EP2227572B1 - Austenitic heat-resistant nickel-base alloy - Google Patents
Austenitic heat-resistant nickel-base alloy Download PDFInfo
- Publication number
- EP2227572B1 EP2227572B1 EP08865541.0A EP08865541A EP2227572B1 EP 2227572 B1 EP2227572 B1 EP 2227572B1 EP 08865541 A EP08865541 A EP 08865541A EP 2227572 B1 EP2227572 B1 EP 2227572B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- alloy according
- max
- mass
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 48
- 239000000956 alloy Substances 0.000 title claims description 48
- 239000000463 material Substances 0.000 claims description 21
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims 1
- 229910052745 lead Inorganic materials 0.000 claims 1
- 238000005260 corrosion Methods 0.000 description 28
- 230000007797 corrosion Effects 0.000 description 28
- 239000010936 titanium Substances 0.000 description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000011572 manganese Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 6
- 238000007792 addition Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 230000008092 positive effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000005486 sulfidation Methods 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 229910019501 NaVO3 Inorganic materials 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001325 element alloy Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
Definitions
- the invention relates to the use of an austenitic heat-resistant nickel-based alloy.
- Alloy 81 with (in% by mass) 0.05% C, 30% Cr, 66% Ni, 0.9% Al and 1.8% Ti was used.
- these alloys are used as valve base materials, wherein the valve seat section is additionally coated with an abrasion-resistant material, as for example in the EP-B 0521821 is described.
- This document gives the chemical composition (in mass%) for the base material as follows: 0.04-0.10% C, ⁇ 1.0% Si, ⁇ 0.2% Cu, ⁇ 1.0% Fe, ⁇ 1.9% Mn, 18-21% Cr, 1.8-2.7% Ti, 1.0-1.8% Al, ⁇ 2.0% Co, ⁇ 0.3% Mo, B, Zr, Rest of nickel.
- a variant of this alloy is also mentioned among other things with 29 - 31% Cr.
- Alloy 80 A has been characterized by a longer life in LCF tests and better abrasion resistance, while Alloy 81 has been tested for its better corrosion resistance under the conditions found in marine diesel engines, for example .
- Alloy 81 has been tested for its better corrosion resistance under the conditions found in marine diesel engines, for example .
- the remedy with an additional coating brings with it further undesirable manufacturing and material costs. From a cost point of view unfavorable is also the powder metallurgical manufacturing process. Such costs should be avoided as far as possible.
- An austenitic heat-resistant nickel-based alloy has become known which has the following composition (in% by mass): 0.03-0.1% C, max. 0.005% S, max. 0.05% N, 25-35% Cr, max. 0.2% Mn, max. 0.1% Si, max. 0.2% Mo, 2 - 3% Ti, 0.02 - 1.1% Nb, max. 0.1% Cu, max. 1% Fe, max. 0.08% P, 0.9 - 1.3% Al, max. 0.01% Mg, 0.02 - 0.1% Zr, max. 0.2% Co, where the sum of Al + Ti + Nb ⁇ 3.5%, balance Ni and production conditions.
- the alloy is characterized by additions of (in% by mass) 0.001-0.005% B, 0.01-0.04% Hf, and 0.01-0.04% Y.
- the invention has for its object, up to a temperature of 850 ° C hot corrosion resistant material with mechanical properties which are not inferior to those of Alloy 80 A, to provide for defined applications.
- This object is achieved by the use of an austenitic heat-resistant nickel-based alloy with (in% by mass) 0.03 - 0.1% C 28 - 32% Cr 0.01 - ⁇ 0.5% Mn 0.01 - ⁇ 0.3% Si 0.01 - ⁇ 1.0% mo 2.5-3.2% Ti 0.01 - ⁇ 0.5% Nb 0.01 - ⁇ 0.5% Cu 0.05 - ⁇ 2.0% Fe 0.7-1.0% Al 0.001 - ⁇ 0.03% Mg 0.01 - ⁇ 1.0% Co 0.01 - 0.10% Hf 0.01 - 0.10% Zr 0.002-0.02% B 0.001 - 0.01% N Max. 0.01% S Max. 0.005 pb Max. 0.0005% Bi Max.
- Such hot corrosion resistant materials achieve mechanical properties that are not inferior to those of Alloy 80 A.
- the material can be used as a valve material for future generations of marine diesel engines in the temperature range up to a maximum of 850 ° C.
- Table 1 shows an example of the chemical composition of two inventive examples E1 and E2. For a better comparison, two typical analyzes of the commercial alloys Alloy 80 A and Alloy 81 are listed.
- the alloys differed in the content of the elements discussed below, so that the evaluation of their mechanical properties and their behavior in the corrosive medium led to the analysis according to the invention.
- Table 1 Chemical composition of the alloys E1 and E2 according to the invention in comparison with Alloy 80 A and Alloy 81 element Alloy 80 A Alloy 81 E1 E2 Nu rest rest rest rest Cr 19.5 28.4 29.1 31 Fe 0.13 0.09 0.1 1.7 Ti 2.25 2.1 2.8 3.1 al 1.45 1.13 0.85 0.75 C 0,041 0.07 0.03 Mn 0.09 0.01 0.01 0.2 Si 0.20 0.04 0.02 0.1 Nb 0.001 ⁇ 0.01 0.04 0.01 Not a word 0,008 0.01 0.01 0.02 to 0,004 0.01 0.01 0.01 0.01 mg 0,002 ⁇ 0.001 0.001 0.005 S 0,004 0,003 0,002 P 0,002 0,002 0,002 N 0,002 0,006 0.0015 Hf 0.04 0.06 Co 0,039 0.01 0.
- the atmosphere was air with an SO 2 content of 0.5%.
- the samples were swapped out at both 750 ° C and 850 ° C for 20 hours, 100 hours and 400 hours, respectively.
- the ash was renewed after 100 hours, 200 hours and 300 hours to maintain the corrosiveness.
