EP2224465B1 - Procédé et dispositif de génération de contraste d'image par décalage de phase - Google Patents

Procédé et dispositif de génération de contraste d'image par décalage de phase Download PDF

Info

Publication number
EP2224465B1
EP2224465B1 EP10001638.5A EP10001638A EP2224465B1 EP 2224465 B1 EP2224465 B1 EP 2224465B1 EP 10001638 A EP10001638 A EP 10001638A EP 2224465 B1 EP2224465 B1 EP 2224465B1
Authority
EP
European Patent Office
Prior art keywords
quadrupole
field
intermediate image
anamorphic
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10001638.5A
Other languages
German (de)
English (en)
Other versions
EP2224465A2 (fr
EP2224465A3 (fr
Inventor
Joachim Dr. Zach
Harald Prof. Dr. Rose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CEOS Corrected Electron Optical Systems GmbH
Original Assignee
CEOS Corrected Electron Optical Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CEOS Corrected Electron Optical Systems GmbH filed Critical CEOS Corrected Electron Optical Systems GmbH
Publication of EP2224465A2 publication Critical patent/EP2224465A2/fr
Publication of EP2224465A3 publication Critical patent/EP2224465A3/fr
Application granted granted Critical
Publication of EP2224465B1 publication Critical patent/EP2224465B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/263Contrast, resolution or power of penetration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2614Holography or phase contrast, phase related imaging in general, e.g. phase plates

