EP2245102A1 - Composition adhesive thermofusible biodegradable - Google Patents

Composition adhesive thermofusible biodegradable

Info

Publication number
EP2245102A1
EP2245102A1 EP09721207A EP09721207A EP2245102A1 EP 2245102 A1 EP2245102 A1 EP 2245102A1 EP 09721207 A EP09721207 A EP 09721207A EP 09721207 A EP09721207 A EP 09721207A EP 2245102 A1 EP2245102 A1 EP 2245102A1
Authority
EP
European Patent Office
Prior art keywords
composition according
formula
weight
hot melt
melt adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09721207A
Other languages
German (de)
English (en)
Inventor
Christophe Robert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bostik SA
Original Assignee
Bostik SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bostik SA filed Critical Bostik SA
Publication of EP2245102A1 publication Critical patent/EP2245102A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0869Acids or derivatives thereof
    • C09J123/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • the present invention relates to biodegradable hot melt adhesive compositions and their use in many fields of application and in particular in the field of packaging.
  • Technological Background of the Invention In the context of the evolution of markets towards so-called "organic" products, the major players of the large retailers are turning to their suppliers to demand products meeting these expectations.
  • ENl 3432 specifies that the biodegradability of a product measured according to EN ISO 14855 method by analysis of released carbon dioxide must be greater than 90%.
  • the provision of generally compostable or biodegradable packaging objects therefore also involves the provision of compostable and / or biodegradable hot melt (or hot melt) adhesive compositions.
  • a hot melt glue to also comply with this EN ISO 14855 biodegradability standard while retaining all the other properties of a standard hot melt glue, including the properties necessary for labeling application. any type of food container or not.
  • No. 5,312,850 describes the production of hot melt adhesive compositions using certain ingredients known to be biodegradable. These compositions comprise 20 to 98% by weight of polylactide polymer (PLA) containing at least 20 mol% of lactide monomer, 2 to 80% of a tackifying resin having a softening point according to ASTM E 26 of about 60 0 C, 0 to 50% of a plasticizer and 0 to 30 % of a wax as a diluting agent and 0 to 3% of a stabilizing agent. No indication is provided as to the biodegradability of the final composition according to EN ISO 14855.
  • PLA polylactide polymer
  • HMPSA hot-melt pressure-sensitive adhesive compositions
  • compositions which contain PLA are not suited to the fields of food packaging because they have the drawbacks of being rather rigid and of having a heat reactivation temperature that is too high for applications in the desired fields.
  • EP553394 discloses the production of hot melt adhesive compositions comprising a specific polyester obtained from 3-hydroxy-butyric acid and 3-hydroxy-valeric acid. No indication is provided as to the biodegradability of the final composition according to EN ISO 14855.
  • EP 741178 also describes obtaining hot-melt adhesive biodegradable compositions comprising a specific polyester obtained by reaction between a dicarboxylic acid and an ether or diglycidyl ester. No indication is provided as to the biodegradability of the final composition according to EN ISO 14855.
  • the object of the present invention is therefore to provide hot-melt adhesive compositions, preferably without residual tack at room temperature (in other words without tack or even immediate tack at room temperature) and whose biodegradability, measured according to the method by carbon dioxide released according to EN ISO 14855, is greater than 55%, preferably greater than 60%, preferably greater than 90%. This percentage is given by reference to the biodegradability measure of the cellulose which represents under the same conditions 100%.
  • a biodegradable hot melt adhesive composition comprising (A) from 30% to 90%, preferably 40% to 60%; or else from 45% to 55% by weight relative to the total weight of the adhesive composition of a (co) polymer chosen from (Al) the polycaprolactones, (A2) the polyesters resulting from the condensation between a dicarboxylic acid of formula Rl - [COOH] 2 in which R1 represents a linear or slightly branched or cyclic, saturated or unsaturated, mono or polyhydroxylated C2 to C30 hydrocarbon group and a diol of formula R2 [OH] 2 in which R2 represents a C2-C2 hydrocarbon group; C32 linear, weakly branched, cyclic or polycyclic, saturated, unsaturated or polyunsaturated, mono- or polyhydroxylated or (A3) copolymers of polycaprolactones (Al) and of polyesters (A2); (B) from 10% to 50%, preferably from 20% to 40%, or from 25% to 35% by weight relative to the
  • a stiffening agent represented by a wax having a melting point in the range of 40 ° C at 150 ° C, preferably selected from optionally hydroxylated amide waxes, hydrogenated castor oils, or oxidized or unoxidized synthetic waxes, functionalized or otherwise, polyethylene oxides whose weight average molecular weight is greater than 1000;
  • the (co) polymer (A) has a number-average molecular weight (Mn) ranging from 500 to 100 000 g / mol, preferably from 2000 to 60000 g / mol.
  • the dicarboxylic acid of formula R [COOH] 2 is selected from sebacic acid, succinic acid, adipic acid, aldaric, alpha-ketoglutarique, aspartic acid, azelaic acid, camphoric acid, fumaric acid, glutaconic acid, glutaric itaconic, maleic, malic, malonic, meglutol, mesaconic, mesoxalic, 3-methylglutaconic.
  • R2 [OH] 2 is chosen from diols of linear structure, weakly branched, saturated or unsaturated, of formula R2 [OH] 2 in which R2 represents a C2-C22 hydrocarbon group, the diols of formula HO - (- CH2- CH2-O-) n -H such that n is an integer of 1 to 6.
  • composition according to the invention (B) is chosen from glycerol or pentaerythritol rosin esters, terpenes or terpenes phenol, in particular phenol terpenes with a softening point of between 100 ° C. and 150 ° C.
  • composition according to the invention (C) is chosen from amide type oleamide, stearamide, ethylene bis-oleamide and ethylene bis-stearamide amides, preferably those having a melting point of between 60 ° C. and 120 ° C.
  • (A) represents a polyester obtained by reaction between monoethylene glycol and sebacic acid
  • (B) represents a phenolic terpene resin
  • (C) represents an amide wax selected from oleamide or cis 1,3 docosenamide erucamide
  • (D) represents a blocking enhancement additive selected from polyethylene glycol, precipitated silica or a mixture thereof.
  • hot-melt adhesives according to the invention also have the following properties:
  • viscosity in a wide range from 500 to 200,000 mPa.s, which makes them adaptable to applications on flexible support or non-flexible support;
  • reactivation temperature ranging from about 40 ° C. to 150 ° C., which makes them suitable for any type of flexible or non-flexible application; for more specific applications on flexible support, one will choose formulations whose reactivation temperature is in the range 60-1 10 0 C.
  • a hot-melt adhesive having an open time of almost zero or less than 1 second or preferably less than 0.5 seconds will be chosen; for rigid support applications, a hot melt adhesive having an open time greater than or equal to 2 seconds, preferably from 3 to 30 seconds or from 5 to 15 seconds will be chosen.
  • the composition according to the invention has an open time measured on OLINGER apparatus less than 1 second, preferably less than 0.5 seconds).
  • the composition according to the invention has an open time measured on OLINGER apparatus greater than or equal to 2 seconds, preferably ranging from 5 to 30 seconds).
  • the invention relates to the use of a composition according to the invention that can be reactivated to create a seal between two non-flexible supports, for example two cartons.
  • a composition according to the invention that can be reactivated to create a seal between two non-flexible supports, for example two cartons.
  • the use is carried out with a composition whose viscosity is between 500 and 20000 mPa.s for applications by melter and roll coating.
  • the use is carried out with a composition whose viscosity is between 2000 and 50000 mPa.s for applications by melter or barrel and nozzle coating.
  • the use is carried out with a composition whose viscosity is between 70000 and 200000 mPa.s for applications by extruder and coating by nozzle.
  • the invention relates to the use of a composition according to the invention for the preparation of non-flexible to rigid biodegradable packaging intended for food or non-food use.
  • the invention relates to the use of a composition according to the invention for textile applications such as automotive or aeronautical lining, cosmetics, tobacco, pharmaceutical, medical.
  • the invention relates to the use of a composition according to the invention for the preparation of rigid packaging, box closure and cases, the formation of cardboard tray, the labeling of bottles, the binding , cardboard paper coating.
  • This part comprises a (co) polymer preferably having a molecular weight of 500 to 100000 g / mol, chosen from (Al) polycaprolactones, (A2) the polyesters resulting from the condensation between a dicarboxylic acid of formula R1- [COOH] 2 in which R1 represents a linear or slightly branched or cyclic, saturated or unsaturated, mono or polyhydroxylated C2 to C30 hydrocarbon group and a diol of formula R2 [ OH] 2 in which R2 represents a linear, slightly branched, cyclic or polycyclic, saturated, unsaturated or polyunsaturated, mono- or polyhydroxylated C 2 to C 32 hydrocarbon group, or (A3) copolymers obtained from polycaprolactones (Al) and polyesters; (A2) or one of their mixture.
