EP2252728B1 - Electrodeposition method for the production of nanostructured zno - Google Patents

Electrodeposition method for the production of nanostructured zno Download PDF

Info

Publication number
EP2252728B1
EP2252728B1 EP09711885A EP09711885A EP2252728B1 EP 2252728 B1 EP2252728 B1 EP 2252728B1 EP 09711885 A EP09711885 A EP 09711885A EP 09711885 A EP09711885 A EP 09711885A EP 2252728 B1 EP2252728 B1 EP 2252728B1
Authority
EP
European Patent Office
Prior art keywords
zno
electrode
deposition
solution
hno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09711885A
Other languages
German (de)
French (fr)
Other versions
EP2252728A2 (en
Inventor
Jie Chen
Lorenz AÉ
Christian-Herbert Fischer
Martha Christina Lux-Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Original Assignee
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102008010287A external-priority patent/DE102008010287B3/en
Priority claimed from DE200810029234 external-priority patent/DE102008029234A1/en
Application filed by Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH filed Critical Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Publication of EP2252728A2 publication Critical patent/EP2252728A2/en
Application granted granted Critical
Publication of EP2252728B1 publication Critical patent/EP2252728B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Definitions

  • the invention relates to an electrodeposition method for producing nanostructured ZnO, in which in a standard three-electrode reactor, an aqueous solution of a Zn salt and another component used and upon application of a potential and setting a deposition temperature of below 90 ° C on a in nanostructured ZnO substrate is deposited on the aqueous solution.
  • Nanostructured ZnO material in the context of the invention is intended to mean ZnO in a morphology with dimensions in the nm range or less.
  • the ZnO may be e.g. be formed in the form of nanorods, nanofilaments or thin layers. Due to its optoelectronic and environmentally friendly properties and its chemical stability, ZnO is promising materials for use in light emitting diodes and in highly structured solar cells.
  • ZnO nanorods or nanofibers are produced by various methods.
  • high deposition temperatures are typical. For instance, they are between 300 and 500 ° C. for the chemical vapor deposition (CVD) and metal organic chemical vapor deposition (MOCVD) processes, and between 400 and 500 ° C. for MOVPE (metal organic vapor phase epitaxy) processes. 600 to 900 ° C for the vapor transport method and at about 900 ° C for thermal vapor deposition.
  • the VLS (vapor-liquid-solid) technique uses temperatures above 900 ° C.
  • materials are deposited by means of electrodeposition methods and chemical bath deposition at moderate temperatures.
  • the electrodeposition process is carried out at atmospheric pressure and is a low cost process which requires only simple equipment.
  • the film thickness can be determined by means of the consumed charges during the deposition process.
  • ZnO nanorods by means of electrodeposition methods are produced from an aqueous solution, for example from a ZnCl 2 / KCl electrolyte solution saturated with O 2 bubbles (for example described in US Pat 13th European Photovoltaic Solar Cell Energy Conference, 23-27 October 1995, Nice, France, pp 1750-1752 or in Appl. Phys. Lett., Vol. 77, no. 16, 16 October 2000, pp 2575-2577 ) or ZnO films of a ZnCl 2 / H 2 O 2 electrolyte solution, as described in Journal of Electroanalytical Chemistry 517 (2001) 54-62 described.
  • the nanostructured ZnO materials thus prepared do not have the properties such as high efficiency required for use in photovoltaics because photoluminescence spectra recorded for these materials show a very intense defect emission in the range of 450 to 900 nm as the main emission.
  • EP 1 420 085 A2 and EP 0 794 270 A1 For example, to form a ZnO film, the method of electrochemical deposition from a solution containing at least Zn 2+ and NO 3 - ions will be described.
  • the ions are available in either an aqueous solution of Zn (NO 3 ) 2 or a mixture of NH 4 NO 3 and ZnSO 4 posed.
  • the solution also contains a carbohydrate.
  • the Zn 2+ and NO 3 - ions in EP 1 420 085 A2 as a further component of the solution polyvalent carboxylic acid and in EP 0 794 270 A1 Carbohydrates are given.
  • a nanostructured ZnO film is deposited from an aqueous solution containing Zn (NO 3 ) 2 .6H 2 O, water and, as a further constituent of the aqueous solution, sodium dodecyl sulfate.
  • IQE internal quantum efficiency
  • the object is achieved by a method of the aforementioned type in that a dopant for the nanostructured ZnO is used as a further constituent of the aqueous solution in order to improve the quality and the optical properties of the ZnO material, and this dopant HNO 3 or NH 4 NO 3 or NH 3 is dissolved in water.
  • Zn (NO 3 ) 2 as Zn salt, in particular in a concentration of 1 to 20 mM.
  • HNO 3 is used as a dopant, it is intended to prepare the aqueous solution of Zn (NO 3 ) 2 and HNO 3 in a molar ratio of about 100: 1, this solution having a pH of between 4.5 and 5.8 ,
  • NH 4 NO 3 is used as a dopant, it is intended to prepare the aqueous solution of Zn (NO 3 ) 2 and NH 4 NO 3 in a molar ratio of from 1: 1 to 130: 1, this solution having a pH between 4.2 and 6.4 has.
  • ZnO nanorods with an average diameter of 100 to 280 nm by Combination of potentiostatic and galvanostatic processes.
  • the ZnO nanorods show dominant band edge emission as desired and no additional annealing step, and have a high IQE, which is 23% and 28%, respectively, for the first ZnO nanorods deposited by the process.
  • the measured high IQE showed deviations of 20 to 25%.
  • IQE is one of the most important parameters for characterizing the quality of both light emitting and optoelectronic materials. It is defined as the ratio of the number of generated photons to the number of injected carriers. In general, the lower the defects in the material, the higher the IQE.
  • a potential against the Pt reference electrode is set to a value between -1.2V and -1.8V, preferably between -1.3V and -1.4V.
  • the deposition temperature be set between 60 ° C and 90 ° C and maintained for a period of a few minutes to 20 hours.
  • FTO SnO 2 : F
  • ITO SnO 2 : In
  • Au Au
  • Ag polymer with conductive coating or Si.
  • a glass substrate with a fluorine doped SnO 2 layer (so-called FTO glass), on which an undoped 30 nm thick ZnO layer is arranged, is used as the substrate.
  • the substrate has a size of about 2.5 x 2 cm 2 and is first cleaned in an ultrasonic bath (acetone and ethanol) and then rinsing in distilled water.
  • aqueous solution of 10 mM Zn (NO 3 ) 2 and HNO 3 with a pH of 4.5 is used in a mixing ratio of 100: 1 for the Deposition used. During the deposition, the solution is stirred.
  • a potential of -1.4 V is set against the Pt reference electrode and held for 8,000 s.
  • Typical deposition current densities in the process according to the invention are about 0.3 to 0.5 mA / cm 2 .
  • the substrate was washed with the applied ZnO nanorods in distilled water.
  • the morphology of the generated layers of ZnO rods was investigated by a scanning electron microscope (SEM).
  • Photoluminescence measurements were carried out at an excitation wavelength of 325 nm (He-Cd laser).
  • Fig. 1 shows determined photoluminescence spectra of ZnO nanorods, for their preparation on an FTO glass substrate by means of electrode position method known from the prior art according to known electrolyte solutions (Zn (NO 3 ) 2 / H 2 O 2 , Zn (NO 3 ) 2 / NaOH, ZnCl ) were used.
  • the strong defect emission is clearly the most important emission and suggests a poor quality of the ZnO nanorods.
  • Fig. 2 shows images of the ZnO nanorods of different shapes produced by the method according to the invention with HNO 3 as a dopant.
  • the different forms are based on different potentials and molarities of the electrolyte solution.
  • ZnO nanorods showed an IQE of approx. 28%, for which in Fig. 4 shown by 23%.
  • Fig. 6 shows the photoluminescence spectra at room temperature for ZnO nanorods with different diameters of about 100 nm to 280 nm. Also, the different diameters were realized by combining potentiostatic and galvanostatic techniques. The position of the intense maximum for the band edge emission in the UV range and only a weak emission in the range of 450 nm to 700 nm can be clearly recognized, ie the shape of the ZnO nanorods produced by the method according to the invention has no influence on their defect emission.
  • the intensities of the photoluminescence spectra were indicated in the figures in arbitrary units.
  • 10 mM Zn (NO 3 ) 2 and NH 4 NO 3 with a pH of 4.8 in a mixing ratio of 20: 1 are used as dopants and thus further constituents of the aqueous solution for the purpose of depositing nanostructured ZnO. All other details for carrying out the method according to the invention remain unchanged.
  • Fig. 2 Very similar SEM micrographs were also obtained for this nanostructured ZnO deposited in the second exemplary embodiment.
  • an IQE of approximately 35% was determined.
  • the Fig. 3 coincides with the result in the second embodiment.

