EP2246874A1 - Plasma lamp - Google Patents

Plasma lamp Download PDF

Info

Publication number
EP2246874A1
EP2246874A1 EP10004268A EP10004268A EP2246874A1 EP 2246874 A1 EP2246874 A1 EP 2246874A1 EP 10004268 A EP10004268 A EP 10004268A EP 10004268 A EP10004268 A EP 10004268A EP 2246874 A1 EP2246874 A1 EP 2246874A1
Authority
EP
European Patent Office
Prior art keywords
microwave
plasma
reflector
lamp according
plasma lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10004268A
Other languages
German (de)
French (fr)
Other versions
EP2246874B1 (en
Inventor
Lars Brandt
Margareta Hamel
Harry Wagener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Auer Lighting GmbH
Original Assignee
Auer Lighting GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auer Lighting GmbH filed Critical Auer Lighting GmbH
Publication of EP2246874A1 publication Critical patent/EP2246874A1/en
Application granted granted Critical
Publication of EP2246874B1 publication Critical patent/EP2246874B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit

Definitions

  • the invention relates to a plasma lamp with a lamp envelope containing a suitable for plasma formation with a microwave excitation radiation material, with a supply line for supplying the microwave excitation radiation to the lamp envelope and with a lamp envelope at least partially surrounding the reflector for the alignment of the plasma in the lamp envelope emitted light, wherein the lamp envelope is arranged within a microwave resonator so that in the region of the lamp envelope, a high microwave field strength is achieved and wherein the microwave resonator has metallic walls, of which at least one wall portion is formed translucent with an electrically conductive shielding structure.
  • Such a plasma lamp is through EP 1 432 012 A2 known.
  • the microwave excitation radiation is generated by a magnetron as a microwave source and passed through a waveguide in a cylindrical microwave resonator, in the longitudinal axis of the lamp bulbs is centrally located.
  • This is preferably filled with an inert gas which is ionized by the microwave energy to a plasma and thereby emits light.
  • the light can emerge from the microwave resonator through an upper, translucent wall section which is formed by a grid-like metallic structure in the form of a network.
  • the microwave resonator with the lamp envelope is located within a conventionally funnel-shaped reflector having a circular cross section, wherein the cylindrical microwave resonator is arranged concentrically to the circular cross section of the reflector.
  • the known plasma lamps are usually filled with sulfur and therefore known as sulfur plasma lamps.
  • the system of the plasma lamp enables a high luminous efficacy.
  • a disadvantage of the known plasma lamps, however, is that the wire cylinder, which surrounds the lamp bulb laterally and in the emission direction, shields part of the light and that the metal reflector arranged outside the microwave resonator must have a considerable size.
  • the present invention is therefore the object of a plasma lamp of the type mentioned in such a way that a smaller design with an optimized light output is possible.
  • a plasma lamp according to the invention of the type mentioned above is characterized in that the reflector is disposed within the microwave resonator and that the microwave resonator is tuned with the reflector to an optimal energy input into the lamp envelope.
  • the reflector is thus within the microwave resonator. This is made possible by the fact that the reflector and the resonator are matched to each other and the energy input is optimized in the plasma lamp.
  • the reflector is not metallic Reflector formed but consists of a permeable to microwaves body, preferably with a microwave-permeable, but reflective for light coating.
  • This arrangement has the advantage that an interaction with the microwave radiation does not occur.
  • Such a coating is preferably a non-metallic interference coating.
  • the interference coating is preferably designed as a dichroic mirror and thus has a high reflectivity for the visible light, while the microwave excitation radiation and any heat radiation through the coating pass virtually unattenuated.
  • the reflector in the first embodiment of the invention preferably consists of a microwaveable material, namely glass, ceramic, glass ceramic or suitable plastics.
  • the coating is preferably an interference coating with coating materials which are transparent to microwaves, in particular oxides, nitrides or the like.
  • the microwave field in the microwave resonator is not or only slightly influenced by the reflector. Since the light generated in the lamp bulb is already directed in the desired manner by the reflector seated directly on the lamp bulb, it emerges completely from the electrically conductive cover terminating the microwave resonator.
  • the use of the non-metallic interference coating permits an increase in the degree of reflection compared with the metal reflectors (in particular aluminum reflectors) used hitherto.
  • the metal reflectors in particular aluminum reflectors
  • the conventional aluminum layers have a reflectance of about 90%
  • the reflectance of the interference coatings is based on TiO 2 / SiO 2 interlayer packages, typically in the range of 94 to 97%.
  • the reflector arranged in the resonator may have a metallic layer as a reflective coating or consist entirely of a metallic base body with a metallically reflecting surface. This requires a suitable coupling of the microwave radiation within the reflector such that the plasma lamp can be ignited and operated stably.
  • a further increase in the efficiency of the plasma lamp according to the invention can be achieved in that it can be set up for operation with a microwave frequency of> 5 GHz.
  • a microwave frequency of> 5 GHz Preferably, a 5.8 GHz magnetron is used here.
  • This microwave excitation frequency is significantly higher than the excitation frequencies used in conventional sulfur plasma lamps. The higher frequencies allow smaller dimensions of the microwave components, so that the plasma lamp according to the invention can therefore also be created compared to conventional plasma lamps with smaller dimensions.
  • the plasma lamp according to the invention allows the use of all suitable materials that can be stimulated by a microwave excitation radiation to the light output. These include the known fillings with sulfur fractions, but also other possible fillings, for example with dysprosium iodide, mercury iodide, etc., as well as combinations of these materials.
  • the shielding electrically conductive structure of the cover is a light-transmitting, electrically conductive coating of a light-transmissive substrate.
  • the electrically conductive coating may be made so thin that it is sufficiently conductive to enclose the microwave field in the microwave resonator, but is transparent or at least translucent to the visible light.
  • it is possible to translate on a substrate apply lattice-like coating that shields the microwave field in the manner of a Faraday cage, the light passage through the spaces between the metallic grid lines allows.
  • laminate-shaped is therefore understood as meaning any pattern-regular or irregular-that ensures sufficient coherent conductivity for the shielding of the microwave field and, on the other hand, leaves sufficient gaps through which the light generated in the lamp bulb and directed by the reflector Light can escape.
  • the translucent substrate may be provided with an electrically conductive coating of a transparent oxide instead of a metal coating.
  • electrically conductive coatings which are transparent at the same time in the visible range, are generally known to the person skilled in the art. They are z. B. used in the thermal insulation of windows or touch screens.
  • the coatings consist of oxides which are doped with another oxide and thus obtain semiconductor-like properties.
  • the best known is indium tin oxide (ITO), in which indium oxide is doped with a proportion of about 5 to 10% of tin oxide.
  • ITO indium tin oxide
  • the doping gives the otherwise not particularly conductive indium oxide a conductivity which, given a sufficient thickness of the ITO coating, is capable of achieving sufficient electrical conductivity for the reflection of microwaves.
  • This type of coating has an effect such as a thin metal layer due to its electrical conductivity.
  • the lamp bulb is arranged displaceably in a center axis of the reflector, so that the geometry of the lamp bulb is variable relative to the reflector, so the alignment and focusing of the light is adjustable.
  • the lamp bulb is inserted laterally into the reflector instead of below, wherein a rod-shaped projection, with which the lamp bulb is fixed in a lamp holder, is led out through a lateral opening through the reflector.
  • the piston with the light-emitting filling gas must be located at a suitable location in the reflector, as in the earlier embodiment.
  • the plasma lamp according to the invention allows a light conversion of 120 lumens / W or more.
  • a conventionally available magnetron with a power of 800 W is used as the microwave source, a luminous flux of more than 100,000 lumens can be achieved.
  • the plasma lamp according to the invention is operated with lamp bulb diameters of about 30-35 mm.
  • the filling pressure of the filling material in the lamp bulb is to be adjusted as a function of the filling material used, the size of the lamp bulb and / or the magnetron's electrical power.
  • the fillings usable for the plasma lamp according to the invention are not limited. It can be used the conventional gas mixtures of argon and sulfur, but are also possible gas mixtures with other materials, such.
  • an inert gas preferably inert gas that absorbs the microwave energy and the absorbed energy to the other gas components, such as sulfur or its molecules emits, causing them to be excited and the relapses in the low-energy state, the photons submit.
  • inert gases preferably noble gases.
  • the plasma lamp according to the invention differs from conventional discharge lamps, in particular the CDM lamps (Ceramic Discharge Metal).
  • CDM lamps Ceramic Discharge Metal
  • a color separation between red and green occurs through the interaction of the contained metal salts (rare earth metals such as scandium) with the hot bulb.
  • metal salts rare earth metals such as scandium
  • Such a color separation does not occur in the plasma lamps according to the invention, since they usually do not contain metal salts.
  • solids, especially solid sulfur in the flask
  • the majority of the sulfur in a sulfur plasma lamp
  • the high temperature of the sulfur is achieved by energy transfer from the strongly excited by the microwaves argon atoms or other strongly excited atoms or molecules.
  • the bulb of the plasma lamp can be permanently mounted. Alternatively, it is possible to rotate the piston about its longitudinal axis during operation of the lamp in order to achieve a homogenization of the light excitation by the microwaves. As a result, there will be no preferential sites in the plasma lamp where sulfur can primarily precipitate. Accordingly, there is no color asymmetry of the light emission as in the conventional CDM lamps.
  • the light emitted by the plasma lamp according to the invention has a comparatively low UV content compared with conventional discharge lamps, in which considerable quantities of UV radiation are produced, in particular, by the excitation of mercury atoms in the gas composition.
  • a sulfur-argon mixture as in the plasma lamp according to the invention
  • the emission spectrum contains a relatively small proportion in the UV range over the visible range. Below 350 nm, virtually no UV radiation is released at all.
  • the plasma lamp according to the invention enables the use of very small lamp envelopes whose diameter can thus be ⁇ 35 mm, preferably ⁇ 20 mm and particularly preferably up to ⁇ 10 mm.
  • a change in the filling pressure or a change in the gas composition may be useful.
  • the shape of the piston used in this case may be spherical in a conventional manner.
  • This design is particularly advantageous in the case of an elliptical reflector, in which the light rays, which originate in the vicinity of the optical axis, can regularly be better guided into a small aperture for geometrical reasons than light rays which are further away from the optical axis to have.
  • the plasma lamp according to the invention has the advantage that they are well dimmable compared to conventional discharge lamps.
  • the plasma lamp according to the invention is infinitely dimmable without a significant deterioration of the emission spectrum.
  • the color rendering value Ra (or CRI) does not noticeably deteriorate with a low applied electric power, so that the lamp can continue to be operated with good color rendering at low power without having to run expensive and thermally strong dimmer disks into the beam path, such as this is the case with conventional stage headlights.
  • the conventional dimming also does not lead to energy savings as it is achieved with the invention, well-dimmable plasma lamp.
  • the plasma lamp according to the invention can be used particularly well as street lighting, since the night shutdown commonly used in traffic and in the security of the citizens is quite disadvantageous, so that a dimming of such a plasma lamp according to the invention allows both energy savings and avoids the disadvantages of the complete night shutdown. Since the color properties of the radiated light do not change in the dimming practically, a high visibility of unlighted road users, especially pedestrians, even with reduced light intensity is maintained.
  • the plasma lamp according to the invention can be turned on and off very quickly in contrast to conventional discharge lamps.
  • the overall life of the lamp is not significantly reduced by frequent switching on and off since the lamp does not contain any electrodes which could be affected by the on / off process.
  • the plasma lamp according to the invention is therefore very well suited for use in the field of obstacle lighting, z. B. as a beacon on wind turbines, towers, factory chimneys, etc.
  • the lamp according to the invention can be operated immediately with full light intensity, if it is only turned off for a short time. With a longer turn-off time, the piston cools down. Sulfur filling causes the sulfur to solidify. From the cold state, it takes less than 20 seconds until the full light intensity is reached again.
  • the plasma lamp according to the invention is particularly suitable for stage lighting, for architectural lighting (facades, large squares, parking lots, stadiums, construction sites, etc.), for a digital cinema projection, for horticultural enterprises to simulate daylight and for lighting large halls, department stores, shopping malls etc.
  • the plasma lamp according to the invention can also be used as a central light source by emitting radiated light with a preferably elliptical Reflector is imaged on a small aperture in which there is a side of a glass fiber bundle from which emanates a plurality of glass fibers, which can be distributed in a plurality of individual individual light sources.
  • FIG. 1 is a spherical lamp bulb 1 made of a suitable glass, quartz glass o. The like.
  • a rod-shaped projection 2 with which the lamp bulb 1 is fixed in a lamp holder 3.
  • the projection 2 protrudes through a metal plate 4, which forms a bottom of a cylindrical microwave resonator 5.
  • the metal plate 4 and a cylindrical jacket wall 6 of the microwave resonator 5 are made of metal, while a bottom 4 of the opposite, the microwave resonator 5 final cover 7 consists of a suitable glass and is provided with an electrically conductive coating to the environment against to shield leakage of the microwaves from the microwave resonator 5.
  • microwaves generated by a microwave generator 8 are introduced laterally through a waveguide 9 through a slot in the microwave resonator 5.
  • the microwave generator 8 is supplied electrically by a supply unit 10.
  • the microwave resonator 5 Within the microwave resonator 5 according to the invention is a reflector 11 which surrounds the lamp envelope 1 concentrically with respect to the vertical axis.
  • the reflector 11 preferably consists of a suitable non-metallic body which is permeable to microwaves and does not disturb the microwave field in the microwave resonator 5.
  • the glass body 11 is provided with a non-metallic coating that transmits the microwaves, the however, light emitted from the lamp bulb 1 is reflected.
  • an interference coating in question which is formed in a conventional manner of alternating layer packages, for example, TiO 2 and SiO 2 .
  • Such interference coatings can be formed as a cold light mirror coating, so that a high reflectivity for the visible light is given while microwave radiation and possibly existing UV and heat radiation components are transmitted.
  • the reflector is rotationally symmetrical to a central axis 12, a same rotational symmetry about the center axis 12 is also obtained for the lamp bulb 1, which in the in FIG. 1 illustrated embodiment is spherical.
  • the lamp bulb can also have other shapes, such as oval, elliptical o. ⁇ .
  • the piston shape is chosen so that the microwave optimally coupled to the filling gas to convert the highest possible gas content of the filling in the plasma state.
  • In the center axis 12 of the lamp envelope 1 may be arranged translationally displaceable, so that the spatial arrangement of the lamp envelope 1 to the reflector 11 may change, whereby the alignment and focusing of the light beam can be changed.
  • the metal plate forming the bottom of the microwave resonator 5 has interruptions through which a ventilator 13 can introduce cooling air into the microwave resonator to cool the lamp envelope 1, which may become very hot during operation.
  • the air flow can be introduced by a fan or by compressed air into the microwave resonator 5.
  • the lamp bulb 1 is mounted laterally, so that the rod-shaped projection penetrates the reflector 11 laterally and is fastened laterally by the microwave resonator 5 in the lamp holder 3.
  • the waveguide 9, to which the microwave generator 8 is coupled is arranged directly on the bottom of the microwave resonator 5 forming metal plate 4, so that a coupling of the microwave energy from the metal plate 4th in the direction of the longitudinal axis 12 of the microwave resonator 5, ie also directly into the interior of the reflector 11.
  • the microwaves can be coupled via a waveguide at other positions in the resonator 5.
  • the reflector 11 consists of a metallic base body or has a metallic coating.
  • the lamp bulb 1 is rotatably mounted in the lamp holder 3 in a preferred embodiment in order to achieve an improved uniformity of the excitation of the gas mixture in the lamp bulb 1.
  • the rotation can be dispensed with if the intensity of the microwave field can be adjusted so that a sufficiently high and uniform microwave field strength is achieved in the region of the lamp bulb 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

