EP2230075A1 - Parement non tissé traité en surface pour panneau mural en plâtre - Google Patents
Parement non tissé traité en surface pour panneau mural en plâtre Download PDFInfo
- Publication number
- EP2230075A1 EP2230075A1 EP09356027A EP09356027A EP2230075A1 EP 2230075 A1 EP2230075 A1 EP 2230075A1 EP 09356027 A EP09356027 A EP 09356027A EP 09356027 A EP09356027 A EP 09356027A EP 2230075 A1 EP2230075 A1 EP 2230075A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- facer
- nonwoven
- composition
- wallboard
- gypsum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010440 gypsum Substances 0.000 title claims description 45
- 229910052602 gypsum Inorganic materials 0.000 title claims description 45
- 239000000203 mixture Substances 0.000 claims abstract description 69
- 239000011230 binding agent Substances 0.000 claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000004816 latex Substances 0.000 claims abstract description 29
- 229920000126 latex Polymers 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 23
- 239000012764 mineral filler Substances 0.000 claims description 20
- 239000006254 rheological additive Substances 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 claims description 8
- 239000011118 polyvinyl acetate Substances 0.000 claims description 8
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 229920001909 styrene-acrylic polymer Polymers 0.000 claims description 6
- 229920003086 cellulose ether Polymers 0.000 claims description 5
- 239000002174 Styrene-butadiene Substances 0.000 claims description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000011398 Portland cement Substances 0.000 claims description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 2
- 239000002270 dispersing agent Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 239000011115 styrene butadiene Substances 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 claims 1
- 239000000835 fiber Substances 0.000 description 29
- 239000011162 core material Substances 0.000 description 20
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 18
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 18
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 15
- 239000000654 additive Substances 0.000 description 13
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 13
- 239000003365 glass fiber Substances 0.000 description 12
- 229920003043 Cellulose fiber Polymers 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 239000002002 slurry Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000011505 plaster Substances 0.000 description 7
- 239000000945 filler Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 235000010755 mineral Nutrition 0.000 description 5
- 239000002557 mineral fiber Substances 0.000 description 5
- 239000000230 xanthan gum Substances 0.000 description 5
- 229920001285 xanthan gum Polymers 0.000 description 5
- 235000010493 xanthan gum Nutrition 0.000 description 5
- 229940082509 xanthan gum Drugs 0.000 description 5
- 229920005789 ACRONAL® acrylic binder Polymers 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 229910052925 anhydrite Inorganic materials 0.000 description 4
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 4
- 229940095672 calcium sulfate Drugs 0.000 description 4
- 239000005038 ethylene vinyl acetate Substances 0.000 description 4
- 230000009970 fire resistant effect Effects 0.000 description 4
- 239000012784 inorganic fiber Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000005871 repellent Substances 0.000 description 4
- 239000005995 Aluminium silicate Substances 0.000 description 3
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 229920001222 biopolymer Polymers 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 3
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 3
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- -1 polyaramide Polymers 0.000 description 3
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000002940 repellent Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 230000005226 mechanical processes and functions Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 150000004684 trihydrates Chemical class 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 229920002748 Basalt fiber Polymers 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940095564 anhydrous calcium sulfate Drugs 0.000 description 1
- 230000001046 anti-mould Effects 0.000 description 1
- 239000002546 antimould Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical group FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 239000013053 water resistant agent Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/043—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of plaster
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
- D04H1/64—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N7/00—Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
- D06N7/0002—Wallpaper or wall covering on textile basis
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2205/00—Condition, form or state of the materials
- D06N2205/02—Dispersion
- D06N2205/023—Emulsion, aqueous dispersion, latex
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2209/00—Properties of the materials
- D06N2209/16—Properties of the materials having other properties
- D06N2209/1607—Degradability
- D06N2209/1621—Water-soluble, water-dispersible
Definitions
- the present invention relates to nonwoven facer treated with an additive as well as to a process for manufacturing gypsum wallboard.
- the invention relates to a new gypsum wallboard having a nonwoven facer and uses in exterior insulating systems and sheathing, as well as in interior systems, and generally speaking in any wet or humid area.
- a nonwoven facer treated with a composition comprising water and at least one latex binder is useful to manufacture gypsum wallboard, and to provide a reinforced bond between the gypsum and the facer.
- One of the problem solved by the present invention is to provide a nonwoven facer for gypsum wallboard with an improved bonding to the gypsum core, especially in any wet or humid area.
- the present invention relates to a nonwoven facer for use in wallboard wherein at least one surface of the nonwoven facer is treated with a composition comprising water and at least one latex binder.
- the present invention also relates to a wallboard comprising a gypsum core and at least one nonwoven facer treated with a composition comprising water and at least one latex binder.
- the present invention relates to a process for producing the nonwoven facer according to the invention for use in wallboard comprising the steps of:
- the nonwoven facer according to the invention permits to enhance the plaster bond to the nonwoven facer.
- the nonwoven facer according to the invention permits a good bonding of all type of compounds that could be used to coat the wallboard, like jointing compounds, skimming compounds, bonding compounds, building compounds, finishing compounds,
- gypsum By the word “gypsum” according to the invention, it should be also understood hydratable gypsum, plaster, stucco, calcium sulfate hemi hydrate or calcium sulfate semi-hydrate (or alternatively anhydrite).
- gypsum core the product resulting from the hydraulic setting and the hardening of a hydratable calcium sulfate, that is to say an anhydrous calcium sulfate (anhydrite II or III) or a semihydrated calcium sulfate (CaSO4 ⁇ 1/2H 2 O) in its ⁇ or ⁇ crystalline form.