Description

Die Erfindung betrifft ein Elektrodepositionsverfahren zur Herstellung von nanostrukturiertem ZnO, bei dem in einem standardgemäßen Drei-Elektroden-Reaktor eine wässrige Lösung eines Zn-Salzes und ein weiterer Bestandteil verwendet und bei Anlegen eines Potentials und Einstellen einer Depositionstemperatur von unterhalb 90 °C auf einem in der wässrigen Lösung befindlichen Substrat nanostrukturiertes ZnO abgeschieden wird.The invention relates to an electrodeposition method for producing nanostructured ZnO, in which in a standard three-electrode reactor, an aqueous solution of a Zn salt and another component used and upon application of a potential and setting a deposition temperature of below 90 ° C on a in nanostructured ZnO substrate is deposited on the aqueous solution.

Nanostrukturiertes ZnO-Material soll im Zusammenhang mit der Erfindung ZnO in einer Morphologie mit Ausdehnungen im nm-Bereich oder kleiner bedeuten. Dabei kann das ZnO z.B. in Form von Nanostäben, Nanofäden oder dünnen Schichten ausgebildet sein. ZnO ist wegen seiner optoelektronischen und umweltfreundlichen Eigenschaften und seiner chemischen Stabilität vielversprechende Materialien für die Anwendung in Leuchtemitterdioden und in hochstrukturierten Solarzellen.Nanostructured ZnO material in the context of the invention is intended to mean ZnO in a morphology with dimensions in the nm range or less. The ZnO may be e.g. be formed in the form of nanorods, nanofilaments or thin layers. Due to its optoelectronic and environmentally friendly properties and its chemical stability, ZnO is promising materials for use in light emitting diodes and in highly structured solar cells.

ZnO-Nanostäbe oder -Nanofäden werden mittels verschiedener Verfahren hergestellt.ZnO nanorods or nanofibers are produced by various methods.

Für viele der bekannten Herstellungsmethoden von ZnO-Nanostäben sind hohe Depositionstemperaturen typisch. So liegen diese für das CVD (chemical vapour deposition)- und das MOCVD (metal organic chemical vapour deposition)-Verfahren zwischen 300 und 500 °C, für die Verfahren gemäß MOVPE (metal organic vapour phase epitaxy) zwischen 400 und 500 °C, 600 bis 900 °C für die Dampftransport-Methode und bei ca. 900 °C für das thermische Aufdampfen. Die VLS (vapour-liquid-solid)-Technik verwendet Temperaturen oberhalb 900 °C.For many of the known methods of preparation of ZnO nanorods, high deposition temperatures are typical. For instance, they are between 300 and 500 ° C. for the chemical vapor deposition (CVD) and metal organic chemical vapor deposition (MOCVD) processes, and between 400 and 500 ° C. for MOVPE (metal organic vapor phase epitaxy) processes. 600 to 900 ° C for the vapor transport method and at about 900 ° C for thermal vapor deposition. The VLS (vapor-liquid-solid) technique uses temperatures above 900 ° C.

Im Gegensatz hierzu werden Materialien mittels Elektrodepostionsverfahren und chemischer Badabscheidung bei moderaten Temperaturen abgeschieden.In contrast, materials are deposited by means of electrodeposition methods and chemical bath deposition at moderate temperatures.

Neben den bereits erwähnten niedrigen Depositionstemperaturen wird das Elektrodepositionsverfahren bei Atmosphärendruck durchgeführt und ist ein Niedrigkostverfahren, das nur einfache Apparaturen erfordert. Die Filmdicke kann ermittelt werden mittels der verbrauchten Ladungen während des Depositionsprozesses.In addition to the already mentioned low deposition temperatures, the electrodeposition process is carried out at atmospheric pressure and is a low cost process which requires only simple equipment. The film thickness can be determined by means of the consumed charges during the deposition process.

