EP2225342A1 - Fluide de forage a base minerale et procede de forage - Google Patents

Fluide de forage a base minerale et procede de forage

Info

Publication number
EP2225342A1
EP2225342A1 EP08872352A EP08872352A EP2225342A1 EP 2225342 A1 EP2225342 A1 EP 2225342A1 EP 08872352 A EP08872352 A EP 08872352A EP 08872352 A EP08872352 A EP 08872352A EP 2225342 A1 EP2225342 A1 EP 2225342A1
Authority
EP
European Patent Office
Prior art keywords
drilling
solids
fluid
particle size
total volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08872352A
Other languages
German (de)
English (en)
Inventor
Yannick Peysson
David Pasquier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
TotalEnergies SE
Original Assignee
IFP Energies Nouvelles IFPEN
Total SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Total SE filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2225342A1 publication Critical patent/EP2225342A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/05Aqueous well-drilling compositions containing inorganic compounds only, e.g. mixtures of clay and salt
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/16Clay-containing compositions characterised by the inorganic compounds other than clay

Definitions

  • the present invention relates to a drilling fluid for operating in very deep areas, at high temperature and at high pressure.
  • the components of the fluid are inert up to very high temperatures (up to 250-300 0 C) and its density can be adjusted beyond 2000 kg / m 3 .
  • drilling fluid capable of ensuring flow, well stability and upwelling at temperatures well above 200 ° C.
  • Conventional drilling fluids, or sludges generally consist of various additives (polymers, surfactants, etc.) which degrade at such temperatures.
  • the object of the present invention is to obtain a drilling fluid that can perform all the functions of a fluid of this type, especially hydrostatic pressure and cleaning, obtained mainly by adjusting the density and the viscosity, in a context of very high temperature and high pressure.
  • the principle of formulation of the drilling fluid according to the invention is based on the use of inert additives in the temperature range considered.
  • Silica or alumina-based mineral gels which have already been widely studied for their particular properties are known.
  • the micro spheres of silica are especially used as additives in cement slags to adjust their mechanical properties.
  • the present invention relates to a drilling fluid for high temperature, based on brine and mixture of solids of controlled particle size, characterized in that it consists of water, dissolved salts, and insoluble solid minerals comprising at least one weighting part of particle size such that its D50 is between 1 and 25 ⁇ m and a portion of particle size colloid such that its D50 is between 0.2 and 2 ⁇ m, in that the total volume fraction of the solids is between 30 and 50% relative to the total volume, and in that the total volume comprises at least 10% by volume of said colloids.
  • the drilling fluid may not include a thermally degradable viscosity additive, including natural or synthetic polymeric additives.
  • the weighting part may consist of micro barite. It can also be constituted by other weighting agents, for example Mn3O4, carbonates, insofar as their particle size corresponds to the invention.
  • the colloid part can consist of micro silica or micro alumina, or their mixture.
  • the pH of the fluid may be greater than 7.5.
  • the total volume fraction of the solids may be between 35 and 45%.
  • the invention also relates to a method of drilling a very deep underground reservoir, in which a drilling fluid consisting of water, dissolved salts and a volume fraction of insoluble mineral solids comprising at least one part of particle size included such that its D50 is between 1 and 25 microns and a portion of colloids of particle size such that its D50 is between 0.2 and 2 microns, in that the rheological characteristics of said fluid are adjusted by adjusting the fraction total volume of solids, and in that the mass is adjusted volume of said fluid by adjusting the proportion of said weighting portion relative to said portion of colloids.
  • said fluid may comprise at least 10% by volume of colloids, relative to the total volume.
  • FIGS. 1a and 1b give the granulometric curves of the minerals used in the examples
  • FIG. 2 shows the rheological variations as a function of the total solids volume fraction
  • FIG. 3 illustrates the temperature stability of the fluid according to the invention.
  • the drilling fluid according to the invention must be able to have a relatively high density, given the depth of drilling. Also, the concentration of barite can be high. At least one colloidal phase of micro silica or micro alumina makes it possible to create a gelled network in order to obtain the stability of the composition thus adjusted in density.
  • the base fluid is a brine, for example based on CaCl 2 at high concentration to avoid changes in properties when water or brine comes during drilling.
  • Other salts, or in mixture, can be used (tests with NaCl and CaCl 2 have been carried out).
  • the particle size of the various solid constituents must be well controlled and close enough. Indeed, the stability of the suspensions is ensured by the control of the size of its constituents and by the control of the surface properties.
  • micro barite whose particle size is mainly between 1 and 50 microns and the other colloidal phase (silica, alumina) will have a size between 0.1 and 3 microns.
  • the particle size curves are given in FIG. 1 and FIG. 1b, respectively for the Chaillac barite and the micro silica used. It is clear that solids of very similar particle size distribution are also suitable.
  • D50 known to those skilled in the art concerned, with the aim of the weighting minerals, for example barite, a D50 between 1 and 25 microns, and for micro silica a D50 between 0.2 and 2 microns.
  • Mn3O4 manganese tetroxide
  • Micromax TM by Elkem Materials
  • the sludge density can be varied from 1.69 to 2.32 by varying ⁇ from 0 to 33% (maximum weighting fraction for at least 12% silica remains in relation to the total volume).
  • the surface charges of the silica microspheres are thus controlled.
  • the dispersed silica phase forms a gel by Van der Waals interaction between the particles.
  • pH 8.5
  • the silica microspheres have negative charges, but the electrostatic interactions are screened by the presence of Ca 2+ ions.
  • the stability was confirmed by a Turbiscan study of the fluid according to the invention. No liquid phase appears in a long time.
  • the mixture was subjected several times to a temperature of 200 ° C. for 24 hours in a pressure cell at 20 bar.
  • the fluid appears with an identical appearance to the original one.
  • Figure 3 shows the two rheograms obtained before and after the thermal test. There is indeed an increase in the rheological parameters and in particular a doubling of the threshold stress. However, this evolution remains entirely compatible with the use of this fluid.
  • the rheological measurement after the thermal test was performed without mixing. The sample is measured as such after 24 hours in the cell, a part of the viscosity increase is therefore due to gelation over time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Colloid Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