- the gypsum core may also comprise other hydraulic binders in low amounts, water-resistance additives, fire-resistant additives or anti-mould additives.
- gypsum wallboard any type of gypsum wallboard like for example, but not limited to, typical gypsum wallboard, water-resistant gypsum wallboard or fire-resistant gypsum wallboard.
- facer By the word “facer” according to the invention, it should be also understood a liner or a mat.
- the present invention relates to a nonwoven facer for use in wallboard wherein at least one surface of the nonwoven facer is treated with a composition comprising water and at least one latex binder.
- the facer according to the invention is a nonwoven facer, preferably a glass mat or a mat formed of other fibers (e.g. synthetic fibers or a mixture of cellulosic fibers and synthetic fibers).
- the nonwoven facer is not paper.
- the gypsum may penetrate partly or fully in the nonwoven facer, or the nonwoven facer may even be embedded in the gypsum core.
- the facer may be of the mat type, i.e. non-woven. In one embodiment the nonwoven facer is fibrous.
- the nonwoven facer has two sides, one in contact with the gypsum core : the bottom side, and the other one not in contact with the gypsum core : the top side.
- the nonwoven facer according to the invention may comprise glass fibers.
- the glass fibers can be any type of fibers used in the facer industry.
- the glass fibers can be E, C, T, S or any known type glass fiber of good strength and durability in the presence of moisture and mixtures of lengths and diameters. Any commercially wet chop glass fiber product will be suitable. Diameters may vary within broad ranges; 15 ⁇ m or lower values or 23 ⁇ m or higher values are appropriate.
- the glass fibers used in the facer can be of any suitable length, for example from 0,25 cm up 5 cm, preferably 0,6 to 1,2 cm. Mixtures of fibers of different lengths and/or fiber diameters can be used as is known. These fibers can be coated with a silane containing size composition as is well known in the industry. Mixtures of any type of mineral or inorganic fibers can be used.
- the glass fibers may be replaced in part with any mineral fiber known in the art.
- the nonwoven facer according to the invention may further comprise at least a binder.
- a binder will confer structural integrity to the nonwoven facer by linking the fibers together.
- the binder used can be any binder typically used in the facer industry.
- a wide variety of binders are used to make nonwovens facer, such as urea formaldehyde (UF), melamine formaldehyde (MF), polyester, acrylics, polyvinyl acetate, UF and MF binders modified with polyvinyl acetate and/or acrylic, styrene acrylic copolymers, etc.
- said binder is a self cross-linkable binder, e.g. a styrene acrylic copolymer (with pendant cross-linking functionalities).
- said binder is a hydrophobic binder; especially it is desired to have a binder that would coat the fibers and further protect them against water.
- the nonwoven facer according to the invention may further comprise at least mineral filler, said filler being distributed at least partially into said bottom and/or top side.
- the filler are of such size that it substantially penetrates into the fibrous side.
- the mineral filler could be particles that have a d 50 from about 0,1 to about 10 ⁇ m, preferably about 0,5 to about 5 ⁇ m. Coarser material may however be used.
- the mineral filler can be any filler known in the art, organic or inorganic powders, for example calcium carbonate, calcium sulfate (anhydrite, semi-hydrate or dihydrate), clay, kaolin, sand, talc, mica, glass powder, titanium dioxide, magnesium oxide, alumina, alumina trihydrate (ATH), aluminium hydroxide, antimony oxide, silica, silicate, carbon, boron, beryllium, etc... Kaolin is one preferred filler.
- organic or inorganic powders for example calcium carbonate, calcium sulfate (anhydrite, semi-hydrate or dihydrate), clay, kaolin, sand, talc, mica, glass powder, titanium dioxide, magnesium oxide, alumina, alumina trihydrate (ATH), aluminium hydroxide, antimony oxide, silica, silicate, carbon, boron, beryllium, etc... Kaolin is one preferred filler.
- the nonwoven facer according to the invention may comprise cellulose fibers.
- the cellulose fibers are classical fibers, and can be obtained from kraft papers, i.e. be recycled or obtained from wood, as is known in the art, e.g. resinous trees. A mixture of various woods or sources is also suitable. One preferred embodiment is obtained with pure cellulose of selected trees comprising resinous trees.
- the nonwoven facer according to the invention may comprise organic (polymeric) fibers.
- the organic (polymeric) fibers are any known polymer fibers, and can include polyamide, polyaramide, polyethylene, polypropylene, polyester, etc. Polyester is the preferred organic fiber. The dimensions of the organic fibers are in the same range than the ones for the glass fibers.
- the bottom and/or top sides further comprise a water-resistant agent.
- Said water-resistant or repellent agent can be any agent typically used, and can for example be one useful also for the gypsum core.
- said water repellent agent is a fluorocarbon repellent or a fluorinated polymer.
- the amount of said fluorinated compound (on the basis of the dry content) may vary from about 0,1 to about 5 wt%, preferably about 0,3 to about 2 wt%, based on the total weight of the facer.
- fluorinated polymer is an acrylic polymer having a pendant (per)fluorinated group having 4 to 20 carbon atoms.
- the nonwoven facer comprises at least two plies, with an inner ply and an outer ply. Other plies can be present as well, if needed.
- the inner ply may comprise a mixture of cellulose fibers, glass fibers and optionally organic (polymeric) fibers.
- the said outer ply may comprise essentially cellulose fibers; i.e. the cellulose fibers represent at least 90 wt%, preferably 95 wt%, more preferably 98 wt% and advantageously about 100 wt% of the fibers.
