EP2227572B1 - Austenitic heat-resistant nickel-base alloy - Google Patents

Austenitic heat-resistant nickel-base alloy Download PDF

Info

Publication number
EP2227572B1
EP2227572B1 EP08865541.0A EP08865541A EP2227572B1 EP 2227572 B1 EP2227572 B1 EP 2227572B1 EP 08865541 A EP08865541 A EP 08865541A EP 2227572 B1 EP2227572 B1 EP 2227572B1
Authority
EP
European Patent Office
Prior art keywords
alloy
alloy according
max
mass
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08865541.0A
Other languages
German (de)
French (fr)
Other versions
EP2227572A1 (en
Inventor
Jutta KLÖWER
Bernd De Boer
Dietmar Schlager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals GmbH
Original Assignee
VDM Metals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VDM Metals GmbH filed Critical VDM Metals GmbH
Publication of EP2227572A1 publication Critical patent/EP2227572A1/en
Application granted granted Critical
Publication of EP2227572B1 publication Critical patent/EP2227572B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%

Definitions

  • the invention relates to the use of an austenitic heat-resistant nickel-based alloy.
  • Alloy 81 with (in% by mass) 0.05% C, 30% Cr, 66% Ni, 0.9% Al and 1.8% Ti was used.
  • these alloys are used as valve base materials, wherein the valve seat section is additionally coated with an abrasion-resistant material, as for example in the EP-B 0521821 is described.
  • This document gives the chemical composition (in mass%) for the base material as follows: 0.04-0.10% C, ⁇ 1.0% Si, ⁇ 0.2% Cu, ⁇ 1.0% Fe, ⁇ 1.9% Mn, 18-21% Cr, 1.8-2.7% Ti, 1.0-1.8% Al, ⁇ 2.0% Co, ⁇ 0.3% Mo, B, Zr, Rest of nickel.
  • a variant of this alloy is also mentioned among other things with 29 - 31% Cr.
  • Alloy 80 A has been characterized by a longer life in LCF tests and better abrasion resistance, while Alloy 81 has been tested for its better corrosion resistance under the conditions found in marine diesel engines, for example .
  • Alloy 81 has been tested for its better corrosion resistance under the conditions found in marine diesel engines, for example .
  • the remedy with an additional coating brings with it further undesirable manufacturing and material costs. From a cost point of view unfavorable is also the powder metallurgical manufacturing process. Such costs should be avoided as far as possible.
  • An austenitic heat-resistant nickel-based alloy has become known which has the following composition (in% by mass): 0.03-0.1% C, max. 0.005% S, max. 0.05% N, 25-35% Cr, max. 0.2% Mn, max. 0.1% Si, max. 0.2% Mo, 2 - 3% Ti, 0.02 - 1.1% Nb, max. 0.1% Cu, max. 1% Fe, max. 0.08% P, 0.9 - 1.3% Al, max. 0.01% Mg, 0.02 - 0.1% Zr, max. 0.2% Co, where the sum of Al + Ti + Nb ⁇ 3.5%, balance Ni and production conditions.
  • the alloy is characterized by additions of (in% by mass) 0.001-0.005% B, 0.01-0.04% Hf, and 0.01-0.04% Y.
  • the invention has for its object, up to a temperature of 850 ° C hot corrosion resistant material with mechanical properties which are not inferior to those of Alloy 80 A, to provide for defined applications.
  • This object is achieved by the use of an austenitic heat-resistant nickel-based alloy with (in% by mass) 0.03 - 0.1% C 28 - 32% Cr 0.01 - ⁇ 0.5% Mn 0.01 - ⁇ 0.3% Si 0.01 - ⁇ 1.0% mo 2.5-3.2% Ti 0.01 - ⁇ 0.5% Nb 0.01 - ⁇ 0.5% Cu 0.05 - ⁇ 2.0% Fe 0.7-1.0% Al 0.001 - ⁇ 0.03% Mg 0.01 - ⁇ 1.0% Co 0.01 - 0.10% Hf 0.01 - 0.10% Zr 0.002-0.02% B 0.001 - 0.01% N Max. 0.01% S Max. 0.005 pb Max. 0.0005% Bi Max.
  • Such hot corrosion resistant materials achieve mechanical properties that are not inferior to those of Alloy 80 A.
  • the material can be used as a valve material for future generations of marine diesel engines in the temperature range up to a maximum of 850 ° C.
  • Table 1 shows an example of the chemical composition of two inventive examples E1 and E2. For a better comparison, two typical analyzes of the commercial alloys Alloy 80 A and Alloy 81 are listed.
  • the alloys differed in the content of the elements discussed below, so that the evaluation of their mechanical properties and their behavior in the corrosive medium led to the analysis according to the invention.
  • Table 1 Chemical composition of the alloys E1 and E2 according to the invention in comparison with Alloy 80 A and Alloy 81 element Alloy 80 A Alloy 81 E1 E2 Nu rest rest rest rest Cr 19.5 28.4 29.1 31 Fe 0.13 0.09 0.1 1.7 Ti 2.25 2.1 2.8 3.1 al 1.45 1.13 0.85 0.75 C 0,041 0.07 0.03 Mn 0.09 0.01 0.01 0.2 Si 0.20 0.04 0.02 0.1 Nb 0.001 ⁇ 0.01 0.04 0.01 Not a word 0,008 0.01 0.01 0.02 to 0,004 0.01 0.01 0.01 0.01 mg 0,002 ⁇ 0.001 0.001 0.005 S 0,004 0,003 0,002 P 0,002 0,002 0,002 N 0,002 0,006 0.0015 Hf 0.04 0.06 Co 0,039 0.01 0.
  • the atmosphere was air with an SO 2 content of 0.5%.
  • the samples were swapped out at both 750 ° C and 850 ° C for 20 hours, 100 hours and 400 hours, respectively.
  • the ash was renewed after 100 hours, 200 hours and 300 hours to maintain the corrosiveness.
  • the depth of the internal corrosion could be reliably measured.
  • the Cr content must be as high as possible from the corrosion point of view. Metallurgically, however, 32% is a sensible upper limit. This shows the clear difference between the alloy variants with about 30% Cr and those with 20% Cr. The corrosion attack in the first mentioned alloys is at best only half as large.
  • the samples tested in the valve with a Cr content of 30% show a cobblestone-like appearance on macro photographs, which is reflected in the micrographs as a wavy sample surface, which is indicative of only moderate corrosion erosion. In contrast, the poorer samples already show strong even flaking.
  • Ti , Al A Ti: Al ratio of> 3 results in better corrosion resistance than lower Ti: Al ratios. This is attributed to the formation of a Ti-rich seam between the outer oxide layer and the region of internal sulfidation at high Ti contents.
  • Aluminum and titanium have a positive effect on the heat resistance due to the formation of ⁇ '-phase.
  • the sum of the elements Al + Ti should advantageously be between 3.5 and 4.3%. Too high a total content of these elements makes the thermoforming of the material difficult.
  • Si Silicon has been found to have no positive effect on corrosion properties and should be no more than 0.5%, better less than 0.1%.
  • Nb The niobium-alloyed samples basically have the thinnest corrosion layer, but this has no effect on the material loss itself Protective corrosion layer acts against the progression of the corrosion attack, the Nb content should be limited to a maximum of 0.5%. Furthermore, the Nb influences the material strength due to its high solubility in the ⁇ '-phase. At lower Nb levels below 0.5%, the Ti and Al content need not be adjusted.
  • B, C The addition of boron at levels of 0.002-0.01% improves corrosion resistance in that the internal sulfidation, which preferably proceeds along the grain boundaries, is reduced, thereby reducing overall corrosion attack.
  • Carbon preferably forms Cr carbides at the grain boundaries.
  • Boron forms borides, which contribute to the stabilization of the grain boundaries and thus to long-term stability.
  • the forming Cr carbides lead to a Cr depletion in the vicinity of the grain boundaries, which is why at a high C content, the corrosion accelerated progresses.
  • carbides and borides must not overburden the grain boundaries, as they then hard precipitates greatly reduce the ductility of the material.
  • the sum of C + (10 x B) should not exceed 0.1%.
  • said sum is about 0.08%.
  • Hf Hafnium is often added to improve the high temperature oxidation resistance and obviously also influences the durability of the samples in vanadium ash and SO 2 atmosphere positively. Furthermore, Hf also changes the grain boundary properties under carbide or carbosulfide formation. Too high an HF content should be avoided, as otherwise the hot forming is no longer guaranteed. This results in a favorable concentration range between 0.02 and 0.08%, preferably 0.05%. The effect of Hf on the grain boundaries is comparable to the effect of Zr, which is why the empirical formula Hf + Zr ⁇ 0.10% advantageously results.
  • Zr Zirconium forms carbosulfides, which have a positive effect on the long-term strength and also contribute to the hot corrosion resistance by the binding of sulfur. It turned out that a Zr content between 0.01 and 0.05%. The aim is to have a Zr content in the range of 0.02%.
  • Co is an element that in principle increases the resistance to sulfur-containing media. On the other hand, it is also very expensive, which is why the co-alloying of Co is dispensed with. Due to admixtures in the feedstocks, however, the Co content can reach up to 2% without incurring increased costs.
  • the element iron occurs as an accompanying element. Reducing the iron content to well below 1% increases the costs, since higher-quality starting materials would have to be selected. With a Fe content limited to 3%, you do not have to expect a significant deterioration of the corrosion resistance and not too high costs of the starting materials. However, an Fe content below 1% should be sought.
  • Mn The conditions mentioned for Fe also apply to Mn, whereby the Mn content can be reduced to less than 1% without much effort.
  • compositions E1 and E2 were able to meet the requirements for high temperature corrosion behavior and hot strength at temperatures in the range between 600 ° C and 850 ° C simultaneously fulfill.
  • the good corrosion resistance can be explained by the addition of the reactive elements, such as hafnium and zirconium, without exceeding the selected optimum (0.05-0.10%). Higher levels increase the corrosion attack directed into the material.
  • the limitations of the carbon content ⁇ 0.1% and that of manganese ⁇ 1% additionally contribute to the corrosion resistance.
  • For the heat resistance it has proved to be particularly favorable when aluminum and titanium are added, with their Summenge - as already stated - should be in the range between 3.5 and 4.3%.
  • the alloy can be prepared by the usual methods of a melt operation, advantageously a melting in a vacuum with subsequent remelting in the electroslag process is useful.
  • a melting in a vacuum with subsequent remelting in the electroslag process is useful.
  • the formability for the production of rods for further processing to valves, such as marine diesel valves, is given.
  • the alloy according to the invention is also particularly suitable for the production of valves for large diesel engines in general, that is, for example, for such large diesel engines that are used in stationary facilities for power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Lift Valve (AREA)