ZnO-Nanostäbe mittels Elektrodepositionsverfahren werden aus einer wässrigen Lösung hergestellt, beispielsweise aus einer ZnCl2/KCl-Elektrolytlösung gesättigt mit O2-Blasen (beispielsweise beschrieben in 13th European Photovoltaic Solar Cell Energy Conference, 23-27 October 1995, Nice, France, pp 1750-1752 oder in Appl. Phys. Lett., Vol. 77, No. 16, 16 October 2000, pp 2575-2577 ) oder ZnO-Filme aus einer ZnCl2/H2O2-Elektrolytlösung, wie bespielsweise in Journal of Electroanalytical Chemistry 517 (2001) 54-62 beschrieben. Jedoch weisen die so hergestellten nanostrukturierten ZnO-Materialien noch nicht die für die Anwendung in der Photovoltaik notwendigen Eigenschaften wie einen hohen Wirkungsgrad auf, da für diese Materialien aufgenommene Photolumineszenzspektren eine sehr intensive Defektemission im Bereich von 450 bis 900 nm als Hauptemission zeigen.ZnO nanorods by means of electrodeposition methods are produced from an aqueous solution, for example from a ZnCl 2 / KCl electrolyte solution saturated with O 2 bubbles (for example described in US Pat 13th European Photovoltaic Solar Cell Energy Conference, 23-27 October 1995, Nice, France, pp 1750-1752 or in Appl. Phys. Lett., Vol. 77, no. 16, 16 October 2000, pp 2575-2577 ) or ZnO films of a ZnCl 2 / H 2 O 2 electrolyte solution, as described in Journal of Electroanalytical Chemistry 517 (2001) 54-62 described. However, the nanostructured ZnO materials thus prepared do not have the properties such as high efficiency required for use in photovoltaics because photoluminescence spectra recorded for these materials show a very intense defect emission in the range of 450 to 900 nm as the main emission.

Auch für die mittels nasschemischer Verfahren hergestellten ZnO-Nanostäbe aus Zn(NO3)2/NaOH-Lösung (s. HMI Annual Report 2006 p. 74 oder Journal of the European Ceramic Society, Volume 26, Issue 16, 2006, Pages 3745-3752 ) konnte kein verbessertes Photoluminszenzspektrum festgestellt werden, d.h. auch hier ist die unerwünschte Defektemission festzustellen.Also for the ZnO nanorods made of Zn (NO 3 ) 2 / NaOH solution prepared by wet-chemical processes (see FIG. HMI Annual Report 2006 p. 74 or Journal of the European Ceramic Society, Volume 26, Issue 16, 2006, Pages 3745-3752 ), no improved spectrum of photoluminescence could be detected, ie here, too, the undesired defect emission is observed.

In small 2006, 2, No. 8-9, 944 pp wird über Messergebnisse von Photolumineszenzspektren für verschiedene ZnO-Nanostrukturen berichtet.
Diese Methode wird auch in der vorliegenden Lösung für die Charakterisierung der hergestellten ZnO-Nanostrukturen herangezogen.
In small 2006, 2, no. 8-9, 944 pp is reported on measurements of photoluminescence spectra for different ZnO nanostructures.
This method is also used in the present solution for the characterization of the prepared ZnO nanostructures.

Für die Anwendung von nanostrukturiertem ZnO-Material in der Photonik oder Optoelektronik ist es deshalb notwendig, einen Temperprozess durchzuführen, der die Defektemission im Bereich des sichtbaren Lichts verringert und die Qualität des Materials erhöht.For the application of nanostructured ZnO material in photonics or optoelectronics, it is therefore necessary to perform a tempering process that reduces the defect emission in the visible light range and increases the quality of the material.

In der Dissertation von J. Reemts "Ladungstransport in farbstoffsensibilisierten porösen ZnO-Filmen" (Carl von Ossietzky Universität Oldenburg, 2006, S. 21 ) wird festgestellt, dass die mittels Elektrodeposition in Zinknitrat-/ oder Zinkchlorid-/KCI-Lösung hergestellten ZnO-Filme eine typische Struktur von hexagonalen Säulen aufweisen. Weiter wird festgestellt, dass die aus einer Zinkchlorid-Lösung hergestellten ZnO-Filme eine wesentlich bessere Reproduzierbarkeit ihrer Morphologie aufwiesen als ZnO-Filme, hergestellt aus Zinknitrat-Lösung.In the dissertation of J. Reemts "Charge Transport in Dye-Sensitized Porous ZnO Films" (Carl von Ossietzky University Oldenburg, 2006, p. 21 ), it is found that ZnO films prepared by electrodeposition in zinc nitrate / or zinc chloride / KCl solution have a typical hexagonal pillar structure. Further, it is found that the ZnO films prepared from a zinc chloride solution had a much better reproducibility of their morphology than ZnO films made from zinc nitrate solution.

In der Dissertation von E. Michaelis "Darstellung von Photosensibilisatoren und elektrochemische Abscheidung von sensibilisierten nanostrukturierten Zinkoxidelektroden" (Universität Bremen, 2005, S. 35 ) wird festgestellt, dass die Morphologie der aus einer ruhenden Zinknitratlösung abgeschiedenen ZnO-Filme durch Variation des angelegten Potentials beeinflusst werden kann.In the dissertation of E. Michaelis "Preparation of Photosensitizers and Electrochemical Deposition of Sensitized Nanostructured Zinc Oxide Electrodes" (University of Bremen, 2005, p. 35 ), it is found that the morphology of the ZnO films deposited from a resting zinc nitrate solution can be influenced by variation of the applied potential.

Auch in US 6,160,689 A , EP 1 420 085 A2 und EP 0 794 270 A1 wird zur Bildung eines ZnO-Films das Verfahren der elektrochemischen Abscheidung aus einer Lösung, die mindestens Zn2+- und NO3 --lonen enthält, beschrieben. In US 6,160,689 A werden die Ionen entweder in einer wässrigen Lösung von Zn(NO3)2 oder von einer Mischung aus NH4NO3 und ZnSO4 zur Verfügung gestellt. Die Lösung enthält zusätzlich ein Kohlenhydrat. Neben den Zn2+- und NO3 --Ionen wird in EP 1 420 085 A2 als weiterer Bestandteil der Lösung mehrwertige Karbonsäure und in EP 0 794 270 A1 werden Kohlenhydrate angegeben. In US 2004/016646 A1 wird ein nanostrukturierter ZnO-Film aus einer wässrigen Lösung abgeschieden, die Zn(NO3)2.6H2O, Wasser und als weiteren Bestandteil der wässrigen Lösung Natriumdodecylsulfat enthält.Also in US 6,160,689 A . EP 1 420 085 A2 and EP 0 794 270 A1 For example, to form a ZnO film, the method of electrochemical deposition from a solution containing at least Zn 2+ and NO 3 - ions will be described. In US 6,160,689 A For example, the ions are available in either an aqueous solution of Zn (NO 3 ) 2 or a mixture of NH 4 NO 3 and ZnSO 4 posed. The solution also contains a carbohydrate. In addition to the Zn 2+ and NO 3 - ions, in EP 1 420 085 A2 as a further component of the solution polyvalent carboxylic acid and in EP 0 794 270 A1 Carbohydrates are given. In US 2004/016646 A1 For example, a nanostructured ZnO film is deposited from an aqueous solution containing Zn (NO 3 ) 2 .6H 2 O, water and, as a further constituent of the aqueous solution, sodium dodecyl sulfate.