Definitions

  • the invention relates to a method for image contrast generation by phase shift in the electron optics, wherein starting from an intermediate image by quadrupole fields anamorphic imaging of the axial rays is generated at the same zero crossing of the field beams in at least one diffractive intermediate image plane, there by a magnetic or electric field, a relative phase shift between an area around the electron beam zeroth diffraction order and the electron beams higher diffraction orders is effected and then compensated by further quadrupole fields the at least one generated anamorphism of the beam path again.
  • the invention further relates to an apparatus for carrying out the method with input-side quadrupole elements, which generate such quadrupole fields from an intermediate image that the axial rays and the field rays are focused or defocused in two vertical sections such that the axial rays are anamorphic in a diffractive intermediate image plane And the field beams each pass through zero, wherein in the region of the diffractive intermediate image plane a central quadrupole element is arranged with such a quadrupole field that the axial rays leave the field with slopes that are opposite to the entry into the field, and two more Quadrupole elements produce quadrupole fields which are magnitude and sign equal to the quadrupole fields of the input-side quadrupole elements, so that the anamorphism of the beam path is compensated again, and wherein in the diffractive intermediate image plane a ph is arranged asenschiebendes element whose magnetic or electric field is arranged such that a relative phase shift between the region of the electron beam zeroth diffraction
  • the invention relates to a device for carrying out a method with input-side quadrupole elements which generate such quadrupole fields from an intermediate image that the axial rays and the field rays are focused or defocused in two vertical sections such that the axial rays are anamorphic in a diffractive intermediate plane And the field beams each pass through zero, wherein in the region of the diffractive intermediate image plane a central quadrupole element is arranged with such a quadrupole field that the axial rays leave the field with opposite slopes as they have entered the field, and wherein in the diffraction Intermediate image plane is arranged a first phase-shifting element whose magnetic or electric field is arranged such that a relative phase shift between the region of the electron beam zeroth diffraction order and the electron beams höh Heer diffraction orders is effected.
  • phase modulation of the object is converted into a strong amplitude contrast by the interference in the re-superimposition when the zero beam is superimposed again with the diffracted beams in the image plane.
  • phase contrast see z. B. Reimer, Kohl, "Transmission Electron Microscopy", p 211 ff, 5th edition, 2008 ).
  • phase shift For such a phase shift, use is made of the fact that the beams in the focal plane of the objective form different focal points, so that in the focal plane for the null beam it forms a central focus and from the foci of the diffracted beams of the different diffraction orders starting with the diffraction first Order, which are essentially in the same focal plane. This fact can be exploited to cause a phase shift of either the null beam or the diffracted beams to cancel out the phase difference to amplify the amplitudes.
  • phase-shifting elements of various kinds have been proposed which rely on the phase-shifting element passing through the range of diffracted beams to detect the range of the null beam. It should also be noted that it is not technically feasible to detect the null beam alone, since an electric field in the nanometer range would be required, which can not be produced with the current technical possibilities. Therefore, depending on the design of the respective phase-shifting elements, diffracted beams are detected at least to a small extent.
  • the phase-shifting element has a ring structure which encompasses the region of the null beam in order to apply the field required for the phase shift of the null beam. In doing so, however, diffracted beams, which are lost for the generation of contrast, are shaded to a considerable extent. Therefore was from the DE 10 2006 055 510 A1 proposed a phase-shifting element, which comes to one side of the range of the zero beam to apply there the required field. Since no shadowing of areas offset by 180 ° takes place in this way, it is possible with this phase-shifting element to reconstruct the shaded portions of the diffracted beams and thus to use them fully for contrast generation.
  • phase-shifting elements of the type mentioned, by the DE 10 2007 007 923 A1 were proposed. They operate according to the method mentioned above, which is based on quadrupole fields producing an anamorphic image in a diffraction intermediate image which makes it possible to approach the null beam or the diffracted beams with one field in order to obtain a relative phase shift between the area to bring about the electron beam of zeroth diffraction order and the electron beams of higher diffraction order. In this way it is achieved that no component of Device shaded beams shadowed. This has the further advantage that the separate detection of these beam components and thus the contrast generation is much better possible.
  • Zero beam and diffracted beams are strung in the anamorphic image from the center out, so that it is possible to detect both the null beam and the diffracted beams relatively accurately with one field.
  • the object of the invention is to further improve the image contrast in the method and the two devices of the type mentioned at the outset without causing any more tolerable errors.
  • the object is achieved with respect to the method of the aforementioned type according to the invention that serve for the generation and compensation of at least one anamorphic image immediately before and after this figure arranged quadrupole elements having such an extent in the direction of the optical axis and such a strength that they produce an astigmatic intermediate image in their area of effect, wherein the strength is chosen so large that the axial field extension can be inserted into the optical system of an electron microscope, and wherein at least one of the axial rays by the appropriate choice of a strong magnification M of the intermediate image under such minor slope 1 / M enters the quadrupole field of the quadrupole element immediately before the at least one anamorphic image, that its aspect ratio is significantly increased, but the length of the anamorphic imaging does not practice this way
  • the image quality is degraded in a way that would be detrimental to the image analysis in any way.
  • a first device according to the invention is specified in claim 11.
  • the object is achieved with respect to the first device of the type mentioned above in that the diffraction intermediate plane directly upstream and downstream quadrupole elements have an extension in the direction of the optical axis and a strength such that they produce an astigmatic intermediate image in their sphere of action the strength is chosen so large that the axial field extension can be inserted into the optical system of an electron microscope at a location of the beam path of the projectile lens system while maintaining an acceptable height, and wherein at least one of the axial rays by the appropriate choice of a strong magnification M of the intermediate image such a small pitch - enters the quadrupole field before the at least one anamorphic image that its aspect ratio is significantly increased, but the length of the anamorphic image is not exceeded so that degrades the image quality in a way that would be detrimental to the image analysis in any way.
  • a second device is specified in claim 14.
  • the object is achieved with respect to the second device of the type mentioned above in that the diffraction intermediate image plane is arranged downstream of a quadrupole element and the Bengungs - intermediate image plane directly from and after ordered quadrupole elements such expansion in the direction of the optical axis and have such a strength, that they produce an astigmatic intermediate image in their sphere of action, wherein the strength is chosen so large that the axial field extension can be inserted into the optical system of an electron microscope while maintaining an acceptable height, that after a central plane of symmetry with respect to all quadrupole elements follow three quadrupole elements whose Fields are substantially equal in magnitude to the fields of the preceding three quadrupole elements, however, rotated by 90 °, that then follows a quadrupole with a field that is the same amount but rotated by 90 ° to the field of the first quadrupole that the Fel and the before and after the diffractive intermediate plane lying quadrupole elements are so different from each other adjustable
  • the invention is based first of the recognition that it is important for a good phase-contrast not only on the length of the anamorphic image, but also on the ratio of its length to its width, ie the aspect ratio.
  • the greater this aspect ratio is, the better a zero-beam detection that is as pure as possible or a detection of as many diffraction orders as possible, in particular the first, which is closest to the zero beam.
  • tolerable errors are to be understood as meaning those which do not impair the image quality in a manner which is in any way detrimental to the image evaluation.
  • the quadrupole elements must be built in a device technically undesirable length.
  • the field strengths must therefore be so great that the heights of the corresponding devices do not increase the lengths of the beam tubes of conventional electron microscopes in such a way that they can no longer be set up in conventional spaces.
  • a large enlargement of the intermediate image results in a flat slope of the axial rays, which in turn results in a correspondingly reduced diffraction pattern.
  • the magnification M of the intermediate image thus thus the slope 1 M the axial rays are selected and thus such a small virtual diffraction image that then an anamorphic image can be achieved in the diffractive intermediate image plane with a high aspect ratio and thus with an acceptable length.
  • the anamorphic image is made of axial rays with the slope 1 M generated, which would lead to the greatly reduced diffraction pattern without arrangement of the quadrupole fields.
  • the invention strives for aspect ratios which are more than 100 or possibly even more than 200, and this without image degradation and with a size of the device which is manageable and acceptable in terms of device technology.
  • This is only possible by means of the abovementioned measures, in particular a flat gradient of the axial rays originating from a large intermediate image (the magnification M) 1 M only to obtain an anamorphic image with a Aspect ratio of over 100 are used when the quadrupole element before the diffraction intermediate plane or its field has the above-defined axial extent, so that an acceptable height is achieved. If a second anamorphic image is still generated, the same applies for the ray path due to the antisymmetric conditions, these will be explained in more detail.