- the inner ply preferably comprises by weight based on the total weight of the fibers used in the inner ply, from 25 to 60 wt% of cellulose fibers, from 25 to 60 wt% of mineral or inorganic fibers, and from 0 to 30 wt% of organic fibers, and more preferably from 30 to 50 wt% of cellulose fibers, from 30 to 50 wt% of glass fibers, and from 10 to 20 wt% of organic fibers.
- the mineral or inorganic fiber is any fiber known in the art useful for manufacturing plies of facers. Diameters may vary within broad ranges, for example from 5 to 40 ⁇ m.
- the mineral or inorganic fibers used in the inner ply can be of any suitable length, for example from 0,25 cm up 5 cm. Mixtures of fibers of different lengths and/or fiber diameters can be used as is known. One example of such fibers is basalt fibers.
- the plies are such that their surface weight may vary within broad limits.
- the inner ply may represent from about 30 to about 150 g/m 2
- the outer ply may represents from about 10 to about 70 g/m 2
- the binder may represent from about 10 to about 100 g/m 2 or the binder and filler together may represent from about 20 to about 150 g/m 2 .
- the entire facer represents for example from about 100 to about 200 g/m 2 .
- the process for manufacturing the nonwoven facer used to achieve the invention is in fact quite conventional as it uses typical devices.
- nonwoven facer processes and forming machines are suitable for modification and use with the present invention, but preferred are the wet laid nonwoven facer processes and machines wherein an aqueous slurry containing fibers is directed onto a moving permeable screen or belt called a forming wire to form a continuous nonwoven wet fibrous facer.
- the first step comprises dispersing fibers, such as glass fibers and cellulose fibers, in an aqueous slurry, collecting the dispersed fibers onto a moving permeable support to form a fibrous nonwoven layer, removing excess water from the fibrous nonwoven layer.
- the second step comprises dispersing cellulose fibers, in an aqueous slurry, collecting the dispersed fibers onto the moving web formed in step (1) to form a fibrous nonwoven layer on top of this, removing excess water from the fibrous nonwoven layers.
- the second step comprises dispersing cellulose fibers, in an aqueous slurry, collecting the dispersed fibers onto the moving web formed in step (1) to form a fibrous nonwoven layer on top of this, removing excess water from the fibrous nonwoven layers.
- the third step comprises the step of impregnating the web with a binder solution, preferably an aqueous binder solution.
- the binder solution may if required contain the filler and optionally the water-repellent, and any other additives (e.g. a fungicide/biocide).
- the third step is usually the classical sizing step known in the industry.
- the final step is a classical drying step, which may comprise a curing step for the binder.
- the fiber concentration in the slurries is classical and can vary from less than 0.1 wt% to about 1 wt%.
- the thus obtained nonwoven facer may be used to achieve the invention.
- the nonwoven facer for use in wallboard according to the invention comprises at least one surface treated with a composition comprising of water and at least one latex binder.
- the said composition comprises water and at least one latex binder, and may also comprises an amount of a mineral filler, a rheology modifier, such as a cellulose ether, a stabilizer, a preservatives and/or a biopolymer or mixtures thereof.
- the surface treated with the said composition is in contact with the gysum core.
- composition used to treated the nonwoven facer according to the invention comprises water and at least one latex binder.
- the said composition may preferentially further comprise a mineral filler.
- the preferred pourcentage of the latex binder in the composition is in the range of 1 to 55 wt% of the composition.
- the latex binder of the composition may be selected from commonly available latex polymers and may be preferably selected from the group consisting of ethylene polyvinyl acetate, polyvinyl acetate (PVOAc)latex, styrene butadiene (SBR), styrene acrylic, acrylic, vinyl acrylic or a mixture therof.
- the latex binder is ethylene polyvinyl acetate or polyvinyl acetate,(PVOAc)latex or a mixture therof.
- Suitable latex binders according to the invention are styrene acrylic, especially those from BASF sold under the name Acronal ® .
- Suitable latex binders according to the invention are those having a glass transition temperature in the range of - 20°C to +10 °C, preferably in the range of - 15°C to +8 °C, more preferably in the range of - 10°C to +6 °C, even more preferably in the range in the range of - 5°C to +5 °C.
- the composition used to treat the nonwoven facer according to the invention may comprise mineral filler.
- the ratio of the mineral filler in the composition is generally in the range of 1 to 50 wt% of the composition.
- Many types of minerals and a wide selection of particle size distributions of the mineral filler are possible, although generally finer particle sizes are be preferred for use in the composition.
- the mineral filler can include, and may be selected from, the group consisting of calcium sulfate hemi hydrate, calcium sulfate dihydrate, calcined gypsum, uncalcined gypsum, Portland cement, calcium carbonate, clays, and powdered silica.
- inorganic species may also be suitable as the mineral filler like example kaolin, sand, talc, mica, glass powder, titanium dioxide, magnesium oxide, alumina, alumina trihydrate (ATH), aluminium hydroxide, antimony oxide, silicate, carbon, boron, beryllium.
- mineral filler like example kaolin, sand, talc, mica, glass powder, titanium dioxide, magnesium oxide, alumina, alumina trihydrate (ATH), aluminium hydroxide, antimony oxide, silicate, carbon, boron, beryllium.
- rheology modifiers selected from the group consisting of rheology modifiers, salts, accelerators and dispersants may be used as additives in the composition to modify other properties of the treated nonwoven facer and the resultant wallboard.
- the preferred rheology modifier comprises a cellulose ether.
