the catalyst at this time Alternatively, it can be represented by the temperature of the exhaust gas flowing out from the NO X absorbent 15. In the embodiment shown in FIG. 1, the temperature TO of the carrier of the NO X absorbent 15 is detected by the temperature sensor 22, and therefore the temperature TO detected by the temperature sensor 22 during normal operation is representative of the temperature T of the catalyst. Can be used as a value.
[0024]
On the other hand, during normal operation, the catalyst temperature T is roughly determined when the engine load and the engine speed are determined. Accordingly, the relationship between the catalyst temperature TO, the amount of depression of the accelerator pedal 24, and the engine speed during steady operation is obtained in advance by experiments, and this catalyst temperature TO is determined as a function of the amount of depression L of the accelerator pedal 24 and the engine speed N. It is also possible to store in advance in the ROM 32 in the form of a map as shown in FIG. 6A, and obtain the catalyst temperature TO from this stored value.
[0025]
Next, a method for estimating the temperature T of the catalyst when the reducing agent is supplied will be described. When the reducing agent is supplied, the amount of increase ΔT in the catalyst temperature increases as the reducing agent supply amount increases, and in the embodiment shown in FIG. 1, the reducing agent supply time TR increases. That is, as shown in FIG. 6B, the catalyst temperature increase amount ΔT can be predicted from the reducing agent supply time TR, and therefore the catalyst temperature T after the reducing agent supply stop can be predicted to be TO + ΔT. Become.
[0026]
Next will be described cooling air quantity required to lower the catalyst temperature T up between T 1 and T 2 in FIG. 3 when the catalyst temperature T is predicted to exceed T 2 of the FIG. The amount of cooling air is increased as the predicted temperature rise of the catalyst temperature T is higher. In the embodiment shown in FIG. 1, the amount of cooling air is controlled by changing the valve opening time of the air supply valve 20. Therefore, in this embodiment, as shown in FIG. 6C, the catalyst temperature T (= The air supply time TA is increased as TO + ΔT) increases.
[0027]
Next, a routine for performing NO X release and air supply control will be described with reference to FIG.
Referring to FIG. 7, first, at step 50, it is judged if a NO X release execution start command has been issued. This execution start command is issued at regular intervals. When an execution start command is issued, the routine proceeds to step 51 where the reducing agent supply time TR is calculated from the map shown in FIG. 4, and then at step 52, the supply pump 18 is driven and the reducing agent supply valve 17 is opened to reduce the amount. Agent supply processing is performed. Next, at step 53, it is determined whether or not the reducing agent supply operation is completed. When the reducing agent supply operation is completed, the routine proceeds to step 54.
[0028]
In step 54, the catalyst temperature T when it rises by adding TO to ΔT calculated based on FIG. 6B is calculated. In this case, as the TO, a temperature detected by the temperature sensor 22 or a temperature calculated from the map of FIG. 6A is used. Then the catalyst temperature T when the increase in step 55 whether or not lower than T 2 of the FIG. 3 is discriminated. When T ≦ T 2, the processing cycle is ended, thus the cooling air is not supplied at this time. This air supply time TA from the relationship shown in FIG. 5 (C) proceeds to step 56 when the T> T 2 is calculated for. Next, at step 57, air supply processing is performed to drive the air pump 21 and open the air supply valve 20.
[0029]
【The invention's effect】
It can be satisfactorily absorbed NO X at all times by the NO X absorbent.
[Brief description of the drawings]
FIG. 1 is an overall view of a diesel engine.
FIG. 2 is a view for explaining the NO X absorption / release action;
FIG. 3 is a graph showing NO X absorption rate R.
FIG. 4 is a diagram showing a map of a reducing agent supply time TR.
FIG. 5 is a time chart showing opening / closing timings of a reducing agent supply valve and an air supply valve.
FIG. 6 is a diagram showing an air supply time TA and the like.
FIG. 7 is a flowchart for performing NO X release and air supply control.
[Explanation of symbols]
4 ... fuel injection valves 14 ... exhaust pipe 15 ... NO X absorbent 17 ... reducing agent feed valve 20 ... air supply valve

Claims (2)