Description

Die Erfindung betrifft die Verwendung einer austenitischen warmfesten Nickel-Basis-Legierung.The invention relates to the use of an austenitic heat-resistant nickel-based alloy.

Das Institute of Marine Engineers mit den "Proceedings" Diesel Engine Combustion Chamber Materials for Heavy Fuel Operation, 1990, vermittelt eine Zusammenfassung bezüglich des damaligen Stands der Technik und der in den vorangegangenen Jahren durchgeführten intensiven Forschungs- und Entwicklungsarbeiten auf dem Gebiet der Ventilwerkstoffe. Etabliert hat sich danach für diese Anwendung hauptsächlich Alloy 80 A mit (in Masse-%) 0,08 % C, 19,5 % Cr, 75 % Ni, 1,4 % Al sowie 2,4 % Ti.The Institute of Marine Engineers, with the "Proceedings" Diesel Engine Combustion Chamber Materials for Heavy Fuel Operation, 1990, provides a summary of the state of the art and intensive research and development in the field of valve materials conducted in previous years. Alloy 80 A with (in mass%) 0.08% C, 19.5% Cr, 75% Ni, 1.4% Al and 2.4% Ti was established for this application.

Vereinzelt wurde auch Alloy 81 mit (in Masse-%) 0,05 % C, 30 % Cr, 66 % Ni, 0,9 % Al sowie 1,8 % Ti genutzt. Fallweise werden diese Legierungen als Ventilgrundmaterialien eingesetzt, wobei die Ventilsitzpartie zusätzlich mit einem abriebfesten Material beschichtet wird, wie es beispielsweise in der EP-B 0521821 beschrieben ist. Diese Druckschrift gibt die chemische Zusammensetzung (in Masse %) für das Grundmaterial wie folgt an: 0,04 - 0,10 % C, ≤ 1,0 % Si, ≤ 0,2 % Cu, ≤ 1,0 % Fe, ≤ 1,9 % Mn, 18 - 21 % Cr, 1,8 - 2,7 % Ti, 1,0 - 1,8 % Al, ≤ 2,0 % Co, ≤ 0,3 % Mo, B, Zr, Rest Nickel. Ferner ist eine Variante dieser Legierung unter anderem auch mit 29 - 31 % Cr angeführt.Occasionally, Alloy 81 with (in% by mass) 0.05% C, 30% Cr, 66% Ni, 0.9% Al and 1.8% Ti was used. Occasionally, these alloys are used as valve base materials, wherein the valve seat section is additionally coated with an abrasion-resistant material, as for example in the EP-B 0521821 is described. This document gives the chemical composition (in mass%) for the base material as follows: 0.04-0.10% C, ≤ 1.0% Si, ≤ 0.2% Cu, ≤ 1.0% Fe, ≤ 1.9% Mn, 18-21% Cr, 1.8-2.7% Ti, 1.0-1.8% Al, ≤ 2.0% Co, ≤ 0.3% Mo, B, Zr, Rest of nickel. Furthermore, a variant of this alloy is also mentioned among other things with 29 - 31% Cr.