The plasma lamp has a light bulb (1) which contains a material suitable for plasma formation with a microwave-excitation radiation. A supply line is provided for supplying the microwave-excitation radiation to the light bulb. A reflector (11) partially surrounds the light bulb for aligning the light emitted from the plasma in the lamp bulb. The reflector is arranged within a microwave resonator (5). The microwave resonator is aligned with the reflector to an optimal energy input into the light bulb.

Description

Die Erfindung betrifft eine Plasmalampe mit einem Lampenkolben, der ein zur Plasmabildung mit einer Mikrowellen-Anregungsstrahlung geeignetes Material enthält, mit einer Zuführungsleitung zur Zuführung der Mikrowellen-Anregungsstrahlung zum Lampenkolben und mit einem den Lampenkolben zumindest teilweise umgebenden Reflektor zur Ausrichtung des von dem Plasma im Lampenkolben ausgesandten Lichts, wobei der Lampenkolben innerhalb eines Mikrowellen-Resonators so angeordnet ist, dass im Bereich des Lampenkolbens eine hohe Mikrowellenfeldstärke erreicht wird und wobei der Mikrowellen-Resonator metallische Wände aufweist, von denen wenigstens ein Wandabschnitt mit einer elektrisch leitfähigen abschirmenden Struktur lichtdurchlässig ausgebildet ist.The invention relates to a plasma lamp with a lamp envelope containing a suitable for plasma formation with a microwave excitation radiation material, with a supply line for supplying the microwave excitation radiation to the lamp envelope and with a lamp envelope at least partially surrounding the reflector for the alignment of the plasma in the lamp envelope emitted light, wherein the lamp envelope is arranged within a microwave resonator so that in the region of the lamp envelope, a high microwave field strength is achieved and wherein the microwave resonator has metallic walls, of which at least one wall portion is formed translucent with an electrically conductive shielding structure.