- the depth of the internal corrosion could be reliably measured.
- the Cr content must be as high as possible from the corrosion point of view. Metallurgically, however, 32% is a sensible upper limit. This shows the clear difference between the alloy variants with about 30% Cr and those with 20% Cr. The corrosion attack in the first mentioned alloys is at best only half as large.
- the samples tested in the valve with a Cr content of 30% show a cobblestone-like appearance on macro photographs, which is reflected in the micrographs as a wavy sample surface, which is indicative of only moderate corrosion erosion. In contrast, the poorer samples already show strong even flaking.
- Ti , Al A Ti: Al ratio of> 3 results in better corrosion resistance than lower Ti: Al ratios. This is attributed to the formation of a Ti-rich seam between the outer oxide layer and the region of internal sulfidation at high Ti contents.
- Aluminum and titanium have a positive effect on the heat resistance due to the formation of ⁇ '-phase.
- the sum of the elements Al + Ti should advantageously be between 3.5 and 4.3%. Too high a total content of these elements makes the thermoforming of the material difficult.
- Si Silicon has been found to have no positive effect on corrosion properties and should be no more than 0.5%, better less than 0.1%.
- Nb The niobium-alloyed samples basically have the thinnest corrosion layer, but this has no effect on the material loss itself Protective corrosion layer acts against the progression of the corrosion attack, the Nb content should be limited to a maximum of 0.5%. Furthermore, the Nb influences the material strength due to its high solubility in the ⁇ '-phase. At lower Nb levels below 0.5%, the Ti and Al content need not be adjusted.
- B, C The addition of boron at levels of 0.002-0.01% improves corrosion resistance in that the internal sulfidation, which preferably proceeds along the grain boundaries, is reduced, thereby reducing overall corrosion attack.
- Carbon preferably forms Cr carbides at the grain boundaries.
- Boron forms borides, which contribute to the stabilization of the grain boundaries and thus to long-term stability.
- the forming Cr carbides lead to a Cr depletion in the vicinity of the grain boundaries, which is why at a high C content, the corrosion accelerated progresses.
- carbides and borides must not overburden the grain boundaries, as they then hard precipitates greatly reduce the ductility of the material.
- the sum of C + (10 x B) should not exceed 0.1%.
- said sum is about 0.08%.
- Hf Hafnium is often added to improve the high temperature oxidation resistance and obviously also influences the durability of the samples in vanadium ash and SO 2 atmosphere positively. Furthermore, Hf also changes the grain boundary properties under carbide or carbosulfide formation. Too high an HF content should be avoided, as otherwise the hot forming is no longer guaranteed. This results in a favorable concentration range between 0.02 and 0.08%, preferably 0.05%. The effect of Hf on the grain boundaries is comparable to the effect of Zr, which is why the empirical formula Hf + Zr ⁇ 0.10% advantageously results.
- Zr Zirconium forms carbosulfides, which have a positive effect on the long-term strength and also contribute to the hot corrosion resistance by the binding of sulfur. It turned out that a Zr content between 0.01 and 0.05%. The aim is to have a Zr content in the range of 0.02%.
- Co is an element that in principle increases the resistance to sulfur-containing media. On the other hand, it is also very expensive, which is why the co-alloying of Co is dispensed with. Due to admixtures in the feedstocks, however, the Co content can reach up to 2% without incurring increased costs.
- the element iron occurs as an accompanying element. Reducing the iron content to well below 1% increases the costs, since higher-quality starting materials would have to be selected. With a Fe content limited to 3%, you do not have to expect a significant deterioration of the corrosion resistance and not too high costs of the starting materials. However, an Fe content below 1% should be sought.
- Mn The conditions mentioned for Fe also apply to Mn, whereby the Mn content can be reduced to less than 1% without much effort.
- compositions E1 and E2 were able to meet the requirements for high temperature corrosion behavior and hot strength at temperatures in the range between 600 ° C and 850 ° C simultaneously fulfill.
- the good corrosion resistance can be explained by the addition of the reactive elements, such as hafnium and zirconium, without exceeding the selected optimum (0.05-0.10%). Higher levels increase the corrosion attack directed into the material.
- the limitations of the carbon content ⁇ 0.1% and that of manganese ⁇ 1% additionally contribute to the corrosion resistance.
- For the heat resistance it has proved to be particularly favorable when aluminum and titanium are added, with their Summenge - as already stated - should be in the range between 3.5 and 4.3%.
- the alloy can be prepared by the usual methods of a melt operation, advantageously a melting in a vacuum with subsequent remelting in the electroslag process is useful.
- a melting in a vacuum with subsequent remelting in the electroslag process is useful.
- the formability for the production of rods for further processing to valves, such as marine diesel valves, is given.
- the alloy according to the invention is also particularly suitable for the production of valves for large diesel engines in general, that is, for example, for such large diesel engines that are used in stationary facilities for power generation.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Lift Valve (AREA)
Description
Die Erfindung betrifft die Verwendung einer austenitischen warmfesten Nickel-Basis-Legierung.The invention relates to the use of an austenitic heat-resistant nickel-based alloy.
Das Institute of Marine Engineers mit den "Proceedings" Diesel Engine Combustion Chamber Materials for Heavy Fuel Operation, 1990, vermittelt eine Zusammenfassung bezüglich des damaligen Stands der Technik und der in den vorangegangenen Jahren durchgeführten intensiven Forschungs- und Entwicklungsarbeiten auf dem Gebiet der Ventilwerkstoffe. Etabliert hat sich danach für diese Anwendung hauptsächlich Alloy 80 A mit (in Masse-%) 0,08 % C, 19,5 % Cr, 75 % Ni, 1,4 % Al sowie 2,4 % Ti.The Institute of Marine Engineers, with the "Proceedings" Diesel Engine Combustion Chamber Materials for Heavy Fuel Operation, 1990, provides a summary of the state of the art and intensive research and development in the field of valve materials conducted in previous years. Alloy 80 A with (in mass%) 0.08% C, 19.5% Cr, 75% Ni, 1.4% Al and 2.4% Ti was established for this application.