Bei den gegenwärtigen Einsatztemperaturen von unter 750° C zeichnete sich Alloy 80 A durch eine höhere Lebensdauer in LCF-Versuchen und eine bessere Abriebfestigkeit aus, während Alloy 81 wegen seiner besseren Korrosionsbeständigkeit unter den Bedingungen, wie sie zum Beispiel in Schiffsdieselmotoren anzutreffen sind, geprüft wurde. Jede dieser Legierungen hat also ihre besonderen Vorteile, keine jedoch erfüllt sämtliche Anforderungen an die mechanischen und korrosiven Eigenschaften. Die Abhilfe mit einer zusätzlichen Beschichtung bringt weitere unerwünschte Fertigungs- und Materialkosten mit sich. Unter Kostengesichtspunkten ungünstig ist auch der pulvermetallurgische Fertigungsweg. Derartige Kosten sollen möglichst vermieden werden.At current operating temperatures below 750 ° C, Alloy 80 A has been characterized by a longer life in LCF tests and better abrasion resistance, while Alloy 81 has been tested for its better corrosion resistance under the conditions found in marine diesel engines, for example , Each of these alloys therefore has its own advantages, but none meets all the requirements for mechanical and corrosive properties. The remedy with an additional coating brings with it further undesirable manufacturing and material costs. From a cost point of view unfavorable is also the powder metallurgical manufacturing process. Such costs should be avoided as far as possible.

Hierauf beziehen sich sowohl die US-A 6,139,660 , als auch die US-A 6,039,919 , welche eine Legierung folgender Zusammensetzung (in Masse %) für Ein- und Auslassventile von Dieselmotoren beschreiben: ≤ 0,1 % C, ≤ 1,0 % Si, ≤ 0,1 % Mn, ≥ 25 ≤ 32,2 % Cr, ≤ 3 % Ti, ≥ 1 - ≤ 2 % Al, Rest Ni. Aber auch diese Legierung bringt keine ausreichende Heißkorrosionsbeständigkeit mit sich. Hinzu kommt, dass zukünftig leistungsfähigere Motoren, wie Schiffsdieselmotoren, bei Temperaturen bis etwa 850° C betrieben werden, was auch an den Ventilwerkstoff höhere Anforderungen stellt, zumal die Lebensdauer erhalten werden soll und auch keine zusätzlichen Wartungsarbeiten erwünscht sind.This refers to both the US-A 6,139,660 , as well as the US-A 6,039,919 , which describe an alloy of the following composition (in mass%) for intake and exhaust valves of diesel engines: ≤ 0.1% C, ≤ 1.0% Si, ≤ 0.1% Mn, ≥ 25 ≤ 32.2% Cr, ≤ 3% Ti, ≥ 1 - ≤ 2% Al, balance Ni. But even this alloy does not provide sufficient hot corrosion resistance. In addition, in the future, more powerful engines, such as marine diesel engines, are operated at temperatures up to about 850 ° C, which also makes higher demands on the valve material, especially since the service life is to be maintained and no additional maintenance is desired.

Durch die DE-C 101 23 566 ist eine austenitische warmfeste Nickel-Basis-Legierung bekannt geworden, die (in Masse %) folgende Zusammensetzung aufweist: 0,03 - 0,1 % C, max. 0,005 % S, max. 0,05 % N, 25 - 35 % Cr, max. 0,2 % Mn, max. 0,1 % Si, max. 0,2 % Mo, 2 - 3 % Ti, 0,02 - 1,1 % Nb, max. 0,1 % Cu, max. 1 % Fe, max. 0,08 % P, 0,9 - 1,3 % Al, max. 0,01 % Mg, 0,02 - 0,1 % Zr, max. 0,2% Co, wobei die Summe aus Al+Ti+Nb ≥ 3,5 % ist, Rest Ni sowie herstellungsbedingte Bedingungen. Die Legierung ist gekennzeichnet durch Zusätze von (in Masse %) 0,001-0,005 % B, 0,01-0,04 % Hf, sowie 0,01-0,04 % Y.By the DE-C 101 23 566 An austenitic heat-resistant nickel-based alloy has become known which has the following composition (in% by mass): 0.03-0.1% C, max. 0.005% S, max. 0.05% N, 25-35% Cr, max. 0.2% Mn, max. 0.1% Si, max. 0.2% Mo, 2 - 3% Ti, 0.02 - 1.1% Nb, max. 0.1% Cu, max. 1% Fe, max. 0.08% P, 0.9 - 1.3% Al, max. 0.01% Mg, 0.02 - 0.1% Zr, max. 0.2% Co, where the sum of Al + Ti + Nb ≥ 3.5%, balance Ni and production conditions. The alloy is characterized by additions of (in% by mass) 0.001-0.005% B, 0.01-0.04% Hf, and 0.01-0.04% Y.

Der Erfindung liegt die Aufgabe zugrunde, einen bis zu Temperaturen von 850° C heißkorrosionsbeständigen Werkstoff mit mechanischen Eigenschaften, welche denen von Alloy 80 A nicht nachstehen, für definierte Anwendungsfälle bereitzustellen.The invention has for its object, up to a temperature of 850 ° C hot corrosion resistant material with mechanical properties which are not inferior to those of Alloy 80 A, to provide for defined applications.

Diese Aufgabe wird gelöst durch die Verwendung einer austenitischen warmfesten Nickel-Basis-Legierung mit (in Masse %)
0,03 - 0,1 % C
28 - 32 % Cr
0,01 - ≤ 0,5 % Mn
0,01 - ≤ 0,3 % Si
0,01 - ≤ 1,0 % Mo
2,5 - 3,2 % Ti
0,01 - ≤ 0,5 % Nb
0,01 - ≤ 0,5 % Cu
0,05 - ≤ 2,0 % Fe
0,7 - 1,0 % Al
0,001 - ≤ 0,03 % Mg
0,01 - ≤ 1,0 % Co
0,01 - 0,10 % Hf
0,01 - 0,10 % Zr
0,002 - 0,02 % B
0,001 - 0,01 % N
max. 0,01 % S
max. 0,005 Pb
max. 0,0005 % Bi
max. 0,01 % Ag
Rest Ni und herstellungsbedingte Beimengungen, wobei
die Summe aus Ti + Al zwischen 3,3 und 4,3 % liegt,
die Summe aus C + (10 x B) zwischen 0,05 und 0,2 % liegt,
die Summe aus Hf + Zr zwischen 0,05 und 0,15 % liegt,
das Verhältnis Ti/Al > 3 und
das Verhältnis Zr/Hf = 0,1 - 0,5 % ist
als Ventilwerkstoff.
This object is achieved by the use of an austenitic heat-resistant nickel-based alloy with (in% by mass)
0.03 - 0.1% C
28 - 32% Cr
0.01 - ≤ 0.5% Mn
0.01 - ≤ 0.3% Si
0.01 - ≤ 1.0% mo
2.5-3.2% Ti
0.01 - ≤ 0.5% Nb
0.01 - ≤ 0.5% Cu
0.05 - ≤ 2.0% Fe
0.7-1.0% Al
0.001 - ≤ 0.03% Mg
0.01 - ≤ 1.0% Co
0.01 - 0.10% Hf
0.01 - 0.10% Zr
0.002-0.02% B
0.001 - 0.01% N
Max. 0.01% S
Max. 0.005 pb
Max. 0.0005% Bi
Max. 0.01% Ag
Rest Ni and production-related admixtures, where
the sum of Ti + Al is between 3.3 and 4.3%,
the sum of C + (10 x B) is between 0.05 and 0.2%,
the sum of Hf + Zr is between 0.05 and 0.15%,
the ratio Ti / Al> 3 and
the ratio Zr / Hf = 0.1-0.5%
as valve material.