Aufgabe der Erfindung ist es nun, das Elektrodepositionsverfahren zur Herstellung von nanostrukturiertem ZnO derart weiterzubilden, dass nanostrukturiertes ZnO-Material mit hoher innerer Quanteneffizienz (IQE) ohne zusätzlichen Temperschritt herstellbar ist.It is an object of the invention to further develop the electrodeposition method for producing nanostructured ZnO in such a way that nanostructured ZnO material with high internal quantum efficiency (IQE) can be produced without an additional annealing step.

Die Aufgabe wird durch ein Verfahren der eingangs genannten Art dadurch gelöst, dass als weiterer Bestandteil der wässrigen Lösung ein Dotiermittel für das nanostrukturierte ZnO verwendet wird, um die Qualität und die optischen Eigenschaften des ZnO-Materials zu verbessern, und dieses Dotiermittel HNO3 oder NH4NO3 oder NH3 gelöst in Wasser ist.The object is achieved by a method of the aforementioned type in that a dopant for the nanostructured ZnO is used as a further constituent of the aqueous solution in order to improve the quality and the optical properties of the ZnO material, and this dopant HNO 3 or NH 4 NO 3 or NH 3 is dissolved in water.

In einer Ausführungsform der Erfindung ist vorgesehen, als Zn-Salz Zn(NO3)2 zu verwenden, insbesondere in einer Konzentration von 1 bis 20 mM.In one embodiment of the invention it is provided to use Zn (NO 3 ) 2 as Zn salt, in particular in a concentration of 1 to 20 mM.

Wird HNO3 als Dotiermittel verwendet, ist vorgesehen die wässrige Lösung aus Zn(NO3)2 und HNO3 in einem molaren Verhältnis von ca. 100 : 1 herzustellen, wobei diese Lösung einen pH-Wert zwischen 4,5 und 5,8 aufweist.If HNO 3 is used as a dopant, it is intended to prepare the aqueous solution of Zn (NO 3 ) 2 and HNO 3 in a molar ratio of about 100: 1, this solution having a pH of between 4.5 and 5.8 ,

Es ist bekannt, dass ZnO nicht stabil in konzentrierter HNO3 ist, woraus auch wahrscheinlich die Feststellung der schlechteren Reproduzierbarkeit der aus Zinknitrat-Lösung hergestellten ZnO-Filme im Vergleich zur Herstellung aus einer Zinkchloridlösung resultiert, die bereits in der oben erwähnten Dissertation von J. Reemts an der Carl von Ossietzky Universität Oldenburg, 2006 beschrieben wurde, doch wurde festgestellt, dass bei dem erfindungsgemäßen Verfahren die NO3 - -Ionen als Oxidationsmittel für das Wachstum von reinem ZnO dienen. Der HNO3-Bestandteil in der Elektrolytlösung erhöht die H+-Konzentration in der Lösung und verringert die Defektemission im sichtbaren Wellenlängenbereich, wodurch die optische Qualität des so hergestellten nanostrukturierten ZnO-Materials verbessert wird.It is known that ZnO is not stable in concentrated HNO 3 , which is also likely to result in the finding of inferior reproducibility of ZnO films prepared from zinc nitrate solution as compared to preparation from a zinc chloride solution already described in the abovementioned Ph.D. J. Reemts at the Carl von Ossietzky University Oldenburg, 2006 was described, but it was found that in the Process according to the invention the NO 3 - serve as an oxidizing agent for the growth of pure ZnO. The HNO 3 component in the electrolytic solution increases the H + concentration in the solution and reduces the visible-wavelength defect emission, thereby improving the optical quality of the nanostructured ZnO material thus prepared.

Wird NH4NO3 als Dotiermittel verwendet, ist vorgesehen, die wässrige Lösung aus Zn(NO3)2 und NH4NO3 in einem molaren Verhältnis von von 1 : 1 bis 130 : 1 herzustellen, wobei diese Lösung einen pH-Wert zwischen 4,2 und 6,4 aufweist.If NH 4 NO 3 is used as a dopant, it is intended to prepare the aqueous solution of Zn (NO 3 ) 2 and NH 4 NO 3 in a molar ratio of from 1: 1 to 130: 1, this solution having a pH between 4.2 and 6.4 has.

Es hat sich herausgestellt, dass die Erzeugung von nanostrukturiertem ZnO-Material mit einem gelösten Salz als zweitem Bestandteil der Lösung und ebenso mit einem Dotiermittel in dem angegegeben Verhältnis zu gleich guten Ergebnissen führt wie die Verwendung von HNO3.It has been found that the production of nanostructured ZnO material with a dissolved salt as the second component of the solution and also with a dopant in the proportions given results in equally good results as the use of HNO 3 .

Nach bisherigen Erkenntnissen laufen folgende Reaktionen in der Lösung ab:

        Zn(NO3)2 → Zn2+ + 2NO3 -

        NO3 - + 2e- + H2O → 2OH- + NO2 -

        Zn2+ + 2OH- → Zn(OH)2

        Zn(OH)2 → ZnO + H2O

According to previous findings, the following reactions take place in the solution:

Zn (NO 3 ) 2 → Zn 2+ + 2NO 3 -

NO 3 - + 2e - + H 2 O → 2OH - + NO 2 -

Zn 2+ + 2OH - → Zn (OH) 2

Zn (OH) 2 → ZnO + H 2 O

Außerdem findet in der Lösung die folgende Reaktion statt:

        8H+ + NO3 - + 8e- → NH3 + OH- + 2H2O

In addition, the following reaction takes place in the solution:

8H + + NO 3 - + 8e - → NH 3 + OH - + 2H 2 O

Da in der wässrigen Lösung auch die letztgenannte Reaktion abläuft, ist es denkbar, dass als Dotiermittel auch NH3 gelöst in Wasser verwendet wird. Diese Reaktion ist lokal begrenzt und findet nur auf den wachsenden ZnO-Nanostrukturen statt.Since the latter reaction also takes place in the aqueous solution, it is conceivable that NH 3 dissolved in water is also used as the dopant. This reaction is localized and occurs only on the growing ZnO nanostructures.