  • the devices of the invention must be adapted to the particular type of an electron microscope.
  • the location in the projective lens system with the magnification M of the intermediate image for the installation of the device is also sought in the manner indicated.
  • the size of this magnification of M depends on the type of electron microscope. With high-resolution, high-magnification electron microscopes, one will aim for a higher aspect ratio of 200 and more, and therefore choose a larger magnification M, as with devices that require less. If the requirements for electron microscopes are lower, the diameter of the radiant tube is also smaller and the overall height of the device is such that it can be set up in a workspace with standard ceiling height. Here, a smaller magnification M of the intermediate image and a smaller aspect ratio are sufficient.
  • the length of the anamorphic image must also be shorter, and the focal lengths of the quadrupoles upstream and downstream of the diffraction intermediate image plane must also be shorter in order to limit their height. This must take into account all the lower height and the smaller beam tube diameter of such a device.
  • the more demanding devices have larger diameter radiant tubes because the dimensions of the lenses are larger in accordance with the wider beam bundles.
  • Such devices also have a greater height and therefore their rooms are also available rooms that have a correspondingly higher ceiling height. This allows the aforementioned dimensions to be increased, but correspondingly greater are the requirements for the phase contrast to be achieved.
  • the relative size specifications of the features of the devices according to the invention must be selected.
  • a high-resolution electron microscope one could For example, choose an aspect ratio of 400.
  • a greater length of the anamorphic image With a large diameter jet, the anamorphic image may also be of such longer length without causing intolerable errors.
  • the specialist due to the type of construction of the electron microscope, the size and the requirements of this device, also provide the parameters by which he can specify the relative details for each type of building.
  • the quadrupole fields can be magnetic or electric fields in a known manner; this does not matter for the functional principle. Also for the phase shift electrical or magnetic fields can be used, which is preferred here electric fields. On the one hand, because this does not require particularly strong fields, on the other hand, because electric fields can be better applied in a defined and limited local extent.
  • a single anamorphic image can be generated and compensated again. Then it is most convenient if the applied there magnetic or electric field has such a field strength that a relative phase shift of approximately 90 ° is effected. However, this does not exclude that a better contrast formation is achieved for certain objects due to a different phase shift. Therefore, adjustability may be appropriate in this regard.
  • the field arrangement can also be doubled, so that the at least five quadrupole fields, which deform the beam anamorphic and then cancel the deformation again, are followed by at least five quadrupole fields which are reversely polarized.
  • the fields In order to produce this further intermediate image after the last quadrupole field of the first field arrangement, the fields must be arranged such that the intermediate image lies on the input side of the field arrangement in front of the first quadrupole field.
  • a jet of radiation occurs in an antisymmetric manner such that in the second half of the device the axial rays and the field rays pass through the x-cut as before the y-cut and the y-cut as before the x-cut. In this way an anamorphic image rotated by 90 ° is again generated and compensated again.
  • magnetic or electric fields for relative phase shift are applied to the two anamorphic images produced, which have field strengths such that this respective phase shift is approximately 45 °.
  • a different phase shift may also be expedient here for certain objects.
  • the rays after leaving the quadrupole field following the first anamorphic image, the rays have the same slope as when entering the quadrupole field upstream of the second anamorphic image. In this way, it is possible to transfer the beams directly from the quadrupole field following the first anamorphic image to the quadrupole field which precedes the second anamorphic image. In this way, there is only one central plane of symmetry with respect to the quadrupole element array, which however is a plane of antisymmetry with respect to the fields.
  • the two field arrays no longer exhibit any symmetry in themselves, which causes a deviation in the slope of the beams compared to the above-described double-symmetric arrangement, so that the assembly of the field arrays requires adjustment to achieve complete compensation to achieve the respective anamorphism.
  • the quadrupole fields of the first array which are before and after the diffractive intermediate plane, must be set so different from each other that the axial rays in the central plane of symmetry form another intermediate image of the magnification M and intersect the field beams. Since, however, a third intermediate image of size M must form at the end of the device, the corresponding quadrupole fields which lie before and after the second diffraction intermediate image plane must also be adjusted differently from one another in such a way that a third intermediate image is formed, which likewise enlarges M having.
  • the field arrangement described above can then be such that, starting from a double symmetry with five quadrupole fields, omitting the last and the first of the respective five quadrupole fields under the aforementioned conditions, without thereby - taking the above-described corrections - the antisymmetry of the beam path and thus to change the overall function. With a larger number of fields, so many can be omitted accordingly that a corresponding anti-symmetry of the beam path is ensured.
  • Said relative phase shift between the region of the null beam and the diffracted electron beams can be effected by a field application to both beam regions, but it is more expedient that a phase shift is effected only in one of these types of radiation.
  • a magnetic or electric field can be applied only in the region of the zero beam, for example, to effect a phase shift of approximately 90 ° or twice approximately 45 °.
  • the quadrupole fields for generating and compensating the anamorphic image which are arranged immediately before and after this, expediently have such an extent in the direction of the optical axis and a strength such that an astigmatic intermediate image can be generated within its effective range. Since the field strength is also used to determine the extent in the direction of the optical axis, the latter should be limited by an appropriate dimensioning of the field strength so that the electron microscope does not lead to an unacceptable height of the respective type of construction due to the insertion of the device operating according to this method Electron microscope leads. The height depends on the type of construction and the room heights of the operating rooms, which are usually provided for these types of equipment.
  • the question of whether an aspect ratio of greater than 100 or greater than 200 is selected depends on the magnification and resolution of the respective device type. The higher the requirements for the optical properties of a device, the greater the aspect ratio should be in order to achieve the best possible image contrast due to the separation of the areas of zero beam and diffracted beams.
  • the devices according to the invention operate according to the methods described above.
  • the method and its developments, the operation of the devices again and vice versa the disclosure of the devices can be used due to their operation in addition to the description of the method.
  • the device already described above initially relates to a simple-symmetrical design with the described at least five quadrupole elements. These are required for the phase shift according to the invention, it being understood that in such a device, further quadrupole or multi-pole elements can be integrated to effect other functions, such as the correction of chromatic aberrations, opening errors or any axial or extra-axial errors of different orders. However, further quadrupole elements can also serve to effect the beam path required for the invention by more than the five quadrupole fields described.
  • the simple-symmetric design aims to produce a single anamorphic image which then conveniently serves to produce a relative phase shift of approximately 90 ° through a magnetic or electric field by means of a phase-shifting element.
  • a different phase shift may also be provided for certain objects. It may also be expedient to adjust the device by changing the field of the phase-shifting element into a specific region, usually in the region of 90 °, in order to produce the optimal contrast depending on the object.
  • a development of the above-described device provides that it is arranged downstream of the optical axis of a second device whose quadrupole elements correspond to the quadrupole elements of the first device, but their fields are reversed poled, so that the anamorphic image compared to the anamorphic image of the first device by 90 ° is turned. Furthermore, it is necessary that this device in the beam path of the projective lens system of the electron microscope is arranged so arranged that the intermediate image is located in front of the first quadrupole element and the two said devices are joined together to form a device that in the resulting by this assembly central plane of symmetry another intermediate image the magnification M is formed. The phase-shifting element of the second device is then also rotated 90 ° so as to provide magnetic or electric fields for relative phase shifting between the zero-order electron beam region and the higher-order electron beams of this second anamorphic image.
  • This device then has, by connecting a first and a second device in series, a doubling of the device described above, wherein a symmetry plane lies between the devices with respect to the element arrangement.
  • the fields of the second device with respect to the first reversed poled so that it happens that the axial rays and the field rays through the x-section of the second device as the y-section of the first device and the y-section of the second device, such as the x-section of the first device. From the double-symmetrical structure thus results in an antisymmetric beam path, which generates a third intermediate image on the output side after the last quadrupole element.