Vorteilhafte Weiterbildungen des Erfindungsgegenstandes sind den zugehörigen Unteransprüchen zu entnehmen.Advantageous developments of the subject invention can be found in the associated dependent claims.

Derartige heißkorrosionsbeständige Werkstoffe erreichen mechanische Eigenschaften, welche denen von Alloy 80 A nicht nachstehen. Insofern ist der Werkstoff als Ventilwerkstoff für zukünftige Generationen von Schiffsdieselmotoren im Temperaturbereich bis maximal 850° C einsetzbar.Such hot corrosion resistant materials achieve mechanical properties that are not inferior to those of Alloy 80 A. In this respect, the material can be used as a valve material for future generations of marine diesel engines in the temperature range up to a maximum of 850 ° C.

Tabelle 1 zeigt beispielhaft die chemische Zusammensetzung zweier erfindungsgemäßer Beispiele E1 und E2. Zum besseren Vergleich sind zwei typische Analysen der handelsüblichen Legierungen Alloy 80 A und Alloy 81 aufgeführt.Table 1 shows an example of the chemical composition of two inventive examples E1 and E2. For a better comparison, two typical analyzes of the commercial alloys Alloy 80 A and Alloy 81 are listed.

Die Analysen der Legierungen E1 und E2 gingen aus einer Serie von Laborschmelzen hervor, die in 10 kg schweren Blöcken im Vakuum-Induktionsofen erschmolzen, anschließend warmgewalzt und bei 1180° C für zwei Stunden in Luft mit anschließender Wasserabschreckung lösungsgeglüht wurden. Die Aushärtung der Legierungen erfolgte durch zwei weitere Glühungen:

  • 6 Stunden bei 850° C mit Luftabkühlung gefolgt von
  • 4 Stunden bei 700° C mit Luftabkühlung
The analyzes of the alloys E1 and E2 were obtained from a series of laboratory melts, which were melted in 10 kg blocks in the vacuum induction furnace, then hot rolled and solution heat treated at 1180 ° C for two hours in air with subsequent water quenching. The hardening of the alloys took place by two further annealing:
  • Followed by 6 hours at 850 ° C with air cooling
  • 4 hours at 700 ° C with air cooling

Die Legierungen unterschieden sich im Gehalt der unten diskutierten Elemente, so dass die Auswertung ihrer mechanischen Eigenschaften und ihres Verhaltens im korrosiven Medium zu der erfindungsgemäßen Analyse führte. Tabelle 1 Chemische Zusammensetzung der erfindungsgemäßen Legierungen E1 und E2 im Vergleich zu Alloy 80 A und Alloy 81 Element Alloy 80 A Alloy 81 E1 E2 Nu Rest Rest Rest Rest Cr 19,5 28,4 29,1 31 Fe 0,13 0,09 0,1 1,7 Ti 2,25 2,1 2,8 3,1 Al 1,45 1,13 0,85 0,75 C 0,041 0,07 0,03 Mn 0,09 0,01 0,01 0,2 Si 0,20 0,04 0,02 0,1 Nb 0,001 < 0,01 0,04 0,01 Mo 0,008 0,01 0,01 0,02 zu 0,004 0,01 0,01 0,01 Mg 0,002 < 0,001 0,001 0,005 S 0,004 0,003 0,002 P 0,002 0,002 0,002 N 0,002 0,006 0,0015 Hf 0,04 0,06 Co 0,039 0,01 0,01 0,3 B 0,003 0,003 Zr 0,02 0,02 0,04 Ti+Al 3,7 3,23 3,75 3,85 C+(10×B) 0,1 0,06 Hf + Zr 0,06 0,10 Ti / Al 1,55 1,86 3,29 4,13 (Masse %) The alloys differed in the content of the elements discussed below, so that the evaluation of their mechanical properties and their behavior in the corrosive medium led to the analysis according to the invention. Table 1 Chemical composition of the alloys E1 and E2 according to the invention in comparison with Alloy 80 A and Alloy 81 element Alloy 80 A Alloy 81 E1 E2 Nu rest rest rest rest Cr 19.5 28.4 29.1 31 Fe 0.13 0.09 0.1 1.7 Ti 2.25 2.1 2.8 3.1 al 1.45 1.13 0.85 0.75 C 0,041 0.07 0.03 Mn 0.09 0.01 0.01 0.2 Si 0.20 0.04 0.02 0.1 Nb 0.001 <0.01 0.04 0.01 Not a word 0,008 0.01 0.01 0.02 to 0,004 0.01 0.01 0.01 mg 0,002 <0.001 0.001 0.005 S 0,004 0,003 0,002 P 0,002 0,002 0,002 N 0,002 0,006 0.0015 Hf 0.04 0.06 Co 0,039 0.01 0.01 0.3 B 0,003 0,003 Zr 0.02 0.02 0.04 Ti + Al 3.7 3.23 3.75 3.85 C + (10 × B) 0.1 0.06 Hf + Zr 0.06 0.10 Ti / Al 1.55 1.86 3.29 4.13 (Dimensions %)