Vereinzelt wurde auch Alloy 81 mit (in Masse-%) 0,05 % C, 30 % Cr, 66 % Ni, 0,9 % Al sowie 1,8 % Ti genutzt. Fallweise werden diese Legierungen als Ventilgrundmaterialien eingesetzt, wobei die Ventilsitzpartie zusätzlich mit einem abriebfesten Material beschichtet wird, wie es beispielsweise in der
Bei den gegenwärtigen Einsatztemperaturen von unter 750° C zeichnete sich Alloy 80 A durch eine höhere Lebensdauer in LCF-Versuchen und eine bessere Abriebfestigkeit aus, während Alloy 81 wegen seiner besseren Korrosionsbeständigkeit unter den Bedingungen, wie sie zum Beispiel in Schiffsdieselmotoren anzutreffen sind, geprüft wurde. Jede dieser Legierungen hat also ihre besonderen Vorteile, keine jedoch erfüllt sämtliche Anforderungen an die mechanischen und korrosiven Eigenschaften. Die Abhilfe mit einer zusätzlichen Beschichtung bringt weitere unerwünschte Fertigungs- und Materialkosten mit sich. Unter Kostengesichtspunkten ungünstig ist auch der pulvermetallurgische Fertigungsweg. Derartige Kosten sollen möglichst vermieden werden.At current operating temperatures below 750 ° C, Alloy 80 A has been characterized by a longer life in LCF tests and better abrasion resistance, while Alloy 81 has been tested for its better corrosion resistance under the conditions found in marine diesel engines, for example , Each of these alloys therefore has its own advantages, but none meets all the requirements for mechanical and corrosive properties. The remedy with an additional coating brings with it further undesirable manufacturing and material costs. From a cost point of view unfavorable is also the powder metallurgical manufacturing process. Such costs should be avoided as far as possible.
Hierauf beziehen sich sowohl die
Durch die
Der Erfindung liegt die Aufgabe zugrunde, einen bis zu Temperaturen von 850° C heißkorrosionsbeständigen Werkstoff mit mechanischen Eigenschaften, welche denen von Alloy 80 A nicht nachstehen, für definierte Anwendungsfälle bereitzustellen.The invention has for its object, up to a temperature of 850 ° C hot corrosion resistant material with mechanical properties which are not inferior to those of Alloy 80 A, to provide for defined applications.
Diese Aufgabe wird gelöst durch die Verwendung einer austenitischen warmfesten Nickel-Basis-Legierung mit (in Masse %)
0,03 - 0,1 % C
28 - 32 % Cr
0,01 - ≤ 0,5 % Mn
0,01 - ≤ 0,3 % Si
0,01 - ≤ 1,0 % Mo
2,5 - 3,2 % Ti
0,01 - ≤ 0,5 % Nb
0,01 - ≤ 0,5 % Cu
0,05 - ≤ 2,0 % Fe
0,7 - 1,0 % Al
0,001 - ≤ 0,03 % Mg
0,01 - ≤ 1,0 % Co
0,01 - 0,10 % Hf
0,01 - 0,10 % Zr
0,002 - 0,02 % B
0,001 - 0,01 % N
max. 0,01 % S
max. 0,005 Pb
max. 0,0005 % Bi
max. 0,01 % Ag
Rest Ni und herstellungsbedingte Beimengungen, wobei
die Summe aus Ti + Al zwischen 3,3 und 4,3 % liegt,
die Summe aus C + (10 x B) zwischen 0,05 und 0,2 % liegt,
die Summe aus Hf + Zr zwischen 0,05 und 0,15 % liegt,
das Verhältnis Ti/Al > 3 und
das Verhältnis Zr/Hf = 0,1 - 0,5 % ist
als Ventilwerkstoff.This object is achieved by the use of an austenitic heat-resistant nickel-based alloy with (in% by mass)
0.03 - 0.1% C
28 - 32% Cr
0.01 - ≤ 0.5% Mn
0.01 - ≤ 0.3% Si
0.01 - ≤ 1.0% mo
2.5-3.2% Ti
0.01 - ≤ 0.5% Nb
0.01 - ≤ 0.5% Cu
0.05 - ≤ 2.0% Fe
0.7-1.0% Al
0.001 - ≤ 0.03% Mg
0.01 - ≤ 1.0% Co
0.01 - 0.10% Hf
0.01 - 0.10% Zr
0.002-0.02% B
0.001 - 0.01% N
Max. 0.01% S
Max. 0.005 pb
Max. 0.0005% Bi
Max. 0.01% Ag
Rest Ni and production-related admixtures, where
the sum of Ti + Al is between 3.3 and 4.3%,
the sum of C + (10 x B) is between 0.05 and 0.2%,
the sum of Hf + Zr is between 0.05 and 0.15%,
the ratio Ti / Al> 3 and
the ratio Zr / Hf = 0.1-0.5%
as valve material.
Vorteilhafte Weiterbildungen des Erfindungsgegenstandes sind den zugehörigen Unteransprüchen zu entnehmen.Advantageous developments of the subject invention can be found in the associated dependent claims.
Derartige heißkorrosionsbeständige Werkstoffe erreichen mechanische Eigenschaften, welche denen von Alloy 80 A nicht nachstehen. Insofern ist der Werkstoff als Ventilwerkstoff für zukünftige Generationen von Schiffsdieselmotoren im Temperaturbereich bis maximal 850° C einsetzbar.Such hot corrosion resistant materials achieve mechanical properties that are not inferior to those of Alloy 80 A. In this respect, the material can be used as a valve material for future generations of marine diesel engines in the temperature range up to a maximum of 850 ° C.