Eine derartige Plasmalampe ist durch EP 1 432 012 A2 bekannt. Die Mikrowellen-Anregungsstrahlung wird durch ein Magnetron als Mikrowellenquelle generiert und über einen Wellenleiter in einen zylindrischen Mikrowellen-Resonator geleitet, in dessen Längsachse mittig der Lampenkölben angeordnet ist. Dieser ist vorzugsweise mit einem inerten Gas gefüllt, das durch die Mikrowellenenergie zu einem Plasma ionisiert wird und dadurch Licht abstrahlt. Das Licht kann aus dem Mikrowellen-Resonator durch einen oberen, lichtdurchlässigen Wandabschnitt austreten, der durch eine gitterartige metallische Struktur in Form eines Netzes gebildet ist. Der Mikrowellen-Resonator mit dem Lampenkolben befindet sich innerhalb eines in üblicher Weise trichterartig ausgebildeten Reflektors mit einem kreisförmigen Querschnitt, wobei der zylindrische Mikrowellen-Resonator konzentrisch zu dem kreisförmigen Querschnitt des Reflektors angeordnet ist.Such a plasma lamp is through EP 1 432 012 A2 known. The microwave excitation radiation is generated by a magnetron as a microwave source and passed through a waveguide in a cylindrical microwave resonator, in the longitudinal axis of the lamp bulbs is centrally located. This is preferably filled with an inert gas which is ionized by the microwave energy to a plasma and thereby emits light. The light can emerge from the microwave resonator through an upper, translucent wall section which is formed by a grid-like metallic structure in the form of a network. The microwave resonator with the lamp envelope is located within a conventionally funnel-shaped reflector having a circular cross section, wherein the cylindrical microwave resonator is arranged concentrically to the circular cross section of the reflector.

Durch DE 43 07 965 A1 ist ferner eine derartige Mikrowellenlampe bekannt, bei der durch die Einkopplung zweier zueinander phasenverschobener Mikrowellenfelder in dem Mikrowellen-Resonator ein Drehfeld erzeugt wird, um eine vergleichmäßigte Plasmaanregung - und dadurch eine vergleichmäßigte Lichtabstrahlung - zu erzielen. Alternativ ist es bekannt, das Mikrowellenfeld statisch zu belassen und den Lampenkolben in eine Rotation um seine Längsachse zu versetzen.By DE 43 07 965 A1 Furthermore, such a microwave lamp is known in which by the coupling of two mutually phase-shifted microwave fields in the microwave resonator a rotating field is generated in order to achieve a uniform plasma excitation - and thus a uniform light emission. Alternatively, it is known to leave the microwave field static and to put the lamp envelope in a rotation about its longitudinal axis.

Die bekannten Plasmalampen sind üblicherweise mit Schwefel gefüllt und daher als Schwefel-Plasmalampen bekannt geworden. Das System der Plasmalampe ermöglicht eine hohe Lichtausbeute. Nachteilig an den bekannten Plasmalampen ist jedoch, dass der Drahtzylinder, der den Lampenkolben seitlich und in Abstrahlrichtung umgibt, einen Teil des Lichtes abschirmt und dass der außerhalb des Mikrowellen-Resonators angeordnete Metallreflektor eine erhebliche Größe aufweisen muss.The known plasma lamps are usually filled with sulfur and therefore known as sulfur plasma lamps. The system of the plasma lamp enables a high luminous efficacy. A disadvantage of the known plasma lamps, however, is that the wire cylinder, which surrounds the lamp bulb laterally and in the emission direction, shields part of the light and that the metal reflector arranged outside the microwave resonator must have a considerable size.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Plasmalampe der eingangs erwähnten Art so auszubilden, dass eine kleinere Bauform mit einer optimierten Lichtausbeute möglich ist.The present invention is therefore the object of a plasma lamp of the type mentioned in such a way that a smaller design with an optimized light output is possible.

Zur Lösung dieser Aufgabe ist erfindungsgemäß eine Plasmalampe der eingangs erwähnten Art dadurch gekennzeichnet, dass der Reflektor innerhalb des Mikrowellen-Resonators angeordnet ist und dass der Mikrowellen-Resonator mit dem Reflektor auf einen optimalen Energieeintrag in den Lampenkolben abgestimmt ist.To achieve this object, a plasma lamp according to the invention of the type mentioned above is characterized in that the reflector is disposed within the microwave resonator and that the microwave resonator is tuned with the reflector to an optimal energy input into the lamp envelope.

Bei der erfindungsgemäßen Plasmalampe befindet sich der Reflektor somit innerhalb des Mikrowellen-Resonators. Dies wird dadurch ermöglicht, dass der Reflektor und der Resonator aufeinander abgestimmt sind und der Energieeintrag in die Plasmalampe optimiert wird.In the plasma lamp according to the invention, the reflector is thus within the microwave resonator. This is made possible by the fact that the reflector and the resonator are matched to each other and the energy input is optimized in the plasma lamp.

In einer ersten Ausführungsform der Erfindung ist der Reflektor nicht als metallischer Reflektor ausgebildet sondern besteht aus einem für Mikrowellen durchlässigen Grundkörper, vorzugsweise mit einer für Mikrowellen durchlässigen, für Licht jedoch reflektierenden Beschichtung. Diese Anordnung hat den Vorteil, dass eine Wechselwirkung mit der Mikrowelleneinstrahlung unterbleibt. Eine derartige Beschichtung ist vorzugsweise eine nichtmetallische Interferenzbeschichtung.In a first embodiment of the invention, the reflector is not metallic Reflector formed but consists of a permeable to microwaves body, preferably with a microwave-permeable, but reflective for light coating. This arrangement has the advantage that an interaction with the microwave radiation does not occur. Such a coating is preferably a non-metallic interference coating.

Die Interferenzbeschichtung ist vorzugsweise als Kaltlichtspiegel ausgeführt und besitzt somit ein hohes Reflexionsvermögen für das sichtbare Licht, während die Mikrowellen-Anregungsstrahlung und etwaige Wärmestrahlungen durch die Beschichtung praktisch ungedämpft hindurchtreten.The interference coating is preferably designed as a dichroic mirror and thus has a high reflectivity for the visible light, while the microwave excitation radiation and any heat radiation through the coating pass virtually unattenuated.

Der Reflektor besteht in der ersten Ausführungsform der Erfindung vorzugsweise aus einem mikrowellengeeigneten Material, nämlich Glas, Keramik, Glaskeramik oder aus geeigneten Kunststoffen. Die Beschichtung ist vorzugsweise eine Interferenzbeschichtung mit für Mikrowellen transparenten Beschichtungsmaterialien, insbesondere Oxide, Nitride o. ä. Somit wird das Mikrowellenfeld im Mikrowellen-Resonator nicht oder nur geringfügig durch den Reflektor beeinflusst. Da das in dem Lampenkolben generierte Licht durch den unmittelbar an dem Lampenkolben sitzenden Reflektor bereits in der gewünschten Weise gerichtet wird, tritt es vollständig aus der den Mikrowellen-Resonator abschließenden elektrisch leitenden Abdeckung aus.The reflector in the first embodiment of the invention preferably consists of a microwaveable material, namely glass, ceramic, glass ceramic or suitable plastics. The coating is preferably an interference coating with coating materials which are transparent to microwaves, in particular oxides, nitrides or the like. Thus, the microwave field in the microwave resonator is not or only slightly influenced by the reflector. Since the light generated in the lamp bulb is already directed in the desired manner by the reflector seated directly on the lamp bulb, it emerges completely from the electrically conductive cover terminating the microwave resonator.

Der Einsatz der nichtmetallischen Interferenzbeschichtung erlaubt darüber hinaus eine gegenüber den bisher verwendeten Metallreflektoren (insbesondere Aluminiumreflektoren) Erhöhung des Reflexionsgrads. Während die herkömmlichen Aluminiumschichten einen Reflexionsgrad von etwa 90 % aufweisen, liegt der Reflexionsgrad der Interferenzbeschichtungen beispielsweise auf der Basis von TiO2/SiO2-Wechselschichtpaketen, üblicherweise im Bereich von 94 bis 97 %.In addition, the use of the non-metallic interference coating permits an increase in the degree of reflection compared with the metal reflectors (in particular aluminum reflectors) used hitherto. For example, while the conventional aluminum layers have a reflectance of about 90%, the reflectance of the interference coatings is based on TiO 2 / SiO 2 interlayer packages, typically in the range of 94 to 97%.

In einer zweiten Ausführungsform der Erfindung kann der in dem Resonator angeordnete Reflektor eine metallische Schicht als reflektierende Beschichtung aufweisen oder ganz aus einem metallischen Grundkörper mit einer metallisch reflektierenden Oberfläche bestehen. Voraussetzung hierfür ist eine geeignete Einkopplung der Mikrowellenstrahlung innerhalb des Reflektors derart, dass die Plasmalampe gezündet und stabil betrieben werden kann.In a second embodiment of the invention, the reflector arranged in the resonator may have a metallic layer as a reflective coating or consist entirely of a metallic base body with a metallically reflecting surface. This requires a suitable coupling of the microwave radiation within the reflector such that the plasma lamp can be ignited and operated stably.