  • R1- [COOH] 2 in which R1 represents a linear or slightly branched or cyclic, saturated or unsaturated, mono or polyhydroxylated C2 to C
  • (A) is from 30% to 90%, preferably 40% to 60%; more preferably 45% to 55% by weight relative to the total weight of the adhesive composition.
  • Polycaprolactones are formed by ring-opening reaction of an epsilon-caprolactone monomer with a mono-, di-, or multi-functional initiator in which the functional groups, generally hydroxy groups, are capable of perform a ring opening reaction with epsilon-caprolactone momoners.
  • the initiator will be a minor component and the weight ratio of initiator to monomer will determine the molecular weight of the resulting polymer.
  • the polycaprolactone polymers preferably have a molecular weight of 5000 to 100000 g / mol.
  • the polyesters of the invention are formed by reaction between a dicarboxylic acid of formula R1- [COOH] 2 in which R1 represents a linear or slightly branched or cyclic, saturated or unsaturated, mono or polyhydroxylated C2 to C30 hydrocarbon group and a diol of formula R2 [OH] 2 in which R2 represents a linear, weakly branched, cyclic or polycyclic, saturated, unsaturated or polyunsaturated, mono or polyhydroxylated hydrocarbon group,
  • the diacid is chosen alone or as a mixture from:
  • R1- [COOH] 2 a linear diacid, saturated or unsaturated, of natural or synthetic origin of formula R1- [COOH] 2 in which R1 represents a C2-C30 hydrocarbon group such as, for example, succinic acid, glutaric acid, pimelic acid, acid azelaic acid, sebacic acid, traumatic acid, suberin ( ⁇ , ⁇ -diacids C 6 to C 26);
  • a mono- or polyhydroxy diacid such as, for example, tartaric acid, tartaronic acid, aldaric acids
  • the dicarboxylic acids are preferably chosen from the acids, adipic, aldaric, alpha-ketoglutaric, aspartic, azelaic, camphoric, fumaric, glutaconic, glutaric, itaconic, maleic, malic, malonic, meglutol, mesaconic, mesoxalic, 3-methylglutaconic, alone. or one of their mix.
  • the diols are chosen alone or in mixture from:
  • DAG 3,6-dianhydro-D-glucitol
  • DAM 3,6-dianhydro-D-Mannitol
  • DAI 6-Dianhydro-L-Iditol
  • R2 represents a monoethylene glycol or polyethylene glycol of formula HO - (- CH2-CH2-O-) n -H such that n is between 1 and 6.
  • the diols are preferably chosen from diols of linear structure, saturated or unsaturated, of structure of formula R2 [OH] 2 in which R2 represents a C2-C22 hydrocarbon group, diols of formula HO - (- CH2-CH2- O-) n -H where n is an integer from 1 to 6.
  • the polyesters of the invention preferably have a number average molecular weight (Mn) of between 500 and 100,000 g / mol.
  • the polyesters of the invention preferably have an MFI at 160 ° C. under 2.16 kg of between 0.2 and 1000.
  • the polyester will have a number-average molecular weight (Mn) of between 2000 and 60000 g / m 2. mol and an MFI of between 1 and 500 g / mol.
  • the polyesters of the invention are obtained by reaction of monoethylene glycol with sebacic acid.
  • the chosen diacid is an aromatic diacid
  • the content of aromatic diacid (terephthalic or isophthalic type) in the polyester will be less than 53 mol%, preferably less than 25%, especially less than 25% isophthalic aromatic.
  • the tackifying resin or resins have average molar masses by weight M w generally between 300 and 5000 and are chosen in particular from:
  • Rosin of natural origin or modified such as for example rosin extracted from pine gum, wood rosin extracted from tree roots and their hydrogenated derivatives, partially hydrogenated, dimerized, polymerized or esterified by monoalcohols or polyols such as glycerol;
  • terpene resins generally resulting from the polymerization of terpenic hydrocarbons such as for example mono-terpene (or pinene) in the presence of Friedel-Crafts catalysts, optionally modified by the action of phenols;
  • copolymers based on natural terpenes for example styrene / terpene, alpha-methyl styrene / terpene and vinyl toluene / terpene.
  • (B) is from 10% to 50%, preferably from 20% to 40%, more preferably from 25% to 35% by weight, based on the total weight of the adhesive composition.
  • (B) is preferably chosen from rosin esters containing glycerol or pentaerythritol, terpenes or terpenes phenol, in particular phenol terpenes having a softening point of between 100 ° C. and 150 ° C.
  • the softening temperature (or point) of these resins is determined according to the ASTM E 28 standard test, the principle of which is as follows.
  • a brass ring about 2 cm in diameter is filled with the resin to be tested in the molten state.
  • the ring and the solid resin are placed horizontally in a thermostated bath of glycerine whose temperature can vary from 5 ° C per minute.
  • a steel ball with a diameter of about 9.5 mm is centered on the solid resin disc.
  • the softening temperature is - during the temperature rise phase of the bath at a rate of 5 ° C per minute - the temperature at which the resin disc flows 25.4 mm under the weight of the ball.
  • C Rigidifying agent part.
  • These agents are waxes characterized by a melting point measured by differential scanning calorimetry DSC, between 40 0 C and 150 ° C, preferably between 50 ° C and 100 ° C in the case of a coating on flexible support delayed bonding and between 100 ° C and 140 ° C in the case of an immediate bonding application on a flexible or non-flexible support.
  • waxes are chosen from optionally hydroxylated amide waxes, hydrogenated castor oils, or oxidized or unoxidized synthetic waxes, functionalized or otherwise, polyethylene oxides whose weight average molecular weight is greater than 1000.
  • the waxes chosen are preferably chosen from ethylene bis stearamide, ethylene bis oleamide, stearamide, paraffins, fischer tropsch waxes, oleamides, cis-1,3-docosenamide, erucamide and the like. ethylene glycol monostearate, cetyl palmitate, saturated linear alcohols, carboxylic acids, and the waxes chosen from amide-type amide, stearamide, ethylene bis-oleamide and ethylene bis-stearamide waxes, preferably amide type oleamide, stearamide, ethylene bis-oleamide waxes having a melting point between 60 ° C and 120 ° C.
  • (C) is from 10% to 30%, preferably 10% to 25% by weight based on the total weight of the adhesive composition.
  • (C) is preferably an amide wax selected from oleamide or cis 1,3 docosenamide erucamide.
  • an amount of from 0% to 20%, preferably 3% to 7% by weight, based on the total weight of the adhesive composition of one or more additives, may optionally be used.
  • additives are chosen from stabilizers, antioxidants, blocking agents, pigments, dyes or fillers.
  • Stabilizers or antioxidants are introduced to protect the composition from degradation resulting from a reaction with oxygen which is likely to be formed by the action of heat, light or catalysts residuals on certain raw materials such as tackifying resins.
  • the compounds selected from pentaerythritol Tetrakis 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2- (1- (2-hydroxy-3,5-ditertiopenthylphenyl) ethyl acrylate are used.
  • aromatic polycarbodiimide substituted diarylcarbodiimide, aromatic polycarbodiimide.
  • Any primary antioxidants are used which trap free radicals and are generally substituted phenols like Irganox ® 1010 from the CIBA (tetrakis 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate pentaerythritol).
  • the primary antioxidants can be used alone or in combination with other antioxidants such as phosphites such as Irgafos ® 168 also CIBA, or with UV stabilizers such as amines.
  • the blocking improvers are introduced in particular to prevent the adhesion of the coated surface of hot melt adhesive on the printed face during the production and storage of the coils. For example for yogurt wrapping applications.
  • These compounds are selected from ethylene bis-stearamide, ethylene bis-amide, stearamide, oleamide, cis-1,3-docosenamide, erucamide, ethylene glycol monostearate, cetyl palmitate, saturated linear alcohol, carboxylic acid.
  • Polyethylene glycol or precipitated silica may also be used.
  • (D4) fillers are introduced to reinforce the cohesion of the adhesive, reduce the cost, or modify the adhesive performance by varying the amount and nature of the feed introduced.
  • These compounds are chosen from talc, carbonates, silica, kaolin, sulphates and clays. Process for the preparation of the compositions
  • the hot melt composition according to the invention is prepared by simply mixing its components at a temperature of between 100 and 200 ° C., until a homogeneous mixture is obtained. Required * mixing techniques are well known in the art. Properties of the compositions according to the invention.
  • compositions have all the properties necessary to be biodegradable hot melt adhesive compositions. Biodegradability.
  • the adhesive compositions are preferably non-pressure sensitive, with no residual tack at room temperature. Insofar as the compositions of the invention do not exhibit residual tack at room temperature, no plasticizer is introduced because they are generally liquid at room temperature and their melting point is low, less than 25 ° C.
  • the selected formulations also have the following properties: Viscosity.
  • the final viscosity of the hot melt adhesive according to the invention is dependent on the nature of the components used, their respective amount and their molar mass.