Tabelle 1 zeigt beispielhaft die chemische Zusammensetzung zweier erfindungsgemäßer Beispiele E1 und E2. Zum besseren Vergleich sind zwei typische Analysen der handelsüblichen Legierungen Alloy 80 A und Alloy 81 aufgeführt.Table 1 shows an example of the chemical composition of two inventive examples E1 and E2. For a better comparison, two typical analyzes of the commercial alloys Alloy 80 A and Alloy 81 are listed.
Die Analysen der Legierungen E1 und E2 gingen aus einer Serie von Laborschmelzen hervor, die in 10 kg schweren Blöcken im Vakuum-Induktionsofen erschmolzen, anschließend warmgewalzt und bei 1180° C für zwei Stunden in Luft mit anschließender Wasserabschreckung lösungsgeglüht wurden. Die Aushärtung der Legierungen erfolgte durch zwei weitere Glühungen:
- 6 Stunden bei 850° C mit Luftabkühlung gefolgt von
- 4 Stunden bei 700° C mit Luftabkühlung
- Followed by 6 hours at 850 ° C with air cooling
- 4 hours at 700 ° C with air cooling
Die Legierungen unterschieden sich im Gehalt der unten diskutierten Elemente, so dass die Auswertung ihrer mechanischen Eigenschaften und ihres Verhaltens im korrosiven Medium zu der erfindungsgemäßen Analyse führte.
Da ein erfindungsgemäßes Ziel mit Alloy 80 A vergleichbare Warmfestigkeiten bei Einsatztemperatur war, wurden Zugfestigkeit und Streckgrenze bei 600° C und 800° C gemessen. Tabelle 2 zeigt, dass bei 600°C Alloy 80 A vergleichbar und sogar noch fester ist. Bei 800° C sind die Legierungen vergleichbar.
Für die Untersuchung des Korrosionsverhaltens wurden zunächst Proben im Labor in synthetischer Ölasche folgender Zusammensetzung durchgeführt:
- 40 % V2O3 + 10 % NaVO3 + 20 % Na2SO4 + 15 % CaSO4 + 15 % NiSO4.
- 40% V 2 O 3 + 10% NaVO 3 + 20% Na 2 SO 4 + 15% CaSO 4 + 15% NiSO 4 .
Die Atmosphäre war Luft mit einem SO2-Gehalt von 0,5 %. Die Proben wurden sowohl bei 750 °C als auch bei 850 °C jeweils für 20 Stunden, 100 Stunden und 400 Stunden ausgelagert. Bei der 400 Stunden Auslagerung wurde die Asche nach 100 Stunden, 200 Stunden und 300 Stunden erneuert, um die Korrosivität aufrecht zu erhalten. Bei den Laborversuchen konnte die Tiefe der inneren Korrosion zuverlässig ausgemessen werden.The atmosphere was air with an SO 2 content of 0.5%. The samples were swapped out at both 750 ° C and 850 ° C for 20 hours, 100 hours and 400 hours, respectively. In the 400 hours aging, the ash was renewed after 100 hours, 200 hours and 300 hours to maintain the corrosiveness. In the laboratory experiments, the depth of the internal corrosion could be reliably measured.
Als zuverlässiger - weil sie zum einen besser auswertbar sind und zum anderen auch erosive Effekte berücksichtigen - sind die Korrosionsuntersuchungen im Schiffsdieselventil selbst einzuschätzen. Es wurden von jeder Laborschmelze und zum Vergleich auch von dem Material Alloy 81 sowie 80 A Proben in einem Schiffsdieselventil eingesetzt. Dieses Schiffsdieseiventil lief über 3000 Stunden in der Hauptmaschine eines weltweit fahrenden Hochseeschiffes. Anschließend wurden die Proben dem Ventil entnommen und der Korrosionsangriff metallographisch untersucht. Hier konnten Materialverlust, Schichtdicke und innerer Korrosionsangriff detailliert voneinander unterschieden werden.As a reliable - because they are on the one hand better evaluable and on the other also take into account erosive effects - the corrosion studies in the marine diesel valve itself can be estimated. From each laboratory melt and for comparison also from the material Alloy 81 and 80 A samples were used in a marine diesel valve. This ship's divisional wing ran over 3000 hours in the main engine of a high-speed oceangoing ship. Subsequently the samples were taken from the valve and the corrosion attack was examined metallographically. Here, material loss, layer thickness and internal corrosion attack were distinguished in detail from each other.
Aus den Untersuchungen resultierten folgende Abhängigkeiten des Korrosionsverhaltens von dem Gehalt der einzelnen Legierungselemente.The following dependencies of the corrosion behavior on the content of the individual alloying elements resulted from the investigations.
Cr: der Cr-Gehalt muss aus Korrosionssicht so hoch wie möglich sein. Metallurgisch liegt aber bei 32% eine sinnvolle Obergrenze. Das zeigt der deutliche Unterschied zwischen den Legierungsvarianten mit ca. 30% Cr und denen mit 20% Cr. Der Korrosionsangriff bei erstgenannten Legierungen ist im günstigsten Fall nur halb so groß. Die im Ventil getesteten Proben mit einem Cr-Gehalt von 30 % zeigen auf Makroaufnahmen ein pflastersteinartiges Aussehen, das sich in den Schliffbildern als wellige Probenoberfläche widerspiegelt, was als Zeichen für nur mäßigen Korrosionsabtrag ist. Im Gegensatz dazu weisen die Cr ärmeren Proben bereits starke ebenmäßige Abplatzungen auf. Cr: The Cr content must be as high as possible from the corrosion point of view. Metallurgically, however, 32% is a sensible upper limit. This shows the clear difference between the alloy variants with about 30% Cr and those with 20% Cr. The corrosion attack in the first mentioned alloys is at best only half as large. The samples tested in the valve with a Cr content of 30% show a cobblestone-like appearance on macro photographs, which is reflected in the micrographs as a wavy sample surface, which is indicative of only moderate corrosion erosion. In contrast, the poorer samples already show strong even flaking.