- Fluide de forage pour haute température, à base de saumure et de mélange de solides de granulométrie contrôlée, constitué d'eau, de sels dissous, et de solides minéraux insolubles comprenant au moins une partie d'alourdissant de granulométrie telle que son D50 est compris entre 1 et 25 μm et une partie de colloïdes de granulométrie telle que son D50 est compris entre 0,2 et 2 μm. La fraction volumique totale des solides est comprise entre 30 et 50% par rapport au volume total, et le volume total comprend au moins 10% en volume desdits colloïdes. - Procédé de forage utilisant le fluide selon l'invention.

Description

FLUIDE DE FORAGE A BASE MINERALE ET PROCEDE DE FORAGE
La présente invention concerne un fluide de forage permettant d'opérer dans des zones très profondes, à haute température et à haute pression. Les composants du fluide sont inertes jusqu'à des températures très élevées (jusqu'à 250-3000C) et sa masse volumique peut être ajustée au-delà de 2000 kg/m3.
Le forage de réservoirs pétroliers profonds peut nécessiter l'utilisation de fluide de forage capable d'assurer un écoulement, une stabilité du puits et une remontée des déblais, à des températures très supérieures à 200°C. Les fluides, ou boues, de forage classiques sont généralement constituées avec divers additifs (polymères, tensioactifs,...) qui se dégradent à de telles températures.
L'objet de la présente invention est d'obtenir un fluide de forage pouvant réaliser toutes les fonctions d'un fluide de ce type, notamment pression hydrostatique et nettoyage, obtenues principalement par le réglage de la masse volumique et de la viscosité, dans un contexte de très haute température et haute pression.
Le principe de formulation du fluide de forage selon l'invention, repose sur l'utilisation d'additifs inertes dans la plage de température considérée. On connaît les gels minéraux à base de silice ou d'alumine qui ont déjà été largement étudiés pour leurs propriétés particulières. Les micro sphères de silice sont notamment utilisées comme additifs dans les laitiers de ciment pour ajuster leurs propriétés mécaniques.
Ainsi, la présente invention concerne un fluide de forage pour haute température, à base de saumure et de mélange de solides de granulométrie contrôlée, caractérisé en ce qu'il est constitué d'eau, de sels dissous, et de solides minéraux insolubles comprenant au moins une partie d'alourdissant de granulométrie telle que son D50 est compris entre 1 et 25 μm et une partie de colloïdes de granulométrie telle que son D50 est compris entre 0,2 et 2 μm, en ce que la fraction volumique totale des solides est comprise entre 30 et 50% par rapport au volume total, et en ce que le volume total comprend au moins 10% en volume desdits colloïdes.
Le fluide de forage peut ne pas comporter d'additif viscosifiant thermiquement dégradable, notamment les additifs polymériques naturels ou synthétiques.
La partie d'alourdissant peut être constituée de micro barytine. Elle peut aussi être constituée par d'autres alourdissants, par exemple Mn3O4, carbonates, dans la mesure où leur granulométrie correspond à l'invention.
La partie de colloïdes peut être constituée de micro silice ou de micro alumine, ou leur mélange.
Le pH du fluide peut être supérieur à 7,5.
La fraction volumique totale des solides peut être comprise entre 35 et 45%.
L'invention concerne également un procédé de forage de réservoir souterrain très profond, dans lequel on utilise un fluide de forage constitué d'eau, de sels dissous et d'une fraction volumique de solides minéraux insolubles comprenant au moins une partie d'alourdissant de granulométrie comprise telle que son D50 est compris entre 1 et 25 μm et une partie de colloïdes de granulométrie telle que son D50 est compris entre 0,2 et 2 μm, en ce que l'on règle les caractéristiques rhéologiques dudit fluide en ajustant la fraction volumique totale des solides, et en ce que l'on règle la masse volumique dudit fluide en ajustant la proportion de ladite partie d'alourdissant par rapport à ladite partie de colloïdes.