  • phase-shifting elements acting on the two anamorphic images have electrical or magnetic fields which cause a phase shift of approximately 45 ° in each case.
  • phase-shifting elements acting on the two anamorphic images have electrical or magnetic fields which cause a phase shift of approximately 45 ° in each case.
  • the second device described above works in principle in the same way. In contrast to the device described above, however, it has no double symmetry since the quadrupole element disposed after the first diffraction intermediate image plane directly follows the quadrupole element which precedes the second diffraction intermediate image plane.
  • the simplification is that the fifth quadrupole element is omitted from the first device and the first quadrupole element is omitted from the second device.
  • the aforementioned device like the other devices and methods, contains only the quadrupole elements or fields which are necessary for the invention. If further quadrupole elements or multipole elements or fields are additionally arranged, for example in order to achieve additional chromatic aberration or other error correction, these are irrelevant for the assessment of the invention because of a deviating functionality which merely represents an additive addition to the functionality according to the invention.
  • the optical paths can be distributed among a plurality of further quadrupole elements. If, however, the effect of one of the quadrupole fields is thus distributed over two fields, for example, this still corresponds to the mode of operation of the field which is essential to the invention, or of the corresponding quadrupole element according to the invention. Correspondingly, this also applies to the device, which differs from the double symmetry in that quadrupole elements are omitted in the assembly of two individual devices, if this omission takes place while maintaining the antisymmetry of the beam path.
  • phase-shifting elements with magnetic or electric fields are arranged in each diffractive intermediate image plane, preferably causing a phase shift of approximately 45 ° each.
  • the quadrupoles for generating and compensating for the at least one anamorphic image have such an extent in the direction of the optical axis and are designed for such field generation that an astigmatic intermediate image can be generated within its effective range is.
  • the field strength should be chosen so that the axial extent of the quadrupole leads only to an expansion of the overall height of the device, which is still within a good installation in an electron microscope.
  • phase-shifting element it is essential that its field, regardless of whether it is a magnetic or an electric field, causes a relative phase shift between the beams of the electron beam of zero diffraction order and the electron beams of higher diffraction orders.
  • the field could also act on both types of beams, but it is expedient for the phase-shifting element to be designed such that the magnetic or electric field can be applied either in the region of the zero beam and the range of the diffracted beams is at zero potential or vice versa.
  • phase shifting element in which the zero beam region is at zero potential and the field is applicable in the diffracted beam region may provide that the phase shifting element for generating an electric field has a slot including the anamorphic image. wherein extend on both sides along the slot electrodes for the application of the electric field, which are interrupted for the region of the zero beam in the region of the optical axis by a respective lying at zero potential conductor.
  • phase-shifting element it is important that the anamorphic image with its long sides as close as possible to the slot, but without touching it. Therefore, it is expedient if the device is set up such that the quadrupole elements generate fields in such a way before and after the diffraction intermediate plane that the width of the anamorphic image just fits into the width of the slit. In this way a uniform and targeted application of the field to the diffracted beams is achieved.
  • the aim of the invention is best achieved by the fact that with the quadrupoles such field strengths can be generated and that the arrangement of the device at such a point of the beam path of the projective lens system of an electron microscope vorappelbar is that the magnification M of the intermediate image such a slope 1 M
  • the axial rays show that the aspect ratio of the at least one anamorphic image is greater than 100.
  • the aspect ratio should be greater than 200 by the aforementioned arrangement and field strengths.
  • Fig. 1 shows a schematic diagram illustrating the inventive idea.
  • Prof. Rose loc. Cit., P. 85, FIG. 4.9. It shows how interim images and diffraction images alternate in the beam path after the object (Rose, loc. Cit., P. 79 "theorem of alternating images").
  • the abovementioned representation of the electron microscope is simplified in that not only a projective lens but also a whole projective lens system 18 (FIG. Fig. 5 ) is present, so that more intermediate and diffraction images arise.
  • the intermediate images are formed when the axial rays Xo.
  • FIG. 1 In a schematic simplification it is shown how an intermediate image 27 is formed by an object 4 in an electron microscope 31 between an objective 17 and one of the devices 1, 2 or 3 according to the invention, and an intermediate image 5 is formed in the input region of the devices 1, 2 or 3 which magnifies the object 4 M times.
  • the illustrated magnification M is only symbolic, in fact M is much larger than drawn to a low slope 1 M which leads to a greatly reduced diffraction pattern 28, which forms the basis for a reduction of the anamorphic Figure 6 , 6 'is.
  • this diffraction image 28 is typically a virtual diffraction image 28, since the device 1, 2 or 3 prior to the formation of the same in the Beam path with the slope 1 M engages the anamorphic Figure 6 To form 6 '.
  • the virtual diffraction image 28 is in inverse proportion to the magnification M of the intermediate image 5.
  • a correspondingly reduced diffraction image 28 or, since this is virtual a correspondingly small pitch 1 M be achieved in accordance with the invention also a correspondingly reduced anamorphic Figure 6 , 6 ', which, despite a large aspect ratio of at least 100, has a length 7 that is limited so that no errors occur which degrade image quality.
  • the aspect ratio is the ratio of the length 7 of the anamorphic Figure 6 to its width 7 '.
  • the high aspect ratio achieved in this way 7 7 ' ⁇ 100 is then the basis for the most optimal separation of the region 14 of the null beam 13 from the electron beams of higher diffraction orders 15 (FIG. Fig. 6a and 7b ), whereby a better phase contrast can be achieved.
  • the choice of the magnification M of the intermediate image 5 should be such that, in order to achieve an aspect ratio of at least 100, the virtual diffraction intermediate image 28 represents a reduction of at least 20 times compared to a non-enlarged intermediate image as a starting point.
  • the device In order to achieve this enlargement M of the intermediate image 5, the device must be installed at a corresponding point of the projective lens system 18 of an electron microscope 31, on which such an intermediate image 5 of the magnification M is formed (see Fig. 5 ). Since the projective lens system 18 - often referred to as intermediate lenses (multiple) and projection lens (the last lens) - usually includes so many lenses with intermediate images that a corresponding magnification M of an intermediate image 5 can be selected, it requires no detailed description of the beam path and lenses to determine the mounting location for the device 1, 2, 3. This depends on the device type, and each of the devices 1, 2, 3 of the invention must be adapted to the beam path and the beam tube of each type of construction of electron microscope.
  • Fig. 2 shows a schematic representation of a simple structure of a device according to the invention 1.
  • This consists of two input-side quadrupole elements Q 1 and Q 2 , a central quadrupole element Q 3 , the center of which forms a plane of symmetry 29 and two output-side quadrupole elements Q 4 and Q 5, wherein the quadrupole element Q 4 corresponds to the quadrupole element Q 2 and the quadrupole element Q 5 corresponds to the quadrupole element Q 1 .
  • the phase-shifting element 11 or 12 which may have various configurations, is arranged.
  • the optical axis 10 and the beam path 30 is shown.
  • Fig. 2a shows the beam path of the device 1 according to Fig. 2 in the x-section.
  • the quadrupole fields Q 1 ', Q 2 ', Q 3 ', Q 4 ', Q 5 'of the quadrupole elements Q 1 , Q 2 , Q 3 , Q 4 , Q 5 is drawn, it being apparent that in the middle of the quadrupole field Q 3 ', the plane of symmetry 29 is located.
  • This plane of symmetry 29 is the diffraction intermediate image plane 8 in which the phase-shifting element 11 or 12 is also located.
  • the quadrupole fields Q 2 'and Q 4 ' which are before and after the diffraction intermediate image plane 8, are of equal strength and so strong that, without increasing the overall height, they have an extension in the direction of the optical axis 10, as they do has been defined above.
  • the input-side and the output-side quadrupole field Q 1 'and Q 5 ' are equally strong and symmetrical to the plane of symmetry 29. In this case, they and the quadrupole field Q 3 'are poled reversely than the quadrupole fields Q 2 ' and Q 4 '.
  • Fig. 2b shows the same ray path with the same quadrupole fields Q 1 ', Q 2 ', Q 3 ', Q 4 ', Q 5 'in the y-section.
  • the axial rays x ⁇ and y ⁇ and the field rays x ⁇ and y ⁇ are shown as fundamental rays in the sections x and y.
  • different scales with respect to the x or y axis are selected, in particular because the x ⁇ - ray in relation to the y ⁇ - ray learns such a wide deflection that at the same scale either the deflection of the y ⁇ - beam would not be visible or the x ⁇ - beam in the Beriech of Symmetry plane 29 would run far outside the sheet. For this reason, the x- and y-axis are not provided with a unit of measurement.
  • the device 1 is, as stated above, inserted into the beam path of the projective lens system 18 of an electron microscope 31 (see Fig. 5 ) that in its input area an intermediate image 5 with an M-fold magnification of the object 4 is located ( Fig. 1 ). Since in the representation of the FIGS. 2a and 2 B the x ⁇ and y ⁇ rays intersect the optical axis in the quadrupole field Q 1 ', there is the intermediate image 5. However, this is not a necessary position of the intermediate image 5, it could also be before or after the quadrupole field Q 1 ', but preferably before.
  • the quadrupoles Q 2 , Q 4 , Q 12 , Q 14 for generating and compensating the at least one anamorphic Figure 6 , 6 ' have such an extent in the direction of the optical axis 10 and are designed for such a field generation Q 2 ', Q 4 ', Q 12 ', Q 14 'that an astigmatic intermediate image 16 can be generated within its operating range. This ensures that the axial field extension can be inserted into the optical system of an electron microscope 31 while maintaining an acceptable overall height.