- the cellulose ethers suitable according to the invention may be selected from the group consisting of carboxymethylcellulose (CMC), hydrxoypropylmethylcellulose (HPMC), methylcellulose (MC), hydroxypropylcellulose (HPC), hydrophobically modified hydroxypropylcellulose (HMHPC), hydroxyethylcellulose (HEC), ethyl hydoxyethylcellulose (EHEC), hydrophobically modified hydroxyethylcellulose (HMHEC), cationic hydrophobically modified hydroxyethylcellulose (cationic HMHEC), and anionic hydrophobically modified hydroxyethylcellulose (anionic HMHEC) or mixture therof.
- the preferred cellulose ether comprises hydroxyethylcellulose.
- the rheology modifier may also comprise biopolymers or polysaccharides.
- the preferred biopolymer comprises xanthan gum or guar gum.
- the composition when it comprises the mineral filler as well as the rheology modifier, results in fluid mixtures having high levels of mineral filler.
- a high level of mineral filler is a level of mineral filler about 20% by weight or more, preferably about 30% by weight of the surface treatment adhesive.
- the preferred rheology modifier is HEC.
- Another preferred rheology modifier is xanthan gum.
- Still more preferred is a rheology modifier comprising a mixture of HEC and xanthan gum.
- the said composition should be produced as follow: a quantity of water is first mixed with a small amount of a rheology modifier and stirred to dissolve. Once the rheology modifier is dissolved in the water, the high level of mineral filler is gradually added to the aqueous solution comprising the rheology modifier in stages with high speed mixing. The viscosity of the aqueous mixture comprising the mineral filler is sheer thinned after each stage in order to control the viscosity of the mixture. Finally, an amount of the latex binder is added to the mixture. A fluid stable mixture is obtained.
- composition An alternative method to produce the composition is to mix the quantity of water with the latex binder followed by gradual addition of the mineral filler and finally add in the rheology modifier(s).
- the amount of the composition used to treat the nonwoven facer is of a level of greater than about 0,1 g/m 2 , preferably in the range of greater than about 0,1 g/m 2 to 4 g/m 2 , preferably about 0,1 to 2 g/m 2 more preferably about 0,5 to 1 g/m 2 , still more preferably in the range of about 0,2 to 0,5 g/m 2 .
- the invention relates to a process for producing a nonwoven facer according to the invention for use in wallboard comprising the steps of:
- the step ii) of the process according to the invention may be achieved using the composition described above diluted with water to a working concentration of from about 2-20% solids by weight then this mixture and applied to a surface of the nonwoven facer by any of the mechanical processes typically used in the art of nonwoven facer conversion, including, but not limited to, using a doctor blade, using a roll, using a puddle applicator, a curtain applicator, using a size press applicator or using of a spray applicator.
- the step ii) of the process according to the invention is achieved by using either a roll, or a size press applicator.
- the process according to the invention may further comprise a drying step of the surface of the nonwoven facer.
- the invention relates to a wallboard comprising a gypsum core and at least one nonwoven facer according to the invention.
- the nonwoven facer with a surface-treated side is converted into a wallboard by a mechanical process whereby both sides of a layer of wet plaster are brought into contact with treated surface of the nonwoven facer with a surface-treated side to create a wallboard useful in construction applications.
- a one step process is also envisioned where the composition is applied to the nonwoven facer surface and, prior to completely drying the nonwoven facer surface, wet plaster is applied to the nonwoven facer with a surface-treated side to produce a wallboard.
- the wallboard that is produced through the process of the present invention has several improvements over similar prior art process such as enhanced strength due to the lesser quantity of water employed to prepare the wallboard as well as economic benefits.
- this process can be envisioned in a further step to potentially allow the production of significantly lower density wallboard products with acceptable strength dimensions, than is currently possible with existing art technology.
- the following steps should also be present in the process of making wallboard : covering the slurry with a second facer, forming a preform (by passing under a conventional wallboard forming plate), allowing the gypsum slurry to set (supported on the conveyor belt), cutting boards from the continuous ribbon of set material, inverting the boards to expose the underside of the boards, drying the boards in a wallboard dryer.
- the wallboard according to the invention can be used in a variety of applications, both indoors and outdoors.
- shaft wall assemblies, tile backing as well as partitions and ceilings in wet area rooms As an example of an indoor application, one may mention shaft wall assemblies, tile backing as well as partitions and ceilings in wet area rooms.
- a gypsum board as described herein can be used to particular advantage as a component of a partition or shaft wall assembly or similar assembly in the interior of a building.
- the faced board can be used with particular advantage in place of conventional paper-faced gypsum core board or shaft liner panels, the core of which may include fire-resistant additives.
- Assemblies of this type generally comprise metal or wood framework or studs for support of the gypsum panels which form the partitions in bathrooms and other wet or humid areas, the walls of the shafts of elevators, stairwells and the like.
- the facer gypsum board, as described herein, can be used, for example, as the shaft liner panel.
- the core of the board can include fire resistant additives.
- the instant wallboard can also be used with advantage in aeraulic ducts, in a manner similar to WO-A-02/06605 .
- the instant wallboard can also be used with advantage as a tile backing in bathrooms.
- tile backer The usual construction of bathroom walls includes a ceramic tiles adhered to an underlying base member, for example, a panel of gypsum board of the invention. Such a panel is referred to in the industry as a "tile backing board” or "tile backer". In usual fashion, sheets of tile backer are fastened by rust-resistant nails or screws to studs.
- the instant wallboards will also be useful in any application for partitions and ceilings in wet area rooms. Also, the wallboards of the invention can be used in any application for which wallboards are known to be useful, including drywall .
- roof deck system As outdoor applications, one may mention especially, roof deck system and EIS (Exterior Insulating System) and EFS (Exterior Finishing System).