Selon le procédé de forage, ledit fluide peut comprendre au moins 10% en volume de colloïdes, par rapport au volume total. Selon le procédé, on ajoute aucun additif thermiquerαent dégradable à partir de 1800C, notamment des viscosifiants.
La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la lecture de la description des exemples suivants, nullement limitatifs, illustrés par les figures ci-après annexées, parmi lesquelles:
- les figures la et Ib donnent les courbes granulométriques des minéraux utilisés dans les exemples,
- la figure 2 montre les variations rhéologiques en fonction de la fraction volumique totale en solides,
- la figure 3 illustre la stabilité en température du fluide selon l'invention.
Le fluide de forage selon l'invention doit pouvoir présenter une masse volumique relativement élevée, compte tenu de la profondeur de forage. Aussi, la concentration en barytine pourra être forte. Au moins une phase colloïdale de micro silice ou de micro alumine permet de créer un réseau gélifié pour obtenir la stabilité de la composition ainsi ajustée en masse volumique.
Le fluide de base est une saumure, par exemple à base de CaCl2 à forte concentration permettant d'éviter les modifications de propriétés lors d'une venue d'eau ou de saumure en cours de forage. D'autres sels, ou en mélange, peuvent être utilisés (des tests avec NaCl et CaCl2 ont été réalisés). γ La fraction volumique en barytine est noté φ =- Bar"e et celle en silice (ou
' Total V - alumine) noté ξ = """6^ . La fraction volumique totale de .solides est notée
' rote/ Φm = Φ + ξ -
La masse volumique de la boue est fonction de φ ou ξ ou de φm et φ pMud = P«mmuΛ ~Φ~ ξ)+ PbariteΦ + AoβΛώÉ PlΛud ~ Φ)
Donc, pour une masse volumique donnée pMud, on peut se fixer une quantité maximum de solides φm dans le système et ajuster le rapport de fraction, avec φ et ξ, entre les deux solides.
Ce point est important, car au premier ordre, on peut considérer que la rhéologie du fluide de forage est principalement contrôlée par φm et la masse volumique par φ et ξ . Ainsi, dans une certaine mesure, on peut contrôler l'un et l'autre indépendamment, ce qui est un avantage certain de ce genre de système.
La granulométrie des différents constituants solides doit être bien contrôlée et assez proche. En effet, la stabilité des suspensions est assurée par le contrôle de la taille de ses constituants et par la maîtrise des propriétés de surface.
Ainsi, on utilise de la micro barytine dont la granulométrie est principalement comprise entre 1 et 50 μm et l'autre phase colloïdale (silice, alumine) aura une taille comprise entre 0,1 et 3 μm. Les courbes granulométriques sont données figure la et figure Ib, respectivement pour la barytine de Chaillac et la micro silice utilisée. Il est clair que des solides de répartition granulométrique très proche conviennent également. On pourra se référer aux valeurs de D50, connus de l'homme du métier concerné, avec pour les minéraux alourdissants, par exemple la barytine, un D50 compris entre 1 et 25 μm, et pour la micro silice un D50 compris entre 0,2 et 2 μm.
Comme alourdissant, on peut utiliser du tétraoxyde de manganèse (Mn3O4, par exemple commercialisé sous le nom de Micromax ™par la société Elkem Materials) ou des carbonates.
Il est nécessaire d'introduire une fraction volumique minimale de dispersion minérale afin d'obtenir un gel. Cette quantité est de 12% pour la dispersion de silice et 10% pour la micro alumine.
Ainsi, par exemple, en fixant la fraction totale de solide à 45%, on peut faire varier la densité de boue de 1,69 à 2,32 en faisant varier φ de 0 à 33% (fraction maximum d'alourdissant pour qu'il reste au moins 12% de silice par rapport au volume total).
Le contrôle du pH et de la force ionique (concentration en sel) de la dispersion permettent d'assurer une maîtrise des interactions colloïdales.