Eine weitere Steigerung der Effizienz der erfindungsgemäßen Plasmalampe lässt sich dadurch erreichen, dass sie für den Betrieb mit einer Mikrowellenfrequenz von > 5 GHz eingerichtet werden kann. Bevorzugt wird hierbei ein 5,8 GHz-Magnetron eingesetzt. Diese Mikrowellen-Anregungsfrequenz liegt deutlich höher als die bei üblichen Schwefel-Plasmalampen verwendeten Anregungsfrequenzen. Die höheren Frequenzen ermöglichen geringere Abmessungen der Mikrowellen-Bauteile, sodass die erfindungsgemäße Plasmalampe auch deswegen gegenüber herkömmlichen Plasmalampen mit kleineren Abmessungen erstellt werden kann.A further increase in the efficiency of the plasma lamp according to the invention can be achieved in that it can be set up for operation with a microwave frequency of> 5 GHz. Preferably, a 5.8 GHz magnetron is used here. This microwave excitation frequency is significantly higher than the excitation frequencies used in conventional sulfur plasma lamps. The higher frequencies allow smaller dimensions of the microwave components, so that the plasma lamp according to the invention can therefore also be created compared to conventional plasma lamps with smaller dimensions.

Die erfindungsgemäße Plasmalampe ermöglicht den Einsatz aller geeigneten Materialien, die sich durch eine Mikrowellen-Anregungsstrahlung zur Lichtabgabe anregen lassen. Hierzu gehören die bekannten Füllungen mit Schwefelanteilen, aber auch andere mögliche Füllungen, beispielsweise mit Dysprosiumiodid, Quecksilberiodid usw. sowie Kombinationen dieser Materialien.The plasma lamp according to the invention allows the use of all suitable materials that can be stimulated by a microwave excitation radiation to the light output. These include the known fillings with sulfur fractions, but also other possible fillings, for example with dysprosium iodide, mercury iodide, etc., as well as combinations of these materials.

In einer bevorzugten Ausführungsform der Erfindung ist die abschirmende elektrisch leitfähige Struktur der Abdeckung eine lichtdurchlässige elektrisch leitfähige Beschichtung eines lichtdurchlässigen Substrats. Hierfür kann die elektrisch leitfähige Beschichtung so dünn ausgebildet sein, dass sie ausreichend leitfähig ist, um das Mikrowellenfeld in dem Mikrowellen-Resonator einzuschließen, jedoch für das sichtbare Licht durchlässig oder zumindest durchscheinend ist. Alternativ ist es möglich, auf einem Substrat eine lichtdurchlässige gitterförmige Beschichtung aufzubringen, die das Mikrowellenfeld nach Art eines Faradayschen Käfigs abschirmt, den Lichtdurchtritt durch die Zwischenräume zwischen den metallischen Gitterlinien ermöglicht. Selbstverständlich ist es auch bei der vorliegenden Erfindung möglich, den lichtdurchlässigen Wandabschnitt des Resonators lediglich durch ein gitterartiges Drahtgeflecht zu realisieren. Es ist ersichtlich, dass es auf die konkrete Ausbildung einer Gitterform nicht ankommt. Als "gitterförmig" im Sinne dieser Anmeldung wird daher jedes - regelmäßige oder unregelmäßige - Muster verstanden, das eine ausreichende zusammen-hängende Leitfähigkeit für die Abschirmung des Mikrowellenfelds gewährleistet und andererseits ausreichende Zwischenräume belässt, durch die das in dem Lampenkolben generierte und durch den Reflektor gerichtete Licht austreten kann.In a preferred embodiment of the invention, the shielding electrically conductive structure of the cover is a light-transmitting, electrically conductive coating of a light-transmissive substrate. For this, the electrically conductive coating may be made so thin that it is sufficiently conductive to enclose the microwave field in the microwave resonator, but is transparent or at least translucent to the visible light. Alternatively, it is possible to translate on a substrate apply lattice-like coating that shields the microwave field in the manner of a Faraday cage, the light passage through the spaces between the metallic grid lines allows. Of course, it is also possible in the present invention to realize the translucent wall portion of the resonator only by a grid-like wire mesh. It can be seen that it does not depend on the concrete formation of a grid shape. For the purposes of this application, "lattice-shaped" is therefore understood as meaning any pattern-regular or irregular-that ensures sufficient coherent conductivity for the shielding of the microwave field and, on the other hand, leaves sufficient gaps through which the light generated in the lamp bulb and directed by the reflector Light can escape.

Das lichtdurchlässige Substrat kann alternativ auch anstelle einer Beschichtung aus Metall mit einer elektrisch leitfähigen Beschichtung aus einem transparenten Oxid versehen sein. Solche elektrisch leitfähigen, jedoch gleichzeitig im sichtbaren Bereich transparenten Beschichtungen sind dem Fachmann grundsätzlich bekannt. Sie werden z. B. bei der Wärmedämmung von Fenstern oder bei Touch Screens eingesetzt. Die Beschichtungen bestehen dabei aus Oxiden, die mit einem anderen Oxid dotiert sind und damit halbleiterähnliche Eigenschaften erhalten. Am bekanntesten ist dabei Indiumzinnoxid (ITO), bei dem Indiumoxid mit einem Anteil von etwa 5 - 10 % Zinnoxid dotiert wird. Durch die Dotierung erhält das ansonsten nicht besonders leitfähige Indiumoxid eine Leitfähigkeit, die bei ausreichender Dicke der ITO-Beschichtung in der Lage ist, eine für die Reflexion von Mikrowellen ausreichende elektrische Leitfähigkeit zu erreichen. Diese Art von Beschichtung hat aufgrund ihrer elektrischen Leitfähigkeit eine Wirkung wie eine dünne Metallschicht.Alternatively, the translucent substrate may be provided with an electrically conductive coating of a transparent oxide instead of a metal coating. Such electrically conductive coatings, which are transparent at the same time in the visible range, are generally known to the person skilled in the art. They are z. B. used in the thermal insulation of windows or touch screens. The coatings consist of oxides which are doped with another oxide and thus obtain semiconductor-like properties. The best known is indium tin oxide (ITO), in which indium oxide is doped with a proportion of about 5 to 10% of tin oxide. The doping gives the otherwise not particularly conductive indium oxide a conductivity which, given a sufficient thickness of the ITO coating, is capable of achieving sufficient electrical conductivity for the reflection of microwaves. This type of coating has an effect such as a thin metal layer due to its electrical conductivity.

In einer weiter bevorzugten Ausführungsform der Erfindung ist der Lampenkolben in einer Mittenachse des Reflektors verschiebbar angeordnet, sodass die Geometrie des Lampenkolbens relativ zum Reflektor veränderbar ist, sodass die Ausrichtung und Bündelung des Lichts einstellbar ist. In einer anderen Ausführungsform der Erfindung wird der Lampenkolben anstelle von unten seitlich in den Reflektor eingeführt, wobei ein stabförmiger Ansatz, mit dem der Lampenkolben in einer Lampenhalterung befestigt wird, durch eine seitliche Öffnung durch den Reflektor hinausgeführt wird. Bei dieser Ausführungsform muss sich der Kolben mit dem Licht aussendenden Füllgas ebenso wie in der früheren Ausführungsform an geeigneter Stelle im Reflektor befinden.In a further preferred embodiment of the invention, the lamp bulb is arranged displaceably in a center axis of the reflector, so that the geometry of the lamp bulb is variable relative to the reflector, so the alignment and focusing of the light is adjustable. In another embodiment of the invention, the lamp bulb is inserted laterally into the reflector instead of below, wherein a rod-shaped projection, with which the lamp bulb is fixed in a lamp holder, is led out through a lateral opening through the reflector. In this embodiment, the piston with the light-emitting filling gas must be located at a suitable location in the reflector, as in the earlier embodiment.

Die erfindungsgemäße Plasmalampe ermöglicht eine Lichtumsetzung von 120 lumen/W oder mehr. Wenn also ein konventionell erhältliches Magnetron mit einer Leistung von 800 W als Mikrowellenquelle verwendet wird, lässt sich ein Lichtstrom von mehr als 100.000 Lumen erreichen. Es ist ohne weiteres möglich, eine erfindungsgemäße Plasmalampe auch mit leistungsstärkeren Magnetrons zu verwenden, sodass auch noch leistungsstärkere Plasmalampen realisiert werden können. Für eine höhere Mikrowellenleistung kann es dabei erforderlich sein, die Größe des Durchmessers des Lampenkolbens an die höhere Leistung anzupassen. Derzeit wird die erfindungsgemäße Plasmalampe mit Lampenkolbendurchmessern von ca. 30 - 35 mm betrieben.The plasma lamp according to the invention allows a light conversion of 120 lumens / W or more. Thus, when a conventionally available magnetron with a power of 800 W is used as the microwave source, a luminous flux of more than 100,000 lumens can be achieved. It is readily possible to use a plasma lamp according to the invention also with more powerful magnetrons, so that even more powerful plasma lamps can be realized. For a higher microwave power, it may be necessary to adjust the size of the diameter of the lamp envelope to the higher power. Currently, the plasma lamp according to the invention is operated with lamp bulb diameters of about 30-35 mm.