Mit dem erfindungsgemäßen Verfahren ist es gelungen, ZnO-Nanostäbe mit einem durchschnittlichen Durchmesser von 100 bis 280 nm durch Kombination von potentiostatischen und galvanostatischen Prozessen herzustellen. Die ZnO-Nanostäbe zeigen wie gewünscht und ohne zusätzlichen Temperschritt eine dominierende Bandkantenemission und weisen eine große IQE auf, die bei ersten mit dem Verfahren abgeschiedenen ZnO-Nanostäben bei 23 % bzw. 28 % liegt. Für verschiedene Nanostabformen zeigte die gemessene hohe IQE Abweichungen von 20 bis 25 %. Damit konnte bestätigt werden, dass mit dem Verfahren die Oberflächenmorphologie und der Durchmesser der ZnO-Nanostäbe - ohne bedeutenden Einfluss auf die IQE - durch Änderung des angelegten Potentials und der Molaritäten der Lösung gut einstellbar und kontrollierbar ist und - wie bereits erwähnt - nun auch ohne zusätzlichen Temperprozess.With the method according to the invention it has been possible to ZnO nanorods with an average diameter of 100 to 280 nm by Combination of potentiostatic and galvanostatic processes. The ZnO nanorods show dominant band edge emission as desired and no additional annealing step, and have a high IQE, which is 23% and 28%, respectively, for the first ZnO nanorods deposited by the process. For different Nanostabformen the measured high IQE showed deviations of 20 to 25%. It was thus possible to confirm that the method allows the surface morphology and the diameter of the ZnO nanorods - without significant influence on the IQE - to be easily adjusted and controlled by changing the applied potential and the molarities of the solution and, as already mentioned, now without additional annealing process.

Die IQE ist einer der wichtigsten Parameter zur Charakterisierung der Qualität sowohl von lichtemittierendem als auch von optoelektronischem Material. Sie ist definiert als Verhältnis von der Anzahl der generierten Photonen zur Anzahl der injizierten Ladungsträger. Es gilt allgemein: Je geringer die Defekte im Material sind, desto höher ist die IQE.IQE is one of the most important parameters for characterizing the quality of both light emitting and optoelectronic materials. It is defined as the ratio of the number of generated photons to the number of injected carriers. In general, the lower the defects in the material, the higher the IQE.

In einer anderen Ausführungsform wird ein Potential gegen die Pt-Referenzelektrode auf einen Wert zwischen -1,2 V und -1,8 V, vorzugsweise zwischen -1,3 V und -1,4 V, eingestellt.In another embodiment, a potential against the Pt reference electrode is set to a value between -1.2V and -1.8V, preferably between -1.3V and -1.4V.

Außerdem ist vorgesehen, dass die Depositionstemperatur zwischen 60 °C und 90 °C eingestellt und über eine Dauer von einigen min bis 20 h aufrechterhalten wird.It is also envisaged that the deposition temperature be set between 60 ° C and 90 ° C and maintained for a period of a few minutes to 20 hours.

Es hat sich als vorteilhaft herausgestellt, wenn die Lösung während der Deposition gerührt wird.It has proved to be advantageous if the solution is stirred during the deposition.

Wie auch bereits bei dem Stand der Technik nach bekannten Verfahren können je nach Anwendungsgebiet unterschiedliche Materialien als Substrat verwendet werden, insbesondere sind vorgesehen: FTO (SnO2:F), ITO(SnO2:ln), Au, Ag, Polymer mit leitender Beschichtung oder Si.As in the prior art by known methods, depending on the field of application different materials as a substrate In particular, provided are: FTO (SnO 2 : F), ITO (SnO 2 : In), Au, Ag, polymer with conductive coating or Si.

Das erfindungsgemäße Verfahren soll im folgenden Ausführungsbeispiel anhand von Zeichnungen näher erläutert werden.The inventive method will be explained in more detail in the following embodiment with reference to drawings.

Dabei zeigen:

Fig. 1:
Photolumineszenzspektrum von ZnO-Nanostäben, hergestellt mittels Elektrodeposition aus Zn(NO3)2/H2O2-, ZnCl- oder Zn(NO3)2/NaOH-Elektrolyten;
Fig. 2:
Rasterelektronenmikroskopaufnahme von ZnO-Nanostäben, hergestellt mittels erfindungsgemäßem Verfahren mit HNO3 als Dotiermittel;
Fig. 3:
Photolumineszenzspektrum von ZnO-Nanostäben gem. Fig. 2;
Fig. 4:
weitere Rasterelektronenmikroskopaufnahme von ZnO-Nanostäben mit veränderter Morphologie, hergestellt mittels erfindungsgemäßem Verfahren mit HNO3 als Dotiermittel;
Fig. 5:
Photolumineszenzspektrum von ZnO-Nanostäben gem. Fig. 4;
Fig. 6:
Photolumineszenzspektrum von ZnO-Nanostäben unterschiedlicher Durchmesser, hergestellt mittels erfindungsgemäßem Verfahren mit HNO3 als Dotiermittel.
Showing:
Fig. 1:
Photoluminescence spectrum of ZnO nanorods prepared by electrodeposition from Zn (NO 3 ) 2 / H 2 O 2 , ZnCl or Zn (NO 3 ) 2 / NaOH electrolytes;
Fig. 2:
Scanning electron micrograph of ZnO nanorods prepared by means of the method according to the invention with HNO 3 as dopant;
3:
Photoluminescence spectrum of ZnO nanorods acc. Fig. 2 ;
4:
Further scanning electron micrograph of ZnO nanorods with altered morphology, prepared by means of the inventive method with HNO 3 as a dopant;
Fig. 5:
Photoluminescence spectrum of ZnO nanorods acc. Fig. 4 ;
Fig. 6:
Photoluminescence of ZnO nanorods of different diameters, prepared by means of the inventive method with HNO 3 as a dopant.

Im Ausführungsbeispiel wird als Substrat ein Glassubstrat mit einer Fluordotierten SnO2-Schicht (so genanntes FTO-Glas), auf der eine undotierte 30 nm dicke ZnO-Schicht angeordnet ist, verwendet. Das Substrat weist eine Größe von ca. 2,5 x 2 cm2 auf und wird zunächst in einem Ultraschallbad (Aceton und Äthanol) und anschließendem Spülen in destilliertem Wasser gereinigt. Das ZnO wird in einer elektrochemischen Zelle mit drei Elektroden (Arbeitselektrode = Substrat; Gegenelektrode = Pt; Referenzelektrode = Pt) auf das Substrat nabgeschieden. Dazu ist diese Zelle in einem temperaturregulierbaren Bad angeordnet, die Depositionstemperatur wird auf 75 °C eingestellt. Eine wässrige Lösung aus 10 mM Zn(NO3)2 und HNO3 mit einem pH-Wert von 4,5 wird in einem Mischungsverhältnis von 100 : 1 für die Deposition verwendet. Während der Abscheidung wird die Lösung gerührt. Für die Deposition von ZnO-Nanostäben auf dem oben beschriebenen Substrat wird ein Potential von -1,4 V gegen die Pt-Referenzelektrode eingestellt und 8.000 s gehalten. Typische Depositionsstromdichten liegen in dem erfindungsgemäßen Verfahren bei etwa 0,3 bis 0,5 mA/cm2. Um überschüssiges Salz zu entfernen, wurde das Substrat mit den aufgebrachten ZnO-Nanostäben in destilliertem Wasser gewaschen.In the exemplary embodiment, a glass substrate with a fluorine doped SnO 2 layer (so-called FTO glass), on which an undoped 30 nm thick ZnO layer is arranged, is used as the substrate. The substrate has a size of about 2.5 x 2 cm 2 and is first cleaned in an ultrasonic bath (acetone and ethanol) and then rinsing in distilled water. The ZnO is deposited on the substrate in an electrochemical cell with three electrodes (working electrode = substrate, counter electrode = Pt, reference electrode = Pt). For this purpose, this cell is arranged in a temperature-adjustable bath, the deposition temperature is set to 75 ° C. An aqueous solution of 10 mM Zn (NO 3 ) 2 and HNO 3 with a pH of 4.5 is used in a mixing ratio of 100: 1 for the Deposition used. During the deposition, the solution is stirred. For the deposition of ZnO nanorods on the substrate described above, a potential of -1.4 V is set against the Pt reference electrode and held for 8,000 s. Typical deposition current densities in the process according to the invention are about 0.3 to 0.5 mA / cm 2 . To remove excess salt, the substrate was washed with the applied ZnO nanorods in distilled water.