Cependant, ces paramètres sont imposés en partie par l'utilisation du fluide comme boue de forage, pour lequel la concentration en sel est généralement de l'ordre de 2 mol/L, ou plus.
Pour le gel de silice, le pH est ajusté à pH=8,5 par ajout de CaOH2. On contrôle ainsi les charges de surface des microsphères de silice. Les dispersions de silice donnent des gels physiques très stables à pH=8-9 et à force ionique supérieure (concentration en sel supérieure à 0,1 mol/L). C'est dans cette gamme que se place la présente invention.
On obtient ainsi un fluide rhéologique à seuil, d'aspect homogène. On a constaté que le fluide ne présente pas de surnageant eau, même après un temps très long (supérieur à 48 h).
La phase dispersée de silice forme un gel par interaction de Van der Waals entre les particules. A pH=8,5, les microsphères de silice présentent des charges négatives, mais les interactions électrostatiques sont écrantées par la présence d'ions Ca2+. La stabilité a été confirmée par une étude au Turbiscan du fluide selon l'invention. Aucune phase liquide n'apparaît à temps long.
Le même comportement est observé pour les phases alumine. Le pH se stabilise naturellement à 7,5 ; et au delà de 10% de fraction volumique de micro alumine l'aspect gel est retrouvé.
Des essais ont également été réalisés à pH=3,5. Ces mélanges conduisent également à une phase homogène, mais qui conduit à l'apparition de fluide clair après 2Oh en statique. Cependant, ces fluides présentent sur cette période des propriétés suffisamment intéressantes pour l'application en fluide de forage.
Il est donc possible de formuler un fluide homogène et ne présentant pas de séparation de phase à temps long ou une séparation de phase modérée.
Le mélange réalisé présente une rhéologie compatible avec l'utilisation d'une boue de forage comme le montrent, Figure 2, les valeurs de Yield (YV en lbs/100ft2 ou contrainte seuil - conversion : Ibsl 100ft2x0,48 = Pa), VA (Viscosité
Apparente en centiPoise - conversion: cP*0,001 = Pa.s), VP (Viscosité Plastique en centiPoise) calculées à partir de mesures rhéologiques.
Différentes rhéologies en fonction de la fraction volumique totale (35%, 37% et 45%) en solides pour un mélange Barytine/Silice à pH=3 sont illustrées sur la Figure 2.
On constate clairement que la modification de la quantité totale de solides conduit à une modification de la rhéologie du système. On a bien une variable d'ajustement sur la rhéologie. De plus, on note une augmentation de la viscosité du mélange et de la contrainte seuil (YV) en fonction de la fraction volumique totale en solides. Afin de garder des produits d'une viscosité adaptée, il faut fixer la fraction volumique totale de solide dans une plage comprise entre 35% et 45%, et au moins 10% de micro silice, ou équivalent en granulométrie, par rapport au volume total. Stabilité en température
Le mélange a été soumis plusieurs fois à une température de 2000C pendant 24h dans une cellule sous pression à 20 bars. Le fluide ressort avec un aspect identique à celui de départ.
Pour confirmer les tests visuels, des tests rhéologiques avant/après sont réalisés et ils montrent que le fluide garde des propriétés de fluide à seuil de type Herschell Bulkley mais avec une légère modification de la valeur de la contrainte seuil et des paramètres de viscosité (consistance et indice de rhéofluidification). La figure 3 montre les deux rhéogrammes obtenus avant et après le test thermique. On note bien une augmentation des paramètres rhéologiques et notamment un doublement de la contrainte seuil. Cependant, cette évolution reste tout à fait compatible avec l'utilisation de ce fluide. De plus, la mesure rhéologique après le test thermique a été réalisée sans effectuer de mélange. L'échantillon est mesuré tel quel après 24h dans la cellule, une part de l'augmentation de viscosité est donc due à la gélification dans le temps.

