EP2232638A1 - Reseau d'antennes directives multi polarisations large bande - Google Patents

Reseau d'antennes directives multi polarisations large bande

Info

Publication number
EP2232638A1
EP2232638A1 EP08868381A EP08868381A EP2232638A1 EP 2232638 A1 EP2232638 A1 EP 2232638A1 EP 08868381 A EP08868381 A EP 08868381A EP 08868381 A EP08868381 A EP 08868381A EP 2232638 A1 EP2232638 A1 EP 2232638A1
Authority
EP
European Patent Office
Prior art keywords
antenna
signals
antenna array
array according
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08868381A
Other languages
German (de)
English (en)
Inventor
Anthony Bellion
Cyrille Le Meins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2232638A1 publication Critical patent/EP2232638A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the invention relates to an architecture for a broadband multi-polarization antenna array. It applies in a frequency range including very high frequency or VHF (30 MHz to 300 MHz), ultra high frequency or UHF (300 MHz to 3 GHz) and SHF frequency range (3 GHz at 30 GHz).
  • the very broadband multi-polarization directive antenna array makes it possible, in a direction-finding context, to process signals of various polarizations without interaction with the wearer by the use of adapted direction-finding treatments.
  • the use of directional antennas eliminates the carrier structure.
  • the antenna array according to the invention can be placed anywhere on the mast of a boat because of its directional radiation, without being disturbed by it.
  • direction finding antennas One of the main problems encountered when integrating direction finding antennas is the choice of the mechanical structure holding the elementary antennas and the positioning of the complete antennal system on a supporting structure. Indeed, this placement is strategic because the antenna network must not be disturbed by the holding structure. This problem is accentuated in a multi polarization context. For example, in the case of naval direction finding, the choice of the positioning of the antenna is crucial and limited because of the many on-board equipment such as radars, communication transmitters, the navigation system, etc. A compound antennal system Several directional antennas can be placed much more easily, for example around a mast. Because of its directional radiation, the performance of the antennas are not penalized by the carrier structure. In the field of direction-finding, most existing antenna systems operate only in vertical polarization.
  • the main disadvantages of antennas direction finding systems consisting of vertical and horizontal polarization omnidirectional antennas include: o their performance depends on the mechanical structure maintaining the elementary antennas and / or the carrier structure of the complete antenna system, and this in function the polarization of the signals, where a calibration phase with the carrier structure is necessary to get closer to the optimal performances and to take into account the disturbances generated by the mechanical structure holding the elementary antennas and / or the carrying structure of the system complete year. In some cases, the implementation of a calibration phase requires considerable resources which leads to high integration costs or impossibility of technical realization.
  • this patent describes the use of a cavity containing an electromagnetic absorber to make the antennas direction.
  • the antenna architecture or antenna array according to the invention is based on a combination of several elementary antennas arranged according to a chosen structure and adapted to the carrier structure in order to obtain a given azimuthal radio coverage, for example, over 360 ° with directional antennas. or made directive through suitable elements.
  • This invention can also be used in the case where a smaller angular coverage (over 180 ° for example) is desired and used in detection systems or 360 ° coverage is not required.
  • the antenna processing used may vary and be adapted to the performance targeted by an application.
  • the invention relates to an array of wideband multi-polarization directive antennas operating in a selected frequency band, characterized in that it comprises at least the following elements: n complementary multi-strand sinuous spiral-type elementary sensors arranged according to a structure for obtaining a given azimuthal coverage, where each of the N sensors having a reflector plane attached to the antenna by an insulating spacer E, each of the N sensors comprising matching cells adapted to the working frequency band of said network, each of the N sensors comprising separate output channels and for the vertically polarized signals and for the horizontally polarized signals, a device adapted to execute a direction finding algorithm using the amplitude and the phase of said signals and adapted to the configuration of the network.
  • the antenna array comprises: means for grouping the signals having the same polarization, on the one hand the vertically polarized signals coming from the different elementary sensors and, on the other hand, the horizontally polarized signals; device adapted to execute a direction finding algorithm using the amplitude and phase of said grouped signals and adapted to the configuration of the network.
  • the azimuth radio coverage is for example close to 360 ° and may be a function of the carrier on which the antenna array is located.
  • FIG. 2 a configuration of the 4 strands in the center of the elementary antenna
  • FIG. 3 an impedance matching system
  • FIG. 4 an example of FIG. configuration of the antennal system according to the invention in the case of an antenna network
  • FIG. 5 a radiation pattern result measured for an antenna array according to the invention in vertical and horizontal polarization
  • FIG. 6 an example of positioning the antenna array at the top of a mast according to the invention
  • FIGS. 7 and 8 effective height curves showing the gain obtained with the antenna array according to the invention and obtained with the antennas according to the prior art.
  • FIG. 1 represents an elementary antenna 1 printed on a dielectric substrate composed of four branches I 1 , 1 2 , U and 1 4 complementary or self-complementary.
  • This element 1 is arranged in front of a reflector 2 which makes it possible, in particular, to make the antenna element 1 or elementary antenna directional.
  • the reflector 2 also plays a role of protection against parasitic radiation from other antennal elements forming part of the network according to the invention.
  • This reflective plane allows in particular to obtain a better performance than when using an absorbent cavity.
  • the geometry of an equiangular spiral is defined by:
  • the excitation (center of the spiral) of the N arms is made on a circle of radius r 0
  • each arm is contained in an area defined by an angle ⁇ 0 and the outer radius of this arm. Once the angle determined, by performing a simple "zigzag" in the clockwise direction, then counterclockwise on ⁇ 0 degrees from the center, an arm of the spiral can be obtained.
  • the dimensions of a radiating element or elementary antenna 1 are therefore determined by the outside diameter D ⁇ Xt of the spiral which is proportional to the longest wavelength ⁇ ma ⁇ , that is to say the frequency of use the lowest F min .
  • the diameter D ⁇ Xt corresponds to the diameter composed by a circle passing the parts of the outermost arms E 1 , E 2 , E 3 , E 4 , on the contrary, the internal diameter D int of the spiral is defined from the parts of the most internal sinuous strands I 1 , I 2 , U, I 4 (FIGS. 3 and 4).
  • the antenna is said to be independent of the frequency.
  • the overall geometry of the antennal system (number and size of the elementary antennas, dimensions of the antenna array) varies in particular as a function of the frequency band to be treated, the carrier on which the antenna array is positioned and the desired direction-finding performance. for a given application.
  • the accuracy of direction finding is, for example, inversely proportional to the opening of the network (distance between antennas) and is inversely proportional to the number of antennas used.
  • the spacing between antennas must not be too great so as not to increase too much the risks of ambiguity on the direction-finding accuracy. For example, a direction-finding antenna operating on the band 20MHz - 160MHz with 5 dipoles arranged on a circle of radius 1, 5 m has a good accuracy of direction finding.
  • the geometry of the antenna array may also be a function of the carrier of the antenna array. It is for example chosen in order to obtain a cover azimuthal electric radio equal or close to 360 °.
  • This configuration can be for example circular type, arranged on the mast of a boat or positioned on each side of a vehicle or linearly on the wings of an aircraft.
  • the elementary antenna is maintained at reflector 2 by insulating spacers E (FIG. 5) of length defined by the distance separating the antenna from the reflector plane, as will be detailed hereinafter.
  • FIG. 6 depicts an exemplary representation in which 4 strands of an antenna are connected together in pairs through printed tracks, for example, the strand 1 i with the strand 1 3 (vertical polarization) and the strand 1 2 with the strand “I 4 (horizontal polarization).
  • the strands receiving same polarization signals are connected to an adapter device (symmetrical transformer sor) before being transmitted to the signal processing devices and antenna processing.