  • hot melt adhesives have a viscosity in a wide range of 500 to 200,000 mPa.s at the application temperature, making them adaptable to applications according to different types of processes or tools.
  • flexible support or non-flexible support are examples of flexible support or non-flexible support.
  • the applications can be targeted by melter and roller coating.
  • the viscosity is between 2000 and 50000 mPa.s at the application temperature we can target the applications by melter or barrel and nozzle coating. When the viscosity is between 70000 and 200000 mPa.s at the application temperature can be targeted applications by extruder and coating by nozzle. Reactivation temperature.
  • the hot melt adhesives have a reactivation temperature ranging from about 40 ° C to 150 ° C which makes them suitable for any type of flexible or non-flexible application.
  • a reactivation temperature ranging from about 40 ° C to 150 ° C which makes them suitable for any type of flexible or non-flexible application.
  • the formulations whose reactivation temperature is in the range 60-1 10 ° C.
  • polymer A has an impact on the reactivation temperature of the final composition.
  • certain polymers of the prior art do not make it possible to obtain hot melt adhesives with the targeted reactivation temperatures. Indeed, it has been possible to record reactivation temperatures greater than 150 ° C. in formulations J and K, comparative examples when component A is PLA (poly lactic acid) or an aromatic copolyester.
  • a reactivation temperature between 60 0 C and 90 ° C will allow the hot melt adhesive to be sealed on yogurt pots during the formation thereof.
  • the yoghurt pot streamer is a printed paper coated with hot-melt glue on widths (coil width) of the order of 1300 mm thanks to the coating process described above.
  • hot melt adhesive a hot melt adhesive
  • the compositions according to the invention have an open time of less than 1 second or preferably less than 0.5 seconds, for example for flexible bonded delayed bonding applications.
  • This feature allows the hot melt adhesive to freeze instantly when placed on the paper rolls.
  • the rewinding of the coil coated with adhesive on itself can be carried out without delay after gluing.
  • a hot melt adhesive having an open time greater than or equal to 2 seconds, preferably from 3 to 30 seconds, will be chosen.
  • formulations also have the following necessary properties of hot melt adhesives. Thermal stability.
  • compositions according to the invention are suitable for any type of packaging for food or non-food applications.
  • Non-flexible packaging include box closures and cases, cardboard tray formations, bottle labeling, bookbinding, cardboard paper coating that can be reactivated to create a seal.
  • the hot melt composition according to the invention is prepared by simply mixing its components at a temperature of between 100 and 200 ° C., until a homogeneous mixture is obtained.
  • the mixing techniques required are well known to those skilled in the art.
  • Formulations 1 to 6 of compositions according to the invention are described in Table 1.
  • Formulations I to M of the comparison compositions are described in Table 1.
  • Example 2 Use of the Compositions in Paper Banner Coating Processes
  • the coating process is carried out according to the following scheme:
  • Adhesive hot melt 10 g / m 2
  • This method is particularly used in the preparation of a pot of yoghurt, typically consisting of a polystyrene container, a lid and a banner coated with hot melt adhesive (hot melt).
  • a pot of yoghurt typically consisting of a polystyrene container, a lid and a banner coated with hot melt adhesive (hot melt).
  • the yoghurt pot streamer is a printed paper coated with hot-melt glue on widths (coil width) of the order of 1300 mm thanks to the coating process described above.
  • This streamer is then cut, positioned around the yoghurt pots and reactivated, that is to say warmed to slightly remelt the hot melt adhesive (hot melt) and cause adhesion between the paper streamer and the polystyrene pot.
  • the temperature at which the streamer is heated is greater than the reactivation temperature of the corresponding hot melt adhesive.
  • Example 3 Properties of the compositions obtained. The formulations obtained are then evaluated in the characteristic tests of the hot-melt adhesives described below:
  • the viscosity is measured on each composition at 170 ° C. using a Brookfield viscometer. 2 / Blocking
  • the support surface (pieces of coated paper 4cm x 8cm) coated with hot melt adhesive is brought into contact with the printed face and varnished and pressurized to 0.7 bars at a temperature of 40 ° C for 7 days.
  • a backing sheet coated with hot melt adhesive is positioned horizontally on a flat surface.
  • a steel pad surrounded by a second coated support sheet, externally coated face and having a mass of 200 g is positioned on the coated support, in contact with the coated side of said support.
  • the force required to move the pad at a given speed is measured as follows: On a dynamometer is positioned the pad surrounded by the coated support on the coated face of the streamer. Then the pad is moved horizontally to 150 mm / min and the average of the force during displacement is measured, which after division by the weight of the pad is expressed in the form of the dynamic coefficient of friction (or dynamic COF). 4 / Reactivation temperature
  • the hot melt adhesive coated paper backing tape is positioned on a PLA strip at a reference temperature of between 50 and 150 ° C so that the coated side is in contact with the PLA.
  • a pressure of 3 bar is applied to the assembly for a time of 1 s. After returning to ambient temperature of the assembly, ie after about 5 minutes, the two strips are separated and the% defibering, that is to say, cohesive rupture within the paper support, is visually estimated.
  • the open times are measured according to the following measurement method: A bead of hot melt adhesive is applied to a support, then a second support is displayed after X seconds. The open time is the maximum value of X for the hot melt adhesive to adhere to the second support. The measurements are done at room temperature.
  • the open time measurement is carried out on OLINGER type equipment which makes it possible to precisely manage the time between the removal of the hot melt adhesive and the contacting of the support.
  • the hot melt adhesive is melted at its application temperature and then applied in a bead of 1 to 2 mm in diameter on a reference cardboard support.
  • a duration of X seconds is timed then a second reference card is positioned on the bead of hot melt adhesive thus creating the bond between the two boxes.
  • the 2 boxes are then separated manually.
  • the open time is the maximum value of the time X for which a defibration of the second cardboard during the separation is observed.
  • the test method determines the ultimate biodegradability and disintegration of a test material under conditions simulating an intensive aerobic composting process.
  • the inoculum is a stabilized and mature compost, obtained if possible from the composting of the organic fraction of municipal solid waste.
  • test material is mixed with the inoculum and introduced into a static composting vessel where it is composted under optimum conditions for oxygen present, moisture and temperature, during a period of time. duration not exceeding 6 months.
  • products of ultimate biodegradation are carbon dioxide, water, mineral salts, and new microbial cell constituents (biomass).
  • the carbon dioxide produced is continuously monitored or measured at regular intervals in the test vessels and blank, and then integrated to determine cumulative CO2 production.
  • the biodegradation percentage is obtained by comparing the CO2 produced by the test material with the maximum amount of CO2 that could be obtained from the test material and is calculated from the measured total organic carbon (TOC). This percentage of biodegradation will not include the amount of carbon converted to new cell biomass that has not been metabolized to CO2 during the test.
  • the incubation must take place in the dark or under diffuse light, in an enclosure to be maintained at a constant temperature of 58 ° C +/- 2 ° C and free of vapors capable of inhibiting microorganisms.
  • Any individual fragment of compact test material used must have a maximum area of 2cm x 2cm. If the test material has a larger original size, the size of the fragments is reduced.
  • the ratio of the dry mass of the inoculum to that of the test material should be about 6 to 1.
  • the humidity should be maintained at about 50%.
  • compositions tested according to this method have a biodegradability greater than 55%, preferably greater than 60%, more preferably greater than 90%. This percentage is given by reference to the biodegradability of the cellulose which represents under the same conditions 100%. In particular, compositions 3 and 6 have 64% biodegradability.
  • polymer A has an impact on the reactivation temperature of the final composition.
  • certain polymers used in the prior art do not make it possible to obtain hot melt adhesives with the targeted reactivation temperatures.
  • reactivation temperatures higher than 150 ° C. are noted in the formulations J, K, and M of the comparative examples when component A is PLA or an aromatic copolyester.
  • compositions shown in Table 2 above are representative of hot melt adhesive compositions having open times greater than 2 seconds which makes them suitable for rigid media applications such as standard cartons.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