Claims

REVENDICATIONS
1) Fluide de forage pour haute température, à base de saumure et de mélange de solides de granulométrie contrôlée, caractérisé en ce qu'il est constitué d'eau, de sels dissous, et de solides minéraux insolubles comprenant au moins une partie d'alourdissant de granulométrie telle que son D50 est compris entre 1 et 25 μm et une partie de colloïdes de granulométrie telle que son D50 est compris entre 0,2 et 2 μm, en ce que la fraction volumique totale des solides est comprise entre 30 et 50% par rapport au volume total, et en ce que le volume total comprend au moins
10% en volume desdits colloïdes.
2) Fluide de forage selon la revendication 1, ne comportant pas d'additif viscosifiant thermiquement dégradable.
3) Fluide de forage selon l'une des revendications précédentes, dans lequel ladite partie d'alourdissant est constituée de micro barytine.
4) Fluide de forage selon l'une des revendications précédentes, dans lequel ladite partie de colloïdes est constituée de micro silice ou de micro alumine, ou leur mélange.
5) Fluide de forage selon l'une des revendications précédentes, dans lequel le pH est supérieur à 7,5.
6) Fluide de forage selon l'une des revendications précédentes, dans lequel la fraction volumique totale des solides est comprise entre 35 et 45%.
7) Procédé de forage de réservoir souterrain très profond, dans lequel on utilise un fluide de forage constitué d'eau, de sels dissous et d'une fraction volumique de solides minéraux insolubles comprenant au moins une partie d'alourdissant de granulométrie comprise telle que son D50 est compris entre 1 et 25 μm et une partie de colloïdes de granulométrie telle que son D50 est compris entre 0,2 et 2 μm, en ce que l'on règle les caractéristiques rhéologiques dudit fluide en ajustant la fraction volumique totale des solides, et en ce que l'on règle la masse volumique dudit fluide en ajustant la proportion de ladite partie d'alourdissant par rapport à ladite partie de colloïdes.
8) Procédé de forage selon la revendication 7, dans lequel ledit fluide comprend au moins 10% en volume de colloïdes, par rapport au volume total.
9) Procédé de forage selon l'une des revendications 7 ou 8, dans lequel ledit fluide comporte entre 35 et 45% de fraction volumique de solides.
10) Procédé de forage selon l'une des revendications 7 à 9, dans lequel on ajoute aucun additif thermiquement dégradable à partir de 1800C, notamment des viscosifiants.
EP08872352A 2007-12-10 2008-12-04 Fluide de forage a base minerale et procede de forage Withdrawn EP2225342A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0708587A FR2924720B1 (fr) 2007-12-10 2007-12-10 Fluide de forage a base minerale et procede de forage
PCT/FR2008/001693 WO2009101290A1 (fr) 2007-12-10 2008-12-04 Fluide de forage a base minerale et procede de forage

Publications (1)

Publication Number Publication Date
EP2225342A1 true EP2225342A1 (fr) 2010-09-08

Family

ID=39103045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08872352A Withdrawn EP2225342A1 (fr) 2007-12-10 2008-12-04 Fluide de forage a base minerale et procede de forage

Country Status (4)