  • This device better known by the acronym "balun” aims to symmetrize the currents transmitted in the radiating elements and to adapt the impedance of the antenna to the characteristic impedance of the receiver, ideally 50 ⁇ .
  • FIG. 1 depicts an exemplary representation in which 4 strands of an antenna are connected together in pairs through printed tracks, for example, the strand 1 i with the strand 1 3 (vertical polarization) and the strand 1 2 with the strand “I 4 (horizontal polarization).
  • the strands receiving same polarization signals are connected to an adapter device (
  • a first impedance matching system (balancing transformer) 4 connects the strands 1 2 and 1 4 and also allows the adaptation with respect to a signal processing system 5.
  • the strands 1 i and 1 3 are connected by an adaptation system 6 to a processing device 7 which will process the vertical polarization signals received on each of the elementary antennas constituting the complete system for conducting direction finding. Likewise, this device processes horizontally polarized signals.
  • the sizing of these adaptation devices is a function of the frequency bands processed and the desired adaptation performance. They are placed orthogonally to the antenna between it and the reflector plane at the excitation level.
  • the 7 is associated with an antenna switch (not shown in the figure) which will make it possible to select the radiating element and the selected polarization successively allowing the acquisition of the different signals received on the antenna or the antennal system. All the signals acquired on the antennas will then be sent to a processing module which, using a goniometry algorithm adapted to the multi polarization, and a calculator will realize the estimation of the angle of arrival of the signal regardless of its polarization.
  • the signals are grouped by polarization mode, the vertically polarized signals are grouped together before being processed and the horizontally polarized signals are grouped together before being processed.
  • the system includes means for grouping signals according to their polarization, for example.
  • the signals may optionally be coupled at the output of each radiating element by a hybrid type component.
  • This direction finding processing is based in particular on the use of the amplitude and the phase of the signals. Indeed, unlike conventional methods using only the amplitude or the phase of the signals, the invention uses the two quantities. This makes it possible to obtain rough information of the angle by the amplitude (sectorization) and precise information by the phase, which significantly improves the accuracy of the system.
  • the reflective plane 2 By nature the sinuous spiral has no directional radiation.
  • an absorbent cavity as in EP 0 198 578 or a square metal reflector plane 2, which is placed behind the antenna 1, Figure 1.
  • the dimensions of the reflector plane 2 are in particular determined compared to those of the sinuous spiral which forms the antenna according to the invention and with respect to the low frequency of use of the system. Indeed, to be optimal, a reflective plane must be at least ⁇ dimension for this frequency.
  • the main advantage of using a reflector plane is that it improves the efficiency of the antenna compared to a solution using absorbent cavities.
  • the distance, defined by the normal between the center of the antenna 1 and the reflector plane 2 must be equal in the optimum case to a quarter of a wavelength for a frequency F considered. Therefore, the band of use of the antenna will be limited by the dimensions of the reflective plane and its distance to the radiating elements.
  • One of the main qualities of a directive antenna being to have the best possible back-to-back ratio (directivity ratio between the front and the rear of the antenna), the value of the distance is, therefore, chosen so to allow the operation of the antenna on the widest possible frequency band while maintaining a good front-to-back ratio in the radiation of the antenna. For example, if the objective is to have the best front-to-back ratio for the frequency F1 of a frequency band, then the distance "d" between the reflective plane 2 and the antenna is
  • the dimensions of the antenna are a function of the target frequency band.
  • the low frequency is proportional to the outside diameter D ⁇ Xt of the spiral
  • the high frequency is proportional to the inner diameter D int of the spiral.
  • the matching circuits disturb the radiation of the antenna for high frequencies of use.
  • the matching circuit may comprise a metal shield "B" in FIG. 1, which makes it possible to avoid the damage that the "baluns" can bring to the radiation of the antennas, whatever the polarization.
  • FIG. 7 gives an exemplary embodiment of a grating according to a regular polygonal configuration comprising 5 radiating elements.
  • the network pentagonal thus formed offers, in particular, the advantage of having a network of directional antennas which makes it possible to place this network of multi-polarization antennas on any carrier structure without being disturbed by it. It also allows to work with a radio coverage of 360 ° For example, it is possible to position it at the top of a mast as it is represented in Figure 9.
  • the dimensions of the network defined by the height H, the length L and the width of the system P depend on the size of the elementary radiating element as well as the frequency band and the expected performances.
  • the network is associated with a means not shown in the figure for performing the steps of the antenna processing algorithms capable of processing the multi polarization of the signals and operating taking into account the amplitude and the phase of the signals.
  • the radiation diagram of FIG. 8 shows a measurement result at 1 GHz of the antennas of the network described by the preceding example of the invention. These diagrams were measured with a vertical and horizontal linear polarization source and the responses of each antenna in the corresponding polarizations were measured.
  • the opening at 3dB is 75 ° which allows, with at least 5 sinuous spirals, to have good coverage in all directions.
  • the configuration of the network may be different: linear or homothetic network in the case of an airborne configuration.
  • N sinuous spiral antennas whose dimensions are adapted to the frequency band of use N metal reflectors of the same dimension as the elementary antennas, 2N matching circuits (balun), N protections (shielding) to compensate for the presence of the matching circuits, a direction finding algorithm adapted to multi-polarization processing and installation configuration.
  • FIG. 10 represents in a diagram where the abscissa axis corresponds to the frequency axis expressed in MHz and the ordinate axis represents the Effective Height of an antenna according to the prior art, curve I, and an antenna according to the invention, the curve II corresponding to the vertical polarization and the curve III the horizontal polarization.
  • the array of multi-polarization directive antennas described above therefore makes it possible to process signals whatever the polarization without being hindered by the carrier structure of the antenna. This allows easier integration on a carrier.
  • the radiation patterns of the antennas (opening, front to back ratio, etc.) make it possible to obtain good precision performance without being disturbed by the carrier structure.
  • the good stability of the antenna network also makes it possible to envisage calibration by simulation since the radiation patterns will be weakly disturbed by the carrier structure.
  • the fact that the antenna is insensitive to the supporting structure therefore makes it possible to envisage interchangeability antenna from one carrier to another without having to re-calibrate.
  • each radiating element makes it possible to directly and independently process the vertical and horizontal polarizations as well as any other type of polarization by suitable processing.
  • a pentagonal network consisting of these antennas, we can have a 360 ° coverage to apply the goniometry treatments without being disturbed by the elements supporting the antenna. In some configurations, this also makes it possible to simplify or eliminate the calibration phases, since the elementary antennas will not be affected by the carrier structure.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Réseau d'antennes directives multi polarisations large bande travaillant dans une bande de fréquence choisie caractérisé en ce qu'il comporte au moins les éléments suivants : N capteurs élémentaires de type spirale sinueuse complémentaires à plusieurs brins disposés selon une structure permettant d'obtenir une couverture azimutale de l'ordre de 360° et fonction du porteur, chacun des N capteurs comportant un plan réflecteur (2) fixé à l'antenne par une entretoise isolante E, chacun des N capteurs comportant des cellules d'adaptation adaptées à la bande de fréquences de travail dudit réseau, chacun des N capteurs comportant des voies de sortie séparées (5) et (7) pour les signaux à polarisation verticale et pour les signaux à polarisation horizontale, un dispositif adapté à exécuter un algorithme de goniométrie utilisant l'amplitude et la phase desdits signaux et adapté à la configuration du réseau.