流入する排気ガスの空燃比がリーンのときにNOを吸収し、流入する排気ガスの空燃比がリッチになると吸収したNO放出するNO吸収剤を機関排気通路内に配置すると共に該NO 吸収剤上流の機関排気通路内に還元剤供給弁を配置し、NO 吸収剤からNO を放出すべきときには還元剤供給弁から機関排気通路内に還元剤を供給してNO 吸収剤に流入する排気ガスの空燃比をリッチにするようにした内燃機関の排気浄化装置において、温度センサにより検出される触媒の温度、又は機関負荷又は機関回転数から定まる定常運転時の触媒の温度に還元剤供給時の還元剤供給量に応じた触媒温度上昇量を加算することにより還元剤供給停止後の担体上の触媒温度を予測する予測手段と、該予測手段により予測された還元剤供給停止後の担体上の触媒温度が予め定められた設定値を越えたときにNO吸収剤に冷却用空気を供給する空気供給手段とを具備した内燃機関の排気浄化装置。Air-fuel ratio of the exhaust gas flowing absorbs NO x when the lean, the with the air-fuel ratio of the inflowing exhaust gas is arranged to the NO x absorbent for the NO x releasing absorbed and becomes rich in the engine exhaust passage NO A reducing agent supply valve is disposed in the engine exhaust passage upstream of the x absorbent, and when NO x is to be released from the NO x absorbent , the reducing agent is supplied from the reducing agent supply valve into the engine exhaust passage to thereby release the NO x absorbent. In the exhaust gas purification apparatus for an internal combustion engine in which the air-fuel ratio of the exhaust gas flowing into the engine is made rich, the temperature of the catalyst detected by the temperature sensor or the temperature of the catalyst during steady operation determined from the engine load or the engine speed prediction means for predicting the catalyst temperature on the carrier after stopping the reducing agent supply by adding the catalyst temperature rise amount corresponding to the reducing agent supply amount when the reducing agent supply, predicted reducing agent supplied by said prediction means Exhaust purifying apparatus for an internal combustion engine equipped with a air supply means for supplying cooling air to the NO x absorbent when the catalyst temperature on the carrier after stopping exceeds a predetermined set value. 上記予測手段により予測された還元剤供給停止後の担体上の触媒温度が予め定められた設定値を越えたときには還元剤供給停止後ただちにNOWhen the catalyst temperature on the carrier after the supply of the reducing agent predicted by the prediction means exceeds a predetermined set value, the NO immediately after the supply of the reducing agent is stopped. x 吸収剤に冷却用空気が供給される請求項1に記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein cooling air is supplied to the absorbent.
JP02095596A 1996-02-07 1996-02-07 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3632274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02095596A JP3632274B2 (en) 1996-02-07 1996-02-07 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02095596A JP3632274B2 (en) 1996-02-07 1996-02-07 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09209746A JPH09209746A (en) 1997-08-12
JP3632274B2 true JP3632274B2 (en) 2005-03-23

Family

ID=12041616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02095596A Expired - Lifetime JP3632274B2 (en) 1996-02-07 1996-02-07 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3632274B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19703295C2 (en) * 1997-01-30 2000-06-29 Ford Global Tech Inc Method for regulating the temperature of a catalyst arrangement and device for carrying out the method
DE59800219D1 (en) * 1998-01-09 2000-09-07 Ford Global Tech Inc Temperature monitoring of an exhaust system with a cooling loop for internal combustion engines
DE19847477A1 (en) * 1998-10-15 2000-04-20 Audi Ag Method and device for reducing the exhaust gas component load of internal combustion engines
DE19929292A1 (en) * 1999-06-25 2000-12-28 Volkswagen Ag Control of the operating condition of motor vehicle internal combustion engine dependent upon the catalyst cell temperature uses set detected threshold levels to vary engine control parameters
JP4491932B2 (en) * 2000-08-07 2010-06-30 マツダ株式会社 Engine exhaust purification system
JP5678427B2 (en) * 2009-11-30 2015-03-04 トヨタ自動車株式会社 Vehicle control device

Also Published As

Publication number Publication date
JPH09209746A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP2586738B2 (en) Exhaust gas purification device for internal combustion engine
US5433074A (en) Exhaust gas purification device for an engine
JP2600492B2 (en) Exhaust gas purification device for internal combustion engine
WO1993025806A1 (en) Exhaust emission control system for internal combustion engine
JP2845056B2 (en) Exhaust gas purification device for internal combustion engine
JP3632274B2 (en) Exhaust gas purification device for internal combustion engine
JPH06173652A (en) Exhaust emission control device for internal combustion engine
JP3353650B2 (en) Catalyst poisoning regeneration equipment for internal combustion engines
JP2586739B2 (en) Exhaust gas purification device for internal combustion engine
JP2984528B2 (en) Exhaust gas purification device for internal combustion engine
JP2722988B2 (en) Exhaust gas purification device for internal combustion engine
JP2998481B2 (en) Exhaust gas purification device for internal combustion engine
JP2888111B2 (en) Exhaust gas purification device for internal combustion engine
JP2746029B2 (en) Exhaust gas purification device for internal combustion engine
JP3508703B2 (en) Exhaust gas purification device for internal combustion engine
JP2845071B2 (en) Exhaust gas purification device for internal combustion engine
JP2663807B2 (en) Exhaust gas purification device for internal combustion engine
JP2830655B2 (en) Exhaust gas purification device for internal combustion engine
JP2789974B2 (en) Exhaust gas purification device for internal combustion engine
JP3573030B2 (en) Catalyst deterioration judgment device for internal combustion engine
JP3397175B2 (en) Exhaust gas purification device for internal combustion engine
JP3580188B2 (en) Exhaust gas purification device for internal combustion engine
JP3324475B2 (en) Exhaust gas purification device for internal combustion engine
JP2743764B2 (en) Exhaust gas purification device for internal combustion engine
JP2785612B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

EXPY Cancellation because of completion of term