Country Link
US (1) US8563483B2 (fr)
EP (1) EP2225342A1 (fr)
FR (1) FR2924720B1 (fr)
WO (1) WO2009101290A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090186781A1 (en) * 2008-01-17 2009-07-23 Hallibruton Energy Services, Inc., A Delaware Corporation Drilling fluids comprising sub-micron precipitated barite as a component of the weighting agent and associated methods
US8252729B2 (en) 2008-01-17 2012-08-28 Halliburton Energy Services Inc. High performance drilling fluids with submicron-size particles as the weighting agent
FR2927936B1 (fr) * 2008-02-21 2010-03-26 Vam Drilling France Element de garniture de forage, tige de forage et train de tiges de forage correspondant
CN111378421B (zh) * 2018-12-28 2022-06-03 中国石油天然气股份有限公司 压井液及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2337296A (en) * 1941-11-06 1943-12-21 Gulf Research Development Co Drilling fluid
US4569770A (en) * 1984-02-13 1986-02-11 Engelhard Corporation Barium compound-containing thickening agent and drilling fluids made therefrom
US5398758A (en) * 1993-11-02 1995-03-21 Halliburton Company Utilizing drilling fluid in well cementing operations
GB2315505B (en) * 1996-07-24 1998-07-22 Sofitech Nv An additive for increasing the density of a fluid and fluid comprising such additve
US20030203822A1 (en) * 1996-07-24 2003-10-30 Bradbury Andrew J. Additive for increasing the density of a fluid for casing annulus pressure control
US6794340B2 (en) * 2002-06-25 2004-09-21 Halliburton Energy Services, Inc. Method for removing drill cuttings from wellbores and drilling fluids
US20090186781A1 (en) * 2008-01-17 2009-07-23 Hallibruton Energy Services, Inc., A Delaware Corporation Drilling fluids comprising sub-micron precipitated barite as a component of the weighting agent and associated methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009101290A1 *

Also Published As

Publication number Publication date
US20100326728A1 (en) 2010-12-30
WO2009101290A1 (fr) 2009-08-20
FR2924720A1 (fr) 2009-06-12
US8563483B2 (en) 2013-10-22
FR2924720B1 (fr) 2010-09-17

Similar Documents

Publication Publication Date Title
Li et al. Soy protein isolate as fluid loss additive in bentonite–water-based drilling fluids
Sharma et al. Viscoelastic properties of oil-in-water (o/w) Pickering emulsion stabilized by surfactant–polymer and nanoparticle–surfactant–polymer systems
CA2987773C (fr) Fluides de forage et leurs procedes d'utilisation
CA1255840A (fr) Procede de preparation de microlatex inverses de copolymeres hydrosolubles, les microlatex inverses obtenus et leur utilisation pour l'amelioration de la production des hydrocarbures
CA2577940C (fr) Methode de traitement de formations ou de cavites souterraines par des microgels
Bjørsvik et al. Formation of colloidal dispersion gels from aqueous polyacrylamide solutions
FR2735465A1 (fr) Compositions de cimentation et application de ces compositions pour la cimentation des puits petroliers ou analogues
Elhaei et al. Stability, flocculation, and rheological behavior of silica suspension-augmented polyacrylamide and the possibility to improve polymer flooding functionality
EP2225342A1 (fr) Fluide de forage a base minerale et procede de forage
FR2704218A1 (fr) Laitiers de ciments pétroliers, leur préparation et leur utilisation à la cimentation de puits.
Viken et al. Thermothickening and salinity tolerant hydrophobically modified polyacrylamides for polymer flooding
JPH10513491A (ja) ポリマー土壌支持流動体組成物及びそれらの使用方法
Verma et al. Synergistic effects of polymer and bentonite clay on rheology and thermal stability of foam fluid developed for hydraulic fracturing
Wahid et al. Optimum nanosilica concentration in synthetic based mud (SBM) for high temperature high pressure well
Reichenbach-Klinke et al. New insights into the mechanism of mobility reduction by associative type copolymers
Viken et al. Influence of weak hydrophobic interactions on in situ viscosity of a hydrophobically modified water-soluble polymer
Galindo-Rosales et al. Static and dynamic yield stresses of Aerosil 200 suspensions in polypropylene glycol
Ma et al. Comparison of an emulsion-and solution-prepared acrylamide/AMPS copolymer for a fluid loss agent in drilling fluid
CA2927071C (fr) Composition fluide pour la stimulation dans le domaine de la production de petrole et de gaz
Li et al. Nanoscale polyacrylamide copolymer/silica hydrogel microspheres with high compressive strength and satisfactory dispersion stability for efficient profile control and plugging
CN105884251A (zh) 一种基于石墨烯的水性电热涂料及其制备方法
Narehei et al. Preparation and characterization of colloidal gas aphron based drilling fluids using a plant-based surfactant
FR2994977A1 (fr) Utilisation de polymères thermo épaississants dans l'industrie d'exploitation gazière et pétrolière
Lei et al. The Utilization of Self-crosslinkable nanoparticles as high-temperature plugging agent in water-based drilling fluid
Ma et al. Design, preparation and properties of new polyacrylamide based composite nano-microspheres with like “ball in ball” structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

Owner name: TOTAL S.A.

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110414

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160620

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161101