Description

RESEAU D'ANTENNES DIRECTIVES MULTI POLARISATIONS LARGE
BANDE.
L'invention concerne une architecture pour un réseau d'antennes multi polarisa- tions large bande. Elle s'applique dans une gamme de fréquence comprenant la très haute fréquence ou VHF (de 30 MHz à 300 MHz), l'ultra haute fréquence ou UHF (de 300 MHz à 3 GHz) et la gamme de fréquence SHF (de 3 GHz à 30 GHz).
Elle est utilisée dans le domaine des antennes de goniométrie. Le réseau d'antennes directives multi polarisations très large bande permet dans un contexte de goniométrie de traiter des signaux de polarisations diverses sans interaction avec le porteur par l'utilisation de traitements de goniométrie adaptés. En effet, dans certaines configurations d'installation, l'utilisation d'antennes directives permet de s'affranchir de la structure porteuse. Par exemple, dans un contexte de goniométrie navale, le réseau d'antennes selon l'invention peut être placé n'importe où sur le mat d'un bateau du fait de son rayonnement directif, sans être perturbé par celui-ci.
Un des principaux problèmes rencontrés lors de l'intégration d'antennes de goniométrie, est le choix de la structure mécanique maintenant les antennes élémentaires et le positionnement du système antennaire complet sur une structure porteuse. En effet, ce placement est stratégique car le réseau d'antenne ne doit pas être perturbé par la structure de maintien. Cette problématique est accentuée dans un contexte multi polarisation. Par exemple, dans le cas de la goniométrie navale, le choix du positionnement de l'antenne est crucial et limité du fait des nombreux équipements de bord tels que les radars, les émetteurs de communication, le système de navigation, etc Un système antennaire composé de plusieurs antennes directives peut se placer beaucoup plus facilement, par exemple autour d'un mât. Du fait de son rayonnement directif, les performances des antennes ne sont donc pas pénalisées par la structure porteuse. Dans le domaine de la radiogoniométrie, la plupart des systèmes antennaires existants opèrent uniquement en polarisation verticale. Au cours des deux dernières années, de nouveaux concepts de systèmes antennaires ont vu le jour et permettent, a priori, de réaliser des goniométries des signaux en pola- risation verticale et horizontale soit de manière séparée, soit de manière couplée en utilisant un traitement de goniométrie adapté. Ces nouveaux systèmes utilisent des antennes élémentaires à couverture radioélectrique azi- mutale omnidirectionnelles de type boucle ou dipôle.
Les principaux inconvénients des systèmes antennaires de goniométrie constitués d'antennes omnidirectionnelles à polarisation verticale et horizontale sont notamment : o que leurs performances dépendent de la structure mécanique maintenant les antennes élémentaires et/ou de la structure porteuse du système antennaire complet, et cela en fonction de la polarisation des si- gnaux, o qu'une phase de calibration avec la structure porteuse est nécessaire pour se rapprocher des performances optimales et pour tenir compte des perturbations engendrées par la structure mécanique maintenant les antennes élémentaires et/ou la structure porteuse du système an- tennaire complet. Dans certains cas, la mise en oeuvre d'une phase de calibration demande des moyens considérables ce qui conduit à des coûts d'intégration élevés ou à une impossibilité de réalisation technique.
Pour des applications à multi polarisations, il existe actuellement différents types d'antennes élémentaires directives. Dans le cas d'applications dites « large bande », des antennes de type spirale à bi-polarisations linéaires ou circulaires sont utilisées. Un exemple d'antenne est décrit dans le brevet européen EP 0 198 578. Ce brevet divulgue une antenne à polarisation circulaire double, comprenant un nombre N de branches d'antenne identiques, de forme générale sinueuse, s'étendant vers l'extérieur à partir d'un axe central commun et qui sont disposées symétriquement sur une surface à des inter- valles de 3607N autour de l'axe central. Chaque br anche d'antenne comprend des cellules de coudes, des lignes et de courbes qui sont disposées d'une manière log-périodique ou quasi-log-périodique, de façon que chaque cellule soit intercalée entre des cellules adjacentes d'une branche d'antenne adjacente sans toucher ces cellules adjacentes. L'enseignement technique de ce brevet est principalement accès sur l'antenne directive élémentaire et différentes formes de réalisation pour cette dernière. Il ne décrit pas comment associer plusieurs antennes dans le but de réaliser de la goniométrie multi polarisation ni le type de traitement à utiliser. D'autre part, ce brevet décrit l'utilisation d'une cavité contenant un absorbant électromagnétique pour rendre les antennes directives.
L'architecture antennaire ou réseau antennaire selon l'invention repose sur une association de plusieurs antennes élémentaires disposées selon une structure choisie et adaptée à la structure porteuse afin d'obtenir une couverture radioélectrique azimutale donnée, par exemple, sur 360°avec des antennes directives ou rendues directives grâce à des éléments adaptés. Cette invention peut également être utilisée dans le cas où une couverture angulaire plus réduite (sur 180°par exemple) est souha itée et être utilisée dans des systèmes de détections ou la couverture sur 360°n'est pas obligatoire. D'autre part, en fonction du type de porteur, le traitement d'antenne utilisé peut varier et être adapté aux performances visées par une application.