Es wurde eine sehr gleichmäßige Deposition von ZnO-Nanostäben über die gesamte Substratfläche festgestellt.Very uniform deposition of ZnO nanorods over the entire substrate area was observed.

Die Morphologie der erzeugten Schichten aus ZnO-Stäben wurde mittels eines Rasterelektronenmikroskops (scanning electron microscope - SEM) untersucht.The morphology of the generated layers of ZnO rods was investigated by a scanning electron microscope (SEM).

Photolumineszenzmessungen wurden durchgeführt bei einer Anregungswellenlänge von 325 nm (He-Cd-Laser).Photoluminescence measurements were carried out at an excitation wavelength of 325 nm (He-Cd laser).

In weiteren temperaturabhängigen Photolumineszenzmessungen, die auch - wie erwähnt - der Ermittlung des IQE dienten, wurde die n-Leitfähigkeit der ZnO-Nanostäbe festgestellt.In further temperature-dependent photoluminescence measurements, which also - as mentioned - the determination of the IQE served, the n-conductivity of the ZnO nanorods was determined.

Fig. 1 zeigt ermittelte Photolumineszenzspektren von ZnO-Nanostäben, für deren Herstellung auf einem FTO-Glassubstrat mittels Elektrodepositionsverfahren die aus dem Stand der Technik nach bekannten Elektrolytlösungen (Zn(NO3)2/H2O2, Zn(NO3)2/NaOH, ZnCl) verwendet wurden. Die starke Defektemission ist erkennbar die wichtigste Emission und lässt auf eine schlechte Qualität der ZnO-Nanostäbe schließen. Fig. 1 shows determined photoluminescence spectra of ZnO nanorods, for their preparation on an FTO glass substrate by means of electrode position method known from the prior art according to known electrolyte solutions (Zn (NO 3 ) 2 / H 2 O 2 , Zn (NO 3 ) 2 / NaOH, ZnCl ) were used. The strong defect emission is clearly the most important emission and suggests a poor quality of the ZnO nanorods.

In Fig. 2 und 4 sind Bilder der mit dem erfindungsgemäßen Verfahren mit HNO3 als Dotiermittel hergestellten ZnO-Nanostäbe mit unterschiedlichen Formen gezeigt. Die unterschiedlichen Formen basieren auf unterschiedlichen Potentialen und Molaritäten der Elektrolytlösung. Für die in Fig. 2 gezeigten ZnO-Nanostäbe wurde eine IQE von ca. 28 % ermittelt, für die in Fig. 4 gezeigten von 23 %.In Fig. 2 and 4 Fig. 2 shows images of the ZnO nanorods of different shapes produced by the method according to the invention with HNO 3 as a dopant. The different forms are based on different potentials and molarities of the electrolyte solution. For the in Fig. 2 ZnO nanorods showed an IQE of approx. 28%, for which in Fig. 4 shown by 23%.

Die entsprechenden Photolumineszenzspektren bei Raumtemperatur sind in Fig. 3 und 5 gezeigt. Beide Spektren zeigen eine sehr intensive Bandkantenemission im Vergleich zur Defektemission. Das Maximum bei ca. 375 nm wird auf die ZnO-Struktur zurückgeführt.The corresponding photoluminescence spectra at room temperature are in Fig. 3 and 5 shown. Both spectra show a very intense band edge emission compared to the defect emission. The maximum at about 375 nm is attributed to the ZnO structure.

Fig. 6 zeigt die Photolumineszenzspektren bei Zimmertemperatur für ZnO-Nanostäbe mit unterschiedlichen Durchmessern von etwa 100 nm bis 280 nm. Auch die unterschiedlichen Durchmesser wurden durch Kombination von potentiostatischen und galvanostatischen Techniken realisiert. Gut zu erkennen ist die Lage des intensiven Maximums für die Bandkantenemission im UV-Bereich und nur eine schwache Emission im Bereich von 450 nm bis 700 nm, d.h. die Form der mit dem erfindungsgemäßen Verfahren hergestellten ZnO-Nanostäbe hat keinen Einfluss auf ihre Defektemission. Fig. 6 shows the photoluminescence spectra at room temperature for ZnO nanorods with different diameters of about 100 nm to 280 nm. Also, the different diameters were realized by combining potentiostatic and galvanostatic techniques. The position of the intense maximum for the band edge emission in the UV range and only a weak emission in the range of 450 nm to 700 nm can be clearly recognized, ie the shape of the ZnO nanorods produced by the method according to the invention has no influence on their defect emission.

Die Intensitäten der Photolumineszenzspektren wurden in den Figuren in beliebigen Einheiten angegeben.The intensities of the photoluminescence spectra were indicated in the figures in arbitrary units.

In einem weiteren Ausführungsbeispiel werden als Dotiermittel und somit weiterer Bestandteil der wässrigen Lösung zwecks Abscheidung von nanostrukturiertem ZnO 10 mM Zn(NO3)2 und NH4NO3 mit einem pH-Wert von 4,8 in einem Mischungsverhältnis von 20 : 1 verwendet. Alle anderen Angaben zur Durchführung des erfindungsgemäßen Verfahrens bleiben unverändert.In a further embodiment, 10 mM Zn (NO 3 ) 2 and NH 4 NO 3 with a pH of 4.8 in a mixing ratio of 20: 1 are used as dopants and thus further constituents of the aqueous solution for the purpose of depositing nanostructured ZnO. All other details for carrying out the method according to the invention remain unchanged.