La présente invention concerne des compositions adhésives thermofusibles biodégradables, de préférence sans collant résiduel à température ambiante et dont la biodégradabilité, mesurée selon la méthode par analyse de dioxyde de carbone libéré selon la norme EN ISO 14855, est supérieure à 55%, de préférence supérieure à 60%, de préférence supérieure à 90% et leur utilisation. Ce pourcentage est donné par référence à la mesure de biodégradabilité de la cellulose qui représente dans les mêmes conditions 100%.

Description

COMPOSITION ADHESIVE THERMOFUSIBLE BIODEGRADABLE
Domaine de l'invention.
La présente invention concerne les compositions adhésives thermofusibles biodégradables et leur utilisation dans de très nombreux domaines d'application et notamment dans le domaine de l'emballage. Arrière plan technologique de l'invention. Dans le cadre de l'évolution des marchés vers des produits dits « bio », les grands intervenants de la grande distribution se tournent vers leurs fournisseurs pour demander des produits répondant à ces attentes.
Ces attentes sont d'autant plus fortes que les directives Européennes imposent la mise en place progressive de produits dits « compostables » satisfaisants notamment aux critères énoncés dans la norme européenne ENl 3432. Dans ce cadre, la norme ENl 3432 précise que la biodégradabilité d'un produit mesuré selon la méthode EN ISO 14855 par analyse de dioxyde de carbone libéré doit être supérieure à 90%.
Dans le domaines de l'emballage en général comme par exemple la fermeture de boites et étuis, le montage de plateaux cartons, ou dans le domaine plus particulier de l'emballage alimentaire, on utilise couramment des compositions adhésives pour coller des papiers imprimés sur tout type de contenant, alimentaire ou non, tels que papier, bouteilles ou pot, ces contenants étant parfois en polystyrène, polypropylène, acide polylactique. Les attentes des clients en termes de produits compostables sont répercutées au niveau des fournisseurs de chaque partie de l'emballage et les clients demandent que chacun des composants d'un produit soit biodégradable.
De ce fait, la fourniture d'objets pour emballage globalement compostables ou biodégradables implique donc aussi la fourniture de compositions adhésives thermofusible (ou hot melt) compostables et/ou biodégradables.
Dans ce contexte, il s'agit donc pour une colle thermofusible d'être également conforme à cette norme de biodégradabilité EN ISO 14855 tout en conservant l'ensemble des autres propriétés d'une colle thermofusible standard, notamment les propriétés nécessaires pour une application étiquetage de tout type de contenant alimentaire ou non.
US 5312850 décrit l'obtention de compositions adhésives thermofusibles (hot melt) utilisant certains ingrédients connus comme étant biodégradables. Ces compositions comprennent 20 à 98% en poids de polymère polylactide (PLA) contenant au moins 20% en moles de monomère lactide, 2 à 80% d'une résine d'adhésivité ayant un point de ramollissement selon ASTM E 26 de environ 600C, 0 à 50% d'un agent plastifiant et 0 à 30% d'une cire comme agent diluant et 0 à 3% d'un agent stabilisant. Aucune indication n'est fournie quant à la biodégradabilité de la composition finale selon la norme EN ISO 14855.
WO 95/10577 décrit l'obtention de compositions adhésives thermofusibles de préférence sensibles à la pression (hot melt pressure sensitive adhésives ou HMPSA) dites entièrement biodégradables / compostables en associant des polyesters dérivés d'acide lactiques qui sont déjà des polymères biodégradables connus avec des résines plastifiantes biodégradables à base d'acide polylactique (PLA), de poids moléculaire inférieur à 20000 et ayant un Tg inférieur à 600C. Aucune indication n'est fournie quant à la biodégradabilité de la composition finale selon la norme EN ISO 14855.
Ces compositions qui contiennent des PLA ne sont pas adaptées aux domaines de l'emballage alimentaire car elles présentent les inconvénients d'être plutôt rigides et d'avoir une température de réactivation à la chaleur trop élevée pour les applications dans les domaines recherchés.
Dans le domaine des compositions adhésives thermofusibles biodégradables sans PLA EP553394 décrit l'obtention de compositions adhésives thermofusibles comprenant un polyester spécifique obtenu à partir d'acide 3-hydroxy-butyrique et 3- hydroxy-valérique. Aucune indication n'est fournie quant à la biodégradabilité de la composition finale selon la norme EN ISO 14855.
EP 741178 décrit aussi l'obtention de compositions biodégradables adhésives thermofusibles comprenant un polyester spécifique obtenu par réaction entre un diacide carboxylique et un éther ou ester de diglycidyle. Aucune indication n'est fournie quant à la biodégradabilité de la composition finale selon la norme EN ISO 14855.
Il existe donc un besoin de disposer de compositions adhésives thermofusibles compostables susceptible de satisfaire à la norme européenne EN ISO 14855 et qui satisfassent aussi à toutes les propriétés d'un adhésif thermofusible standard notamment les propriétés pour une application étiquetage de tout type de contenant alimentaire ou non. Résumé de l'invention.
Le but de la présente invention est donc de fournir des compositions adhésives thermofusibles, de préférence sans collant résiduel à température ambiante (autrement dit sans tack ou encore sans pouvoir collant immédiat à température ambiante) et dont la biodégradabilité, mesurée selon la méthode par analyse de dioxyde de carbone libéré selon la norme EN ISO 14855, est supérieure à 55%, de préférence supérieure à 60%, de préférence supérieure à 90%. Ce pourcentage est donné par référence à la mesure de biodégradabilité de la cellulose qui représente dans les mêmes conditions 100%.
A cette fin l'invention propose :
Une composition adhésive thermofusible biodégradable comprenant (A) de 30% à 90%, de préférence 40% à 60%; ou encore de 45% à 55% en poids par rapport au poids total de la composition adhésive d'un (co)polymère choisi parmi (Al) les polycaprolactones, (A2) les polyesters résultant de la condensation entre un diacide carboxylique de formule Rl-[COOH]2 dans laquelle Rl représente un groupe hydrocarboné en C2 à C30 linéaire ou faiblement ramifié ou cyclique, saturé ou insaturé, mono ou polyhydroxylé et un diol de formule R2[OH]2 dans laquelle R2 représente un groupe hydrocarboné en C2 à C32 linéaire, faiblement ramifié, cyclique ou polycyclique, saturé, insaturé ou polyinsaturé, mono ou polyhydroxylé ou (A3) les copolymères de polycaprolactones (Al) et de polyesters (A2); (B) de 10% à 50%, de préférence de 20% à 40%, ou encore de 25% à 35% en poids par rapport au poids total de la composition adhésive d'un agent d'adhésivité (ou agent tackifiant) ayant une masse molaire moyenne en poids Mw comprise entre 300 et 5000 et choisi parmi :
-(i) les colophanes d'origine naturelle ou modifiées; -(ii) les résines terpéniques résultant de la polymérisation d'hydrocarbures terpéniques en présence de catalyseurs de Friedel-Crafts, éventuellement modifiées par action de phénols ;
-(iii) des copolymères à base de terpènes naturels ;
(C) de 10% à 30%, de préférence 10% à 25% en poids par rapport au poids total de la composition adhésive d'un agent de rigidifîcation représenté par une cire ayant un point de fusion compris dans la gamme de 40°C à 150°C, de préférence choisie parmi les cires amides éventuellement hydroxylées, les huiles de ricin hydrogénées, les cires synthétiques oxydées ou non, fonctionnalisées ou non, les oxydes de polyéthylène dont le poids moléculaire moyen en poids est supérieur à 1000 ;
(D) 0 % à 20%, de préférence 3% à 7% en poids par rapport au poids total de la composition adhésive d'un ou plusieurs additifs choisis parmi les stabilisants, les anti-oxydants, les agents améliorants le blocking, les pigments, les colorants ou les charges. De préférence, dans la composition selon l'invention le (co)polymère (A) a une masse moléculaire moyenne en nombre (Mn) allant de 500 à lOOOOOg/mole, de préférence de 2000 à 60000g/mol. De préférence, dans la composition selon l'invention, le diacide carboxylique de formule Rl-[COOH]2 est choisi parmi les acides sébacique, succinique, adipique, aldariques, alpha-ketoglutarique, aspartique, azelaique, camphorique, fumarique, glutaconique, glutarique, itaconique, maleique, malique, malonique, meglutol, mesaconique, mesoxalique, 3-methylglutaconique.
De préférence, dans la composition selon l'invention, le diol de formule
R2[OH]2 est choisi parmi les diols de structure linéaire, faiblement ramifiée, saturée ou insaturée, de formule R2[OH]2 dans laquelle R2 représente un groupe hydrocarboné en C2 à C22, les diols de formule HO-(-CH2-CH2-O-)n-H tel que n est un entier de 1 à 6.
De préférence, dans la composition selon l'invention (B) est choisi parmi les esters de colophane au glycérol ou au pentaérythritol, les terpènes, ou encore les terpènes phénol, en particulier les terpènes phénol de point de ramollissement compris entre 100°C et 1500C De préférence, dans la composition selon l'invention (C) est choisi parmi les cires amide type oléamide, stéaramide, Ethylène bis-oléamide, Ethylène bis- stéaramide, de préférence celles ayant un point de fusion compris entre 60°C et 120°C.
De préférence, dans la composition selon l'invention, (A) représente un polyester obtenu par réaction entre le monoéthylène glycol et l'acide sébacique
(B) représente une résine terpène phénolique;
(C) représente une cire amide choisie parmi l'oléamide ou le cis 1 ,3 docosenamide érucamide; (D) représente un additif améliorant le blocking choisi parmi le polyéthylène glycol, la silice précipitée ou l'un de leur mélange.
Par ailleurs, les adhésifs thermofusibles selon l'invention présentent aussi les propriétés suivantes :
Selon les types de formulations choisies, ils présentent une viscosité comprise dans une gamme large allant de 500 à 200000 mPa.s, ce qui les rend adaptables à des applications sur support flexible ou sur support non flexible ;
Selon les types de formulations choisies, ils ont une température de réactivation allant de environ 400C à 1500C qui les rend adaptés à tout type d'application flexible ou non flexible; pour des applications plus spécifiques sur support flexible, on choisira les formulations dont la température de réactivation est dans la gamme 60-1 100C.