L'invention concerne un réseau d'antennes directives multi polarisations large bande travaillant dans une bande de fréquence choisie caractérisé en ce qu'il comporte au moins les éléments suivants : o N capteurs élémentaires de type spirale sinueuse complémentaires, à plusieurs brins disposés selon une structure permettant d'obtenir une couverture azimutale donnée, o chacun des N capteurs comportant un plan réflecteur fixé à l'antenne par une entretoise isolante E, o chacun des N capteurs comportant des cellules d'adaptation adaptées à la bande de fréquences de travail dudit réseau, o chacun des N capteurs comportant des voies de sortie séparées et pour les signaux à polarisation verticale et pour les signaux à polarisa- tion horizontale, o un dispositif adapté à exécuter un algorithme de goniométrie utilisant l'amplitude et la phase desdits signaux et adapté à la configuration du réseau.
Selon un mode de réalisation le réseau antennaire comporte : o un moyen permettant de regrouper les signaux présentant une même polarisation, d'une part les signaux à polarisation verticale provenant des différents capteurs élémentaires et d'autre part les signaux à polarisation horizontale, o un dispositif adapté à exécuter un algorithme de goniométrie utilisant l'amplitude et la phase desdits signaux regroupés et adapté à la configuration du réseau.
La couverture radioélectrique azimutale est par exemple voisine de 360°et peut être fonction du porteur sur lequel se trouve disposé le réseau d'antennes. D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit d'un exemple détaillé donné à titre illustratif et nullement limitatif, annexé des figures qui représentent : o La figure 1 , un élément d'antenne associé à un réflecteur selon l'invention, o La figure 2, une configuration des 4 brins au centre de l'antenne élémen- taire, o La figure 3, un système d'adaptation d'impédance, o La figure 4, un exemple de configuration du système antennaire selon l'invention dans le cas d'un réseau à 5 antennes, o La figure 5, un résultat de diagramme de rayonnement mesuré pour un réseau antennaire selon l'invention en polarisation verticale et horizontale, o La figure 6, un exemple de positionnement du réseau antennaire en haut d'un mât selon l'invention, et o Les figures 7 et 8, des courbes de hauteur efficace montrant le gain obtenu avec le réseau antennaire selon l'invention et obtenue avec les an- tennes selon l'art antérieur.
La figure 1 représente une antenne élémentaire 1 imprimée sur un substrat diélectrique composé de quatre branches I 1, 12, U et 14 complémentaires ou autocomplémentaires. Cet élément 1 est disposé devant un réflecteur 2 qui permet notamment de rendre directif l'élément antennaire 1 ou antenne élémentaire. Le réflecteur 2 joue aussi un rôle de protection vis à vis des rayonnements parasites provenant d'autres éléments antennaires faisant partie du réseau selon l'invention. Ce plan réflecteur permet notamment d'obtenir un meilleur rendement que lorsqu'on utilise une cavité absorbante. La géométrie d'une spirale équi angulaire est définie par :
r désignant le rayon d'un bras de la spirale et r0 le rayon au centre où K représente le bras de la spirale considéré, N, le nombre de bras et « a » la sin(0) constante de la spirale avec a = — r^- tel que définie sur la figure 2 dans un tan(μ) diagramme de coordonnées polaires.
Pour une spirale sinueuse planaire, θ=ττ/2 et a τ~ \ tan(μ)
L'excitation (centre de la spirale) des N bras est faite sur un cercle de rayon r0
petit devant la longueur d'onde (— - < 0.1) avec do=2.ro sin(θo)=2.ro. La longueur
A
de chaque bras est définie par L = (r - rΛ — r^- et le dernier paramètre impor- cos(//) 4 t.an 4t. pour I la sp •ira Ile es .t. i I" épaisseur angu Ila -ire d_ié' <f-in-ie par S c = - 1 L Tog (\ — sm( fu-{) + C λ ou , a yύn[μ)- C J
C est une constante qui peut être déterminée au centre de la spirale par R=Cr. L'épaisseur d'un bras est ajustée à l'excitation (centre de la spirale) par R0=Cr0 Basiquement, dans une spirale sinueuse, chaque bras est contenu dans une aire définie par un angle α0 et le rayon extérieur de ce bras. Une fois l'angle déterminé, en réalisant un simple « zigzag » dans le sens horaire, puis antihoraire sur α0 degrés depuis le centre, un bras de la spirale peut être obtenu. Les dimensions d'un élément rayonnant ou antenne élémentaire 1 sont donc déterminées par le diamètre extérieur DΘXt de la spirale qui est proportionnelle à la plus grande longueur d'onde λmaχ, c'est-à-dire la fréquence d'utilisation la plus basse Fmin. Le diamètre DΘXt correspond au diamètre composé par un cercle passant pas les parties des bras les plus externes E1, E2, E3, E4, au contraire, le diamètre interne Dint de la spirale est définie à partir des parties des brins sinueux les plus internes I1, I2, U, I4 (figures 3 et 4). Par cette structure log- périodique ou quasi log-périodique, l'antenne est dite indépendante de la fréquence.
La géométrie globale du système antennaire (nombre et tailles des antennes élémentaires, dimensions du réseau d'antennes) varie notamment en fonction de la bande de fréquences à traiter, du porteur sur lequel le réseau d'antennes est positionné et des performances de goniométrie souhaitées pour une application donnée. La précision de goniométrie est, par exemple, inversement proportionnelle à l'ouverture du réseau (distance entre antennes) et est inversement proportionnelle au nombre d'antennes utilisées. Par contre, l'espacement entre antennes ne doit pas être trop grand pour ne pas augmenter de manière trop importante les risques d'ambiguïté sur la précision de goniométrie. Par exemple, une antenne de goniométrie fonctionnant sur la bande 20MHz - 160MHz avec 5 dipôles disposés sur un cercle de rayon 1 ,5 m possède une bonne précision de goniométrie. La géométrie du réseau d'antenne peut aussi être fonction du porteur du ré- seau d'antennes. Elle est par exemple choisie afin d'obtenir une couverture radio électrique azimutale égale ou voisine de 360°. Cette configuration peut être par exemple de type circulaire, disposée sur le mât d'un bateau ou bien positionnée sur chaque face d'un véhicule ou de façon linéaire sur les ailes d'un avion. L'antenne élémentaire est maintenue au réflecteur 2 par des entretoises isolantes E (figure 5) de longueur définie par la distance séparant l'antenne du plan réflecteur, comme il sera détaillé ci-après.