Da ein erfindungsgemäßes Ziel mit Alloy 80 A vergleichbare Warmfestigkeiten bei Einsatztemperatur war, wurden Zugfestigkeit und Streckgrenze bei 600° C und 800° C gemessen. Tabelle 2 zeigt, dass bei 600°C Alloy 80 A vergleichbar und sogar noch fester ist. Bei 800° C sind die Legierungen vergleichbar. Tabelle 2 Zugfestigkeit und Streckgrenze von E1 und E2 im Vergleich mit Alloy 80 A bei 600° C und 800° C Legierung 600°C 800°C Rm / MPa Rp0.2 / MPa Rm / MPa Rp0.2 / MPa E1 1053 738 636 552 E2 1062 690 617 573 Alloy 80A 851 646 594 546 Since an Alloy 80 A target according to the present invention was comparable in heat resistance at the use temperature, tensile strength and yield strength were measured at 600 ° C and 800 ° C. Table 2 shows that Alloy 80 A is comparable and even stronger at 600 ° C. At 800 ° C, the alloys are comparable. Table 2 Tensile strength and yield strength of E1 and E2 compared with Alloy 80 A at 600 ° C and 800 ° C alloy 600 ° C 800 ° C R m / MPa R p0.2 / MPa R m / MPa R p0.2 / MPa E1 1053 738 636 552 E2 1062 690 617 573 Alloy 80A 851 646 594 546

Für die Untersuchung des Korrosionsverhaltens wurden zunächst Proben im Labor in synthetischer Ölasche folgender Zusammensetzung durchgeführt:

  • 40 % V2O3 + 10 % NaVO3 + 20 % Na2SO4 + 15 % CaSO4 + 15 % NiSO4.
For the investigation of the corrosion behavior first samples in the laboratory were carried out in synthetic oil ash of the following composition:
  • 40% V 2 O 3 + 10% NaVO 3 + 20% Na 2 SO 4 + 15% CaSO 4 + 15% NiSO 4 .

Die Atmosphäre war Luft mit einem SO2-Gehalt von 0,5 %. Die Proben wurden sowohl bei 750 °C als auch bei 850 °C jeweils für 20 Stunden, 100 Stunden und 400 Stunden ausgelagert. Bei der 400 Stunden Auslagerung wurde die Asche nach 100 Stunden, 200 Stunden und 300 Stunden erneuert, um die Korrosivität aufrecht zu erhalten. Bei den Laborversuchen konnte die Tiefe der inneren Korrosion zuverlässig ausgemessen werden.The atmosphere was air with an SO 2 content of 0.5%. The samples were swapped out at both 750 ° C and 850 ° C for 20 hours, 100 hours and 400 hours, respectively. In the 400 hours aging, the ash was renewed after 100 hours, 200 hours and 300 hours to maintain the corrosiveness. In the laboratory experiments, the depth of the internal corrosion could be reliably measured.

Als zuverlässiger - weil sie zum einen besser auswertbar sind und zum anderen auch erosive Effekte berücksichtigen - sind die Korrosionsuntersuchungen im Schiffsdieselventil selbst einzuschätzen. Es wurden von jeder Laborschmelze und zum Vergleich auch von dem Material Alloy 81 sowie 80 A Proben in einem Schiffsdieselventil eingesetzt. Dieses Schiffsdieseiventil lief über 3000 Stunden in der Hauptmaschine eines weltweit fahrenden Hochseeschiffes. Anschließend wurden die Proben dem Ventil entnommen und der Korrosionsangriff metallographisch untersucht. Hier konnten Materialverlust, Schichtdicke und innerer Korrosionsangriff detailliert voneinander unterschieden werden.As a reliable - because they are on the one hand better evaluable and on the other also take into account erosive effects - the corrosion studies in the marine diesel valve itself can be estimated. From each laboratory melt and for comparison also from the material Alloy 81 and 80 A samples were used in a marine diesel valve. This ship's divisional wing ran over 3000 hours in the main engine of a high-speed oceangoing ship. Subsequently the samples were taken from the valve and the corrosion attack was examined metallographically. Here, material loss, layer thickness and internal corrosion attack were distinguished in detail from each other.

Aus den Untersuchungen resultierten folgende Abhängigkeiten des Korrosionsverhaltens von dem Gehalt der einzelnen Legierungselemente.The following dependencies of the corrosion behavior on the content of the individual alloying elements resulted from the investigations.

Cr: der Cr-Gehalt muss aus Korrosionssicht so hoch wie möglich sein. Metallurgisch liegt aber bei 32% eine sinnvolle Obergrenze. Das zeigt der deutliche Unterschied zwischen den Legierungsvarianten mit ca. 30% Cr und denen mit 20% Cr. Der Korrosionsangriff bei erstgenannten Legierungen ist im günstigsten Fall nur halb so groß. Die im Ventil getesteten Proben mit einem Cr-Gehalt von 30 % zeigen auf Makroaufnahmen ein pflastersteinartiges Aussehen, das sich in den Schliffbildern als wellige Probenoberfläche widerspiegelt, was als Zeichen für nur mäßigen Korrosionsabtrag ist. Im Gegensatz dazu weisen die Cr ärmeren Proben bereits starke ebenmäßige Abplatzungen auf. Cr: The Cr content must be as high as possible from the corrosion point of view. Metallurgically, however, 32% is a sensible upper limit. This shows the clear difference between the alloy variants with about 30% Cr and those with 20% Cr. The corrosion attack in the first mentioned alloys is at best only half as large. The samples tested in the valve with a Cr content of 30% show a cobblestone-like appearance on macro photographs, which is reflected in the micrographs as a wavy sample surface, which is indicative of only moderate corrosion erosion. In contrast, the poorer samples already show strong even flaking.

Ti, Al: Ein Verhältnis Ti:Al von > 3 resultiert in einer besseren Korrosionsbeständigkeit als geringere Ti:AI-Verhältnisse. Dies wird auf die Bildung eines Ti-reichen Saums zwischen äußerer Oxidschicht und dem Bereich innerer Sulfidierung bei hohen Ti-Gehalten zurückgeführt. Aluminium und Titan wirken sich durch Bildung von γ'-phase positiv auf die Warmfestigkeit aus. Die Summe der Elemente Al + Ti sollte vorteilhafterweise zwischen 3,5 und 4,3 % liegen. Ein zu hoher Gesamtgehalt dieser Elemente erschwert die Warmformgebung des Materials. Ti , Al : A Ti: Al ratio of> 3 results in better corrosion resistance than lower Ti: Al ratios. This is attributed to the formation of a Ti-rich seam between the outer oxide layer and the region of internal sulfidation at high Ti contents. Aluminum and titanium have a positive effect on the heat resistance due to the formation of γ'-phase. The sum of the elements Al + Ti should advantageously be between 3.5 and 4.3%. Too high a total content of these elements makes the thermoforming of the material difficult.

Si: Silizium hat den Untersuchungen zufolge keinen positiven Effekt auf die Korrosionseigenschaften und sollte maximal 0,5 % betragen, besser ist weniger als 0,1%.Si: Silicon has been found to have no positive effect on corrosion properties and should be no more than 0.5%, better less than 0.1%.