Selon les types de formulations choisies, ils présentent un temps ouvert adaptable à différents types d'applications ; ainsi pour des applications à collage différé sur support flexible on choisira un adhésif thermofusible ayant un temps ouvert quasi nul ou inférieur à 1 seconde ou de préférence inférieur à 0,5 sec ; pour des applications sur support rigide on choisira un adhésif thermofusible ayant un temps ouvert supérieur ou égal à 2 secondes, de préférence de 3 à 30 secondes ou encore de 5 à 15 secondes.
Selon un mode de réalisation, la composition selon l'invention a un temps ouvert mesuré sur appareil OLINGER inférieur à 1 seconde, de préférence inférieur à 0,5 seconde).
Selon un mode de réalisation, la composition selon l'invention a un temps ouvert mesuré sur appareil OLINGER supérieur ou égal à 2 secondes, de préférence allant de 5 à 30 secondes).
Selon un autre objet l'invention se rapporte à l'utilisation d'une composition selon l'invention pouvant être réactivée pour créer un scellage entre deux supports non flexibles, par exemple deux cartons. De préférence l'utilisation est effectuée avec une composition dont la viscosité est comprise entre 500 et 20000 mPa.s pour des applications par Bac fondoir et Enduction par rouleaux.
De préférence l'utilisation est effectuée avec une composition dont la viscosité est comprise entre 2000 et 50000 mPa.s pour des applications par Bac fondoir ou vide-fût et Enduction par buse.
De préférence l'utilisation est effectuée avec une composition dont la viscosité est comprise entre 70000 et 200000 mPa.s pour applications par Extrudeuse et Enduction par buse.
De préférence l'invention se rapporte à l'utilisation d'une composition selon l'invention pour la préparation d'emballage biodégradable non flexible à rigide destiné à l'usage alimentaire ou non alimentaire.
De préférence l'invention se rapporte à l'utilisation d'une composition selon l'invention pour des applications textiles comme les garnissages automobiles ou aéronautiques, cosmétiques, tabac, pharmaceutiques, médicales. De préférence l'invention se rapporte à l'utilisation d'une composition selon l'invention pour la préparation d'emballage rigide, de fermeture de caisse et d'étuis, la formation de plateau carton, l'étiquetage de bouteilles, la reliure, l'enduction papier carton.
Exposé détaillé des modes de réalisation de l'invention. Description des compositions selon l'invention.
(A) Partie polymère.
Cette partie comprend un (co)polymère ayant de préférence un poids moléculaire de 500 to 100000 g/mol, choisi parmi (Al) les polycaprolactones, (A2) les polyesters résultant de la condensation entre un diacide carboxylique de formule Rl-[COOH]2 dans laquelle Rl représente un groupe hydrocarboné en C2 à C30 linéaire ou faiblement ramifié ou cyclique, saturé ou insaturé, mono ou polyhydroxylé et un diol de formule R2[OH]2 dans laquelle R2 représente un groupe hydrocarboné en C2 à C32 linéaire, faiblement ramifié, cyclique ou polycyclique, saturé, insaturé ou polyinsaturé, mono ou polyhydroxylé, ou (A3) les copolymères obtenus à partir des polycaprolactones (Al) et des polyesters (A2) ou l'un de leur mélange.
(A) représente de 30% à 90% de préférence 40% à 60%; de préférence encore 45% à 55% en poids par rapport au poids total de la composition adhésive.
(Al) Les polycaprolactones sont formées par réaction d'ouverture du cycle d'un monomère d'epsilon-caprolactone avec un initiateur mono-, di-, ou multi- fonctionnel dans lequel les groupes fonctionnels, généralement des groupes hydroxy, sont aptes à effectuer une réaction d'ouverture du cycle avec les momonères d'epsilon-caprolactone. Dans de telles réactions, l'initiateur sera un composant mineur et le ratio en poids entre initiateur et monomère déterminera le poids moléculaire du polymère résultant.
Les polymères de polycaprolactones ont de préférence un poids moléculaire de 5000 to l00000 g/mol. (A2) Les polyesters de l'invention sont formés par réaction entre un diacide carboxylique de formule Rl-[COOH]2 dans laquelle Rl représente un groupe hydrocarboné en C2 à C30 linéaire ou faiblement ramifié ou cyclique, saturé ou insaturé, mono ou polyhydroxylé et un diol de formule R2[OH]2 dans laquelle R2 représente un groupe hydrocarboné en C2 à C32 linéaire, faiblement ramifié, cyclique ou polycyclique, saturé, insaturé ou polyinsaturé, mono ou polyhydroxylé,
De préférence, le diacide est choisi seul ou en mélange parmi :
1) un diacide linéaire, saturé ou insaturé, d'origine naturelle ou synthétique de formule Rl-[COOH]2 dans laquelle Rl représente un groupe hydrocarboné en C2 à C30 comme par exemple l'acide succinique, acide glutarique, acide pimélique, acide azélaïque, acide sébacique, acide traumatique, subérine (α,ω-diacides en Cl 6 à C26) ;
2) un diacide gras obtenu par dimérisation d'acide gras d'origine animale ou végétale ;
3) un diacide mono- ou poly-hydroxylé comme par exemple les acide tartrique, acide tartronique, acides aldariques ;
4) un aminoacide par exemple l'acide aspartique,
5) un diacide mono ou polyhydroxylé saturé ou insaturé et/ou faiblement ramifié ou non, par exemple méglutol, acide 3-méthylglutaconique, acide mésaconique, la crocétine, les acides alkylitaconiques (acides chaetomelliques et cériporiques).
Les diacides carboxyliques sont de préférence choisis parmi les acides, adipique, aldarique, alpha-cétoglutarique, aspartique, azélaique, camphorique, fumarique, glutaconique, glutarique, itaconique, maléique, malique, malonique, méglutol, mésaconique, mésoxalique, 3-méthylglutaconique, seul ou l'un de leur mélange.
De préférence, les diols sont choisis seul ou en mélange parmi:
1) un diol de structure linéaire, faiblement ramifié, saturé ou insaturé, de structure de formule R2[OH]2 dans laquelle R2 représente un groupe hydrocarboné en C2 à C32.
2) un diol dimère dérivés d'alcools gras insaturés,
3) un diol de formule R2[OH]2 dans laquelle R2 représente un groupe hydrocarboné mono- ou poly-hydroxylé saturé ou insaturé en C2 à Cl 2. 4) un diol cyclique ou polycyclique comme par exemple le 1,2- cyclohexanediméthanol, les diols dérives de sucres tels que le l,4:3,6-dianhydro-D- glucitol (DAG), le l,4:3,6-dianhydro-D-Mannitol (DAM), le l,4:3,6-dianhydro-L- Iditol (DAI).
5) les diols de formule R2[OH]2 dans laquelle R2 représente un monoéthylène Glycol ou Polyéthylene Glycol de formule HO-(-CH2-CH2-O-)n-H tel que n est compris entre 1 et 6.
Les diols sont de préférence choisis parmi les diols de structure linéaire, saturé ou insaturé, de structure de formule R2[OH]2 dans laquelle R2 représente un groupe hydrocarboné en C2 à C22, les diols de formule HO-(-CH2-CH2-O-)n-H où n est un entier de 1 à 6.
Les polyesters de l'invention ont de préférence une masse moléculaire moyenne en nombre (Mn) comprise entre 500 et 100000 g/mol. Les polyesters de l'invention ont de préférence ayant un MFI à 160°C sous 2,16 kg compris entre 0,2 et 1000. Préférentiellement, le polyester aura une masse moléculaire moyenne en nombre (Mn) comprise entre 2000 à 60000 g/mol et un MFI compris entre 1 et 500 g/mol.
De préférence, les polyesters de l'invention sont obtenus par réaction du monoéthylène glycol avec l'acide sébacique. Préférentiellement, lorsque le diacide choisi est un diacide aromatique, la teneur en diacide aromatique (de type téréphtalique ou isophtalique) dans le polyester sera inférieure à 53% en moles, de préférence inférieure à 25%, notamment inférieure à 25% en aromatique isophtalique. (A3) les copolymères obtenus à partir des polycaprolactones (Al) et des polyesters (A2).
(B) Partie agent d'adhésivité (ou tackifiant).
La ou les résines tackifiantes ont des masses molaires moyennes en poids Mw généralement comprises entre 300 et 5000 et sont choisies notamment parmi :
- (i) les colophanes d'origine naturelle ou modifiées, telles que par exemple la colophane extraite de la gomme de pins, la colophane de bois extraite des racines de l'arbre et leurs dérivés hydrogénés, partiellement hydrogénés, dimérisés, polymérisés ou estérifiés par des monoalcools ou des polyols comme le glycérol ; - (ii) des résines terpéniques résultant généralement de la polymérisation d'hydrocarbures terpéniques comme par exemple le mono-terpène (ou pinène) en présence de catalyseurs de Friedel-Crafts, éventuellement modifiées par action de phénols ;
- (iii) des copolymères à base de terpènes naturels, par exemple le styrène/terpène, l'alpha-méthyl styrène/terpène et le vinyl toluène/terpène.
(B) représente de 10% à 50% de préférence de 20% à 40%, de préférence encore 25% à 35% en poids par rapport au poids total de la composition adhésive.
(B) est choisi de préférence parmi les esters de colophane au glycérol ou au pentaerythritol, les terpènes, ou encore les terpènes phénol, en particulier les terpènes phénol de point de ramollissement compris entre 1000C et 1500C
Ces résines sont disponibles commercialement, et parmi celles ayant une température de ramollissement comprise entre 80 et 150 0C, on peut citer par exemple dans les catégories ci-dessus les produits suivants :
(i) Sylvalite® RE 100S de la société Arizona Chemical, Dertoline® G2L et Dertopoline® CG de la société française DRT ;
(ii) Dertophene T, Dertophène® H 150 de la société DRT ; Sylvarez® TP95, Sylvarez® TPl 15 de Arizona Chemical; Sylvares® 2040 de Arizona Chemical ;
(iii) Sylvarez® ZT 105 LT de Arizona Chemical.
La température (ou point) de ramollissement de ces résines est déterminée conformément au test normalisé ASTM E 28 dont le principe est le suivant. Un anneau en laiton de diamètre environ 2 cm est rempli de la résine à tester à l'état fondu. Après refroidissement à température ambiante, l'anneau et la résine solide sont placés horizontalement dans un bain de glycérine thermostaté dont la température peut varier de 5° C par minute. Une bille d'acier de diamètre environ 9,5 mm est centrée sur le disque de résine solide. La température de ramollissement est — durant la phase de montée en température du bain à raison de 5°C par minute- la température à laquelle le disque de résine flue d'une hauteur de 25,4 mm sous le poids de la bille. (C) Partie agent de rigidification.
Ces agents sont des cires caractérisées par un point de fusion mesuré par calorimétrie différentielle à balayage DSC, compris entre 400C et 150°C préférentiellement entre 50°C et 100°C dans le cas d'une enduction sur support flexible à collage différé et entre 100°C et 140°C dans le cas d'une application à collage immédiat sur support flexible ou non flexible.