Der Fülldruck des Füllmaterials in dem Lampenkolben ist in Abhängigkeit von dem verwendeten Füllmaterial, von der Größe des Lampenkolbens und/oder von der elektrischen Leistung des Magnetrons einzustellen.The filling pressure of the filling material in the lamp bulb is to be adjusted as a function of the filling material used, the size of the lamp bulb and / or the magnetron's electrical power.

Die für die erfindungsgemäße Plasmalampe verwendbaren Füllungen sind nicht beschränkt. Es können die herkömmlichen Gasmischungen aus Argon und Schwefel verwendet werden, möglich sind aber auch Gasmischungen mit anderen Materialien, wie z. B. Selen und/oder Tellur neben einem inerten Gas, vorzugsweise Edelgas, das die die Mikrowellenenergie aufnimmt und die aufgenommene Energie an die anderen Gasbestandteile, beispielsweise Schwefel bzw. dessen Moleküle abgibt, wodurch diese angeregt werden und beim Rückfall in den niederenergetischen Zustand die Photonen abgeben. Diese Aufgabe kann auch von inerten Gasen, vorzugsweise Edelgasen, erfüllt werden.The fillings usable for the plasma lamp according to the invention are not limited. It can be used the conventional gas mixtures of argon and sulfur, but are also possible gas mixtures with other materials, such. As selenium and / or tellurium in addition to an inert gas, preferably inert gas that absorbs the microwave energy and the absorbed energy to the other gas components, such as sulfur or its molecules emits, causing them to be excited and the relapses in the low-energy state, the photons submit. This task can also be fulfilled by inert gases, preferably noble gases.

Für die Anwendung der erfindungsgemäßen Plasmalampe ist von Bedeutung, dass ihre Funktion von der Einbaulage unabhängig ist. Hierdurch unterscheidet sich die erfindungsgemäße Plasmalampe von konventionellen Entladungslampen, insbesondere den CDM-Lampen (Ceramic Discharge Metal). Bei diesen bekannten Lampen tritt eine Farbzerlegung zwischen Rot und Grün durch die Wechselwirkung der enthaltenen Metallsalze (aus Seltenerdmetallen, wie beispielsweise Scandium) mit dem heißen Kolben auf. Eine derartige Farbzerlegung tritt bei den erfindungsgemäßen Plasmalampen nicht auf, da sie üblicherweise keine Metallsalze enthalten. Es kann zwar noch ein kleiner Anteil von Feststoffen, insbesondere festem Schwefel, in dem Kolben vorhanden sein, aber der überwiegende Anteil des Schwefels (bei einer Schwefel-Plasmalampe) befindet sich aufgrund der hohen Temperaturen im Kolben im gasförmigen Zustand. Die hohe Temperatur des Schwefels wird dabei durch Energieübertragung von den durch die Mikrowellen stark angeregten Argonatomen oder anderen stark angeregten Atomen oder Molekülen erreicht.For the application of the plasma lamp according to the invention is important that their function is independent of the installation position. As a result, the plasma lamp according to the invention differs from conventional discharge lamps, in particular the CDM lamps (Ceramic Discharge Metal). In these known lamps, a color separation between red and green occurs through the interaction of the contained metal salts (rare earth metals such as scandium) with the hot bulb. Such a color separation does not occur in the plasma lamps according to the invention, since they usually do not contain metal salts. While there may still be a small proportion of solids, especially solid sulfur, in the flask, the majority of the sulfur (in a sulfur plasma lamp) is in the gaseous state due to the high temperatures in the flask. The high temperature of the sulfur is achieved by energy transfer from the strongly excited by the microwaves argon atoms or other strongly excited atoms or molecules.

Der Kolben der Plasmalampe kann fest montiert sein. Alternativ ist es möglich, den Kolben während des Betriebs der Lampe um seine Längsachse zu drehen, um eine Vergleichmäßigung der Lichtanregung durch die Mikrowellen zu erzielen. Dadurch wird es in der Plasmalampe keine bevorzugten Stellen geben, an denen sich der Schwefel in erster Linie niederschlagen kann. Demgemäß entsteht auch keine farbliche Asymmetrie der Lichtabstrahlung wie bei den konventionellen CDM-Lampen.The bulb of the plasma lamp can be permanently mounted. Alternatively, it is possible to rotate the piston about its longitudinal axis during operation of the lamp in order to achieve a homogenization of the light excitation by the microwaves. As a result, there will be no preferential sites in the plasma lamp where sulfur can primarily precipitate. Accordingly, there is no color asymmetry of the light emission as in the conventional CDM lamps.

Das von der erfindungsgemäßen Plasmalampe abgestrahlte Licht hat einen vergleichsweise geringen UV-Anteil gegenüber herkömmlichen Entladungslampen, bei denen insbesondere durch die Anregung von Quecksilberatomen in der Gaszusammensetzung beachtliche Mengen an UV-Strahlung entstehen. Bei einer Schwefel-Argon-Mischung, wie sie bei der erfindungsgemäßen Plasmalampe beispielsweise verwendet wird, enthält das Emissionsspektrum einen relativ geringen Anteil im UV-Bereich gegenüber dem sichtbaren Bereich. Unterhalb von 350 nm wird praktisch überhaupt keine UV-Strahlung mehr abgegeben.The light emitted by the plasma lamp according to the invention has a comparatively low UV content compared with conventional discharge lamps, in which considerable quantities of UV radiation are produced, in particular, by the excitation of mercury atoms in the gas composition. In a sulfur-argon mixture, as in the plasma lamp according to the invention For example, the emission spectrum contains a relatively small proportion in the UV range over the visible range. Below 350 nm, virtually no UV radiation is released at all.

Die erfindungsgemäße Plasmalampe ermöglicht die Verwendung sehr kleiner Lampenkolben, deren Durchmesser somit < 35 mm, bevorzugt < 20 mm und besonders bevorzugt bis zu < 10 mm ausgebildet sein kann. Zur Optimierung kann dabei eine Änderung des Fülldrucks oder eine Änderung der Gaszusammensetzung sinnvoll sein.The plasma lamp according to the invention enables the use of very small lamp envelopes whose diameter can thus be <35 mm, preferably <20 mm and particularly preferably up to <10 mm. For optimization, a change in the filling pressure or a change in the gas composition may be useful.

Die dabei verwendete Form des Kolbens kann in herkömmlicher Weise kugelförmig sein. Bevorzugt ist jedoch eine gestreckte Ausbildung des Kolbens in Richtung der optischen Achse, sodass der Lampenkolben in dieser Richtung leicht oval geformt ist. Diese Ausbildung ist insbesondere vorteilhaft bei einem elliptischen Reflektor, bei dem sich die Lichtstrahlen, die ihren Ursprung in der Nähe der optischen Achse haben, aus geometrischen Gründen regelmäßig besser in eine kleine Blende lenken lassen als Lichtstrahlen, die ihren Ursprung weiter von der optischen Achse entfernt haben.The shape of the piston used in this case may be spherical in a conventional manner. Preferably, however, is an elongated design of the piston in the direction of the optical axis, so that the lamp envelope is slightly oval shaped in this direction. This design is particularly advantageous in the case of an elliptical reflector, in which the light rays, which originate in the vicinity of the optical axis, can regularly be better guided into a small aperture for geometrical reasons than light rays which are further away from the optical axis to have.

Die erfindungsgemäße Plasmalampe weist den Vorteil auf, dass sie im Vergleich zu konventionellen Entladungslampen gut dimmbar sind. Die erfindungsgemäße Plasmalampe ist stufenlos ohne eine deutliche Verschlechterung des Emissionsspektrums dimmbar. Insbesondere verschlechtert sich der Farbwiedergabewert Ra (bzw. CRI) bei einer geringen angelegten elektrischen Leistung nicht merklich, sodass die Lampe weiterhin bei guter Farbwiedergabe mit geringer Leistung betrieben werden kann, ohne dass aufwändige und thermisch stark belastbare Dimmerscheiben in den Strahlengang eingefahren werden müssen, wie dies bei herkömmlichen Bühnenscheinwerfern der Fall ist. Die herkömmliche Dimmung führt auch nicht zu einer Energieeinsparung wie sie mit der erfindungsgemäßen, gut dimmbaren Plasmalampe erzielt wird. Mit diesen Eigenschaften kann die erfindungsgemäße Plasmalampe besonders gut als Straßenbeleuchtung eingesetzt werden, da die heute üblicherweise verwendete Nachtabschaltung im Verkehr und im Sicherheitsgefühl der Bürger durchaus nachteilig ist, sodass ein Dimmen einer derartigen erfindungsgemäßen Plasmalampe sowohl eine Energieeinsparung ermöglicht als auch die Nachteile der vollständigen Nachtabschaltung vermeidet. Da sich die Farbeigenschaften des abgestrahlten Lichts bei der Dimmung praktisch nicht verändern, bleibt eine hohe Erkennbarkeit von unbeleuchteten Verkehrsteilnehmer, insbesondere Fußgängern, auch bei reduzierter Lichtintensität erhalten.The plasma lamp according to the invention has the advantage that they are well dimmable compared to conventional discharge lamps. The plasma lamp according to the invention is infinitely dimmable without a significant deterioration of the emission spectrum. In particular, the color rendering value Ra (or CRI) does not noticeably deteriorate with a low applied electric power, so that the lamp can continue to be operated with good color rendering at low power without having to run expensive and thermally strong dimmer disks into the beam path, such as this is the case with conventional stage headlights. The conventional dimming also does not lead to energy savings as it is achieved with the invention, well-dimmable plasma lamp. With these Properties, the plasma lamp according to the invention can be used particularly well as street lighting, since the night shutdown commonly used in traffic and in the security of the citizens is quite disadvantageous, so that a dimming of such a plasma lamp according to the invention allows both energy savings and avoids the disadvantages of the complete night shutdown. Since the color properties of the radiated light do not change in the dimming practically, a high visibility of unlighted road users, especially pedestrians, even with reduced light intensity is maintained.