  • Essential for the production of anamorphic Figure 6 and their compensation are the quadrupole fields Q 2 ', Q 4 ', which are shown here correspondingly strong to limit the axial extent. They serve to produce an aspect ratio of at least 100, which, applied to the representation, means that the in Fig. 2a drawn length 7 of the anamorphic Figure 6 at least 100 times as big as the one in Fig. 2b drawn width 7 '. To represent this, the very different standards were chosen. So if one wants to compare the beam y ⁇ with the beam x ⁇ , the length 7 of the anamorphic Figure 6 at least 100 times the extent in the direction of the x-axis as its width 7 'in the direction of the y-axis.
  • phase-shifting elements 11 or 12 with their fields 9, 9 '. These are in the representations of FIGS. 2a and 2 B not shown because they have no influence on the courses of the axial beams x ⁇ , y ⁇ and the field beams x ⁇ , y ⁇ .
  • Fig. 3 shows a schematic representation of a double-symmetrical structure of a device according to the invention 2.
  • Fig. 2 drawn device 1, which is then arranged as a device 1 'again.
  • Their quadrupole elements Q 11 , Q 12 , Q 13 , Q 14 , Q 15 correspond to the quadrupole elements Q 1 , Q 2 , Q 3 , Q 4 , Q 5 of the device 1, they are arranged the same, so that in each case a plane of symmetry 29 '
  • each phase-shifting elements 11 or 12 are arranged to cause phase shifts in the anamorphic images 6 and 6 '.
  • the plane of symmetry 32 represents a plane of antisymmetry, since these are compared to the fields Q 1 ', Q 2 ', Q 3 ', Q 4 ', Q 5 ' of the device 1 are inversely polarized (or rotated by 90 °, which is the same).
  • the intermediate image 5 In contrast to the device 1 gem.
  • Fig. 2 In the case of the double-symmetrical device 2, the intermediate image 5 must lie in front of the first quadrupole element Q 1 , since it is only possible to produce a further intermediate image 5 'of the magnification M in the central symmetry plane 32 lying behind the quadrupole element Q 5 . This is necessary for the antisymmetric course of the fundamental paths, that is to say the axial beams x ⁇ , y ⁇ and the field beams x ⁇ , x ⁇ . This beam path then generates, after the last quadrupole element Q 15 of the second part 1 'of the device 2, a third intermediate image 5 "of magnification M.
  • the Fig. 2a and 2 B show - taking into account the above-mentioned difference - the curves of the fundamental paths in the first device part 1 of the device 2.
  • the second device part 1 takes the axial beam x ⁇ in the x-section ( Fig. 2a ) has a course which corresponds to the axial ray y ⁇ of the y-cut ( Fig. 2b ), but rotated 180 ° about the z-axis.
  • the negative slope of the axial jet x ⁇ at the exit from the Fig. 2a identical to the negative slope of y ⁇ when entering the Fig. 2b when imagining y ⁇ rotated by 180 ° about the z-axis.
  • Fig. 4 2 shows a schematic representation of a device 3 according to the invention, in which, compared to the device 2 with a double-symmetrical structure (FIG. Fig. 3 )
  • the two quadrupole Q 5 and Q are omitted 11, so that only the first part of the device with the quadrupole elements Q 1, Q 2, Q 3 and Q 4 with respect to the plane of symmetry 33 to the second apparatus part with the quadrupole elements Q 12, Q 13, Q 14 , Q 15 is symmetrical. So there is no double symmetry.
  • the Qadrupolfelder Q 12 ', Q 13 ', Q 14 ', Q 15 ' of the second device part opposite the quadrupole fields Q 1 ', Q 2 ', Q 3 ', Q 4 ' of the first device part reversed poled and it must be further intermediate image 5 'of the magnification M in the plane of symmetry 33 are formed.
  • the first intermediate image 5 of the magnification M does not necessarily have to lie in front of the first quadrupole element Q 1 , but it may lie there. But it can also be in the region of the first quadrupole element Q 1 , as shown.
  • the fundamental trajectory corresponds to the description of the device 2 with double-symmetrical structure with the difference that the x-section ( Fig. 2a ) behind the quadrupole field Q 4 ', omitting the quadrupole field Q 5 ', the plane of symmetry 33 has an antisymmetric plane with respect to the quadrupole fields Q 12 ', Q 13 ', Q 14 ', Q 15 ' thereafter ,
  • the quadrupole field Q 11 ' is similarly omitted behind this plane of symmetry 33 so that the transfer of the fundamental paths of the axial beams x ⁇ , y ⁇ and the field beams x ⁇ , y ⁇ from the quadrupole field Q 4 ' to the quadrupole field Q 12 'takes place.
  • the axial ray x ⁇ of the x-section ( Fig. 2a ) after the field Q 4 'as the axial ray y ⁇ in Fig. 2b is drawn.
  • the latter is rotated by 180 ° about the z-axis and only begins before the quadrupole field Q 12 ', since the quadrupole field Q 11 ' is omitted.
  • the roll exchange also takes place with respect to the axial ray y ⁇ , omitting the quadrupole fields Q 5 'and Q 11 ', as well as with respect to the field rays x ⁇ and y ⁇ .
  • the above applies accordingly.
  • this device 3 lacks the double symmetry, the compensation effects of the quadrupole elements are incomplete. Therefore, a correction must be made which causes the slopes of the fundamental paths x ⁇ , y ⁇ , x ⁇ , y ⁇ in the transfer of the quadrupole field Q 4 'to the quadrupole field Q 12 ' so that the fundamental trajectories x ⁇ , y ⁇ , x ⁇ , y ⁇ continue after the plane of symmetry 33 antisymmetric with the described role reversal.
  • This correction is effected by the quadrupole elements Q 2 'and Q 4 ' being adjustable so that their quadrupole fields Q 2 'and Q 4 ' have deviations in their strength. This correction is made in one direction or the other (Q 2 '> Q 4 ' or Q 4 '> Q 2 ') until the further intermediate image 5 'of the magnification M lies exactly in the plane of symmetry 33.
  • the quadrupole Q 12 Adjust 'and Q 14 ' so that the strength of the quadrupole field Q 12 'corresponds to the strength of the quadrupole field Q 4 ' and the strength of the quadrupole field Q 14 'to the strength of the quadrupole field Q 2 '.
  • the latter correction can also be made result-oriented in that the quadrupole fields Q 12 'and Q 14 ' are changed in their mutual strength ratio until the third intermediate image 5 "is symmetrical with respect to the distance to the plane of symmetry 33 and the magnification M to the intermediate image 5 In this case, a slight deviation from the antisymmetry of the quadrupole fields Q 2 'and Q 4 ' to Q 12 'and Q 14 ' may occur in order to compensate for production inaccuracies of the electron-optical components.
  • the second anamorphic image 6 ' is opposite to the first anamorphic one Figure 6 rotated by 90 °, so that the arrangement of the phase-shifting elements 11, 12 must be made according to the respective position of these anamorphic images 6, 6 '.
  • Fig. 5 shows a schematic representation of an electron microscope 31 with the installation of a device according to the invention, shown by way of example on a device 1.
  • the electron microscope 31 has along an optical axis 10, a radiation source 34, a condenser 35, the object 4, the lens 17, a projective lens system 18 and a projection surface 36.
  • the projective lens system 18 which has a plurality of individual lenses-by way of example, three lenses are shown-the device is 1 arranged.
  • a device 2 or a device 3 may be arranged.
  • an intermediate image 5 of the desired magnification M is selected in the region of the projective lens system 18 and then the device 1, 2 or 3 is arranged such that the position of the intermediate image 5 to these devices Fig. 2a . 2 B . 3 or 4 equivalent.
  • This phase-shifting element 11 extends from the housing wall of the beam tube of the electron microscope 31 to just before the optical axis 10, in such a way that the end 21 of a shielded conductor 20th generates an electric field 9, which detects the area 14 of the zero beam 13. The electron beams 15 of higher diffraction orders are not detected.
  • the electric field 9 extends from the conductor 20 to a shield 22 which surrounds the conductor 20 with the inclusion of an insulator 37.
  • Fig. 6a The potential U of the field 9 of the phase-shifting element 11 is plotted. It is apparent that an electric field 9 is applied only in the region 14 of the zero beam 13 and no in the region of the electron beams 15 of higher diffraction orders electric field is present. In this way, depending on the embodiments described above, such a field 9 can be applied that, for example, a phase shift of 45 ° or 90 ° is possible. Since the passage of the phase-shifting element 11 through the region of the electron beams 15 of higher diffraction orders causes them to be partially shaded, a reconstruction is required in a known manner.
  • Fig. 7 shows an embodiment of a phase-shifting element 12 for influencing the electron beams 15 of higher diffraction orders. It shows the Fig. 7a a section AB through the phase-shifting element 12 according to Fig. 7 as shown there.
  • electrodes 24 and 24 ' which are interrupted in the region of the optical axis 10 are arranged along a slot 23. In this area of the optical axis 10 are located on both sides of the slot 23 lying at zero potential 19 conductors 25 and 25 ', which ensure that there Field 9 'is interrupted.
  • the electrodes 24 and 24 ' are surrounded outside the slot 23 by a U-shaped shield 22, wherein between the electrodes 24 and 24' and the shield 22 insulators 37 are arranged.
  • the z-axis extends in the direction of the optical axis 10 and in the horizontal of the Fig. 7 runs the x-axis.
  • the slot 23 has a width 26 which is dimensioned such that the width 7 'of the anamorphic Figure 6 just through the slot 23 passes through.
  • the slot 23 is slightly longer than the length 7 of the anamorphic Figure 6 , Furthermore, the connection of the electrodes 24 and 24 'and the shield 22 and connected thereto, lying at zero potential 19 conductors 25 and 25' with a voltage source U is shown.
  • Fig. 7b shows how an electric field 9 'in the region of the electron beams 15 of higher diffraction orders is applied by the electrodes 24 and 24'.
  • the potential U of the electric field 9 ' is dimensioned according to the desired phase shift, as already explained above.
  • conductors 25, 25 By lying at zero potential 19 conductors 25, 25 'ensures that the region 14 of the zero beam 13 is at zero potential 19.
  • inventive devices 1, 2 or 3 may also have other elements for further purposes, or the functions of the drawn quadrupole elements can each be divided into several quadrupole elements.
  • phase-shifting elements 11 and 12 are merely two exemplary embodiments for producing an application in the region 14 of the zero beam 13 or in the region of the electron beams 15 of higher diffraction orders, further functionally identical phase-shifting elements, of which the prior art teaches various embodiments, can be used accordingly become.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Claims (22)