Ces cires sont choisies parmi les cires amides éventuellement hydroxylées, les huiles de ricin hydrogénées, les cires synthétiques oxydées ou non, fonctionnalisées ou non, les oxydes de polyéthylène dont le poids moléculaire moyen en poids est supérieur à 1000.
On utilise de préférence les cires choisies parmi l'éthylène bis stéaramide, l'éthylène bis oleamide, le stéaramide, les paraffines, les cires fischer tropsch, les oléamides, le "cis-l,3-docosenamide, l'érucamide, l'éthylène glycol monostéarate, le palmitate de céthyle, les alcools linéaires saturés, les acides carboxyliques. On utilise de préférence encore, les cires choisies parmi les cires amide type oleamide, stéaramide, Ethylène bis-oléamide, Ethylène bis-stéaramide, de préférence encore les cires amide type oleamide, stéaramide, Ethylène bis-oléamide de point de fusion compris entre 60°C et 120°C.
(C) représente de 10% à 30% de préférence 10% à 25% en poids par rapport au poids total de la composition adhésive.
(C) représente de préférence une cire amide choisie parmi l'oléamide ou le cis 1 ,3 docosenamide erucamide.
(D) Partie additifs.
Dans la composition selon l'invention pour améliorer certaines propriétés on peut utiliser de manière optionnelle une quantité de 0 % à 20% de préférence 3% à 7% en poids par rapport au poids total de la composition adhésive d'un ou plusieurs additifs.
Ces additifs sont choisis parmi les stabilisants, les anti-oxydants, les agents améliorant le blocking, les pigments, les colorants ou les charges. (Dl) Les agents stabilisants (ou anti-oxydant) sont introduits pour protéger la composition d'une dégradation résultant d'une réaction avec de l'oxygène qui est susceptible de se former par action de la chaleur, de la lumière ou de catalyseurs résiduels sur certaines matières premières telles que les résines tackifiantes.
On utilise les composés choisis parmi le Tetrakis 3-(3,5-di-tert-butyl-4- hydroxyphényl)propionate de pentaérythritol, l'acrylate de 2-(l-(2-hydroxy-3,5- ditertiopenthylphényl)éthyl)-4,6-ditertiopentylphényl, le pentaérythrityltetrakis(3- laurylthiopropionate), le polycarbodiimide aromatique, le diarylcarbodiimide substitué, le polycarbo-diimide aromatique. De préférence on utilise des anti-oxydants primaires qui piègent les radicaux libres et qui sont généralement des phénols substitués comme l'Irganox® 1010 de CIBA (Tetrakis 3-(3,5-di-tert-butyl-4-hydroxyphényl)propionate de pentaérythritol). Les anti-oxydants primaires peuvent être utilisés seuls ou en combinaison avec d'autres anti-oxydants tels que des phosphites comme l'Irgafos® 168 également de CIBA, ou encore avec des stabilisants UV tels que des aminés.
(D2) Les agents améliorants le blocking sont introduits notamment pour empêcher l'adhésion de la face enduite d'adhésif thermofusible sur la face imprimée lors de la réalisation et du stockage des bobines. Par exemple pour les applications de banderolage yaourt.
Ces composés sont choisis parmi l'éthylene bis-stéaramide, éthylene bis- oleamide, stéaramide, oléamide, cis-l,3-docosénamide, érucamide, éthylene glycol monostéarate, cétyl palmitate, alcool linéaire saturé, acide carboxylique.
On peut également utiliser de préférence le Polyéthyleneglycol ou la silice précipitée.
(D3) Les pigments et les colorants sont introduits pour modifier la couleur de la masse adhésive sans en modifier les autres propriétés.
(D4) les charges sont introduites pour renforcer la cohésion de l'adhésif, réduire le coût, ou modifier la performance adhésive en jouant sur la quantité et de la nature de la charge introduite. Ces composés sont choisis parmi le talc, carbonates, silice, kaolin, sulfates, argiles. Procédé de préparation des compositions.
La composition thermofusible selon l'invention est préparée par simple mélange de ses composants à une température comprise entre 100 et 200 °C, jusqu'à obtention d'un mélange homogène. Les techniques de mélange requises* sont bien connues de l'homme du métier. Propriétés des compositions selon P invention.
Les compositions présentent toutes les propriétés nécessaires pour être des compositions adhésives thermofusibles biodégradables. Biodégradabilité.
Elles présentent une biodégradabilité mesurée selon la méthode par analyse de dioxyde de carbone libéré (norme EN ISO 14855) supérieure à 55%, de préférence supérieure à 60%, de préférence encore supérieure à 90%. Ce pourcentage est donné par référence à la biodégradabilité de la cellulose qui représente dans les mêmes conditions 100%. Ces résultats de biodégradabilité montrent que les adhésifs thermofusibles dont la biodégradabilité, selon la norme EN ISO 14855, est supérieure à 90% sont d'excellents candidats pour satisfaire aux critères de la norme européenne ENl 3432 relative aux produits dit « compostables ». Les compositions selon l'invention atteignent ce niveau de biodégradabilité au bout de 6 mois, et de préférence dès 45 jours.
Les compositions adhésives sont de préférence non sensibles à la pression, sans collant résiduel à température ambiante. Dans la mesure où les compositions de l'invention ne présentent pas de collant résiduel à température ambiante, on n'introduit aucun agent plastifiant car ils sont généralement liquides à température ambiante et leur point de fusion est faible, inférieur à 25°C.
Les formulations retenues présentent aussi les propriétés suivantes : Viscosité.
La viscosité finale de l'adhésif thermofusible selon l'invention est dépendante de la nature des composant utilisés, de leur quantité respective et de leur masse molaire.
Selon les types de formulations choisies, les adhésifs thermofusibles présentent une viscosité comprise dans une gamme large allant de 500 à 200000 mPa.s à la température d'application, ce qui les rend adaptables à des applications selon différents types de procédé ou d'outils de mise en oeuvre, sur support flexible ou sur support non flexible.
Ainsi lorsque la viscosité est comprise entre 500 et 20000 mPa.s à la température d'application on peut cibler les applications par Bac fondoir et Enduction par rouleaux.
Lorsque la viscosité est comprise entre 2000 et 50000 mPa.s à la température d'application on peut cibler les applications par Bac fondoir ou vide-fût et Enduction par buse. Lorsque la viscosité est comprise entre 70000 et 200000 mPa.s à la température d'application on peut cibler les applications par Extrudeuse et Enduction par buse. Température de réactivation.
Selon les types de formulations choisies, les adhésifs thermofusibles ont une température de réactivation allant de environ 40°C à 150°C qui les rendent adaptés à tout type d'application flexible ou non flexible. Ainsi, pour des applications plus spécifiques sur support flexible, on choisira les formulations dont la température de réactivation est dans la gamme 60-1 10°C.
Le choix du polymère A a un impact sur la température de réactivation de la composition finale. En effet, contrairement aux formulations comprenant les polymères (A) selon l'invention, certains polymères de l'art antérieur ne permettent pas d'obtenir des adhésifs thermofusibles avec les températures de réactivation ciblées. En effet on a pu noter des températures de réactivation supérieures à 1500C dans les formulations J et K des exemples comparatifs lorsque le composant A est le PLA (poly lactic acid) ou un copolyester aromatique.
Selon un mode particulier, une température de réactivation comprise entre 600C et 90°C permettra notamment à l'adhésif thermofusible d'être scellé sur des pots de yaourt lors de la formation de ceux-ci.
La banderole de pot de yaourt est un papier imprimé enduit de colle thermofusible sur des laizes (largeur de bobine) de l'ordre de 1300 mm grâce au procédé d'enduction décrit ci dessus.
Cette banderole est ensuite découpée, positionnée autour des pots de yaourts et réactivée, c'est-à-dire réchauffée à une température supérieure à sa température de réactivation pour refondre légèrement l'adhésif thermofusible (« hot melt ») et provoquer l'adhésion entre la banderole papier et le pot en polymère thermoplastique comme le polystyrène, le polypropylène ou l'acide polylactique. Temps ouvert. Selon les types de formulations choisies, les adhésifs thermofusibles présentent un temps ouvert adaptable à différents types d'applications, sur support flexible ou non flexible. Le temps ouvert dépend principalement des températures de recristallisation des différents composants, de leur température de transition vitreuse et aussi de leurs quantités. Ainsi de façon avantageuse, les compositions selon l'invention présentent un temps ouvert inférieur à 1 seconde ou de préférence inférieur à 0,5 seconde par exemple pour des applications à collage différé sur support flexible.
Cette particularité permet à l'adhésif thermofusible de se figer instantanément une fois placé sur les bobines de papier. Ainsi le rembobinage de la bobine enduite de colle sur elle-même peut s'effectuer sans délai après encollage.
Pour des applications sur support rigide comme les cartons, on choisira un adhésif thermofusible ayant un temps ouvert supérieur ou égal à 2 secondes, de préférence de 3 à 30 secondes.
Par ailleurs, les formulations présentent aussi les propriétés nécessaires suivantes des adhésifs thermofusibles. Stabilité thermique.
Une stabilité thermique suffisante pour que l'évolution des propriétés de l'adhésif suite à sa dégradation ne soit pas perceptible lors d'une utilisation standard du produit sur un équipement adapté. Collant résiduel (éfialement dénommé pouvoir collant immédiat).
Ces formules ne présentent pas de collant résiduel (sont non collantes à T° ambiante). Blocking : Ces formules résistent à une mise sous pression et température de la couche d'adhésif thermofusible entre 2 supports sans que l'adhésif thermofusible ou l'impression du support ne soit transféré d'un coté sur l'autre. Glissant. Ces formules présentent aussi un comportement de glissant permettant que des enductions de ces formules sur papier puissent être utilisées sur lignes industrielles sans endommager ni encrasser les systèmes d'entraînement et sans glisser lors du stockage des bobines. Compatibilité. Le choix de chacun des composants de la formule a par ailleurs un impact sur leur compatibilité globale dans la composition finale. En effet, tous les mélanges ne permettent pas d'obtenir systématiquement des compositions homogènes. En effet on a pu noter un défaut de compatibilité dans les formulations I et L des exemples comparatifs lorsque le composant C est une paraffine. Utilisation des compositions selon l'invention.