La figure 6 décrit un exemple de représentation où 4 brins d'une antenne sont reliés ensembles deux à deux par le biais de pistes imprimées par exemple, le brin 1 i avec le brin 13 (polarisation verticale) et le brin 12 avec le brin "I 4 (polarisation horizontale). Les brins recevant des signaux de même polarisation sont reliés à un dispositif d'adaptation (transformateur symétri- seur) avant d'être transmis à des dispositifs de traitement de signaux et de traitement d'antenne. Ce dispositif plus connu sous l'acronyme anglo-saxon « balun » a pour but de symétriser les courants transmis dans les éléments rayonnants et d'adapter l'impédance de l'antenne à l'impédance caractéristique du récepteur, idéalement 50Ω. Sur la figure 6, par exemple, un premier système d'adaptation en impédance (transformateur symétriseur) 4, relie les brins 12 et 14 et permet aussi l'adaptation par rapport à un système de trai- tement de signaux 5. Les brins 1 i et 13 sont reliés par un système d'adaptation 6 à un dispositif de traitement 7 qui va traiter les signaux de polarisation verticale reçus sur chacune des antennes élémentaires constituant le système complet permettant d'effectuer une goniométrie. De même, ce dispositif traite les signaux à polarisation horizontale. Le dimensionnement de ces dispositifs d'adaptation est fonction des bandes de fréquences traitées et des performances d'adaptation souhaitées. Ils sont placés orthogonalement à l'antenne entre celle-ci et le plan réflecteur au niveau de l'excitation. Enfin, dans le but de réaliser de la goniométrie, le système antennaire tel qu'il est décrit à la figure 7 est associé à un commutateur d'antenne non représenté sur la figure qui permettra de sélectionner l'élément rayonnant élé- mentaire et la polarisation choisie successivement permettant l'acquisition des différents signaux reçus sur l'antenne ou le système antennaire. Tous les signaux acquis sur les antennes seront alors envoyés vers un module de traitement qui, à l'aide d'un algorithme de goniométrie adapté à la multi pola- risation, et d'un calculateur réalisera l'estimation de l'angle d'arrivée du signal quelle que soit sa polarisation. Les signaux sont regroupés par mode de polarisation, les signaux polarisés verticalement sont regroupés ensemble avant d'être traités et les signaux polarisés horizontalement sont regroupés ensemble avant d'être traités. Le système comprend un moyen de regrou- pement des signaux en fonction de leur polarisation, par exemple. Les signaux peuvent éventuellement être couplés en sortie de chaque élément rayonnant par un composant de type hybride. Dans ce cas, c'est le traitement de goniométrie qui sera adapté et qui se chargera de distinguer la polarisation. Ce traitement de goniométrie est notamment basé sur l'utilisation de l'amplitude et de la phase des signaux. En effet, contrairement à des procédés classiques n'utilisant que l'amplitude ou que la phase des signaux, l'invention utilise les deux grandeurs. Ceci permet d'obtenir une information grossière de l'angle par l'amplitude (sectorisation) et une information précise par la phase, ce qui améliore significativement la précision du système.
A titre d'exemple, un algorithme de type corrélation vectorielle, haute résolution ou non, utilisant l'amplitude et la phase des signaux donnera des performances meilleures dans le cas de structure porteuses complexes. Le plan réflecteur 2 Par nature la spirale sinueuse ne possède pas de rayonnement directif. Pour pouvoir obtenir une antenne directive, plusieurs solutions sont possibles. Par exemple il est possible d'utiliser une cavité absorbante comme dans le brevet EP 0 198 578 ou un plan réflecteur 2 métallique de forme carrée, qui est placé derrière l'antenne 1 , figure 1. Les dimensions du plan réflecteur 2 sont notamment déterminées par rapport à celles de la spirale sinueuse qui forme l'antenne selon l'invention et par rapport à la fréquence basse d'utilisation du système. En effet, pour être optimal, un plan réflecteur doit être au moins de dimension λ pour cette fréquence. Le principal avantage offert par l'utilisation d'un plan réflecteur est qu'il améliore le rendement de l'antenne par rapport à une solution utilisant des cavités absorbantes. La distance, définie par la normale entre le centre de l'antenne 1 et le plan réflecteur 2 doit être égale dans le cas optimal à un quart de longueur d'onde pour une fréquence F considérée. Par conséquent, la bande d'utilisation de l'antenne sera limitée par les dimensions du plan réflecteur et de sa distance aux éléments rayonnants. Une des qualités principales d'une antenne directive étant d'avoir le meilleur rapport avant - arrière possible (rapport de directivité entre l'avant et l'arrière de l'antenne), la valeur de la distance est, par conséquent, choisie afin de permettre le fonctionnement de l'antenne sur la bande de fréquences la plus large possible tout en conservant un bon rapport avant arrière dans le rayonnement de l'antenne. Par exemple, si l'objectif fixé est d'avoir le meil- leur rapport avant - arrière pour la fréquence F1 d'une bande de fréquence d'utilisation, alors la distance « d » entre le plan réflecteur 2 et l'antenne est