Die erfindungsgemäße Plasmalampe lässt sich im Gegensatz zu konventionellen Entladungslampen sehr schnell ein- und ausschalten. Außerdem wird die Gesamtlebensdauer der Lampe durch häufiges Ein- und Ausschalten nicht merklich verringert, da die Lampe keine Elektroden enthält, die durch den Ein- bzw. Ausschaltvorgang in Mitleidenschaft gezogen werden könnten. Die erfindungsgemäße Plasmalampe eignet sich daher sehr gut für den Einsatz im Bereich der Hindernisbeleuchtung, z. B. als Leuchtfeuer auf Windrädern, Türmen, Fabrikschornsteinen usw.. Die erfindungsgemäße Lampe kann sofort wieder mit voller Lichtstärke betrieben werden, wenn sie nur kurzzeitig ausgeschaltet ist. Bei einer längeren Ausschaltzeit kühlt der Kolben aus. Bei einer Schwefelfüllung geht der Schwefel in den festen Zustand über. Vom kalten Zustand aus dauert es weniger als 20 s bis wieder die volle Lichtstärke erreicht ist.The plasma lamp according to the invention can be turned on and off very quickly in contrast to conventional discharge lamps. In addition, the overall life of the lamp is not significantly reduced by frequent switching on and off since the lamp does not contain any electrodes which could be affected by the on / off process. The plasma lamp according to the invention is therefore very well suited for use in the field of obstacle lighting, z. B. as a beacon on wind turbines, towers, factory chimneys, etc. The lamp according to the invention can be operated immediately with full light intensity, if it is only turned off for a short time. With a longer turn-off time, the piston cools down. Sulfur filling causes the sulfur to solidify. From the cold state, it takes less than 20 seconds until the full light intensity is reached again.

Die erfindungsgemäße Plasmalampe eignet sich insbesondere für die Bühnenbeleuchtung, für eine Architekturbeleuchtung (Fassaden, große Plätze, Parkplätze, Stadion, Baustellen usw.), für eine digitale Kinoprojektion, für Gartenbaubetriebe zur Simulation von Tageslicht und zur Beleuchtung von großen Hallen, Kaufhäusern, Shopping Malls usw.The plasma lamp according to the invention is particularly suitable for stage lighting, for architectural lighting (facades, large squares, parking lots, stadiums, construction sites, etc.), for a digital cinema projection, for horticultural enterprises to simulate daylight and for lighting large halls, department stores, shopping malls etc.

Die erfindungsgemäße Plasmalampe kann auch als eine zentrale Lichtquelle verwendet werden, indem ihr abgestrahltes Licht mit einem vorzugsweise elliptischen Reflektor auf eine kleine Blende abgebildet wird, in dem sich eine Seite eines Glasfaserbündels befindet, von dem aus eine Vielzahl von Glasfasern ausgeht, die in eine Vielzahl von einzelnen individuellen Lichtquellen verteilt werden kann.The plasma lamp according to the invention can also be used as a central light source by emitting radiated light with a preferably elliptical Reflector is imaged on a small aperture in which there is a side of a glass fiber bundle from which emanates a plurality of glass fibers, which can be distributed in a plurality of individual individual light sources.

Die Erfindung soll im Folgenden anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert werden. Es zeigen:

Figur 1
einen Schnitt durch eine schematische Anordnung einer erfin- dungsgemäßen Plasmalampe in einer ersten Ausführungsform;
Figur 2
einen Schnitt durch eine schematische Anordnung einer erfin- dungsgemäßen Plasmalampe in einer zweiten Ausführungsform.
The invention will be explained in more detail below with reference to an embodiment shown in the drawing. Show it:
FIG. 1
a section through a schematic arrangement of an inventive plasma lamp in a first embodiment;
FIG. 2
a section through a schematic arrangement of an inventive plasma lamp in a second embodiment.

Gemäß Figur 1 befindet sich ein kugelförmig ausgebildeter Lampenkolben 1 aus einem geeigneten Glas, Quarzglas o. dgl. am Ende eines stabförmigen Ansatzes 2, mit dem der Lampenkolben 1 in einer Lampenhalterung 3 befestigt ist. Der Ansatz 2 ragt durch eine Metallplatte 4 hindurch, die einen Boden eines zylindrischen Mikrowellen-Resonators 5 bildet. Die Metallplatte 4 und eine zylindrische Mantelwandung 6 des Mikrowellen-Resonators 5 bestehen aus Metall, während eine dem Boden 4 gegenüberliegende, den Mikrowellen-Resonator 5 abschließende Abdeckscheibe 7 aus einem geeigneten Glas besteht und mit einer elektrisch leitenden Beschichtung versehen ist, um die Umgebung gegen ein Austreten der Mikrowellen aus dem Mikrowellen-Resonator 5 abzuschirmen. In den Mikrowellen-Resonator werden von einem Mikrowellen-Generator 8 erzeugte Mikrowellen über einen Hohlleiter 9 seitlich durch einen Schlitz in den Mikrowellen-Resonator 5 eingeleitet. Der Mikrowellen-Generator 8 wird elektrisch durch eine Versorgungseinheit 10 versorgt.According to FIG. 1 is a spherical lamp bulb 1 made of a suitable glass, quartz glass o. The like. At the end of a rod-shaped projection 2, with which the lamp bulb 1 is fixed in a lamp holder 3. The projection 2 protrudes through a metal plate 4, which forms a bottom of a cylindrical microwave resonator 5. The metal plate 4 and a cylindrical jacket wall 6 of the microwave resonator 5 are made of metal, while a bottom 4 of the opposite, the microwave resonator 5 final cover 7 consists of a suitable glass and is provided with an electrically conductive coating to the environment against to shield leakage of the microwaves from the microwave resonator 5. In the microwave resonator microwaves generated by a microwave generator 8 are introduced laterally through a waveguide 9 through a slot in the microwave resonator 5. The microwave generator 8 is supplied electrically by a supply unit 10.

Innerhalb des Mikrowellen-Resonators 5 befindet sich erfindungsgemäß ein Reflektor 11, der den Lampenkolben 1 konzentrisch bezüglich der Hochachse umgibt. Der Reflektor 11 besteht vorzugsweise aus einem geeigneten nichtmetallischen Körper, der für Mikrowellen durchlässig ist und das Mikrowellenfeld in dem Mikrowellen-Resonator 5 nicht stört. Der Glaskörper 11 ist mit einer nichtmetallischen Beschichtung versehen, die die Mikrowellen durchlässt, das von dem Lampenkolben 1 abgegebene Licht jedoch reflektiert. Hierfür kommt insbesondere eine Interferenzbeschichtung in Frage, die in an sich bekannter Weise aus Wechselschichtpaketen, beispielsweise aus TiO2 und SiO2 gebildet ist. Derartige Interferenzbeschichtungen lassen sich als Kaltlichtspiegelbeschichtung ausbilden, sodass eine hohe Reflektivität für das sichtbare Licht gegeben ist, während Mikrowellenstrahlungen und ggf. vorhandene UV- und Wärmestrahlungsanteile durchgelassen werden. Der Reflektor ist rotationssymmetrisch zu einer Mittenachse 12 ausgebildet, eine gleiche Rotationssymmetrie um die Mittenachse 12 ergibt sich auch für den Lampenkolben 1, der in dem in Figur 1 dargestellten Ausführungsbeispiel kugelförmig ist. Der Lampenkolben kann aber auch andere Formen aufweisen, beispielsweise oval, elliptisch o. ä. Die Kolbenform wird so gewählt, dass die Mikrowelle optimal an das Füllgas ankoppelt, um einen möglichst hohen Gasanteil der Füllung in den Plasmazustand zu überführen. In der Mittenachse 12 kann der Lampenkolben 1 translatorisch verschiebbar angeordnet sein, sodass sich die räumliche Anordnung des Lampenkolbens 1 zum Reflektor 11 ändern kann, wodurch die Ausrichtung und Bündelung des Lichtstrahls verändert werden kann.Within the microwave resonator 5 according to the invention is a reflector 11 which surrounds the lamp envelope 1 concentrically with respect to the vertical axis. The reflector 11 preferably consists of a suitable non-metallic body which is permeable to microwaves and does not disturb the microwave field in the microwave resonator 5. The glass body 11 is provided with a non-metallic coating that transmits the microwaves, the however, light emitted from the lamp bulb 1 is reflected. For this purpose, in particular an interference coating in question, which is formed in a conventional manner of alternating layer packages, for example, TiO 2 and SiO 2 . Such interference coatings can be formed as a cold light mirror coating, so that a high reflectivity for the visible light is given while microwave radiation and possibly existing UV and heat radiation components are transmitted. The reflector is rotationally symmetrical to a central axis 12, a same rotational symmetry about the center axis 12 is also obtained for the lamp bulb 1, which in the in FIG. 1 illustrated embodiment is spherical. The lamp bulb can also have other shapes, such as oval, elliptical o. Ä. The piston shape is chosen so that the microwave optimally coupled to the filling gas to convert the highest possible gas content of the filling in the plasma state. In the center axis 12 of the lamp envelope 1 may be arranged translationally displaceable, so that the spatial arrangement of the lamp envelope 1 to the reflector 11 may change, whereby the alignment and focusing of the light beam can be changed.