Ti, Al: Ein Verhältnis Ti:Al von > 3 resultiert in einer besseren Korrosionsbeständigkeit als geringere Ti:AI-Verhältnisse. Dies wird auf die Bildung eines Ti-reichen Saums zwischen äußerer Oxidschicht und dem Bereich innerer Sulfidierung bei hohen Ti-Gehalten zurückgeführt. Aluminium und Titan wirken sich durch Bildung von γ'-phase positiv auf die Warmfestigkeit aus. Die Summe der Elemente Al + Ti sollte vorteilhafterweise zwischen 3,5 und 4,3 % liegen. Ein zu hoher Gesamtgehalt dieser Elemente erschwert die Warmformgebung des Materials. Ti , Al : A Ti: Al ratio of> 3 results in better corrosion resistance than lower Ti: Al ratios. This is attributed to the formation of a Ti-rich seam between the outer oxide layer and the region of internal sulfidation at high Ti contents. Aluminum and titanium have a positive effect on the heat resistance due to the formation of γ'-phase. The sum of the elements Al + Ti should advantageously be between 3.5 and 4.3%. Too high a total content of these elements makes the thermoforming of the material difficult.
Si: Silizium hat den Untersuchungen zufolge keinen positiven Effekt auf die Korrosionseigenschaften und sollte maximal 0,5 % betragen, besser ist weniger als 0,1%.Si: Silicon has been found to have no positive effect on corrosion properties and should be no more than 0.5%, better less than 0.1%.
Nb: Die Niob-legierten Proben haben prinzipiell die dünnste Korrosionsschicht, dies hat jedoch keine Auswirkung auf den Materialverlust selbst. Da eine dicke Korrosionsschicht schützender gegen das Fortschreiten des Korrosionsangriffs wirkt, sollte der Nb- Gehalt auf maximal 0,5% beschränkt werden. Des Weiteren beeinflusst das Nb aufgrund seiner hohen Löslichkeit in der γ'-Phase die Materialfestigkeit. Bei geringeren Nb-Gehalten unter 0,5% müssen der Ti und AI-Gehalt nicht angepasst werden.Nb: The niobium-alloyed samples basically have the thinnest corrosion layer, but this has no effect on the material loss itself Protective corrosion layer acts against the progression of the corrosion attack, the Nb content should be limited to a maximum of 0.5%. Furthermore, the Nb influences the material strength due to its high solubility in the γ'-phase. At lower Nb levels below 0.5%, the Ti and Al content need not be adjusted.
B, C: Die Zugabe von Bor in Gehalten von 0,002 - 0,01 % verbessert die Korrosionsbeständigkeit dahingehend, dass die innere Sulfidierung, die bevorzugt entlang der Korngrenzen verläuft, reduziert und damit der gesamte Korrosionsangriff verringert wird. Kohlenstoff bildet bevorzugt an den Korngrenzen Cr-Carbide. Bor bildet Boride, die zur Stabilisierung der Korngrenzen und damit zur Langzeitfestigkeit beitragen. Insbesondere die sich bildenden Cr-Carbide führen zu einer Cr-Verarmung in der Nähe der Korngrenzen, weshalb bei zu hohem C-Gehalt die Korrosion beschleunigt fortschreitet. Außerdem dürfen Carbide und Boride die Korngrenzen nicht zu stark belegen, da sie dann als harte Ausscheidungen die Duktilität des Materials stark herabsetzen. Als Kompromiss hat sich herausgestellt, dass die Summe von C + (10 x B) 0,1 % nicht überschreiten sollte. Vorteilhafterweise liegt die genannte Summe bei etwa 0,08 %. B, C: The addition of boron at levels of 0.002-0.01% improves corrosion resistance in that the internal sulfidation, which preferably proceeds along the grain boundaries, is reduced, thereby reducing overall corrosion attack. Carbon preferably forms Cr carbides at the grain boundaries. Boron forms borides, which contribute to the stabilization of the grain boundaries and thus to long-term stability. In particular, the forming Cr carbides lead to a Cr depletion in the vicinity of the grain boundaries, which is why at a high C content, the corrosion accelerated progresses. In addition, carbides and borides must not overburden the grain boundaries, as they then hard precipitates greatly reduce the ductility of the material. As a compromise, it has been found that the sum of C + (10 x B) should not exceed 0.1%. Advantageously, said sum is about 0.08%.
Hf: Hafnium wird häufig zur Verbesserung der Hochtemperatur-Oxidationsbeständigkeit beigegeben und beeinflusst offensichtlich auch die Beständigkeit der Proben in Vanadiumasche und SO2 - Atmosphäre positiv. Des Weiteren verändert Hf unter Carbid- oder Carbosulfid-Bildung ebenfalls die Korngrenzeneigenschaften. Ein zu hoher Hf-Gehalt ist zu vermeiden, da sonst die Warmformgebung nicht mehr gewährleistet ist. Es ergibt sich daraus ein günstiger Konzentrationsbereich zwischen 0,02 und 0,08%, bevorzugt 0,05%. Die Wirkung des Hf auf die Korngrenzen ist vergleichbar mit der Wirkung des Zr, weshalb sich vorteilhafter Weise die Summenformel Hf + Zr < 0,10 % ergibt. Hf: Hafnium is often added to improve the high temperature oxidation resistance and obviously also influences the durability of the samples in vanadium ash and SO 2 atmosphere positively. Furthermore, Hf also changes the grain boundary properties under carbide or carbosulfide formation. Too high an HF content should be avoided, as otherwise the hot forming is no longer guaranteed. This results in a favorable concentration range between 0.02 and 0.08%, preferably 0.05%. The effect of Hf on the grain boundaries is comparable to the effect of Zr, which is why the empirical formula Hf + Zr <0.10% advantageously results.