Q fixée par la formule: d = .
4Fl
Protection des circuits d'adaptation
Comme il est expliqué plus haut, les dimensions de l'antenne sont fonction de la bande de fréquences visée. La fréquence basse est proportionnelle au diamètre extérieur DΘXt de la spirale, la fréquence haute est proportionnelle au diamètre intérieur Dint de la spirale. Il est donc possible que les circuits d'adaptation viennent perturber le rayonnement de l'antenne pour les fréquences hautes d'utilisation. Pour y remédier le circuit d'adaptation peut comprendre un blindage métallique « B » sur la figure 1 , qui permet d'éviter les dégradations que peuvent apporter les « baluns » sur le rayonnement des antennes, quelle que soit la polarisation. Association en réseau
La figure 7 donne un exemple de réalisation d'un réseau suivant une configu- ration polygonale régulière comprenant 5 éléments rayonnants. Le réseau pentagonal ainsi formé offre notamment comme avantage d'avoir un réseau d'antennes directives qui permet de placer ce réseau d'antennes multi polarisation sur n'importe qu'elle structure porteuse sans être perturbé par celle-ci. Il permet aussi de travailler avec une couverture radioélectrique de 360°Par exemple, il est possible de le positionner en haut d'un mât comme il est représenté à la figure 9. Les dimensions du réseau définies par la hauteur H, la longueur L et largeur du système P, dépendent de ta taille de l'élément rayonnant élémentaire ainsi que de la bande de fréquence et des performances attendues. A titre d'exemple, le réseau de la figure 9, fonctionnant sur la bande de fréquence 500MHz - 3000MHz possèdent les dimensions suivantes : P = 420mm, L = 420mm et H = 250mm.
Le réseau est associé à un moyen non représenté sur la figure permettant d'exécuter les étapes des algorithmes de traitement d'antenne capable de traiter la multi polarisation des signaux et fonctionnant en prenant en compte l'amplitude et la phase des signaux.
Le diagramme de rayonnement de la figure 8 montre un résultat de mesure à 1 GHz des antennes du réseau décrit par l'exemple précédent de l'invention. Ces diagrammes ont été mesurés avec une source en polarisation linéaire verticale et horizontale et les réponses de chaque antenne dans les polarisations correspondantes ont été mesurées. L'ouverture à 3dB est de 75°ce qui permet, avec au minimum 5 spirales sinueuses, d'avoir une bonne couverture suivant tous les azimuts. En appliquant des algorithmes de goniométrie basés sur l'amplitude et la phase des signaux, de type corrélation vectorielle ou algorithme à haute résolution (MUSIC, CAPON, etc .. connus de l'Homme du métier) d'excellentes performances de précision dans les deux polarisations sont obtenues. D'autre part, plus le nombre de spirales sera élevé, plus les performances seront élevées. Ces résultats restent valables sur toute la bande de fréquences d'utilisation de l'antenne et quelle que soit la polarisa- tion. En fonction du système sur lequel le réseau d'antenne de goniométrie multi polarisations est utilisé, la configuration du réseau peut-être différente : réseau linéaire ou homothétique dans le cas d'une configuration aéroportée. Dans le cadre d'une utilisation pour un système antennaire de goniométrie large bande, de manière plus générale la mise en œuvre demande une structure composée : o De N antennes de type spirales sinueuses dont les dimensions sont adaptées à la bande de fréquences d'utilisation, o De N plans réflecteurs métalliques de la même dimension que les an- tennes élémentaires, o De 2N circuits d'adaptation (balun), o De N protections (blindage) pour palier à la présence des circuits d'adaptation, o D'un algorithme de goniométrie adapté au traitement de la multi pola- risation et à la configuration d'installation.
La figure 10 représente dans un diagramme où l'axe des abscisses correspond à I 'axe des fréquences exprimées en MHz et l'axe des ordonnées représente la Hauteur Efficace d'une antenne selon l'art antérieur, courbe I, et une antenne selon l'invention, la courbe II correspondant à la polarisation verticale et la courbe III la polarisation horizontale.
Le réseau d'antennes directives multi polarisations décrit ci-dessus, permet donc de traiter des signaux quelle que soit la polarisation sans être gêné par la structure porteuse de l'antenne. Ceci permet donc une intégration plus facile sur un porteur. D'autres part, les diagrammes de rayonnement des antennes (ouverture, rapport avant arrière, etc..) permettent d'obtenir de bonnes performances de précision sans être perturbé par la structure porteuse. La bonne stabilité du réseau d'antenne permet aussi d'envisager des calibrages par simulation puisque les diagrammes de rayonnement seront fai- blement perturbés par la structure porteuse. Le fait que l'antenne soit insensible à la structure porteuse permet donc d'envisager une interchangeabilité de l'antenne d'un porteur à un autre sans avoir à refaire un calibrage complet.
De plus, les deux sorties de chaque élément rayonnant permettent de traiter directement et indépendamment les polarisations verticale et horizontale ain- si que n'importe qu'elle autre type de polarisation par traitement adapté. A l'aide par exemple d'un réseau pentagonal constitué de ces antennes nous pouvons avoir une couverture sur 360°pour applique r les traitements de go- niométrie sans être perturbé par les éléments supportant l'antenne. Dans certaines configuration, ceci permet aussi de simplifier voir d'éliminer les phases de calibrages, puisque que les antennes élémentaires ne seront pas affectées par la structure porteuse.