  1. Procédé de génération de contraste d'image par décalage de phase dans l'optique électronique, dans lequel à partir d'une image intermédiaire (5) par des champs quadripolaires (Q1', Q2', Q3', Q11', Q12', Q13') une image anamorphosée (6,6') des rayons axiaux (xα, yβ) en cas de passage par zéro simultané des rayons de champ (xγ, yδ) dans au moins un plan d'image intermédiaire de diffraction (8,8') est générée, à cet endroit par un champ magnétique ou électrique (9,9') un décalage de phase relatif est produit entre une zone (14)autour du rayon d'électrons d'ordre de diffraction zéro (13) et les rayons d'électrons d'ordres de diffraction supérieurs (15) et ensuite par des champs quadripolaires supplémentaires (Q3', Q9', Q5' Q13', Q14', Q15') au moins une anamorphose générée du trajet de rayons est de nouveau compensée,
    caractérisé en ce que des éléments quadripolaires (Q2, Q4, Q12, Q14) disposés directement avant et après cette image (6,6') servent à générer et compenser au moins une image anamorphosée (6,6'), lesquels présentent une expansion telle dans la direction de l'axe optique (10) et une intensité telle qu'ils génèrent une image intermédiaire astigmate (16) dans leur zone d'action, dans lequel l'intensité est choisie à une grandeur telle que l'expansion de champ axiale soit intégrée dans le système optique d'un microscope électronique (31) et dans lequel au moins un des rayons axiaux (xα, yβ) s'étend par le choix correspondant d'un agrandissement prononcé M de l'image intermédiaire (5) sous une déclivité minime 1/M dans le champ quadripolaire (Q2', Q12') de l'élément quadripolaire (Q2, Q12) directement avant au moins une image anamorphosée (6,6'), de sorte que son rapport d'aspect soit considérablement agrandi, néanmoins la longueur (7) de l'image anamorphosée (6,6') ne soit pas dépassée, de sorte que la qualité d'image soit dégradée d'une manière, qui serait d'une quelconque manière un inconvénient pour l'estimation d'image.
  2. Procédé selon la revendication 1, caractérisé en ce que seule une image anamorphosée (6) est générée.
  3. Procédé selon la revendication 2, caractérisé en ce qu'un champ magnétique ou électrique (9,9') agissant dans l'image anamorphosée (6) présente une intensité de champ telle qu'un décalage de phase relatif d'approximativement 90° est provoqué.
  4. Procédé selon la revendication 1, caractérisé en ce que au moyen d'un cours de rayon asymétrique (xα, yβ, xγ, yδ) deux images (6,6') anamorphosées tournées à 90° sont générées, dans lequel l'antisymétrie dans un deuxième agencement de champs quadripolaires (Q11', Q12', Q13', Q14', Q15' ou Q11', Q12', Q13', Q14') est provoqué par rapport à un premier agencement de champs quadripolaires (Q1', Q2', Q3', Q4', Q5' ou Q1', Q2', Q3', Q4'), en polarisant ces derniers dans une même proportion ou essentiellement dans une même proportion mais inversement.
  5. Procédé selon la revendication 4, caractérisé en ce que un plan (32,33) de l'antisymétrie est choisi de telle sorte qu'une image intermédiaire (5) de l'agrandissement M située avant le premier champ quadripolaire (Q1') soit imagée comme image intermédiaire supplémentaire (5') de l'agrandissement M dans ce plan (32,33) et d'une troisième image intermédiaire (5") après le champ quadripolaire (Q15').
  6. Procédé selon la revendication 4 ou 5, caractérisé en ce que les champs électriques ou magnétiques (9,9') agissant respectivement dans ces images anamorphosées (6,6') présentent une intensité de champ telle que respectivement un décalage de phase relatif d'approximativement 45° soit provoqué.
  7. Procédé selon une des revendications 1 à 6, caractérisé en ce que le champ électrique ou magnétique (9) est appliqué au niveau (14) du rayon neutre (13).
  8. Procédé selon une des revendications 1 à 6, caractérisé en ce que un champ électrique ou magnétique (9') est appliqué au niveau des rayons diffractés (15).
  9. Procédé selon une des revendications 1 à 8, caractérisé en ce que une image anamorphosée (6) avec un rapport d'aspect supérieur à 100 est obtenue.
  10. Procédé selon la revendication 9, caractérisé en ce que une image anamorphosée (6) avec un rapport d'aspect supérieur à 200 est obtenue.
  11. Dispositif (1) pour mettre en oeuvre un procédé selon une des revendications 1 à 6 avec des éléments quadripolaires du côté d'entrée (Q1, Q2), qui génèrent à partir d'une image intermédiaire (5) des champs quadripolaires (Q1', Q2') tels que les rayons axiaux (xα, yβ) et les rayons de champ (xγ, yδ) soient focalisés, resp. défocalisés dans deux intersections perpendiculaires (x et y), de sorte que dans un plan d'image intermédiaire de diffraction (8) les rayons axiaux (xα, yβ) forment une image anamorphosée (6) et les rayons de champ (xγ, yδ) passent respectivement par zéro, dans lequel au niveau du plan d'image intermédiaire de diffraction (8) un élément quadripolaire central (Q3) avec un champ quadripolaire (Q3') est disposé, tel que les rayons axiaux (xα, yβ) quittent le champ (Q3') avec des élévations, qui s'étendent en sens opposé par rapport à l'entrée dans le champ (Q3'), et dans lequel deux éléments quadripolaires supplémentaires (Q4, Q5) génèrent des champs quadripolaires (Q4', Q5'), qui sont identiques en signe et en proportion aux champs quadripolaires (Q1', Q2') des éléments quadripolaires du côté d'entrée (Q1, Q2), de telle sorte que l'anamorphose du trajet de rayon soit de nouveau compensée, et dans lequel dans le plan d'image intermédiaire de diffraction (8) un élément de décalage de phase (11,12) est disposé, dont le champ magnétique ou électrique (9,9') est conçu de telle sorte qu'un décalage de phase relatif entre la zone (14) du rayon d'électrons d'ordre de diffraction zéro (13) et les rayons d'électrons d'ordres de diffraction supérieurs (15) soit provoqué, caractérisé en ce que
    les éléments quadripolaires (Q2, Q4) disposés directement avant et après le plan d'image intermédiaire de diffraction (8) présentent une expansion dans la direction de l'axe optique (10) et une intensité telle qu'ils génèrent une image intermédiaire astigmate (16) dans leur zone d'action, dans lequel l'intensité est choisie de telle sorte que l'expansion de champ axiale dans le système optique d'un microscope électronique (31) soit intégrée à un emplacement du trajet de rayons du système de lentille projective (18) et dans lequel au moins un des rayons axiaux (xα, yβ) s'étend par le choix correspondant d'un agrandissement prononcé M de l'image intermédiaire (5) sous une déclivité minime 1/M dans le champ quadripolaire (Q2', Q12') de l'élément quadripolaire (Q2, Q12) directement avant au moins une image anamorphosée (6,6'), de sorte que son rapport d'aspect soit considérablement agrandi, néanmoins la longueur (7) de l'image anamorphosée (6,6') ne soit pas dépassée, de sorte que la qualité d'image soit dégradée d'une manière, qui serait d'une quelconque manière un inconvénient pour l'estimation d'image.
  12. Dispositif selon la revendication 11, caractérisé en ce que l'élément de décalage de phase (11,12) est conçu pour générer un champ magnétique ou électrique (9,9') provoquant un décalage de phase d'approximativement 90°.
  13. Dispositif selon la revendication 11, caractérisé en ce que après ce dernier sur l'axe optique (10) un deuxième dispositif (1') est disposé, dont les éléments quadripolaires (Q11, Q12, Q13, Q14, Q15) correspondent aux éléments quadripolaires (Q1, Q2, Q3, Q4, Q5) du premier dispositif (1), dont les champs (Q11, Q12', Q13', Q14', Q15') sont néanmoins polarisés inversement, de sorte que l'image anamorphosée (6') est tournée à 90° par rapport à l'image anamorphosée (6) du premier dispositif (1), en ce que la totalité du dispositif (2) composé du premier (1) et du deuxième dispositif (1') peut être disposé dans le trajet de rayons du système de lentille projective (18) du microscope électronique (31), en ce que l'image intermédiaire (5) est située avant le premier élément quadripolaire (Q1) et dans le plan de symétrie (32) à central généré par cet assemblage une image intermédiaire supplémentaire (5') de l'agrandissement M est formée et l'élément à décalage de phase (11,12) du deuxième dispositif (1') est disposé de telle sorte qu'il fournisse des champs magnétiques ou électriques (9,9') pour le décalage de phase relatif entre la zone (14) du rayon d'électrons d'ordre de diffraction zéro (13) et les rayons d'électrons d'ordres de diffraction supérieurs (15) de cette deuxième image anamorphosée (6').