Zr: Zirkon bildet Carbosulfide, welche sich positiv auf die Langzeitfestigkeit auswirken und durch die Bindung von Schwefel auch zur Heißkorrosionsbeständigkeit beitragen. Es zeigte sich, dass sich ein Zr-Gehalt zwischen 0,01 und 0,05% positiv auswirkt. Anzustreben ist ein Zr-Gehalt im Bereich von 0,02%. Zr: Zirconium forms carbosulfides, which have a positive effect on the long-term strength and also contribute to the hot corrosion resistance by the binding of sulfur. It turned out that a Zr content between 0.01 and 0.05%. The aim is to have a Zr content in the range of 0.02%.
Co: Co ist ein Element, das prinzipiell die Beständigkeit gegenüber schwefelhaltigen Medien erhöht. Dem gegenüber ist es aber auch sehr teuer, weshalb auf das Zulegieren von Co verzichtet wird. Aufgrund von Beimengungen in den Einsatzstoffen kann der Co-Gehalt jedoch bis zu 2% erreichen, ohne dass erhöhte Kosten entstehen. Co: Co is an element that in principle increases the resistance to sulfur-containing media. On the other hand, it is also very expensive, which is why the co-alloying of Co is dispensed with. Due to admixtures in the feedstocks, however, the Co content can reach up to 2% without incurring increased costs.
Fe: Das Element Eisen tritt u.a. als Begleitelement auf. Eine Reduzierung des Eisengehalts auf deutlich unter 1 % erhöht die Kosten, da hochwertigere Einsatzstoffe gewählt werden müssten. Bei einem auf 3% limitierten Fe-Gehalt muss man nicht mit einer deutlichen Verschlechterung der Korrosionsbeständigkeit rechnen und auch nicht mit zu hohen Kosten der Einsatzstoffe. Ein Fe-Gehalt unter 1% ist jedoch anzustreben. Fe: The element iron occurs as an accompanying element. Reducing the iron content to well below 1% increases the costs, since higher-quality starting materials would have to be selected. With a Fe content limited to 3%, you do not have to expect a significant deterioration of the corrosion resistance and not too high costs of the starting materials. However, an Fe content below 1% should be sought.
Mn: Die für Fe erwähnten Bedingungen gelten auch für Mn, wobei sich der Mn-Gehalt ohne großen Aufwand unter 1 % reduzieren lässt. Mn: The conditions mentioned for Fe also apply to Mn, whereby the Mn content can be reduced to less than 1% without much effort.
Obwohl der Einfluss der verschiedenen Elemente auf Korrosionsverhalten und Warmfestigkeit häufig gegenläufig ist, konnten mit den Legierungen E1 und E2 Zusammensetzungen gefunden werden, welche die gestellten Anforderungen an das Hochtemperatur-Korrosionsverhalten und die Warmfestigkeit bei Temperaturen im Bereich zwischen 600 °C und 850 °C gleichzeitig erfüllen. Erklärbar ist die gute Korrosionsbeständigkeit durch die Zugabe der reaktiven Elemente, wie Hafnium und Zirkon, ohne dabei das gewählte Optimum (0,05 - 0,10 %) zu überschreiten. Höhere Gehalte verstärken den in das Material hinein gerichteten Korrosionsangriff. Die Limitierungen des Kohlenstoffgehaltes < 0,1 % und die von Mangan < 1 % tragen zusätzlich zur Korrosionsbeständigkeit bei. Für die Warmfestigkeit hat es sich als besonders günstig erwiesen, wenn Aluminium und Titan zugegeben werden, wobei ihr Summengehalt - wie bereits dargelegt - im Bereich zwischen 3,5 und 4,3 % liegen soll. Diese Warmfestigkeiten machen eine Beschichtung der Sitzpartie des Ventils überflüssig, wodurch Fertigungskosten eingespart werden können.Although the influence of the various elements on corrosion behavior and heat resistance is often in opposite directions, compositions E1 and E2 were able to meet the requirements for high temperature corrosion behavior and hot strength at temperatures in the range between 600 ° C and 850 ° C simultaneously fulfill. The good corrosion resistance can be explained by the addition of the reactive elements, such as hafnium and zirconium, without exceeding the selected optimum (0.05-0.10%). Higher levels increase the corrosion attack directed into the material. The limitations of the carbon content <0.1% and that of manganese <1% additionally contribute to the corrosion resistance. For the heat resistance, it has proved to be particularly favorable when aluminum and titanium are added, with their Summenge - as already stated - should be in the range between 3.5 and 4.3%. These warmth strengths make one Coating the seat portion of the valve superfluous, thereby manufacturing costs can be saved.
Die Legierung kann mit den üblichen Methoden eines Schmelzbetriebes hergestellt werden, wobei vorteilhafterweise eine Erschmelzung im Vakuum mit einer anschließenden Umschmelzung im Elektroschlackeverfahren sinnvoll ist. Die Umformbarkeit für die Herstellung von Stangen zur Weiterfertigung zu Ventilen, wie beispielsweise Schiffsdieselventilen, ist gegeben.The alloy can be prepared by the usual methods of a melt operation, advantageously a melting in a vacuum with subsequent remelting in the electroslag process is useful. The formability for the production of rods for further processing to valves, such as marine diesel valves, is given.
Die erfindungsgemäße Legierung eignet sich insbesondere auch für die Herstellung von Ventilen für Großdieselmotoren im Allgemeinen, also beispielsweise auch für solche Großdieselmotoren, die in Stationäranlagen zur Stromgewinnung eingesetzt werden.The alloy according to the invention is also particularly suitable for the production of valves for large diesel engines in general, that is, for example, for such large diesel engines that are used in stationary facilities for power generation.