Nb: Die Niob-legierten Proben haben prinzipiell die dünnste Korrosionsschicht, dies hat jedoch keine Auswirkung auf den Materialverlust selbst. Da eine dicke Korrosionsschicht schützender gegen das Fortschreiten des Korrosionsangriffs wirkt, sollte der Nb- Gehalt auf maximal 0,5% beschränkt werden. Des Weiteren beeinflusst das Nb aufgrund seiner hohen Löslichkeit in der γ'-Phase die Materialfestigkeit. Bei geringeren Nb-Gehalten unter 0,5% müssen der Ti und AI-Gehalt nicht angepasst werden.Nb: The niobium-alloyed samples basically have the thinnest corrosion layer, but this has no effect on the material loss itself Protective corrosion layer acts against the progression of the corrosion attack, the Nb content should be limited to a maximum of 0.5%. Furthermore, the Nb influences the material strength due to its high solubility in the γ'-phase. At lower Nb levels below 0.5%, the Ti and Al content need not be adjusted.

B, C: Die Zugabe von Bor in Gehalten von 0,002 - 0,01 % verbessert die Korrosionsbeständigkeit dahingehend, dass die innere Sulfidierung, die bevorzugt entlang der Korngrenzen verläuft, reduziert und damit der gesamte Korrosionsangriff verringert wird. Kohlenstoff bildet bevorzugt an den Korngrenzen Cr-Carbide. Bor bildet Boride, die zur Stabilisierung der Korngrenzen und damit zur Langzeitfestigkeit beitragen. Insbesondere die sich bildenden Cr-Carbide führen zu einer Cr-Verarmung in der Nähe der Korngrenzen, weshalb bei zu hohem C-Gehalt die Korrosion beschleunigt fortschreitet. Außerdem dürfen Carbide und Boride die Korngrenzen nicht zu stark belegen, da sie dann als harte Ausscheidungen die Duktilität des Materials stark herabsetzen. Als Kompromiss hat sich herausgestellt, dass die Summe von C + (10 x B) 0,1 % nicht überschreiten sollte. Vorteilhafterweise liegt die genannte Summe bei etwa 0,08 %. B, C: The addition of boron at levels of 0.002-0.01% improves corrosion resistance in that the internal sulfidation, which preferably proceeds along the grain boundaries, is reduced, thereby reducing overall corrosion attack. Carbon preferably forms Cr carbides at the grain boundaries. Boron forms borides, which contribute to the stabilization of the grain boundaries and thus to long-term stability. In particular, the forming Cr carbides lead to a Cr depletion in the vicinity of the grain boundaries, which is why at a high C content, the corrosion accelerated progresses. In addition, carbides and borides must not overburden the grain boundaries, as they then hard precipitates greatly reduce the ductility of the material. As a compromise, it has been found that the sum of C + (10 x B) should not exceed 0.1%. Advantageously, said sum is about 0.08%.

Hf: Hafnium wird häufig zur Verbesserung der Hochtemperatur-Oxidationsbeständigkeit beigegeben und beeinflusst offensichtlich auch die Beständigkeit der Proben in Vanadiumasche und SO2 - Atmosphäre positiv. Des Weiteren verändert Hf unter Carbid- oder Carbosulfid-Bildung ebenfalls die Korngrenzeneigenschaften. Ein zu hoher Hf-Gehalt ist zu vermeiden, da sonst die Warmformgebung nicht mehr gewährleistet ist. Es ergibt sich daraus ein günstiger Konzentrationsbereich zwischen 0,02 und 0,08%, bevorzugt 0,05%. Die Wirkung des Hf auf die Korngrenzen ist vergleichbar mit der Wirkung des Zr, weshalb sich vorteilhafter Weise die Summenformel Hf + Zr < 0,10 % ergibt. Hf: Hafnium is often added to improve the high temperature oxidation resistance and obviously also influences the durability of the samples in vanadium ash and SO 2 atmosphere positively. Furthermore, Hf also changes the grain boundary properties under carbide or carbosulfide formation. Too high an HF content should be avoided, as otherwise the hot forming is no longer guaranteed. This results in a favorable concentration range between 0.02 and 0.08%, preferably 0.05%. The effect of Hf on the grain boundaries is comparable to the effect of Zr, which is why the empirical formula Hf + Zr <0.10% advantageously results.

Zr: Zirkon bildet Carbosulfide, welche sich positiv auf die Langzeitfestigkeit auswirken und durch die Bindung von Schwefel auch zur Heißkorrosionsbeständigkeit beitragen. Es zeigte sich, dass sich ein Zr-Gehalt zwischen 0,01 und 0,05% positiv auswirkt. Anzustreben ist ein Zr-Gehalt im Bereich von 0,02%. Zr: Zirconium forms carbosulfides, which have a positive effect on the long-term strength and also contribute to the hot corrosion resistance by the binding of sulfur. It turned out that a Zr content between 0.01 and 0.05%. The aim is to have a Zr content in the range of 0.02%.

Co: Co ist ein Element, das prinzipiell die Beständigkeit gegenüber schwefelhaltigen Medien erhöht. Dem gegenüber ist es aber auch sehr teuer, weshalb auf das Zulegieren von Co verzichtet wird. Aufgrund von Beimengungen in den Einsatzstoffen kann der Co-Gehalt jedoch bis zu 2% erreichen, ohne dass erhöhte Kosten entstehen. Co: Co is an element that in principle increases the resistance to sulfur-containing media. On the other hand, it is also very expensive, which is why the co-alloying of Co is dispensed with. Due to admixtures in the feedstocks, however, the Co content can reach up to 2% without incurring increased costs.

Fe: Das Element Eisen tritt u.a. als Begleitelement auf. Eine Reduzierung des Eisengehalts auf deutlich unter 1 % erhöht die Kosten, da hochwertigere Einsatzstoffe gewählt werden müssten. Bei einem auf 3% limitierten Fe-Gehalt muss man nicht mit einer deutlichen Verschlechterung der Korrosionsbeständigkeit rechnen und auch nicht mit zu hohen Kosten der Einsatzstoffe. Ein Fe-Gehalt unter 1% ist jedoch anzustreben. Fe: The element iron occurs as an accompanying element. Reducing the iron content to well below 1% increases the costs, since higher-quality starting materials would have to be selected. With a Fe content limited to 3%, you do not have to expect a significant deterioration of the corrosion resistance and not too high costs of the starting materials. However, an Fe content below 1% should be sought.

Mn: Die für Fe erwähnten Bedingungen gelten auch für Mn, wobei sich der Mn-Gehalt ohne großen Aufwand unter 1 % reduzieren lässt. Mn: The conditions mentioned for Fe also apply to Mn, whereby the Mn content can be reduced to less than 1% without much effort.