Eine der Fig. 2 sehr ähnliche REM-Aufnahme wurde auch für dieses im zweiten Ausführungsbeispiel abgeschiedene nanostrukturierte ZnO erhalten. Für die hergestellten ZnO-Nanostäbe wurde eine IQE von ca. 35 % ermittelt. Auch die Fig. 3 deckt sich mit dem Ergebnis im zweiten Ausführungsbeispiel.One of the Fig. 2 Very similar SEM micrographs were also obtained for this nanostructured ZnO deposited in the second exemplary embodiment. For the prepared ZnO nanorods, an IQE of approximately 35% was determined. Also the Fig. 3 coincides with the result in the second embodiment.

Für das erfindungsgemäße Verfahren mit NH4NO3 als weiterem Bestandteil der wässrigen Lösung wurde das Verhältnis von Zn(NO3)2 und NH4NO3 geändert und jeweils die Austrittsarbeit und die IQE bestimmt. Das Ergebnis, dargestellt in der folgenden Tabelle, zeigt die Änderung der Austrittsarbeit und der IQE in Abhängigkeit des genannten Verhältnisses. Probe Zn(NO3)2 / NH4NO3 Austrittsarbeit IQE 1 7 mM / 500 µM 4,3 eV ± 0,15 eV 24 % 2 7 mM / 1 mM 4,5 eV ± 0,15 eV 20% 3 7mM/5mM 4,8 eV ± 0,15 eV 20% For the process according to the invention with NH 4 NO 3 as further constituent of the aqueous solution, the ratio of Zn (NO 3 ) 2 and NH 4 NO 3 was changed and the work function and the IQE were determined in each case. The result, shown in the following table, shows the change in the work function and the IQE depending on the ratio mentioned. sample Zn (NO 3 ) 2 / NH 4 NO 3 work function IQE 1 7 mM / 500 μM 4.3 eV ± 0.15 eV 24% 2 7mM / 1mM 4.5 eV ± 0.15 eV 20% 3 7 mM / 5 mM 4.8 eV ± 0.15 eV 20%

Es zeigt sich, dass die Dotiermittel die Möglichkeit eröffnen, die Austrittsarbeit des nanostrukturierten ZnO-Materials gezielt zu verändern ohne dabei signifikante Auswirkungen auf seine Qualität und seine optischen Eigenschaften nach sich zu ziehen.It has been shown that the dopants open up the possibility of specifically altering the work function of the nanostructured ZnO material without significantly affecting its quality and optical properties.

Claims (12)

  1. An electrode-deposition method for the manufacture of nano-structured ZnO, in which an aqueous solution of a Zn-salt and a further substance is used in a standard three-electrode-reactor and a nano-structured ZnO material is deposited on an electrically conducting substrate present in the aqueous solution by applying a potential and setting a deposition temperature of below 90°C,
    characterised in that
    the further substance of the aqueous solution is a doting agent for the nano-structured ZnO, wherein the doting agent is HNO3 or NH4NO3 or NH3, dissolved in water.
  2. Electrode-deposition method according to claim 1,
    characterised in that
    the Zn-salt used is Zn(NO3)2.
  3. Electrode-deposition method according to claim 2,
    characterised in that
    Zn(NO3)2 is used in a concentration between 1 and 20 mM.
  4. Electrode-deposition method according to one of the preceding claims,
    characterised in that
    a solution consisting of Zn(NO3)2 and HNO3 is used in a molar proportion of about 100 : 1.
  5. Electrode-deposition method according to claim 4,
    characterised in that
    the solution consisting of Zn(NO3)2 and HNO3 has a pH value between 4.5 and 5.8.
  6. Electrode-deposition method according to one of claims 1 to 3,
    characterised in that
    a solution consisting of Zn(NO3)2 and NH4NO3 is used in a molar proportion ranging from 1 : 1 to 130 : 1.
  7. Electrode-deposition method according to claim 6,
    characterised in that
    the solution consisting of Zn(NO3)2 and NH4NO3 has a pH value between 4.2 and 6.4.
  8. Method according to claim 1,
    characterised in that
    a potential against the Pt reference electrode is set to a value between -1.2V and -1.8V.
  9. Method according to claim 1,
    characterised in that
    the deposition temperature is set between 60°C and 90°C.
  10. Method according to claim 1,
    characterised in that
    the deposition temperature is maintained for a duration of a few min up to 20 h.
  11. Method according to claim 1,
    characterised in that
    the solution is stirred during deposition.
  12. Method according to claim 1,
    characterised in that
    the substrate used may be FTO, ITO, Au, Ag, a polymer with a conducting coating or Si.
EP09711885A 2008-02-21 2009-02-20 Electrodeposition method for the production of nanostructured zno Not-in-force EP2252728B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008010287A DE102008010287B3 (en) 2008-02-21 2008-02-21 Electrodeposition process to prepare nanostructured zinc oxide using aqueous solution of zinc salt and a component preferably dopant, applying a potential, adjusting deposition temperature and depositing nanostructured zinc oxide material
DE200810029234 DE102008029234A1 (en) 2008-06-19 2008-06-19 Electrodeposition process to prepare nanostructured zinc oxide using aqueous solution of zinc salt and a component preferably dopant, applying a potential, adjusting deposition temperature and depositing nanostructured zinc oxide material
PCT/DE2009/000254 WO2009103286A2 (en) 2008-02-21 2009-02-20 Electrodeposition method for the production of nanostructured zno

Publications (2)

Publication Number Publication Date
EP2252728A2 EP2252728A2 (en) 2010-11-24
EP2252728B1 true EP2252728B1 (en) 2012-12-12

Family

ID=40941906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09711885A Not-in-force EP2252728B1 (en) 2008-02-21 2009-02-20 Electrodeposition method for the production of nanostructured zno

Country Status (3)

Country Link
US (1) US20110048956A1 (en)
EP (1) EP2252728B1 (en)
WO (1) WO2009103286A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081927A1 (en) 2013-12-06 2015-06-11 Helmholtz-Zentrum Für Materialien Und Energie Gmbh Passivation layer having point contacts for thin-layer solar cells and method for production thereof
DE102013113585A1 (en) 2013-12-06 2015-06-11 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Passivation layer with point contacts for thin-film solar cells