- Facer preparation the wallboard facer (treated or not treated) was cut 350 mm wide and 658 mm long in the cross direction with a razor knife. The top side of the facer was creased to make a sharp fold at 11,5 mm from each cross direction end of the facer. Rubber cement glue was applied to the creased sections. The creased ends were folded perpendicularly to the field between the creases. The facer was bent along the short dimension; the two glued surfaces were aligned and affixed to make a 350 mm long tube. The tube was formed around a board and the glued joint was pressed against the forming board to make a uniform smooth closed joint. The lower end of the tube was closed with tape and the facer was placed in a support that allowed the upper end of the tube to remain open.
- any dry additives were weighed into the gypsum stucco.
- the dry materials were homogenized in a Hobart mixer with a wire whisk at slow speed and foam was optionally generated with the pre-selected foaming agent.
- Any liquid additives were weighed into a bowl; water was added with the optional Potash to the liquid additives and stirred with a spatula until the mixture was uniform.
- the water and liquid additives were poured into the Hobart mixer bowl with the stucco and dry additives, the mixer was started to make a uniform mixture and the mixer was stopped.
- the optional foam was added into the water and stucco slurry.
- the Hobart mixer was started to combine the foam and the mixer was stopped.
- the wire whisk and the bowl were dismounted from the Hobart mixer base.
- the contents were directly poured into the bottom of the open facer and the support was closed to make the thickness 13 mm. The excess was removed from the top of the facer to leave a flat surface.
- Mini-board finishing Gilmore set was measured in the upper surface of the mini-board core. After Gilmore initial set, the mini-board was carefully removed from the support. The wet mini-board was cut into a 316 mm by 316 mm square with a razor knife with uniform 13 mm thickness. The mini-board was allowed to achieve Gilmore final set. Drying was then performed in hot air, at less than 100°C, until the board achieved a stable weight. The mini-board was conditioned at 23°C and 50% RH for 24 hours before measuring mechanical properties.
- the inner ply comprises, in wt% based on the total weight of the fibers, 45% cellulose fibers (length of about 2,5 to about 5 mm), 14% polyester fibers (length of about 3 to 12 mm and diameter of about 11 ⁇ m), and 41% glass fibers (length of about 6 to about 12 mm and diameter of about 23 ⁇ m).
- the dry surface weight is about 70 g/m 2 .
- the outer ply comprises 100% cellulose fibers (length of about 2.5 to about 5 mm). The dry surface weight is about 20 g/m 2 .
- compositions according to the invention :
- Composition 1, 2, 3 A quantity of 20 parts by weight of Acronal ® S400, S559 or S790 respectively styrene acrylic latex available from BASF, was mixed with 80 parts by weight of water. A fluid stable dispersion was obtained.
- Composition 4 A quantity of 20 parts by weight of Airflex ® 526 BP ethylene vinyl acetate latex (available from Air Products and Chemicals, Inc.) was mixed with 80 parts by weight of water. A fluid stable dispersion was obtained.
- Composition 5 A quantity of 49,8 parts by weight of water was mixed with 0,2 parts by weight of Natrosol ® 250H4BXR hydroxyethylcellulose (available from Hercules Incorporated) and stirred to dissolve. Once the hydroxyethylcellulose (HEC) was dissolved in the water, 30 parts by weight of calcium sulfate hemihydrate was added gradually and in stages with high speed mixing. Viscosity was relatively high when each successive portion of the gypsum was initially added to the HEC aqueous solution but this mixture was shear thinning with time and so was considered to be a controllable process.
- HEC hydroxyethylcellulose
- Airflex ® 526 BP ethylene vinyl acetate latex available from Air Products and Chemicals, Inc.
- Composition 6 A quantity of 20 parts of Airflex ® 526 BP ethylene vinyl acetate latex (available from Air Products and Chemicals, Inc.) was added to 49,7 parts of water then 30 parts by weight of calcium sulfate hemihydrate was added gradually and in stages with high speed mixing. Only a slight viscosity rise was observed with each successive calcium hemihydrate addition making this method a very easily controlled process.
- the nonwoven facer described above is surface-treated with the 6 compositions according to the invention using a lab bench bar-coater. Then the wet treated nonwoven facer surface is dried in an oven. Two control conditions were also tested including a) no surface treatment of the nonwoven facer surface and b) treatment of the nonwoven facer surface with water only.