Les compositions selon l'invention sont adaptées à tout type d'emballage pour des applications alimentaires ou non alimentaires.
Parmi les types d'emballage, on peut citer les emballages flexibles ou non flexibles. Parmi les emballages non flexibles à rigides, on peut citer les fermetures de caisse et étuis, les formations de plateau carton, l'étiquetage des bouteilles, la reliure, l'enduction papier carton pouvant être réactivée pour créer un scellage.
Exemples : Les exemples qui suivent visent à illustrer l'invention sans en limiter la portée. L'ensemble des résultats relatifs aux propriétés des adhésifs thermofusibles sont présentés dans les tableaux 1 et 2. Exemple 1 : préparation des compositions selon l'invention
La composition thermofusible selon l'invention est préparée par simple mélange de ses composants à une température comprise entre 100 et 200 °C, jusqu'à obtention d'un mélange homogène. Les techniques de mélange requises sont bien connues de l'homme du métier.
Les formulations 1 à 6 de compositions selon l'invention sont décrites dans le tableau 1. Les formulations I à M des compositions de comparaison sont décrites dans le tableau 1. Exemple 2 : utilisation des compositions dans les procédés d'enduction de banderoles papier.
Le procédé d'enduction est réalisé selon le schéma suivant :
Schéma ligne : figure 1. Température typiques de l'adhésif thermofusible:
Pré-fondoir : 165°C
Tuyaux : 165°C
Bac : 165°C Grammage papier : 97 g/m2
Eau de refroidissement : 8°C
Grammage adhésif thermofusible : 10 g/m2
Ce procédé est notamment utilisé dans la préparation d'un pot de yaourt, classiquement constitué d'un contenant en polystyrène, d'un opercule et d'une banderole enduite d' adhésif thermofusible (hot melt).
La banderole de pot de yaourt est un papier imprimé enduit de colle thermofusible sur des laizes (largeur de bobine) de l'ordre de 1300 mm grâce au procédé d'enduction décrit ci dessus.
Cette banderole est ensuite découpée, positionnée autour des pots de yaourts et réactivée, c'est-à-dire réchauffée pour refondre légèrement l'adhésif thermofusible (hot melt) et provoquer l'adhésion entre la banderole papier et le pot en polystyrène. La température à laquelle est réchauffée la banderole est supérieure à la température de réactivation de l'adhésif thermofusible correspondant. Exemple 3 : Propriétés des compositions obtenues. Les formulations obtenues sont ensuite évaluées dans les tests caractéristiques des adhésifs thermofusibles décrits ci dessous :
1/ Mesure de la viscosité :
La viscosité est mesurée sur chaque composition à 170°C à l'aide d'un viscosimètre Brookfield. 2/ Blocking
Figure 2.
La face de support (pièces de papier enduit de 4cm x 8cm) enduite d'adhésif thermofusible est mise en contact avec la face imprimée et vernie puis mise sous pression de 0.7 bars à une température de 40°C pendant 7 jours.
A l'issue de cette mise sous contrainte, on sépare les 2 supports et on observe visuellement si de l'adhésif thermofusible a été transféré de la face enduite vers la face vernie et/ou si du verni et ou de l'encre ont été transférés de la face vernie vers la face enduite. L'absence de tout transfert est notée par NON dans le tableau 1. 3/ Glissant
Une feuille de support enduit d'adhésif thermofusible est positionnée horizontalement sur une surface plane. Un patin en acier entouré d'une seconde feuille de support enduit, face enduite à l'extérieur et ayant une masse de 200 g est positionné sur le support enduit, au contact de la face enduite dudit support.
La force nécessaire pour déplacer le patin à une vitesse donnée est mesurée de la façon suivante: Sur un dynamomètre on positionne le patin entouré du support enduit sur la face enduite de la banderole. Puis on déplace le patin horizontalement à 150 mm/min et on mesure la moyenne de la force en cours de déplacement qui après division par le poids du patin est exprimée sous la forme du coefficient de friction dynamique (ou COF Dynamique). 4/ Température de réactivation
La bande de support papier enduit d'adhésif thermofusible est positionnée sur une bande de PLA à une température de référence, comprise entre 50 et 150°C de telle sorte que la face enduite soit en contact avec le PLA.
On applique à l'ensemble une pression de 3 bars durant un temps de 1 s. Après retour à température ambiante de l'ensemble, soit après 5 min environ, on sépare les 2 bandes et on estime de façon visuelle le % de défibrage c'est-à-dire de rupture cohésive à l'intérieur du support papier.
Cette estimation manuelle est faite après retour à température ambiante pour chaque température de référence que l'on fait varier de 50 à 150° C par pas de 5°C. La « température de scellage » ou température de réactivation retenue est la température de référence la plus basse pour laquelle on obtient 100% de défibrage du support papier. 5) Méthode de mesure du temps ouvert :
Les temps ouverts sont mesurés selon la méthode de mesure suivante : On applique un cordon d'adhésif thermofusible sur un support, puis on affiche un second support après X secondes. Le temps ouvert est la valeur maximale de X pour que l'adhésif thermofusible adhère sur le second support. Les mesures se font à température ambiante.
La mesure de temps ouvert s'effectue sur un équipement de type OLINGER qui permet de gérer précisément le temps entre la dépose de l'adhésif thermofusible et la mise en contact du support.
L'adhésif thermofusible est fondu à sa température d'application puis appliqué en cordon de 1 à 2 mm de diamètre sur un support carton de référence.
Une durée de X seconde est chronométrée puis un second carton de référence est positionné sur le cordon d'adhésif thermofusible créant ainsi le collage entre les 2 cartons.
Les 2 cartons sont ensuite séparés manuellement. Le temps ouvert est la valeur maximale du temps X pour lequel on observe un défibrage du second carton lors de la séparation.
6/ Méthode de mesure de Biodégradabilité par analyse de dioxyde de carbone libéré: Selon la norme EN ISO 14855, on évalue la biodégradabilité ultime et la désintégration des matériaux plastiques dans des conditions contrôlées de compostage
La méthode d'essai permet de déterminer la biodégradabilité ultime et la désintégration d'un matériau d'essai dans des conditions simulant un processus de compostage aérobie intensif. L'inoculum est un compost stabilisé et mature, obtenu si possible à partir du compostage de la fraction organique de déchets municipaux solides.
Le matériau d'essai est mélangé à l'inoculum et introduit dans un récipient de compostage statique où il est transformé en compost dans des conditions optimales du point de vue de l'oxygène présent, de l'humidité et de la température, pendant une durée ne dépassant pas 6 mois.
Pendant la biodégradation aérobie du matériau d'essai, des produits de la biodégradation ultime sont le dioxyde de carbone, l'eau, des sels minéraux et de nouveaux constituants cellulaires microbiens (biomasse). Le dioxyde de carbone produit est contrôlé en continu ou mesuré à intervalles réguliers dans les récipients d'essai et du blanc, puis intégré pour déterminer la production cumulée de CO2. Le pourcentage de biodégradation s'obtient en comparant le CO2 produit par le matériau d'essai à la quantité maximale de CO2 qui pourrait être obtenue à partir du matériau d'essai et qui est calculée à partir du carbone organique total mesuré (COT). Ce pourcentage de biodégradation ne comprendra pas la quantité de carbone convertie en nouvelle biomasse cellulaire qui n'a pas été métabolisée en CO2 au cours de l'essai.
- L'incubation doit avoir lieu dans l'obscurité ou sous une lumière diffuse, dans une enceinte devant être maintenue à une température constante de 58°C +/- 2°C et exempte de vapeurs susceptibles d'inhiber les micro-organismes.
- Tout fragment individuel de matériau d'essai compact utilisé doit avoir une surface maximale de 2cm x 2cm. Si le matériau d'essai a une taille d'origine supérieure, on réduit la taille des fragments.
- Le rapport de la masse à sec de l'inoculum à celle du matériau d'essai doit être d'environ 6 pour 1.
- L'humidité doit être maintenue à environ 50%.
Les formulations testées selon cette méthode présentent une biodégradabilité supérieure à 55%, de préférence supérieure à 60%, de préférence encore supérieure à 90%. Ce pourcentage est donné par référence à la biodégradabilité de la cellulose qui représente dans les mêmes conditions 100%. En particulier les compositions 3 et 6 ont des % de biodégradabilité de 64%.
L'ensemble des résultats relatifs aux propriétés des adhésifs thermofusibles est présenté dans les tableaux 1 et 2.
Tableau 1.
Correspondance Noms chimiques et Noms commerciaux :
(0 ESTERGRAN 10 EHG Ci) MATER-BI TF01U/095R
(k) CAPA 6400 (1) ECOFLEX FBX 701 1
(m) PLA 6251 D (n) DERTOLINE G2L
(o) DERTOPHENE H 150 (P) CRODAMIDE VRX
(q) PARAFFINE 58/60 (r) CARBOVAX 3350
(s) SILICE LO-VEL 29 (0 IRGANOX 1010. Le choix de chacun des composants de la formule a par ailleurs un impact sur leur compatibilité globale dans la composition finale. En effet, tous les mélanges ne permettent pas d'obtenir systématiquement des compositions homogènes.
On note un défaut de compatibilité dans les formulations I et L des exemples comparatifs lorsque le composant C est une paraffine comparée à l'oléamide dans les formulations J, K et M.
Le choix du polymère A a un impact sur la température de réactivation de la composition finale. En effet, certains polymères utilisés dans l'art antérieur ne permettent pas d'obtenir des adhésifs thermofusibles avec les températures de réactivation ciblées. En effet on note des températures de réactivation supérieures à 150°C dans les formulations J, K, et M des exemples comparatifs lorsque le composant A est le PLA ou un copolyester aromatique.
Tableau 2
(i) ESTERGRAN 10 EHG G) MATER-BI TF01U/095R (n) DERTOLINE G2L (o) DERTOPHENE H 150 (p') CRODAMIDE S (p") CRODAMIDE EBO
Les formulations indiquées dans le tableau 2 ci-dessus sont représentatives des compositions adhésives thermofusibles dont les temps ouverts sont supérieurs à 2 secondes ce qui les rend adaptées aux applications sur support rigide tels que des cartons standard.