Obwohl der Einfluss der verschiedenen Elemente auf Korrosionsverhalten und Warmfestigkeit häufig gegenläufig ist, konnten mit den Legierungen E1 und E2 Zusammensetzungen gefunden werden, welche die gestellten Anforderungen an das Hochtemperatur-Korrosionsverhalten und die Warmfestigkeit bei Temperaturen im Bereich zwischen 600 °C und 850 °C gleichzeitig erfüllen. Erklärbar ist die gute Korrosionsbeständigkeit durch die Zugabe der reaktiven Elemente, wie Hafnium und Zirkon, ohne dabei das gewählte Optimum (0,05 - 0,10 %) zu überschreiten. Höhere Gehalte verstärken den in das Material hinein gerichteten Korrosionsangriff. Die Limitierungen des Kohlenstoffgehaltes < 0,1 % und die von Mangan < 1 % tragen zusätzlich zur Korrosionsbeständigkeit bei. Für die Warmfestigkeit hat es sich als besonders günstig erwiesen, wenn Aluminium und Titan zugegeben werden, wobei ihr Summengehalt - wie bereits dargelegt - im Bereich zwischen 3,5 und 4,3 % liegen soll. Diese Warmfestigkeiten machen eine Beschichtung der Sitzpartie des Ventils überflüssig, wodurch Fertigungskosten eingespart werden können.Although the influence of the various elements on corrosion behavior and heat resistance is often in opposite directions, compositions E1 and E2 were able to meet the requirements for high temperature corrosion behavior and hot strength at temperatures in the range between 600 ° C and 850 ° C simultaneously fulfill. The good corrosion resistance can be explained by the addition of the reactive elements, such as hafnium and zirconium, without exceeding the selected optimum (0.05-0.10%). Higher levels increase the corrosion attack directed into the material. The limitations of the carbon content <0.1% and that of manganese <1% additionally contribute to the corrosion resistance. For the heat resistance, it has proved to be particularly favorable when aluminum and titanium are added, with their Summenge - as already stated - should be in the range between 3.5 and 4.3%. These warmth strengths make one Coating the seat portion of the valve superfluous, thereby manufacturing costs can be saved.

Die Legierung kann mit den üblichen Methoden eines Schmelzbetriebes hergestellt werden, wobei vorteilhafterweise eine Erschmelzung im Vakuum mit einer anschließenden Umschmelzung im Elektroschlackeverfahren sinnvoll ist. Die Umformbarkeit für die Herstellung von Stangen zur Weiterfertigung zu Ventilen, wie beispielsweise Schiffsdieselventilen, ist gegeben.The alloy can be prepared by the usual methods of a melt operation, advantageously a melting in a vacuum with subsequent remelting in the electroslag process is useful. The formability for the production of rods for further processing to valves, such as marine diesel valves, is given.

Die erfindungsgemäße Legierung eignet sich insbesondere auch für die Herstellung von Ventilen für Großdieselmotoren im Allgemeinen, also beispielsweise auch für solche Großdieselmotoren, die in Stationäranlagen zur Stromgewinnung eingesetzt werden.The alloy according to the invention is also particularly suitable for the production of valves for large diesel engines in general, that is, for example, for such large diesel engines that are used in stationary facilities for power generation.

Claims (12)

  1. A use of an austenitic heat resistant nickel-base alloy comprising (in % by mass)
    0.03 - 0.1 % C
    28 - 32 % Cr
    0.01 - < 0.5 % Mn
    0.01 - ≤ 0.3% Si
    0.01 - < 1.0 % Mo
    2.5 - 3.2 % Ti
    0.01 - ≤ 0.5%Nb
    0.01 - ≤ 0.5% Cu
    0.05 - ≤ 2.0 % Fe
    0.7 - 1.0 % Al
    0.001 - ≤ 0.03 % mag
    0.01 - ≤ 1.0 % Co
    0.01 - 0.10 % Hf
    0.01 - 0.10 % Zr
    0.002 - 0.02 % B
    0.001 - 0.01 % N
    max. 0.01 % S
    max. 0.005 % Pb
    max. 0.0005 % Bi
    max. 0.01 % Ag
    the rest being Ni and production-related admixtures, wherein
    the total of Ti + Al is comprised between 3.3 and 4.3 %,
    the total of C + (10 x B) is comprised between 0.05 and 0.2 %,
    the total of Hf + Zr is comprised between 0.05 and 0.15 %,
    the ratio Ti/Al is > 3 and
    the ratio Zr/Hf = 0.1 - 0.5 %
    as a valve material.
  2. A use of an alloy according to claim 1, which contains (in % by mass) 28 - 31 % Cr.
  3. A use of an alloy according to claim 1 or 2, which contains (in % by mass) 29 - 31 % Cr.
  4. A use of an alloy according to one of the claims 1 through 3, which contains (in % by mass) 2.8 - 3.2 % Ti.
  5. A use of an alloy according to one of the claims 1 through 4, which contains (in % by mass) 2.8 - 3.0 % Ti.
  6. A use of an alloy according to one of the claims 1 through 5, which contains (in % by mass) 0.002 - 0.01 %, in particular 0.002 - 0.005 % of boron as addition.
  7. A use of an alloy according to one of the claims 1 through 6, in which the total of C + (10 x B) is comprised between 0.05 and 0.1 %, in particular between 0.05 and 0.08 %.
  8. A use of an alloy according to one of the claims 1 through 7, in which the Zr content is set between 0.01 and 0.05 %.
  9. A use of an alloy according to one of the claims 1 through 8, in which the Hf content is set between 0.01 and 0.08 %.
  10. A use of an alloy according to one of the claims 1 through 9, characterized in that the ratio Ti/Al is comprised between 3.3 and 4.2.
  11. A use of an alloy according to one of the claims 1 through 10 as valve material for valves to be used in marine diesel engines in the temperature range up to 850°C.
  12. A use of an alloy according to one of the claims 1 through 10 as valve for a large diesel engine.
EP08865541.0A 2007-12-20 2008-11-25 Austenitic heat-resistant nickel-base alloy Active EP2227572B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007062417A DE102007062417B4 (en) 2007-12-20 2007-12-20 Austenitic heat-resistant nickel-based alloy
PCT/DE2008/001964 WO2009079972A1 (en) 2007-12-20 2008-11-25 Austenitic heat-resistant nickel-base alloy

Publications (2)

Publication Number Publication Date
EP2227572A1 EP2227572A1 (en) 2010-09-15
EP2227572B1 true EP2227572B1 (en) 2016-01-27

Family

ID=40445808

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08865541.0A Active EP2227572B1 (en) 2007-12-20 2008-11-25 Austenitic heat-resistant nickel-base alloy

Country Status (7)

Country Link
US (1) US20100310412A1 (en)
EP (1) EP2227572B1 (en)
JP (1) JP2011506771A (en)
KR (1) KR101236222B1 (en)
CN (1) CN101896630A (en)
DE (1) DE102007062417B4 (en)
WO (1) WO2009079972A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620628A1 (en) 2018-09-04 2020-03-11 Winterthur Gas & Diesel Ltd. Pre-chamber