Claims

REVENDICATIONS
1 - Réseau d'antennes directives multi polarisations large bande travaillant dans une bande de fréquence choisie caractérisé en ce qu'il comporte au moins les éléments suivants : o N capteurs élémentaires de type spirale sinueuse complémentaires à plusieurs brins disposés selon une structure permettant d'obtenir une couverture azimutale donnée, o chacun des N capteurs comportant un plan réflecteur (2) fixé à l'antenne par une entretoise isolante E, o chacun des N capteurs comportant des cellules d'adaptation adaptées à la bande de fréquences de travail dudit réseau, o chacun des N capteurs comportant des voies de sortie séparées (5) et (7) pour les signaux à polarisation verticale et pour les signaux à po- larisation horizontale, o un dispositif adapté à exécuter un algorithme de goniométrie utilisant l'amplitude et la phase desdits signaux et adapté à la configuration du réseau.
2 - Réseau d'antennes selon la revendication 1 caractérisé en ce que chaque élément antennaire est associé à au moins un dispositif d'adaptation blindé.
3 - Réseau d'antennes selon la revendication 1 caractérisé en ce que les dimensions des spirales sont choisies afin de travailler dans une bande de fréquence choisie.
4 - Réseau d'antennes selon la revendication 1 caractérisé en ce que la forme du réseau d'antennes est adaptée au plan réflecteur (2), ledit réflec- teur étant un réflecteur plan, conique, cylindrique ou conforme. 5 - Réseau d'antennes selon la revendication 1 et 4 caractérisé en ce que les dimensions du plan réflecteur (2) sont choisies en fonction de la bande de fréquences voulues.
6 - Réseau d'antennes selon l'une des revendications 1 à 5 caractérisé en ce qu'il comporte 5 éléments antennaires disposés selon un réseau ayant une forme pentagonale.
7 - Réseau d'antennes selon l'une des revendications 1 à 5 caractérisé en ce que la disposition des antennes est adaptée au porteur du réseau d'antennes et permet d'obtenir une couverture azimutale sensiblement égale à 360?
8 - Réseau d'antennes selon l'une des revendications 1 à 6 caractérisé en ce que l'algorithme de traitement d'antenne est adapté à traiter la multi polarisation des signaux et fonctionnant en prenant en compte l'amplitude et la phase des signaux.
9 - Réseau d'antennes selon la revendication 1 caractérisé en ce qu'il com- porte un moyen adapté à regrouper les signaux présentant une même polarisation, d'une part les signaux à polarisation verticale provenant des différents capteurs élémentaires et d'autre part les signaux à polarisation horizontale, le moyen de regroupement étant disposé en amont du dispositif comprenant l'algorithme de traitement.
10 - Réseau d'antennes selon l'une des revendications 1 à 8 caractérisé en ce que le traitement de goniométrie est adapté à la géométrie, aux caractéristiques électriques du porteur et aux performances attendues.
1 1 - Utilisation du réseau d'antennes selon l'une des revendications 1 à 10 à de la goniométrie de signaux reçus sur les capteurs élémentaires.
EP08868381A 2007-12-21 2008-12-19 Reseau d'antennes directives multi polarisations large bande Withdrawn EP2232638A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0709050A FR2925771B1 (fr) 2007-12-21 2007-12-21 Reseau d'antennes directives multi polarisations large bande
PCT/EP2008/068090 WO2009083511A1 (fr) 2007-12-21 2008-12-19 Reseau d'antennes directives multi polarisations large bande