Claims (12)
- A use of an austenitic heat resistant nickel-base alloy comprising (in % by mass)0.03 - 0.1 % C28 - 32 % Cr0.01 - < 0.5 % Mn0.01 - ≤ 0.3% Si0.01 - < 1.0 % Mo2.5 - 3.2 % Ti0.01 - ≤ 0.5%Nb0.01 - ≤ 0.5% Cu0.05 - ≤ 2.0 % Fe0.7 - 1.0 % Al0.001 - ≤ 0.03 % mag0.01 - ≤ 1.0 % Co0.01 - 0.10 % Hf0.01 - 0.10 % Zr0.002 - 0.02 % B0.001 - 0.01 % Nmax. 0.01 % Smax. 0.005 % Pbmax. 0.0005 % Bimax. 0.01 % Agthe rest being Ni and production-related admixtures, whereinthe total of Ti + Al is comprised between 3.3 and 4.3 %,the total of C + (10 x B) is comprised between 0.05 and 0.2 %,the total of Hf + Zr is comprised between 0.05 and 0.15 %,the ratio Ti/Al is > 3 andthe ratio Zr/Hf = 0.1 - 0.5 %as a valve material.
- A use of an alloy according to claim 1, which contains (in % by mass) 28 - 31 % Cr.
- A use of an alloy according to claim 1 or 2, which contains (in % by mass) 29 - 31 % Cr.
- A use of an alloy according to one of the claims 1 through 3, which contains (in % by mass) 2.8 - 3.2 % Ti.
- A use of an alloy according to one of the claims 1 through 4, which contains (in % by mass) 2.8 - 3.0 % Ti.
- A use of an alloy according to one of the claims 1 through 5, which contains (in % by mass) 0.002 - 0.01 %, in particular 0.002 - 0.005 % of boron as addition.
- A use of an alloy according to one of the claims 1 through 6, in which the total of C + (10 x B) is comprised between 0.05 and 0.1 %, in particular between 0.05 and 0.08 %.
- A use of an alloy according to one of the claims 1 through 7, in which the Zr content is set between 0.01 and 0.05 %.
- A use of an alloy according to one of the claims 1 through 8, in which the Hf content is set between 0.01 and 0.08 %.
- A use of an alloy according to one of the claims 1 through 9, characterized in that the ratio Ti/Al is comprised between 3.3 and 4.2.
- A use of an alloy according to one of the claims 1 through 10 as valve material for valves to be used in marine diesel engines in the temperature range up to 850°C.
- A use of an alloy according to one of the claims 1 through 10 as valve for a large diesel engine.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007062417A DE102007062417B4 (en) | 2007-12-20 | 2007-12-20 | Austenitic heat-resistant nickel-based alloy |
PCT/DE2008/001964 WO2009079972A1 (en) | 2007-12-20 | 2008-11-25 | Austenitic heat-resistant nickel-base alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2227572A1 EP2227572A1 (en) | 2010-09-15 |
EP2227572B1 true EP2227572B1 (en) | 2016-01-27 |
Family
ID=40445808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08865541.0A Active EP2227572B1 (en) | 2007-12-20 | 2008-11-25 | Austenitic heat-resistant nickel-base alloy |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100310412A1 (en) |
EP (1) | EP2227572B1 (en) |
JP (1) | JP2011506771A (en) |
KR (1) | KR101236222B1 (en) |
CN (1) | CN101896630A (en) |
DE (1) | DE102007062417B4 (en) |
WO (1) | WO2009079972A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3620628A1 (en) | 2018-09-04 | 2020-03-11 | Winterthur Gas & Diesel Ltd. | Pre-chamber |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9050682B2 (en) | 2010-11-16 | 2015-06-09 | Daniel R. Danks | Electroslag welding with alternating electrode weld parameters |
CN102876953A (en) * | 2012-09-27 | 2013-01-16 | 无锡宏昌五金制造有限公司 | High-temperature nickel-chromium alloy |
CN103882263A (en) * | 2012-12-19 | 2014-06-25 | 江苏龙鑫特殊钢实业总公司 | Nickel-based alloy for nuclear power steam generator vibration-resisting strips and application thereof |
CN104451655B (en) * | 2013-09-13 | 2018-02-16 | 中国科学院金属研究所 | High temperature resistance material surface alloy coating composite material, coating and preparation method thereof |
DE102014001330B4 (en) | 2014-02-04 | 2016-05-12 | VDM Metals GmbH | Curing nickel-chromium-cobalt-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability |
DE102014001328B4 (en) * | 2014-02-04 | 2016-04-21 | VDM Metals GmbH | Curing nickel-chromium-iron-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability |
DE102014001329B4 (en) * | 2014-02-04 | 2016-04-28 | VDM Metals GmbH | Use of a thermosetting nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability |
CN105838925B (en) * | 2015-01-12 | 2017-11-28 | 宝钢特钢有限公司 | High temperature oxidation resisting nickel-base alloy |
CN104862532B (en) * | 2015-04-22 | 2017-01-11 | 苏州劲元油压机械有限公司 | Nickel alloy wire for oil filter screen and manufacturing process thereof |
CN104818430A (en) * | 2015-05-15 | 2015-08-05 | 钢铁研究总院 | Nickel-saving high-temperature-resistant gas valve alloy |
JP6739187B2 (en) * | 2016-02-22 | 2020-08-12 | 株式会社神戸製鋼所 | Ni-based alloy solid wire for welding and method for producing Ni-based alloy weld metal |
CN106498236B (en) * | 2016-10-26 | 2017-11-10 | 济宁市北辰金属材料有限公司 | A kind of glass fibre production alloy crucible and preparation method thereof |
JP6842316B2 (en) | 2017-02-17 | 2021-03-17 | 日本製鋼所M&E株式会社 | Manufacturing method of Ni-based alloy, gas turbine material and Ni-based alloy with excellent creep characteristics |
CN109112363A (en) * | 2018-09-22 | 2019-01-01 | 广州宇智科技有限公司 | A kind of corrosion-resistant liquid spinodal decomposition type nickel alloy of lithium bromide refrigerator |
CN109022922A (en) * | 2018-09-22 | 2018-12-18 | 广州宇智科技有限公司 | A kind of corrosion-resistant liquid spinodal decomposition type nickel alloy of ship power system condenser |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3043457A1 (en) * | 1980-11-18 | 1982-07-08 | Klöckner-Humboldt-Deutz AG, 5000 Köln | HEATING SYSTEM |
EP0235075B1 (en) * | 1986-01-20 | 1992-05-06 | Mitsubishi Jukogyo Kabushiki Kaisha | Ni-based alloy and method for preparing same |