- the surface- treated nonwoven facer samples treated with the compositions from Table 1 were used to prepare mini-board according to the procedure described above.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Finishing Walls (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09356027A EP2230075A1 (fr) | 2009-03-17 | 2009-03-17 | Parement non tissé traité en surface pour panneau mural en plâtre |
PCT/IB2010/001004 WO2010106444A1 (fr) | 2009-03-17 | 2010-03-16 | Revêtement non tissé traité en surface pour panneau mural en gypse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09356027A EP2230075A1 (fr) | 2009-03-17 | 2009-03-17 | Parement non tissé traité en surface pour panneau mural en plâtre |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2230075A1 true EP2230075A1 (fr) | 2010-09-22 |
Family
ID=40823189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09356027A Withdrawn EP2230075A1 (fr) | 2009-03-17 | 2009-03-17 | Parement non tissé traité en surface pour panneau mural en plâtre |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2230075A1 (fr) |
WO (1) | WO2010106444A1 (fr) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013113457A1 (fr) | 2012-02-03 | 2013-08-08 | Ahlstrom Corporation | Plaque de plâtre appropriée pour des zones mouillées ou humides |
WO2014005091A1 (fr) * | 2012-06-29 | 2014-01-03 | Daniels Evan R | Composites de plâtre utilisés dans des composants de construction résistants au feu |
US8881494B2 (en) | 2011-10-11 | 2014-11-11 | Polymer-Wood Technologies, Inc. | Fire rated door core |
US9243444B2 (en) | 2012-06-29 | 2016-01-26 | The Intellectual Gorilla Gmbh | Fire rated door |
WO2016055128A1 (fr) | 2014-10-06 | 2016-04-14 | Siniat International | Mat perfectionné et plaques de plâtre associées appropriés pour des zones humides |
US9375899B2 (en) | 2012-06-29 | 2016-06-28 | The Intellectual Gorilla Gmbh | Gypsum composites used in fire resistant building components |
US9475732B2 (en) | 2013-04-24 | 2016-10-25 | The Intellectual Gorilla Gmbh | Expanded lightweight aggregate made from glass or pumice |
RU2641872C2 (ru) * | 2012-06-29 | 2018-01-22 | Зе Интеллекчуэл Горилла Гмбх | Гипсовые композиты, используемые в огнестойких строительных элементах |
US20180030729A1 (en) * | 2016-07-28 | 2018-02-01 | United States Gypsum Company | Methods for making gypsum boards with polymer coating and gypsum boards made by the method |
US9890083B2 (en) | 2013-03-05 | 2018-02-13 | The Intellectual Gorilla Gmbh | Extruded gypsum-based materials |
US10196309B2 (en) | 2013-10-17 | 2019-02-05 | The Intellectual Gorilla Gmbh | High temperature lightweight thermal insulating cement and silica based materials |
US10414692B2 (en) | 2013-04-24 | 2019-09-17 | The Intellectual Gorilla Gmbh | Extruded lightweight thermal insulating cement-based materials |
US10442733B2 (en) | 2014-02-04 | 2019-10-15 | The Intellectual Gorilla Gmbh | Lightweight thermal insulating cement based materials |
WO2019221863A1 (fr) * | 2018-05-18 | 2019-11-21 | Ocv Intellectual Capital, Llc | Non-tissé à système de liant en deux parties |
US10538459B2 (en) | 2014-06-05 | 2020-01-21 | The Intellectual Gorilla Gmbh | Extruded cement based materials |
EP2843129B1 (fr) | 2013-08-30 | 2020-05-13 | Saint-Gobain Placo SAS | Plaque de plâtre renforcée procurant une résistance au feu améliorée |
WO2020252220A1 (fr) * | 2019-06-13 | 2020-12-17 | Ocv Intellectual Capital, Llc | Tapis de parement sur lesquels il est possible de marcher pour isolation de toit |
US11072562B2 (en) | 2014-06-05 | 2021-07-27 | The Intellectual Gorilla Gmbh | Cement-based tile |
US20210381259A1 (en) * | 2020-06-05 | 2021-12-09 | Johns Manville | Non-wicking underlayment board |
US20210381229A1 (en) * | 2020-06-05 | 2021-12-09 | Johns Manville | Non-wicking underlayment board |
RU2776074C2 (ru) * | 2014-10-06 | 2022-07-13 | Этекс Билдинг Перформанс Интернэшнл | Гипсовые панели, подходящие для влажных или сырых зон |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8323785B2 (en) | 2011-02-25 | 2012-12-04 | United States Gypsum Company | Lightweight, reduced density fire rated gypsum panels |
IN2014DN07368A (fr) | 2012-02-17 | 2015-04-24 | United States Gypsum Co | |
US11225793B2 (en) | 2018-04-27 | 2022-01-18 | United States Gypsum Company | Fly ash-free coating formulation for fibrous mat tile backerboard |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3562097A (en) * | 1967-01-30 | 1971-02-09 | United States Gypsum Co | Multi-ply cylinder paper of reduced machine-to-cross direction tensile strength ratio |
US4047355A (en) | 1976-05-03 | 1977-09-13 | Studco, Inc. | Shaftwall |
GB2122233A (en) * | 1982-06-24 | 1984-01-11 | United States Gypsum Co | Gypsum wallboard paper |
EP0521804A1 (fr) * | 1991-07-02 | 1993-01-07 | Platres Lafarge | Papier utile comme papier de revêtement pour les plaques de plâtre et ses procédés de fabrication |
US5772846A (en) * | 1997-01-09 | 1998-06-30 | Johns Manville International, Inc. | Nonwoven glass fiber mat for facing gypsum board and method of making |