Die den Boden des Mikrowellen-Resonators 5 bildende Metallplatte weist Unterbrechungen auf, durch die eine Lüftungseinrichtung 13 Kühlluft in den Mikrowellen-Resonator einleiten kann, um den Lampenkolben 1, der im Betrieb sehr heiß werden kann, zu kühlen. Die Luftströmung kann durch einen Ventilator oder durch Pressluft in den Mikrowellen-Resonator 5 eingeleitet werden.The metal plate forming the bottom of the microwave resonator 5 has interruptions through which a ventilator 13 can introduce cooling air into the microwave resonator to cool the lamp envelope 1, which may become very hot during operation. The air flow can be introduced by a fan or by compressed air into the microwave resonator 5.

Bei dem in Figur 2 dargestellten Ausführungsbeispiel sind alle Teile wie in Figur 1 vorhanden. Jedoch ist der Lampenkolben 1 seitlich gelagert, sodass der stabförmige Ansatz den Reflektor 11 seitlich durchdringt und seitlich vom Mikrowellen-Resonator 5 in der Lampenhalterung 3 befestigt ist. Ferner ist der Hohlleiter 9, an den der Mikrowellengenerator 8 angekoppelt ist, unmittelbar an der den Boden des Mikrowellen-Resonators 5 bildenden Metallplatte 4 angeordnet, sodass eine Einkopplung der Mikrowellenenergie von der Metallplatte 4 in Richtung der Längsachse 12 des Mikrowellen-Resonators 5 erfolgt, also auch unmittelbar in das Innere des Reflektors 11. Daraus wird deutlich, dass die Mikrowellen über einen Hohlleiter auch an anderen Positionen in den Resonator 5 eingekoppelt werden kann. Insbesondere für diese Ausführungsform ist es möglich, dass der Reflektor 11 aus einem metallischen Grundkörper besteht oder eine metallische Beschichtung aufweist.At the in FIG. 2 illustrated embodiment, all parts as in FIG. 1 available. However, the lamp bulb 1 is mounted laterally, so that the rod-shaped projection penetrates the reflector 11 laterally and is fastened laterally by the microwave resonator 5 in the lamp holder 3. Furthermore, the waveguide 9, to which the microwave generator 8 is coupled, is arranged directly on the bottom of the microwave resonator 5 forming metal plate 4, so that a coupling of the microwave energy from the metal plate 4th in the direction of the longitudinal axis 12 of the microwave resonator 5, ie also directly into the interior of the reflector 11. It is clear that the microwaves can be coupled via a waveguide at other positions in the resonator 5. In particular, for this embodiment, it is possible that the reflector 11 consists of a metallic base body or has a metallic coating.

Der Lampenkolben 1 ist in einer bevorzugten Ausführungsform drehbar in der Lampenhalterung 3 angebracht, um eine verbesserte Gleichmäßigkeit der Anregung des Gasgemisches in dem Lampenkolben 1 zu erreichen. Auf die Drehbarkeit kann verzichtet werden, wenn die Intensität des Mikrowellenfeldes so eingestellt werden kann, dass im Bereich des Lampenkolbens 1 eine ausreichend hohe und gleichmäßige Mikrowellenfeldstärke erreicht wird.The lamp bulb 1 is rotatably mounted in the lamp holder 3 in a preferred embodiment in order to achieve an improved uniformity of the excitation of the gas mixture in the lamp bulb 1. The rotation can be dispensed with if the intensity of the microwave field can be adjusted so that a sufficiently high and uniform microwave field strength is achieved in the region of the lamp bulb 1.

Claims (14)

Plasmalampe mit einem Lampenkolben (1), der ein zur Plasmabildung mit einer Mikrowellen-Anregungsstrahlung geeignetes Material enthält, mit einer Zuführungsleitung (9) zur Zuführung der Mikrowellen-Anregungsstrahlung zum Lampenkolben (1) und mit einem den Lampenkolben (1) zumindest teilweise umgebenden Reflektor (11) zur Ausrichtung des von dem Plasma im Lampenkolben (1) ausgesandten Lichts, wobei der Lampenkolben (1) innerhalb eines Mikrowellen-Resonators (5) so angeordnet ist, dass im Bereich des Lampenkolbens (1) eine hohe Mikrowellenfeldstärke erreicht wird und wobei der Mikrowellen-Resonator (5) metallische Wände (6, 4, 7) aufweist, von denen wenigstens ein Wandabschnitt (7) mit einer elektrisch leitfähigen abschirmenden Struktur lichtdurchlässig ausgebildet ist, dadurch gekennzeichnet, dass der Reflektor (11) innerhalb des Mikrowellen-Resonators (5) angeordnet ist und dass der Mikrowellen-Resonator (5) mit dem Reflektor (11) auf einen optimalen Energieeintrag in den Lampenkolben (1) abgestimmt ist.Plasmalampe with a lamp envelope (1) containing a suitable for plasma formation with a microwave excitation radiation material with a supply line (9) for supplying the microwave excitation radiation to the lamp envelope (1) and with a lamp envelope (1) at least partially surrounding the reflector (11) for aligning the light emitted by the plasma in the lamp bulb (1), wherein the lamp bulb (1) within a microwave resonator (5) is arranged so that in the region of the lamp envelope (1) a high microwave field strength is achieved and the microwave resonator (5) has metallic walls (6, 4, 7), of which at least one wall section (7) with an electrically conductive shielding structure is translucent, characterized in that the reflector (11) within the microwave resonator (5) is arranged and that the microwave resonator (5) with the reflector (11) on an optimal energy input in the lamps piston (1) is tuned. Plasmalampe nach Anspruch 1, dadurch gekennzeichnet, dass der Reflektor (11) aus einem für Mikrowellen durchlässigen Grundkörper besteht.Plasma lamp according to claim 1, characterized in that the reflector (11) consists of a microwave permeable body. Plasmalampe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Reflektor (11) mit einer für Mikrowellen durchlässigen und für Licht reflektierenden Beschichtung versehen ist.Plasma lamp according to claim 1 or 2, characterized in that the reflector (11) is provided with a microwave-transparent and light-reflecting coating. Plasmalampe nach Anspruch 3, dadurch gekennzeichnet, dass der Reflektor (11) eine nichtmetallische Interferenzbeschichtung als reflektierende Beschichtung aufweist.Plasma lamp according to claim 3, characterized in that the reflector (11) has a non-metallic interference coating as a reflective coating. Plasmalampe nach Anspruch 4, dadurch gekennzeichnet, dass die Interferenzbeschichtung als Kaltlichtbeschichtung ausgeführt ist.Plasma lamp according to claim 4, characterized in that the interference coating is designed as a cold light coating. Plasmalampe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Reflektor (11) eine metallische Schicht als reflektierende Beschichtung aufweist.Plasma lamp according to claim 1 or 2, characterized in that the reflector (11) has a metallic layer as a reflective coating. Plasmalampe nach Anspruch 1, dadurch gekennzeichnet, dass der Reflektor (11) aus einem metallischen Grundkörper mit einer metallisch reflektierenden Oberfläche besteht.Plasma lamp according to claim 1, characterized in that the reflector (11) consists of a metallic base body with a metallically reflecting surface. Plasmalampe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie für den Betrieb mit einer Frequenz der Mikrowelle von > 5 GHz eingerichtet ist.Plasma lamp according to one of claims 1 to 7, characterized in that it is adapted for operation with a frequency of the microwave of> 5 GHz. Plasmalampe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die elektrisch leitfähige abschirmende Struktur eine lichtdurchlässige elektrisch leitfähige Beschichtung eines lichtdurchlässigen Substrats ist.Plasma lamp according to one of claims 1 to 8, characterized in that the electrically conductive shielding structure is a light-transmitting electrically conductive coating of a light-transmissive substrate. Plasmalampe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die abschirmende elektrisch leitfähige Struktur eine gitterartige Beschichtung eines lichtdurchlässigen Substrats ist.Plasma lamp according to one of claims 1 to 8, characterized in that the shielding electrically conductive structure is a lattice-like coating of a light-transmissive substrate. Plasmalampe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die abschirmende elektrisch leitfähige Struktur ein gitterartiges Drahtgeflecht ist.Plasma lamp according to one of claims 1 to 8, characterized in that the shielding electrically conductive structure is a grid-like wire mesh. Plasmalampe nach einem der Ansprüche 1 bis 11, gekennzeichnet durch einen maximalen Durchmesser des Lampenkolbens (1) senkrecht zu einer Mittenachse (12) von < 35 mm.Plasma lamp according to one of claims 1 to 11, characterized by a maximum diameter of the lamp bulb (1) perpendicular to a center axis (12) of <35 mm. Plasmalampe nach Anspruch 12, dadurch gekennzeichnet, dass der Durchmesser < 20 mm ist.Plasma lamp according to claim 12, characterized in that the diameter is <20 mm. Plasmalampe nach Anspruch 13, dadurch gekennzeichnet, dass der Durchmesser < 10 mm ist.Plasma lamp according to claim 13, characterized in that the diameter is <10 mm.
EP10004268A 2009-04-28 2010-04-22 Plasma lamp Not-in-force EP2246874B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009018840A DE102009018840A1 (en) 2009-04-28 2009-04-28 plasma lamp