GB8922161D0 (en) * | 1989-10-02 | 1989-11-15 | Inco Alloys Ltd | Exhaust valve alloy |
DK0521821T3 (en) | 1991-07-04 | 1996-08-26 | New Sulzer Diesel Ag | Exhaust valve for a diesel combustion engine and method of manufacturing the valve |
JPH10219377A (en) | 1997-02-07 | 1998-08-18 | Daido Steel Co Ltd | Manufacture of high corrosion resistant valve for intake and exhaust valve for diesel engine and intake and exhaust valve |
JPH1122427A (en) * | 1997-07-03 | 1999-01-26 | Daido Steel Co Ltd | Manufacture of diesel engine valve |
DE10123566C1 (en) | 2001-05-15 | 2002-10-10 | Krupp Vdm Gmbh | Nickel-based austenitic alloy used as a valve material for diesel engines of ships contains alloying additions of carbon, chromium, aluminum and zirconium |
CN1680611A (en) * | 2004-04-07 | 2005-10-12 | 联合工艺公司 | Oxidation resistant superalloy and article |
-
2007
- 2007-12-20 DE DE102007062417A patent/DE102007062417B4/en not_active Expired - Fee Related
-
2008
- 2008-11-25 WO PCT/DE2008/001964 patent/WO2009079972A1/en active Application Filing
- 2008-11-25 CN CN2008801199142A patent/CN101896630A/en active Pending
- 2008-11-25 KR KR1020107013401A patent/KR101236222B1/en active IP Right Grant
- 2008-11-25 EP EP08865541.0A patent/EP2227572B1/en active Active
- 2008-11-25 US US12/808,612 patent/US20100310412A1/en not_active Abandoned
- 2008-11-25 JP JP2010538321A patent/JP2011506771A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3620628A1 (en) | 2018-09-04 | 2020-03-11 | Winterthur Gas & Diesel Ltd. | Pre-chamber |
Also Published As
Publication number | Publication date |
---|---|
KR20100083847A (en) | 2010-07-22 |
DE102007062417A1 (en) | 2009-06-25 |
CN101896630A (en) | 2010-11-24 |
KR101236222B1 (en) | 2013-02-22 |
DE102007062417B4 (en) | 2011-07-14 |
JP2011506771A (en) | 2011-03-03 |
US20100310412A1 (en) | 2010-12-09 |
WO2009079972A1 (en) | 2009-07-02 |
EP2227572A1 (en) | 2010-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2227572B1 (en) | Austenitic heat-resistant nickel-base alloy | |
DE102012011162B4 (en) | Nickel-chromium alloy with good processability, creep resistance and corrosion resistance | |
DE102014001330B4 (en) | Curing nickel-chromium-cobalt-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability | |
DE60316212T2 (en) | Nickel-based alloy, hot-resistant spring made of this alloy and method of making this spring | |
EP3775308B1 (en) | Use of a nickel-chromium-iron-aluminium alloy | |
DE112016005830B4 (en) | Metal gasket and process for its manufacture | |
DE102014001328A1 (en) | Curing nickel-chromium-iron-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability | |
DE102012011161A1 (en) | Nickel-chromium-aluminum alloy with good processability, creep resistance and corrosion resistance | |
DE102014001329B4 (en) | Use of a thermosetting nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability | |
DE69406511T2 (en) | Fe-Ni-Cr-based superalloy, engine valve and chain-knit network carrier body for an exhaust gas catalytic converter | |
DE112012003677T5 (en) | Turbocharger and a component for this | |
DE3029658A1 (en) | FERRITIC STEEL | |
DE69414529T2 (en) | Fe-based superalloy | |
DE69015140T2 (en) | Heat-resistant austenitic stainless steel. | |
DE69829012T2 (en) | Ferritic, heat-resistant steel and method of manufacture | |
DE112012001811T5 (en) | Turbocharger and component for this | |
AT399165B (en) | CHROME BASED ALLOY | |
DE3782294T2 (en) | DISPERSION-REINFORCED ALLOYS. | |
EP2617855B1 (en) | Low alloyed steel and components produced therefrom | |
DE102015116128B4 (en) | Alloy powder for surfacing and surfacing alloy element, and engine valve obtained using the same | |
DE69500714T2 (en) | Hot rolled ferritic steel for an automotive exhaust system | |
DE69213533T2 (en) | Heat-resistant cast steel, process for its production and exhaust system parts made from it | |
DE69112165T2 (en) | Aluminum-containing stainless ferritic steel with high resistance to high temperature oxidation and high toughness. | |
DE112019001491B4 (en) | Ni-BASED ALLOY AND HEAT RESISTANT PLATE MATERIAL OBTAINED USING THE SAME | |
DE4035114A1 (en) | FE-CR-NI-AL FERRITE ALLOYS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100515 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20110725 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OUTOKUMPU VDM GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VDM METALS GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VDM METALS GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150925 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 772758 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008013792 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008013792 Country of ref document: DE Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008013792 Country of ref document: DE Owner name: VDM METALS INTERNATIONAL GMBH, DE Free format text: FORMER OWNER: VDM METALS GMBH, 58791 WERDOHL, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160428 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160527 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160527 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008013792 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20161028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161125 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081125 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231123 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231124 Year of fee payment: 16 Ref country code: FR Payment date: 20231120 Year of fee payment: 16 Ref country code: DE Payment date: 20231121 Year of fee payment: 16 Ref country code: AT Payment date: 20231121 Year of fee payment: 16 |