WO2002006605A1 (fr) | 2000-07-18 | 2002-01-24 | Lafarge Platres | Plaque de platre et sa preparation |
EP1746209A2 (fr) * | 2005-07-12 | 2007-01-24 | Johns Manville International, Inc. | Nontissés fibreux multicouches, laminés et procédé |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040266303A1 (en) * | 2003-06-27 | 2004-12-30 | Jaffee Alan Michael | Gypsum board faced with non-woven glass fiber mat |
US7429544B2 (en) * | 2004-04-16 | 2008-09-30 | Owens Corning Intellectual Capital, Llc | Coated facer |
-
2009
- 2009-03-17 EP EP09356027A patent/EP2230075A1/fr not_active Withdrawn
-
2010
- 2010-03-16 WO PCT/IB2010/001004 patent/WO2010106444A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3562097A (en) * | 1967-01-30 | 1971-02-09 | United States Gypsum Co | Multi-ply cylinder paper of reduced machine-to-cross direction tensile strength ratio |
US4047355A (en) | 1976-05-03 | 1977-09-13 | Studco, Inc. | Shaftwall |
GB2122233A (en) * | 1982-06-24 | 1984-01-11 | United States Gypsum Co | Gypsum wallboard paper |
EP0521804A1 (fr) * | 1991-07-02 | 1993-01-07 | Platres Lafarge | Papier utile comme papier de revêtement pour les plaques de plâtre et ses procédés de fabrication |
US5772846A (en) * | 1997-01-09 | 1998-06-30 | Johns Manville International, Inc. | Nonwoven glass fiber mat for facing gypsum board and method of making |
WO2002006605A1 (fr) | 2000-07-18 | 2002-01-24 | Lafarge Platres | Plaque de platre et sa preparation |
EP1746209A2 (fr) * | 2005-07-12 | 2007-01-24 | Johns Manville International, Inc. | Nontissés fibreux multicouches, laminés et procédé |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8881494B2 (en) | 2011-10-11 | 2014-11-11 | Polymer-Wood Technologies, Inc. | Fire rated door core |
US11280090B2 (en) | 2012-02-03 | 2022-03-22 | Ahlstrom-Munksjö Oyj | Gypsum board suitable for wet or humid areas |
WO2013113458A1 (fr) | 2012-02-03 | 2013-08-08 | Ahlstrom Corporation | Non-tissé approprié pour des zones mouillées ou humides |
WO2013113459A1 (fr) | 2012-02-03 | 2013-08-08 | Siniat International | Plaque de plâtre appropriée pour des zones mouillées ou humides |
WO2013113457A1 (fr) | 2012-02-03 | 2013-08-08 | Ahlstrom Corporation | Plaque de plâtre appropriée pour des zones mouillées ou humides |
US10662648B2 (en) | 2012-02-03 | 2020-05-26 | Ahlstrom-Munksjö Oyj | Gypsum board suitable for wet or humid areas |
US9080372B2 (en) | 2012-06-29 | 2015-07-14 | Intellectual Gorilla B.V. | Gypsum composites used in fire resistant building components |
US10435941B2 (en) | 2012-06-29 | 2019-10-08 | The Intellectual Gorilla Gmbh | Fire rated door core |
US9243444B2 (en) | 2012-06-29 | 2016-01-26 | The Intellectual Gorilla Gmbh | Fire rated door |
US10315386B2 (en) | 2012-06-29 | 2019-06-11 | The Intellectual Gorilla Gmbh | Gypsum composites used in fire resistant building components |
US9027296B2 (en) | 2012-06-29 | 2015-05-12 | Intellectual Gorilla B.V. | Gypsum composites used in fire resistant building components |
US9375899B2 (en) | 2012-06-29 | 2016-06-28 | The Intellectual Gorilla Gmbh | Gypsum composites used in fire resistant building components |
US9410361B2 (en) | 2012-06-29 | 2016-08-09 | The Intellectual Gorilla Gmbh | Gypsum composites used in fire resistant building components |
US10240089B2 (en) | 2012-06-29 | 2019-03-26 | The Intellectual Gorilla Gmbh | Gypsum composites used in fire resistant building components |
WO2014005091A1 (fr) * | 2012-06-29 | 2014-01-03 | Daniels Evan R | Composites de plâtre utilisés dans des composants de construction résistants au feu |
US10077597B2 (en) | 2012-06-29 | 2018-09-18 | The Intellectual Gorilla Gmbh | Fire rated door |
US8915033B2 (en) | 2012-06-29 | 2014-12-23 | Intellectual Gorilla B.V. | Gypsum composites used in fire resistant building components |
RU2641872C2 (ru) * | 2012-06-29 | 2018-01-22 | Зе Интеллекчуэл Горилла Гмбх | Гипсовые композиты, используемые в огнестойких строительных элементах |
US10876352B2 (en) | 2012-06-29 | 2020-12-29 | The Intellectual Gorilla Gmbh | Fire rated door |
US9890083B2 (en) | 2013-03-05 | 2018-02-13 | The Intellectual Gorilla Gmbh | Extruded gypsum-based materials |
US11142480B2 (en) | 2013-04-24 | 2021-10-12 | The Intellectual Gorilla Gmbh | Lightweight thermal insulating cement-based materials |
US9701583B2 (en) | 2013-04-24 | 2017-07-11 | The Intellectual Gorilla Gmbh | Expanded lightweight aggregate made from glass or pumice |
US9475732B2 (en) | 2013-04-24 | 2016-10-25 | The Intellectual Gorilla Gmbh | Expanded lightweight aggregate made from glass or pumice |
US10414692B2 (en) | 2013-04-24 | 2019-09-17 | The Intellectual Gorilla Gmbh | Extruded lightweight thermal insulating cement-based materials |
EP2843129B1 (fr) | 2013-08-30 | 2020-05-13 | Saint-Gobain Placo SAS | Plaque de plâtre renforcée procurant une résistance au feu améliorée |
EP2843129B2 (fr) † | 2013-08-30 | 2023-06-07 | Saint-Gobain Placo | Plaque de plâtre renforcée disposant d'une résistance au feu améliorée |