Publications (2)

Publication Number Publication Date
EP2246874A1 true EP2246874A1 (en) 2010-11-03
EP2246874B1 EP2246874B1 (en) 2013-02-13

Family

ID=42313048

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10004268A Not-in-force EP2246874B1 (en) 2009-04-28 2010-04-22 Plasma lamp

Country Status (3)

Country Link
US (1) US20100283390A1 (en)
EP (1) EP2246874B1 (en)
DE (1) DE102009018840A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9801261B2 (en) 2012-01-05 2017-10-24 Bright Light Systems, Inc. Systems and methods for providing high-mast lighting
US9363861B2 (en) * 2012-01-05 2016-06-07 Bright Light Systems, Inc. Systems and methods for providing high-mast lighting
DE102012004080A1 (en) * 2012-02-28 2013-08-29 Holger Behrendt Plasma hot air device for e.g. hot air oven utilized for baking applications, has sulfur part comprising glass body filled with inert gas, and metal mesh attached to outer side of body to dissipate microwave, and ventilator driven by motor
CN108401709A (en) * 2018-05-08 2018-08-17 清华四川能源互联网研究院 Gardening light compensating apparatus and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4307965A1 (en) 1992-03-12 1993-09-16 Fusion Systems Corp
US5334913A (en) * 1993-01-13 1994-08-02 Fusion Systems Corporation Microwave powered lamp having a non-conductive reflector within the microwave cavity
US20020089287A1 (en) * 2001-01-08 2002-07-11 Kim Hyun Jung Lighting apparatus using microwave
US20030057842A1 (en) * 2001-09-27 2003-03-27 Hyun-Jung Kim Electrodeless discharge lamp using microwave energy
EP1432012A2 (en) 2002-12-17 2004-06-23 Lg Electronics Inc. Cooling apparatus of plasma lighting system
US20040178735A1 (en) * 2003-03-11 2004-09-16 Joon-Sik Choi Electrodeless lamp system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859906A (en) * 1982-10-06 1989-08-22 Fusion Systems Corportion Deep UV lamp bulb with improved fill
EP0450131B1 (en) * 1990-04-06 1995-08-02 New Japan Radio Co., Ltd. Electrodeless microwave-generated radiation apparatus
US5339198A (en) * 1992-10-16 1994-08-16 The Dow Chemical Company All-polymeric cold mirror
US5811936A (en) * 1996-01-26 1998-09-22 Fusion Lighting, Inc. One piece microwave container screens for electrodeless lamps
TW406280B (en) * 1997-05-21 2000-09-21 Fusion Lighting Inc non-rotating electrodeless lamp containing molecular fill
CN1350698A (en) * 1999-05-12 2002-05-22 熔化照明股份有限公司 High brightness microwave lamp
JP4901041B2 (en) * 1999-09-20 2012-03-21 ノードソン コーポレーション Apparatus and method for generating ultraviolet light
JP4777582B2 (en) * 2000-04-07 2011-09-21 ノードソン コーポレーション Microwave-excited UV lamp system with improved lamp cooling.
US6737810B2 (en) * 2000-10-30 2004-05-18 Matsushita Electric Industrial Co., Ltd. Electrodeless discharge lamp apparatus with adjustable exciting electrodes
KR100390516B1 (en) * 2001-09-27 2003-07-04 엘지전자 주식회사 One body type bulb for electrodeless discharge lamp apparatus using microwave and manufacturing method thereof
US6646384B2 (en) * 2002-02-20 2003-11-11 Fusion Uv Systems, Inc. Microwave powered UV lamp with improved RF gasket arrangement
KR100565342B1 (en) * 2003-07-02 2006-03-30 엘지전자 주식회사 Mirror structure of electrodeless lighting system
KR100575666B1 (en) * 2003-12-13 2006-05-03 엘지전자 주식회사 Plasma lamp system
JP4254853B2 (en) * 2006-12-14 2009-04-15 セイコーエプソン株式会社 Lamp, light emitting device and projector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4307965A1 (en) 1992-03-12 1993-09-16 Fusion Systems Corp
US5334913A (en) * 1993-01-13 1994-08-02 Fusion Systems Corporation Microwave powered lamp having a non-conductive reflector within the microwave cavity
US20020089287A1 (en) * 2001-01-08 2002-07-11 Kim Hyun Jung Lighting apparatus using microwave
US20030057842A1 (en) * 2001-09-27 2003-03-27 Hyun-Jung Kim Electrodeless discharge lamp using microwave energy
EP1432012A2 (en) 2002-12-17 2004-06-23 Lg Electronics Inc. Cooling apparatus of plasma lighting system
US20040178735A1 (en) * 2003-03-11 2004-09-16 Joon-Sik Choi Electrodeless lamp system

Also Published As

Publication number Publication date
EP2246874B1 (en) 2013-02-13
DE102009018840A1 (en) 2010-11-25
US20100283390A1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
EP0912991B1 (en) Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light
CH675504A5 (en)
EP2246874B1 (en) Plasma lamp
DE4433040A1 (en) Electrodeless discharge lamp of high intensity
EP1051582A1 (en) Lighting fixture
WO1995005674A1 (en) Metal-halide discharge lamp for photographic-lighting purposes
DE3932140A1 (en) VEHICLE HEADLIGHT
DE2644977A1 (en) ELECTRIC REFLECTOR LAMP
EP0706713B1 (en) Metal halide high-pressure discharge lamp
DE10204691C1 (en) Mercury-free, high-intensity, high pressure gas discharge lamp for vehicle headlights, has infra-red reflecting coating on lower wall to promote vaporization
EP2347430B1 (en) Mercury-free discharge lamp
DE69926706T2 (en) NIEDERDRUCKQUECKSILBERDAMPFEENTLADUNGSLAMPE
EP2147456B8 (en) High-pressure discharge lamp and vehicle headlight with high-pressure discharge lamp
DE889806C (en) Light source for irradiation, lighting, headlights and projection
CH272702A (en) Light source for lighting, irradiation, headlights and / or projection.
DE3140839A1 (en) FLAT-SHAPED MERCURY VAPOR LOW-PRESSURE DISCHARGE LAMP
EP2981984B1 (en) Lamp
EP2610425B1 (en) Window element with integrated light source
EP0976144A1 (en) Flat signalling lamp with dielectrically impeded discharge
EP0334355B1 (en) Wall-stabilized high-pressure discharge lamp
DE4003736A1 (en) Microwave oven lighting with truncated conical reflector housing - gives widely scattered distribution of light from filament lamp through transparent screen into irradiated cooking space
DE19826548A1 (en) Lighting arrangement
DE102013111652A1 (en) Light generating unit and electrodeless discharge lamp
WO2008009584A2 (en) Lighting element comprising separating elements in the discharge region and/or eccentric electrodes, and lighting device comprising such a lighting element
CH310972A (en) Electric light source.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

17P Request for examination filed

Effective date: 20110429

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAMEL, MARGARETA

Inventor name: BRANDT, LARS

Inventor name: WAGENER, HARRY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 596880

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002273

Country of ref document: DE

Effective date: 20130411

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130213

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130513

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130513

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130514

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

BERE Be: lapsed

Owner name: AUER LIGHTING G.M.B.H.

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

26N No opposition filed

Effective date: 20131114

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002273

Country of ref document: DE

Effective date: 20131114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130422

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100422

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002273

Country of ref document: DE

Representative=s name: GRAMM, LINS & PARTNER PATENT- UND RECHTSANWAEL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 596880

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170419

Year of fee payment: 8

Ref country code: GB

Payment date: 20170419

Year of fee payment: 8

Ref country code: DE

Payment date: 20170419

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002273

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430