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010017962A1 (en) 2010-04-23 2011-10-27 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Superstrate solar cell with nanostructures
DE202010018127U1 (en) 2010-04-23 2014-04-04 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Superstrate solar cell with nanostructures
JP2013525250A (en) * 2010-04-28 2013-06-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for preparing zinc complexes in solution
DE102010034901B4 (en) 2010-08-18 2016-06-02 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Solar thermal arrangement
DE202010017656U1 (en) 2010-08-18 2012-05-02 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Two-sided solar cell
DE102010034904A1 (en) 2010-08-18 2012-02-23 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Two-sided solar cell
CN102363893B (en) * 2011-11-02 2014-03-12 西南交通大学 Method for synchronically synthesizing two ZnO nanostructures
CN103194784B (en) * 2013-04-11 2016-03-02 江苏大学 A kind of method taking colloid as template controllable electric deposition and prepare nano-ZnO thin film
DE102013113590A1 (en) * 2013-12-06 2015-06-11 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Method for producing passivation layers with point contacts for thin-film solar cells
CN112903770B (en) * 2019-12-04 2022-05-17 中国石油化工股份有限公司 Flexible sensor for measuring bacterial quantity of sulfide producing bacteria and method for measuring SRB bacterial quantity in sewage by indirect method
CN114558592B (en) * 2022-03-09 2023-11-14 北方民族大学 ZnO/ZnS nano-rod core-shell structure photocatalyst and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732696B1 (en) * 1995-04-06 1997-06-20 Centre Nat Rech Scient PROCESS FOR PREPARING AN OXIDE OR HYDROXIDE FILM OF AN ELEMENT OF COLUMNS II OR III OF THE CLASSIFICATION, AND THE COMPOSITE STRUCTURES INCLUDING SUCH A FILM
DE69702277T2 (en) * 1996-03-06 2001-03-01 Canon Kk A method of manufacturing a thin zinc oxide film and a method of manufacturing a substrate of a semiconductor device, and a method of manufacturing a photoelectric conversion device using this film
US6106689A (en) * 1997-01-20 2000-08-22 Canon Kabushiki Kaisha Process for forming zinc oxide film and processes for producing semiconductor device substrate and photo-electricity generating device using the film
JP3327811B2 (en) * 1997-05-13 2002-09-24 キヤノン株式会社 Method for producing zinc oxide thin film, photovoltaic element and semiconductor element substrate using the same
US6160689A (en) 1997-10-09 2000-12-12 Jay Stolzenberg Two wire solid state AC/DC circuit breaker
US6576112B2 (en) * 2000-09-19 2003-06-10 Canon Kabushiki Kaisha Method of forming zinc oxide film and process for producing photovoltaic device using it
JP2002356400A (en) * 2001-03-22 2002-12-13 Canon Inc Manufacturing method for needle structural zinc oxide body, and battery and photoelectric transducer using it
US20040016646A1 (en) * 2002-07-29 2004-01-29 Stucky Galen D. Electrochemical synthesis of mesoporous metal/metal oxide flims using a low percentage surfactant solution by cooperative templating mechanism
US20050189012A1 (en) * 2002-10-30 2005-09-01 Canon Kabushiki Kaisha Zinc oxide film, photovoltaic device making use of the same, and zinc oxide film formation process
JP2006324591A (en) * 2005-05-20 2006-11-30 Nisshinbo Ind Inc Electric double-layer capacitor, control method thereof, storage system using the same and secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081927A1 (en) 2013-12-06 2015-06-11 Helmholtz-Zentrum Für Materialien Und Energie Gmbh Passivation layer having point contacts for thin-layer solar cells and method for production thereof
DE102013113585A1 (en) 2013-12-06 2015-06-11 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Passivation layer with point contacts for thin-film solar cells

Also Published As

Publication number Publication date
WO2009103286A3 (en) 2009-10-29
WO2009103286A2 (en) 2009-08-27
US20110048956A1 (en) 2011-03-03
EP2252728A2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
EP2252728B1 (en) Electrodeposition method for the production of nanostructured zno
DE60132450T2 (en) Solar cell and manufacturing method
EP1409767B1 (en) Electrochemical production of peroxopyrosulphuric acid using diamond coated electrodes
DE112011102300B4 (en) METHOD OF FORMING P-SEMICONDUCTOR LAYER FOR PHOTOVOLTAIC UNIT
DE60311531T2 (en) METHOD FOR PRODUCING NANOSTRUCTURED GLOWING BODIES FOR LIGHT GENERATION
DE102006036084B4 (en) Electrode for electrolysis and process for its preparation
DE4433097C2 (en) Method for producing a light-absorbing layer of a solar cell
DE112012002092T5 (en) Process for the production of wafers for solar cells, process for the production of solar cells and process for the production of solar cell modules
DE19630321A1 (en) Process for producing a copper-indium-sulfur-selenium thin film and process for producing a copper-indium-sulfur-selenium chalcopyrite crystal
DE102015013220A1 (en) Process for the preparation of silver nanowires
DE102013109202A1 (en) Method of treating a semiconductor layer
DE102016202607A1 (en) Method for producing a layer with perovskite material and device with such a layer
DE2338549B2 (en)
DE102008010287B3 (en) Electrodeposition process to prepare nanostructured zinc oxide using aqueous solution of zinc salt and a component preferably dopant, applying a potential, adjusting deposition temperature and depositing nanostructured zinc oxide material
AT519193A1 (en) Optoelectronic infrared sensor
DE112012000576T5 (en) Wafers for solar cells and process for its production
DE112016006557B4 (en) Process for manufacturing a CdTe thin-film solar cell
DE212012000087U1 (en) A crystalline 2D layer based on ZnO on a conductive plastic substrate
DE102006039331A1 (en) Photovoltaic-thin layer structure for solar cells and/or photovoltaic module, comprises photoelectric active absorber layer, transparent front contact layer and multi-layer buffer layer placed between absorber layer and front contact layer
DE102008029234A1 (en) Electrodeposition process to prepare nanostructured zinc oxide using aqueous solution of zinc salt and a component preferably dopant, applying a potential, adjusting deposition temperature and depositing nanostructured zinc oxide material
WO2011116750A2 (en) Production method for a light-sensitive thin-layer structure for catalytic hydrogen production and use thereof
DE102009015063A1 (en) Method for applying a Zn (S, O) buffer layer to a semiconductor substrate by means of chemical bath deposition
EP0136967A2 (en) Photoelectrochemical solar cell and process of making a working electrode for solar cells
EP2250676B1 (en) Method for producing a photoactive layered composite
DE2412965A1 (en) METHOD OF ANODIC OXIDATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100921

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: AE, LORENZ

Inventor name: LUX-STEINER, MARTHA, CHRISTINA

Inventor name: CHEN, JIE

Inventor name: FISCHER, CHRISTIAN-HERBERT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND ENER

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 588384

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009005660

Country of ref document: DE

Effective date: 20130207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130312

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130323

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130412

BERE Be: lapsed

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUR MATERIALIEN UND ENER

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

26N No opposition filed

Effective date: 20130913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009005660

Country of ref document: DE

Effective date: 20130913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502009005660

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502009005660

Country of ref document: DE

Effective date: 20141108

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 588384

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090220

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130220

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160229

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160122

Year of fee payment: 8

Ref country code: FR

Payment date: 20160125

Year of fee payment: 8

Ref country code: FI

Payment date: 20160125

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009005660

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170220

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170220