US10196309B2 (en) | 2013-10-17 | 2019-02-05 | The Intellectual Gorilla Gmbh | High temperature lightweight thermal insulating cement and silica based materials |
US11155499B2 (en) | 2014-02-04 | 2021-10-26 | The Intellectual Gorilla Gmbh | Lightweight thermal insulating cement based materials |
US10442733B2 (en) | 2014-02-04 | 2019-10-15 | The Intellectual Gorilla Gmbh | Lightweight thermal insulating cement based materials |
US11072562B2 (en) | 2014-06-05 | 2021-07-27 | The Intellectual Gorilla Gmbh | Cement-based tile |
US10538459B2 (en) | 2014-06-05 | 2020-01-21 | The Intellectual Gorilla Gmbh | Extruded cement based materials |
KR101953694B1 (ko) | 2014-10-06 | 2019-03-04 | 알스트롬-문크스죄 오와이제이 | 습윤 지역 또는 습한 지역에 적합한 매트 및 석고 보드 |
WO2016055489A1 (fr) | 2014-10-06 | 2016-04-14 | Siniat International | Mat et plaques de plâtre appropriés à des zones mouillées ou humides |
US12012352B2 (en) | 2014-10-06 | 2024-06-18 | Ahlstrom Oyj | Mat and gypsum boards suitable for wet or humid areas |
EP3312339B1 (fr) | 2014-10-06 | 2020-01-01 | Etex Building Performance International SAS | Plaque de plâtre adaptée aux zones mouillées ou humides |
RU2689751C2 (ru) * | 2014-10-06 | 2019-05-28 | Альстром-Мункше Ойй | Мат и гипсовые панели, подходящие для влажных или сырых зон |
EP3204551B1 (fr) | 2014-10-06 | 2018-12-05 | Ahlstrom-Munksjö Oyj | Tissu en fibre et plaque de plâtre adaptée aux zones mouillées ou humides |
EP3312339A1 (fr) | 2014-10-06 | 2018-04-25 | Etex Building Performance International SAS | Plaque de plâtre adaptée aux zones mouillées ou humides |
WO2016055128A1 (fr) | 2014-10-06 | 2016-04-14 | Siniat International | Mat perfectionné et plaques de plâtre associées appropriés pour des zones humides |
RU2776074C2 (ru) * | 2014-10-06 | 2022-07-13 | Этекс Билдинг Перформанс Интернэшнл | Гипсовые панели, подходящие для влажных или сырых зон |
CN107107544B (zh) * | 2014-10-06 | 2019-08-30 | 奥斯龙-明士克公司 | 适用于湿润或潮湿区域的垫和石膏板 |
KR20170088333A (ko) * | 2014-10-06 | 2017-08-01 | 이텍스 빌딩 퍼포먼스 인터내셔널 | 습윤 지역 또는 습한 지역에 적합한 매트 및 석고 보드 |
CN107107544A (zh) * | 2014-10-06 | 2017-08-29 | 奥斯龙-明士克公司 | 适用于湿润或潮湿区域的垫和石膏板 |
US20180030729A1 (en) * | 2016-07-28 | 2018-02-01 | United States Gypsum Company | Methods for making gypsum boards with polymer coating and gypsum boards made by the method |
US9945119B2 (en) * | 2016-07-28 | 2018-04-17 | United States Gypsum Company | Methods for making gypsum boards with polymer coating and gypsum boards made by the method |
US20210207301A1 (en) * | 2018-05-18 | 2021-07-08 | Ocv Intellectual Capital, Llc | Nonwoven with two-part binder system |
CN112204187A (zh) * | 2018-05-18 | 2021-01-08 | Ocv智识资本有限责任公司 | 具有两部分粘结剂体系的非织造物 |
US11959210B2 (en) * | 2018-05-18 | 2024-04-16 | Owens Corning Intellectual Capital, Llc | Nonwoven with two-part binder system |
WO2019221863A1 (fr) * | 2018-05-18 | 2019-11-21 | Ocv Intellectual Capital, Llc | Non-tissé à système de liant en deux parties |
WO2020252220A1 (fr) * | 2019-06-13 | 2020-12-17 | Ocv Intellectual Capital, Llc | Tapis de parement sur lesquels il est possible de marcher pour isolation de toit |
US20210381259A1 (en) * | 2020-06-05 | 2021-12-09 | Johns Manville | Non-wicking underlayment board |
US20210381229A1 (en) * | 2020-06-05 | 2021-12-09 | Johns Manville | Non-wicking underlayment board |
US11685140B2 (en) * | 2020-06-05 | 2023-06-27 | Johns Manville | Non-wicking underlayment board |
US11773586B2 (en) * | 2020-06-05 | 2023-10-03 | Johns Manville | Non-wicking underlayment board |
Also Published As
Publication number | Publication date |
---|---|
WO2010106444A1 (fr) | 2010-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2230075A1 (fr) | Parement non tissé traité en surface pour panneau mural en plâtre | |
KR102150734B1 (ko) | 습윤 지역 또는 습한 지역에 적합한 석고 보드 | |
JP4633732B2 (ja) | 室内用壁板及びその製造方法 | |
JP4990885B2 (ja) | 内装用ウォールボード及びその製造法 | |
DK1809830T3 (en) | NEW PLASTICS AND SYSTEMS INCLUDING IT | |
RU2358875C2 (ru) | Гипсовая панель, облицованная матом нетканого стекловолокнистого материала | |
EP3204551B1 (fr) | Tissu en fibre et plaque de plâtre adaptée aux zones mouillées ou humides | |
JP2012507421A (ja) | マット張り表面を有するセメント質物品およびその製造方法 | |
US20100075167A1 (en) | Compositions for the manufacture of gypsum boards, methods of manufacture thereof, and gypsum boards formed therefrom | |
US20100075166A1 (en) | Compositions for the manufacture of gypsum boards, methods of manufacture thereof, and gypsum boards formed therefrom | |
US20080003903A1 (en) | Coated nonwoven mat | |
MX2008012132A (es) | Papel mejorado para tablero de yeso. | |
CA3121091A1 (fr) | Plaque de platre d'insonorisation et methode de construction d'une plaque de platre d'insonorisation | |
WO2019199772A1 (fr) | Panneau de gypse et procédé de fabrication du panneau | |
CA2701451A1 (fr) | Compositions servant a la fabrication de panneaux de placoplatre, procede de fabrication desdits panneaux et panneaux de placoplatre ainsi formes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20101119 |