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9050682B2 (en) 2010-11-16 2015-06-09 Daniel R. Danks Electroslag welding with alternating electrode weld parameters
CN102876953A (en) * 2012-09-27 2013-01-16 无锡宏昌五金制造有限公司 High-temperature nickel-chromium alloy
CN103882263A (en) * 2012-12-19 2014-06-25 江苏龙鑫特殊钢实业总公司 Nickel-based alloy for nuclear power steam generator vibration-resisting strips and application thereof
CN104451655B (en) * 2013-09-13 2018-02-16 中国科学院金属研究所 High temperature resistance material surface alloy coating composite material, coating and preparation method thereof
DE102014001330B4 (en) 2014-02-04 2016-05-12 VDM Metals GmbH Curing nickel-chromium-cobalt-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE102014001328B4 (en) * 2014-02-04 2016-04-21 VDM Metals GmbH Curing nickel-chromium-iron-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE102014001329B4 (en) * 2014-02-04 2016-04-28 VDM Metals GmbH Use of a thermosetting nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
CN105838925B (en) * 2015-01-12 2017-11-28 宝钢特钢有限公司 High temperature oxidation resisting nickel-base alloy
CN104862532B (en) * 2015-04-22 2017-01-11 苏州劲元油压机械有限公司 Nickel alloy wire for oil filter screen and manufacturing process thereof
CN104818430A (en) * 2015-05-15 2015-08-05 钢铁研究总院 Nickel-saving high-temperature-resistant gas valve alloy
JP6739187B2 (en) * 2016-02-22 2020-08-12 株式会社神戸製鋼所 Ni-based alloy solid wire for welding and method for producing Ni-based alloy weld metal
CN106498236B (en) * 2016-10-26 2017-11-10 济宁市北辰金属材料有限公司 A kind of glass fibre production alloy crucible and preparation method thereof
JP6842316B2 (en) 2017-02-17 2021-03-17 日本製鋼所M&E株式会社 Manufacturing method of Ni-based alloy, gas turbine material and Ni-based alloy with excellent creep characteristics
CN109112363A (en) * 2018-09-22 2019-01-01 广州宇智科技有限公司 A kind of corrosion-resistant liquid spinodal decomposition type nickel alloy of lithium bromide refrigerator
CN109022922A (en) * 2018-09-22 2018-12-18 广州宇智科技有限公司 A kind of corrosion-resistant liquid spinodal decomposition type nickel alloy of ship power system condenser

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3043457A1 (en) * 1980-11-18 1982-07-08 Klöckner-Humboldt-Deutz AG, 5000 Köln HEATING SYSTEM
EP0235075B1 (en) * 1986-01-20 1992-05-06 Mitsubishi Jukogyo Kabushiki Kaisha Ni-based alloy and method for preparing same
GB8922161D0 (en) * 1989-10-02 1989-11-15 Inco Alloys Ltd Exhaust valve alloy
DK0521821T3 (en) 1991-07-04 1996-08-26 New Sulzer Diesel Ag Exhaust valve for a diesel combustion engine and method of manufacturing the valve
JPH10219377A (en) 1997-02-07 1998-08-18 Daido Steel Co Ltd Manufacture of high corrosion resistant valve for intake and exhaust valve for diesel engine and intake and exhaust valve
JPH1122427A (en) * 1997-07-03 1999-01-26 Daido Steel Co Ltd Manufacture of diesel engine valve
DE10123566C1 (en) 2001-05-15 2002-10-10 Krupp Vdm Gmbh Nickel-based austenitic alloy used as a valve material for diesel engines of ships contains alloying additions of carbon, chromium, aluminum and zirconium
CN1680611A (en) * 2004-04-07 2005-10-12 联合工艺公司 Oxidation resistant superalloy and article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620628A1 (en) 2018-09-04 2020-03-11 Winterthur Gas & Diesel Ltd. Pre-chamber

Also Published As

Publication number Publication date
KR20100083847A (en) 2010-07-22
DE102007062417A1 (en) 2009-06-25
CN101896630A (en) 2010-11-24
KR101236222B1 (en) 2013-02-22
DE102007062417B4 (en) 2011-07-14
JP2011506771A (en) 2011-03-03
US20100310412A1 (en) 2010-12-09
WO2009079972A1 (en) 2009-07-02
EP2227572A1 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
EP2227572B1 (en) Austenitic heat-resistant nickel-base alloy
DE102012011162B4 (en) Nickel-chromium alloy with good processability, creep resistance and corrosion resistance
DE102014001330B4 (en) Curing nickel-chromium-cobalt-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE60316212T2 (en) Nickel-based alloy, hot-resistant spring made of this alloy and method of making this spring
EP3775308B1 (en) Use of a nickel-chromium-iron-aluminium alloy
DE112016005830B4 (en) Metal gasket and process for its manufacture
DE102014001328A1 (en) Curing nickel-chromium-iron-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE102012011161A1 (en) Nickel-chromium-aluminum alloy with good processability, creep resistance and corrosion resistance
DE102014001329B4 (en) Use of a thermosetting nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE69406511T2 (en) Fe-Ni-Cr-based superalloy, engine valve and chain-knit network carrier body for an exhaust gas catalytic converter
DE112012003677T5 (en) Turbocharger and a component for this
DE3029658A1 (en) FERRITIC STEEL
DE69414529T2 (en) Fe-based superalloy
DE69015140T2 (en) Heat-resistant austenitic stainless steel.
DE69829012T2 (en) Ferritic, heat-resistant steel and method of manufacture
DE112012001811T5 (en) Turbocharger and component for this
AT399165B (en) CHROME BASED ALLOY
DE3782294T2 (en) DISPERSION-REINFORCED ALLOYS.
EP2617855B1 (en) Low alloyed steel and components produced therefrom
DE102015116128B4 (en) Alloy powder for surfacing and surfacing alloy element, and engine valve obtained using the same
DE69500714T2 (en) Hot rolled ferritic steel for an automotive exhaust system
DE69213533T2 (en) Heat-resistant cast steel, process for its production and exhaust system parts made from it
DE69112165T2 (en) Aluminum-containing stainless ferritic steel with high resistance to high temperature oxidation and high toughness.
DE112019001491B4 (en) Ni-BASED ALLOY AND HEAT RESISTANT PLATE MATERIAL OBTAINED USING THE SAME
DE4035114A1 (en) FE-CR-NI-AL FERRITE ALLOYS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110725

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OUTOKUMPU VDM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VDM METALS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VDM METALS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 772758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013792

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008013792

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008013792

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: VDM METALS GMBH, 58791 WERDOHL, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160428

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160527

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160527

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013792

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081125

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 16

Ref country code: FR

Payment date: 20231120

Year of fee payment: 16

Ref country code: DE

Payment date: 20231121

Year of fee payment: 16

Ref country code: AT

Payment date: 20231121

Year of fee payment: 16