  14. Dispositif (3) pur mettre en oeuvre le procédé selon une des revendications 1 à 10, avec des éléments quadripolaires du côté d'entrée (Q1, Q2), qui génèrent à partir d'une image intermédiaire (5) des champs quadripolaires (Q1', Q2') tels que les rayons axiaux (xα, yβ) et les rayons de champ (xγ, yδ) soient focalisés, resp. défocalisés dans deux intersections perpendiculaires (x et y), de sorte que dans un plan d'image intermédiaire de diffraction (8) les rayons axiaux (xα, yβ) forment une image anamorphosée (6) et les rayons de champ (xγ, yδ) passent respectivement par zéro, dans lequel au niveau du plan d'image intermédiaire de diffraction (8) un élément quadripolaire central (Q3) avec un champ quadripolaire (Q3') est disposé, tel que les rayons axiaux (xα, yβ) quittent le champ (Q3') avec des élévations, qui s'étendent en sens opposé par rapport à l'entrée dans le champ (Q3'), et dans lequel dans le plan d'image intermédiaire de diffraction (8) un élément de décalage de phase (11,12) est disposé, dont le champ magnétique ou électrique (9,9') est conçu de telle sorte qu'un décalage de phase relatif entre la zone (14) du rayon d'électrons d'ordre de diffraction zéro (13) et les rayons d'électrons d'ordres de diffraction supérieurs (15) soit provoqué, caractérisé en ce que
    un élément quadripolaire (Q4) est disposé après le plan intermédiaire de diffraction (8) et les éléments quadripolaires (Q2, Q4) disposés directement avant et après le plan d'image intermédiaire de diffraction présentent une expansion telle dans la direction de l'axe optique (10) et une intensité telle qu'ils génèrent une image intermédiaire astigmate (16) dans leur zone d'action, dans lequel l'intensité est choisie à une grandeur telle que l'expansion de champ axiale soit intégrée dans le système optique d'un microscope électronique (31), qu'après un plan de symétrie central (33) par rapport à tous les éléments quadripolaires trois éléments quadripolaires (Q12, Q13, Q14) suivent, dont les champs (Q12', Q13', Q14') sont tournés dans essentiellement la même proportion que les champs (Q2', Q3', Q4') des trois éléments quadripolaires situés avant (Q2, Q3, Q4) néanmoins à 90°, qu'ensuite un quadripôle (Q15) avec un champ (Q15') suit, qui est de même proportion mais tourné à 90° par rapport au champ (Q1') du premier quadripôle (Q1), que les champs (Q2') et (Q4') des éléments quadripolaires (Q2, Q4) situés avant et après le plan d'image intermédiaire de diffraction (8) sont réglables de manière à s'écarter les uns des autres, de sorte que les rayons axiaux (xα, yβ) dans le plan de symétrie central (33) forment une image intermédiaire supplémentaire (5') de l'agrandissement M et les rayons de champ (xγ, yδ) se coupent en intersection, et dans lequel les éléments quadripolaires correspondants (Q12, Q14) après le plan de symétrie central (33), dont les champs (Q12', Q14') sont tournés à 90°, sont également réglables de manière à s'écarter, de sorte qu'à l'extrémité du dispositif (3) une troisième image intermédiaire (5'') de grandeur M soit générée, de sorte que les rayons axiaux (xα, yβ) et les rayons de champ (xγ, yδ) traversent ces champs (Q12', Q13', Q14' Q15') en coupe x comme les quatre premiers champs (Q1', Q2', Q3', Q4') en coupe y et en coupe y comme précédemment en coupe x, dans lequel dans le deuxième élément quadripolaire central (Q13) un deuxième plan d'image intermédiaire de diffraction avec une image anamorphosée supplémentaire (6') est généré, qui est tourné à 90° par rapport à la première image anamorphosée (6), que dans le deuxième plan d'image intermédiaire de diffraction un deuxième élément de décalage de phase (11,12) est disposé, dont le champ magnétique ou électrique (9,9') est conçu de telle sorte qu'un décalage de phase relatif entre une zone (14) du rayon d'électrons d'ordre de diffraction zéro (13) et les rayons d'électrons d'ordres de diffraction supérieurs (15) soit provoqué, et en ce que le dispositif (3) est conçu pour une disposition à un premier emplacement du rayon d'électrons d'un système de lentille projective (18) d'un microscope électronique (31), auquel les rayons axiaux (xα, yβ) forment une image intermédiaire (5) avec un agrandissement M tellement prononcé qu'ils s'étendent dans le champ quadripolaire (Q2') du deuxième quadripôle (Q2) avec une telle déclivité 1/M directement avant l'image anamorphosée (6), de sorte que leur rapport d'aspect soit considérablement agrandi, néanmoins la longueur (7) de l'image anamorphosée (6) ne soit pas dépassée, de sorte que la qualité d'image soit dégradée d'une manière, qui serait d'une quelconque manière un inconvénient pour l'estimation d'image.
  15. Dispositif selon la revendication 13 ou 14, caractérisé en ce que les éléments de décalage de phase (11,12) présentent des champs magnétiques ou électriques (9,9'), qui provoquent un décalage de phase d'approximativement 45° respectivement.
  16. Dispositif selon une des revendications 11 à 15, caractérisé en ce que au moins un élément de décalage de phase (11) est conçu de telle sorte qu'avec lui un champ magnétique ou électrique (9) puisse être appliqué dans la zone (14) du rayon neutre (13) et la zone des rayons diffractés (15) soit placée au potentiel zéro.
  17. Dispositif selon la revendication 16, caractérisé en ce que l'élément de décalage de phase (11) est conçu pour produire un champ électrique (9) comme un conducteur blindé (20), qui est disposé en s'étendant à partir d'une fixation sur la paroi de boîtier à partir du du plan d'image intermédiaire de diffraction (8,8') essentiellement radialement dans la direction de la zone (14) du rayon neutre (13), dans lequel le conducteur blindé (20) présente avant la zone (14) du rayon neutre (13) une extrémité (21) positionnée de telle sorte qu'entre le conducteur (20) et le blindage (22) qui l'entoure un champ électrique (9) soit formé, qui détecte cette zone (14) du rayon neutre (13).
  18. Dispositif selon une des revendications 11 à 17, caractérisé en ce que au moins un élément de décalage de phase (12) est conçu de telle sorte que la zone (14) du rayon neutre (13) est située au potentiel zéro (19) et un champ magnétique ou électrique (9') peut être appliqué au niveau des rayons diffractés (15).
  19. Dispositif selon la revendication 18, caractérisé en ce que l'élément de décalage de phase (12) présente pour générer un champ électrique (9) une fente (23), qui englobe l'image anamorphosée (6,6'), dans lequel des deux côtés le long de la fente (23) s'étendent des électrodes (24,24') pour l'application du champ électrique (9'), qui sont interrompues pour la zone (14) du rayon neutre (13) au niveau de l'axe optique (10) par respectivement un conducteur (25,25') situé au potentiel zéro (19).
  20. Dispositif selon la revendication 19, caractérisé en ce que il est conçu de telle sorte que les quadripôles (Q2, Q4, Q12, Q14) génèrent à l'avant et à l'arrière du plan intermédiaire de diffraction (8,8') des champs (Q2', Q4', Q12', Q14') tels que la largeur (7') de l'image anamorphosée (6, 6) s'adapte à la largeur (26) de la fente (23).
  21. Dispositif selon une des revendications 11 à 20, caractérisé en ce que avec les quadripôles (Q2, Q4, Q12, Q14) des intensités de champ (Q2', Q4', Q12', Q14') peuvent être générées, et la disposition du dispositif (1,2,3) à un tel emplacement du trajet de rayons du système de lentille projective (18) d'un microscope électronique (31) peut être entreprise, qui présente un agrandissement M de l'image intermédiaire (5) tel qu'une déclivité 1/m des rayons axiaux (xα, yβ) en résulte, telle que le rapport d'aspect d'au moins une image anamorphosée (6,6') soit supérieur à 100.
  22. Dispositif selon la revendication 21, caractérisé en ce que avec les quadripôles (Q2, Q4, Q12, Q14) des intensités de champ (Q2', Q4', Q12', Q14') peuvent être générées, et la disposition du dispositif (1,2,3) à un tel emplacement du trajet de rayons du système de lentille projective (18) d'un microscope électronique (31) peut être entreprise, qui présente un agrandissement M de l'image intermédiaire (5) tel qu'une déclivité 1/m des rayons axiaux (xα, yβ) en résulte, telle que le rapport d'aspect d'au moins une image anamorphosée (6,6') soit supérieur à 200.
EP10001638.5A 2009-02-26 2010-02-18 Procédé et dispositif de génération de contraste d'image par décalage de phase Not-in-force EP2224465B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009010774A DE102009010774A1 (de) 2009-02-26 2009-02-26 Verfahren und Vorrichtung zur Bildkontrasterzeugung durch Phasenschiebung