Publications (1)

Publication Number Publication Date
EP2232638A1 true EP2232638A1 (fr) 2010-09-29

Family

ID=39473577

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08868381A Withdrawn EP2232638A1 (fr) 2007-12-21 2008-12-19 Reseau d'antennes directives multi polarisations large bande

Country Status (7)

Country Link
US (1) US20110133986A1 (fr)
EP (1) EP2232638A1 (fr)
CN (1) CN101926047A (fr)
FR (1) FR2925771B1 (fr)
IL (1) IL206520A0 (fr)
WO (1) WO2009083511A1 (fr)
ZA (1) ZA201004356B (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL224742A (en) * 2012-02-17 2017-01-31 Elettr S P A Low profile coiled antenna array with ultra-wide channel
CN104659489A (zh) * 2013-11-15 2015-05-27 智捷科技股份有限公司 大覆盖范围的天线装置
US10923825B2 (en) * 2017-07-12 2021-02-16 Src, Inc. Spiral antenna system
CN109462032B (zh) * 2018-10-10 2021-01-12 江苏三和欣创通信科技有限公司 一种基于多臂螺旋的多星双频天线
CN109509992A (zh) * 2018-12-29 2019-03-22 西安恒达微波技术开发有限公司 一种无源宽带射频测向天线
CN113156222B (zh) * 2021-04-21 2022-05-31 山东大学 一种vhf观测系统、阵列单机系统及方法
CN113824512B (zh) * 2021-09-13 2023-10-10 中信科移动通信技术股份有限公司 大规模天线调测方法、测试设备及计算机设备
EP4358303A1 (fr) 2022-10-17 2024-04-24 Rohde & Schwarz GmbH & Co. KG Réseau d'antennes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143380A (en) * 1977-04-27 1979-03-06 Em Systems, Inc. Compact spiral antenna array
US4658262A (en) * 1985-02-19 1987-04-14 Duhamel Raymond H Dual polarized sinuous antennas
US5212494A (en) * 1989-04-18 1993-05-18 Texas Instruments Incorporated Compact multi-polarized broadband antenna
EP0546812B1 (fr) * 1991-12-10 1997-08-06 Texas Instruments Incorporated Dispositif à plusieurs antennes adapté à un aérodyne pour faire les repérages à champ visuel grand
US7075500B2 (en) * 2004-09-24 2006-07-11 Avocent California Corporation Antenna for wireless KVM, and housing therefor
US7460083B2 (en) * 2007-04-10 2008-12-02 Harris Corporation Antenna assembly and associated methods such as for receiving multiple signals
US8305265B2 (en) * 2007-05-29 2012-11-06 Toyon Research Corporation Radio-based direction-finding navigation system using small antenna

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009083511A1 *

Also Published As

Publication number Publication date
FR2925771A1 (fr) 2009-06-26
IL206520A0 (en) 2010-12-30
ZA201004356B (en) 2012-11-28
CN101926047A (zh) 2010-12-22
WO2009083511A1 (fr) 2009-07-09
US20110133986A1 (en) 2011-06-09
FR2925771B1 (fr) 2010-02-26

Similar Documents

Publication Publication Date Title
WO2009083511A1 (fr) Reseau d&#39;antennes directives multi polarisations large bande
EP2047558B1 (fr) Antenne isotrope et capteur de mesure associe
EP0886889B1 (fr) Antenne reseau imprimee large bande
FR2748162A1 (fr) Antenne imprimee compacte pour rayonnement a faible elevation
EP2622685A1 (fr) Reflecteur d&#39;antenne large bande pour une antenne filaire plane a polarisation circulaire et procede de realisation du reflecteur d&#39;antenne
FR3045219A1 (fr) Cellule rayonnante elementaire multi-bande
FR2945380A1 (fr) Antenne multifaisceaux compacte.
EP0454582A1 (fr) Système d&#39;antenne de radiogoniométrie à couverture omnidirectionnelle
EP3555653A1 (fr) Procede de realisation d&#39;un ensemble d&#39;antennes de goniometrie et ensemble antennaire realise selon un tel procede
EP3182512B1 (fr) Antenne multi-acces
FR2957194A1 (fr) Structure antennaire a dipoles
EP3175509B1 (fr) Antenne log-periodique a large bande de frequences
EP2840649B1 (fr) Réseau antennaire
FR2925232A1 (fr) Reseau d&#39;antennes a couplage electromagnetique reduit
WO2009077529A2 (fr) Antenne active tres large bande pour radar passif
WO2011000921A1 (fr) Antenne de communication bipolarisation pour liaisons mobiles par satellite
EP2449629B1 (fr) Systeme antennaire compacte omnidirectionnel et large bande comportant deux acces emission et reception separes fortement decouples
EP3767741B1 (fr) Antenne sphère
FR3027460A1 (fr) Systeme antennaire compact pour la goniometrie en diversite de la polarisation
EP3942649B1 (fr) Antenne directive compacte, dispositif comportant une telle antenne
FR2766928A1 (fr) Dispositif d&#39;interception et de radiogoniometrie hf
EP2610965A1 (fr) Antenne compacte à large bande à double polarisation linéaire
FR2860344A1 (fr) Reseau d&#39;antennes large bande
FR2522888A1 (fr) Antenne a double reflecteur a transformateur de polarisation incorpore
WO2010070019A1 (fr) Antenne omnidirectionnelle tres large bande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BELLION, ANTHONY

Inventor name: LE MEINS, CYRILLE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171006

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180417