Claims

REVENDICATIONS
1. Composition adhésive thermofusible biodégradable comprenant
(A) de 30% à 90%, de préférence 40% à 60%; ou encore de 45% à 55% en poids par rapport au poids total de la composition adhésive d'un (co)polymère choisi parmi (Al) les polycaprolactones, (A2) les polyesters résultant de la condensation entre un diacide carboxylique de formule Rl-[COOH]2 dans laquelle Rl représente un groupe hydrocarboné en C2 à C30 linéaire ou faiblement ramifié ou cyclique, saturé ou insaturé, mono ou polyhydroxylé et un diol de formule R2[OH]2 dans laquelle R2 représente un groupe hydrocarboné en C2 à C32 linéaire, faiblement ramifié, cyclique ou polycyclique, saturé, insaturé ou polyinsaturé, mono ou polyhydroxylé ou (A3) les copolymères de polycaprolactones (Al) et de polyesters (A2);
(B) de 10% à 50%, de préférence de 20% à 40%, ou encore de 25% à 35% en poids par rapport au poids total de la composition adhésive d'un agent d'adhésivité (ou agent tackifiant) ayant une masse molaire moyenne en poids Mw comprise entre 300 et 5000 et choisi parmi :
-(i) les colophanes d'origine naturelle ou modifiées;
-(ii) les résines terpéniques résultant de la polymérisation d'hydrocarbures terpéniques en présence de catalyseurs de Friedel-Crafts, éventuellement modifiées par action de phénols ;
-(iii) des copolymères à base de terpènes naturels ;
(C) de 10% à 30%, de préférence 10% à 25% en poids par rapport au poids total de la composition adhésive d'un agent de rigidification représenté par une cire ayant un point de fusion compris dans la gamme de 40°C à 150°C, de préférence choisie parmi les cires amides éventuellement hydroxylées, les huiles de ricin hydrogénées, les cires synthétiques oxydées ou non, fonctionnalisées ou non, les oxydes de polyéthylène dont le poids moléculaire moyen en poids est supérieur à 1000 ; (D) 0 % à 20%, de préférence 3% à 7% en poids par rapport au poids total de la composition adhésive d'un ou plusieurs additifs choisis parmi les stabilisants, les anti-oxydants, les agents améliorants le blocking, les pigments, les colorants ou les charges.
2. Composition selon la revendication 1 dans laquelle le (co)polymère (A) a une masse moléculaire moyenne en nombre (Mn) allant de 500 à lOOOOOg/mole, de préférence de 2000 à 60000g/mol.
3. Composition selon l'une des revendications 1 à 2 dans laquelle le diacide carboxylique de formule Rl-[COOH]2 est choisi parmi les acides sébacique, succinique, adipique, aldariques, alpha-ketoglutarique, aspartique, azelaique, camphorique, fumarique, glutaconique, glutarique, itaconique, maleique, malique, malonique, meglutol, mesaconique, mesoxalique, 3-methylglutaconique.
4. Composition selon l'une des revendications 1 à 3 dans laquelle le diol de formule R2[OH]2 est choisi parmi les diols de structure linéaire, faiblement ramifié, saturé ou insaturé, de structure de formule R2[OH]2 dans laquelle R2 représente un groupe hydrocarboné en C2 à C22, les diols de formule R2[OH]2 dans laquelle R2 représente un monoéthylène Glycol ou Polyéthylene Glycol de formule HO-(-CH2-CH2-O-)n-H tel que n est un entier de 1 à 6.
5. Composition selon l'une des revendications 1 à 4 dans laquelle (B) est choisi parmi les esters de colophane au glycérol ou au pentaérythritol, les terpènes, ou encore les terpènes phénol, en particulier les terpènes phénol de point de ramollissement compris entre 100°C et 150°C
6. Composition selon l'une des revendications 1 à 5 dans laquelle (C) est choisis parmi les cires amide type oléamide, stéaramide, Ethylène bis-oléamide,
Ethylène bis-stéaramide, de préférence celles ayant un point de fusion compris entre 60°C et l20°C.
7. Composition selon l'une des revendications 1 à 6 dans laquelle
(A) représente un polyester obtenu par réaction entre le monoéthylène glycol et l'acide sébacique
(B) représente une résine terpène phénolique;
(C) représente une cire amide choisie parmi l'oléamide ou le cis 1,3 docosenamide érucamide;
(D) représente un additif améliorant le blocking choisi parmi le polyéthylene glycol, la silice précipitée ou l'un de leur mélange.
8. Composition selon l'une des revendications 1 à 7 ayant un temps ouvert inférieur à 1 seconde, de préférence inférieur à 0,5 seconde.
9. Composition selon l'une des revendications 1 à 7 ayant un temps ouvert supérieur ou égal à 2 secondes, de préférence allant de 5 à 30 secondes.
10. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente une biodégradabilité selon la norme EN ISO 14855 supérieure à 55%, de préférence supérieure à 60%.
1 1. Utilisation d'une composition selon l'une des revendications 1 à 8 pouvant être réactivée pour créer un scellage entre deux supports non flexibles.
12. Utilisation d'une composition selon l'une des revendications 1 à 9 dont la viscosité est comprise entre 500 et 20000 mPa.s, de préférence à 170°, pour applications par Bac fondoir et Enduction par rouleaux.
13. Utilisation d'une composition selon l'une des revendications 1 à 10 dont la viscosité est comprise entre 2000 et 50000 mPa.s, de préférence à 170°, pour applications par Bac fondoir ou vide- fût et Enduction par buse.
14. Utilisation d'une composition selon l'une des revendications 1 à 10 dont la viscosité est comprise entre 70000 et 200000 mPa.s, de préférence à 170°, pour applications par Extrudeuse et Enduction par buse.
15. Utilisation selon l'une des revendications 12 à 14 d'une composition selon l'une des revendications 1 à 10 pour la préparation d'emballage biodégradable non flexible à rigide destiné à l'usage alimentaire ou non alimentaire.
16. Utilisation d'une composition selon l'une des revendications 1 à 10 pour la préparation d'emballage rigide, de fermeture de caisse et d'étuis, la formation de plateau carton, l'étiquetage de bouteilles, la reliure, l' enduction papier carton.
EP09721207A 2008-02-14 2009-02-13 Composition adhesive thermofusible biodegradable Withdrawn EP2245102A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0800809A FR2927629B1 (fr) 2008-02-14 2008-02-14 Composition adhesive thermofusible biodegradable.
PCT/FR2009/000162 WO2009115672A1 (fr) 2008-02-14 2009-02-13 Composition adhesive thermofusible biodegradable

Publications (1)

Publication Number Publication Date
EP2245102A1 true EP2245102A1 (fr) 2010-11-03

Family

ID=39831718

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09721207A Withdrawn EP2245102A1 (fr) 2008-02-14 2009-02-13 Composition adhesive thermofusible biodegradable

Country Status (5)

Country Link
US (1) US8067492B2 (fr)
EP (1) EP2245102A1 (fr)
CN (1) CN102007192B (fr)
FR (1) FR2927629B1 (fr)
WO (1) WO2009115672A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927629B1 (fr) 2008-02-14 2011-07-29 Bostik Sa Composition adhesive thermofusible biodegradable.
BRMU9000890U2 (pt) * 2010-06-14 2012-02-28 Aparecida Do Amaral Fátima absorvente feminino descartável e biodegradável (ecologicamente correto)
WO2011156878A1 (fr) * 2010-06-14 2011-12-22 Fatima Aparecida Do Amaral Couche-culotte jetable biodégradable (écologique)
CN102250576B (zh) * 2011-06-09 2013-12-04 苏州瀚海化学有限公司 水性共聚多酯热熔型粘合剂及其制备方法
TWI473716B (zh) * 2011-12-22 2015-02-21 Taiwan Textile Res Inst 防水貼條
JP5883344B2 (ja) * 2012-04-26 2016-03-15 ヘンケルジャパン株式会社 ホットメルト接着剤
JP5921946B2 (ja) 2012-04-26 2016-05-24 ヘンケルジャパン株式会社 ホットメルト接着剤
HUE035025T2 (en) * 2012-07-31 2018-03-28 Hollister Inc Self-lubricating catheters
JP5925094B2 (ja) 2012-09-27 2016-05-25 ヘンケルジャパン株式会社 ラベル用ホットメルト粘着剤
JP6057837B2 (ja) 2013-05-30 2017-01-11 ヘンケルジャパン株式会社 ホットメルト接着剤
CN105593297B (zh) * 2013-12-02 2017-09-22 尤尼吉可株式会社 聚酯树脂组合物及含有它的粘接剂
JP6486963B2 (ja) * 2014-04-24 2019-03-20 シージェイ チェイルジェダン コーポレーション 樹脂用ポリエステル系可塑剤
WO2018090182A1 (fr) * 2016-11-15 2018-05-24 惠州航程世纪科技有限公司 Composition adhésive dégradable et son procédé de préparation
GB201810788D0 (en) * 2018-06-29 2018-08-15 Biocompatibles Uk Ltd Biodegradable polymer
JP7394841B2 (ja) 2018-09-07 2023-12-08 ボスティック,インコーポレイテッド コンポスト化可能なホットメルト接着剤
DE102020124314A1 (de) * 2020-09-17 2022-03-17 Heinrich-Heine-Universität Düsseldorf Biologisch abbaubare Klebstoff-Zusammensetzung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169889A (en) * 1992-01-27 1992-12-08 National Starch And Chemical Investment Holding Corporation Poly hydroxybutyrate/hydroxyvalerate based hot melt adhesive
US5252646A (en) * 1992-10-29 1993-10-12 National Starch And Chemical Investment Holding Corporation Polylactide containing hot melt adhesive
US5312850A (en) * 1993-01-04 1994-05-17 National Starch And Chemical Investment Holding Corporation Polylactide and starch containing hot melt adhesive
US5583187A (en) * 1995-05-03 1996-12-10 National Starch And Chemical Investment Holding Corporation Hot melt adhesives based on hydroxy-functional polyesters
DE59813164D1 (de) * 1997-12-02 2005-12-08 Henkel Kgaa Klebstoff und dessen verwendung in verbundwerkstoffen
EP1008629A1 (fr) * 1998-05-30 2000-06-14 DAICEL CHEMICAL INDUSTRIES, Ltd. Composition de resine de polyester biodegradable, composition de resine biodesintegrable et objets moules que ces compositions permettent de fabriquer
EP1466933A3 (fr) * 1998-11-13 2005-02-16 Daicel Chemical Industries, Ltd. Résine de copolyester aliphatique et méthode pour sa préparation
US20030049438A1 (en) * 2001-09-13 2003-03-13 Westvaco Corporation Adhesive containing amides and magnesium silicate
US7354653B2 (en) * 2003-12-18 2008-04-08 Eastman Chemical Company High clarity films with improved thermal properties
ATE461238T1 (de) * 2003-12-18 2010-04-15 Eastman Chem Co Eine hohe klarheit aufweisende folien mit verbesserten thermischen eigenschaften
FR2927629B1 (fr) 2008-02-14 2011-07-29 Bostik Sa Composition adhesive thermofusible biodegradable.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009115672A1 *

Also Published As

Publication number Publication date
US20100330315A1 (en) 2010-12-30
FR2927629A1 (fr) 2009-08-21
WO2009115672A1 (fr) 2009-09-24
US8067492B2 (en) 2011-11-29
CN102007192B (zh) 2014-02-19
CN102007192A (zh) 2011-04-06
FR2927629B1 (fr) 2011-07-29

Similar Documents

Publication Publication Date Title
EP2245102A1 (fr) Composition adhesive thermofusible biodegradable
KR102235912B1 (ko) 핫 멜트 접착제 조성물 및 그의 용도
EP2390299B1 (fr) HMPSA pour étiquette auto-adhésive décollable
AU2016332496B2 (en) Non-reactive hot-melt adhesive with set time improver
JP2023052140A (ja) ポリマー配合物およびそれらから形成されるホットメルト接着剤
KR20220148835A (ko) 미네랄 오일 불포함 감압 접착제
EP3931282B1 (fr) Hmpsa incorporant un plastifiant en matiere premiere renouvelable
EP3931281A1 (fr) Hmpsa incorporant un plastifiant en matiere premiere renouvelable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120604

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOSTIK SA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150602