Publications (3)

Publication Number Publication Date
EP2224465A2 EP2224465A2 (fr) 2010-09-01
EP2224465A3 EP2224465A3 (fr) 2013-11-13
EP2224465B1 true EP2224465B1 (fr) 2016-10-12

Family

ID=42145085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10001638.5A Not-in-force EP2224465B1 (fr) 2009-02-26 2010-02-18 Procédé et dispositif de génération de contraste d'image par décalage de phase

Country Status (4)

Country Link
US (1) US7973289B2 (fr)
EP (1) EP2224465B1 (fr)
JP (1) JP5049363B2 (fr)
DE (1) DE102009010774A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019133433A1 (fr) 2017-12-28 2019-07-04 Fei Company Procédé, dispositif et système permettant de réduire une aberration non axiale en microscopie électronique

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10159454B4 (de) * 2001-12-04 2012-08-02 Carl Zeiss Nts Gmbh Korrektor zur Korrektion von Farbfehlern erster Ordnung, ersten Grades
US6770887B2 (en) * 2002-07-08 2004-08-03 Ondrej L. Krivanek Aberration-corrected charged-particle optical apparatus
EP1739714B1 (fr) * 2005-03-08 2012-04-18 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Système d'imagerie pour courants élevés
JP4848017B2 (ja) * 2005-12-06 2011-12-28 ツェーエーオーエス コレクテッド エレクトロン オプチカル システムズ ゲーエムベーハー 3次の開口収差及び1次1グレード(Grade)の軸上色収差を除去するための補正装置
DE102006011615A1 (de) * 2006-03-14 2007-09-20 Carl Zeiss Nts Gmbh Phasenkontrast-Elektronenmikroskop
DE102006055510B4 (de) 2006-11-24 2009-05-07 Ceos Corrected Electron Optical Systems Gmbh Phasenplatte, Bilderzeugungsverfahren und Elektronenmikroskop
DE102007007923A1 (de) 2007-02-14 2008-08-21 Carl Zeiss Nts Gmbh Phasenschiebendes Element und Teilchenstrahlgerät mit phasenschiebenden Element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20100213369A1 (en) 2010-08-26
JP5049363B2 (ja) 2012-10-17
EP2224465A2 (fr) 2010-09-01
DE102009010774A1 (de) 2010-11-11
US7973289B2 (en) 2011-07-05
EP2224465A3 (fr) 2013-11-13
JP2010199072A (ja) 2010-09-09

Similar Documents

Publication Publication Date Title
EP0373399B1 (fr) Système correcteur image du type de Wien pour microscopes électroniques
EP0617451B1 (fr) Filtre en énergie d'électrons, produisant une image
DE2937004C2 (de) Chromatisch korrigierte Ablenkvorrichtung für Korpuskularstrahlgeräte
DE112014003890B4 (de) Mit einem Strahl geladener Teilchen arbeitende Vorrichtung
EP1057204B1 (fr) Systeme de correction de l'aberration spherique de troisieme ordre d'une lentille, en particulier de l'objectif d'un microscope electronique
EP1277221B1 (fr) Canon electronique pour electrons ou faisceaux ioniques de haute monochromie ou de haute densite de courant
EP2068344B1 (fr) Correcteur optique à particules pour trajectoire de faisceau axiale et hors axe
DE102006011615A1 (de) Phasenkontrast-Elektronenmikroskop
DE4129403A1 (de) Abbildungssystem fuer strahlung geladener teilchen mit spiegelkorrektor
WO2007065382A1 (fr) Correction d'élimination de l'erreur d'ouverture de troisieme ordre et de l'erreur chromatique axiale de premier ordre et du premier degre
EP0218920A2 (fr) Filtre d'énergie électronique de type Oméga
DE3222275C2 (de) Ablenk- und Fokussiersystem für einen Strahl aus geladenen Teilchen
EP0175933A1 (fr) Système de lentilles à balayage sans défauts chromatiques de déviation pour traitement de matériaux par faisceaux corpusculaires
DE102013020399B4 (de) Vorrichtung zur Korrektur chromatischer Aberration und Elektronenmikroskop
EP1995758B1 (fr) Monochromateur et source de faisceau de particules chargées dotée d'un tel monochromateur
EP0967630A2 (fr) Microscope électronique avec filtre magnétique pour l'obtention d'images
DE2137510C3 (de) Elektronenoptische Anordnung mit einer Energieselektionsanordnung
DE102007049816B3 (de) Korrektor
EP1989723A2 (fr) Lame de phase, procédé d'imagerie et microscope électronique
EP1386342A2 (fr) Systeme de deviation pour un appareil a faisceau de particules
EP3780064B1 (fr) Correcteur optique à particules sans erreurs axiales de sixième ordre et microscope électronique pourvu d'un correcteur
EP1451847B1 (fr) Correcteur en optique des particules
EP0564438A1 (fr) Système de formation d'images par faisceau de particules notamment système d'imagerie en optique ionique
EP2224465B1 (fr) Procédé et dispositif de génération de contraste d'image par décalage de phase
EP1124251B1 (fr) Filtre d'énergie pour faisceau d'électrons avec unité de déflection magnétique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 37/26 20060101AFI20131008BHEP

17P Request for examination filed

Effective date: 20131108

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17Q First examination report despatched

Effective date: 20141106

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160118

INTG Intention to grant announced

Effective date: 20160212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20160812

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 837175

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012525

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012525

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

26N No opposition filed

Effective date: 20170713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170218

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 837175

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20181105

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190218

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010012525

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200218