EP2215027A2 - Fils de verre a faible teneur en alumine aptes a renforcer des matieres organiques et/ou inorganiques - Google Patents

Fils de verre a faible teneur en alumine aptes a renforcer des matieres organiques et/ou inorganiques

Info

Publication number
EP2215027A2
EP2215027A2 EP08845842A EP08845842A EP2215027A2 EP 2215027 A2 EP2215027 A2 EP 2215027A2 EP 08845842 A EP08845842 A EP 08845842A EP 08845842 A EP08845842 A EP 08845842A EP 2215027 A2 EP2215027 A2 EP 2215027A2
Authority
EP
European Patent Office
Prior art keywords
glass
equal
less
content
strand according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08845842A
Other languages
German (de)
English (en)
Inventor
Anne Berthereau
Emmanuelle Picard
Jérôme LALANDE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Adfors SAS
Original Assignee
Saint Gobain Technical Fabrics Europe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Technical Fabrics Europe SAS filed Critical Saint Gobain Technical Fabrics Europe SAS
Publication of EP2215027A2 publication Critical patent/EP2215027A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions

Definitions

  • the invention relates to reinforcing glass yarns and composites based on organic and / or inorganic materials incorporating said glass yarns.
  • the field of reinforcing glass wires is a very particular area of the glass industry.
  • the reinforcing glass threads are obtained by the process of mechanically stretching molten glass threads flowing from orifices arranged at the base of a die generally heated by Joule effect, and to gather said filaments to form the thread of glass.
  • the yarns are made from specific glass compositions which must make it possible to obtain filaments of a few micrometers in diameter and the formation of continuous yarns capable of performing the reinforcing function in organic and / or inorganic materials which is devolved to them, this in order to give them better mechanical properties.
  • the reinforcing glass threads are used as such or in the form of organized assemblies such as fabrics.
  • the mechanical properties of these reinforced materials are mainly governed by the composition of the glass which constitutes the reinforcing threads.
  • the most known glasses for this purpose are the "E" type glasses of composition SiO 2 -Al 2 ⁇ 3-CaO, the archetype of which is described in patents US-A-2,334,981 and 2,571,074 and which have a composition essentially based on silica, alumina, lime and boric anhydride.
  • This latter component present at a content ranging from 5 to 13%, is added in replacement of the silica, and it makes it possible to fiberize the glass E under very advantageous conditions, in particular with a working temperature (temperature at which the glass has a viscosity equal to 1000 poise) relatively low, of the order of 1200 0 C, a liquidus temperature lower by about 120 0 C at the working temperature and a low devitrification speed.
  • a working temperature temperature at which the glass has a viscosity equal to 1000 poise
  • composition of glass E defined in ASTM D 578-00 is as follows (in weight percent): 52 to 56% SiO 2 ; 12 to 16% AI 2 O 3 ; 16 25% CaO; 5 to 10% B 2 O 3 ; 0 to 5% MgO; 0 to 2% Na 2 O + K 2 O; 0 to 0.8% TiO 2 ; 0.05 to 0.4% Fe 2 O 3 ; 0 to 1% of F 2 .
  • Boric anhydride B 2 O 3 acts as a flux in the mixture of vitrifiable raw materials, which, as already mentioned, makes it possible to perform glass fiberizing in better conditions. conditions.
  • these constituents have the disadvantage of being volatile and generating boron and fluorine emissions which must necessarily be treated in pollution control facilities before their release into the atmosphere. The implementation of this treatment generates a significant additional cost in the son of glass.
  • the raw materials from which these constituents are obtained, in particular B 2 O 3 which must represent at least 5% by weight of the glass are relatively expensive.
  • ASTM D 578-00 provides for other glass reinforcing wires E that may not contain boron.
  • These yarns which are more particularly intended for producing fabrics for electronics, have the following composition (in percentage by weight): 52 to 62% of SiO 2 ; 12 to 16% AI 2 O 3 ; 16 to 25% CaO; 0 to 10% B 2 O 3 ; 0 to 5% MgO; 0 to 2% Na 2 O + K 2 O; 0 to 1.5% TiO 2 ; 0.05 to 0.8% Fe 2 O 3 ; 0 to 1% F 2 .
  • the object of the present invention is to provide reinforcing threads made of a glass having a composition different from that of glass E, and which have a satisfactory level of mechanical performance, in particular in terms of tensile strength, and a favorable cost. .
  • the present invention is more particularly interested in "fine" glass son, that is to say having a linear density less than or equal to 300 tex.
  • This object is achieved according to the invention by virtue of the lower alumina glass fibers, the composition of which comprises the following constituents within the limits defined below, expressed in percentages by weight:
  • Silica SiO 2 is one of the oxides which forms the network of glasses according to the invention and plays an essential role for their stability.
  • the silica content is less than 62%, the glass obtained is not sufficiently viscous and devitrifies too easily during fiber drawing. Beyond 72%, the glass becomes very viscous and difficult to melt.
  • the silica content is between 64 and 70.5%.
  • Alumina Al 2 O 3 is also a formator of the glass network according to the invention and plays an essential role with respect to stability.
  • the alumina content is limited to 10% essentially for reasons of devitrification and reduction of the final cost of the glass.
  • An alumina content of less than 2% results in a significant increase in the hydrolytic attack of the glass.
  • the alumina content is greater than or equal to 3% and advantageously greater than or equal to 3.5%.
  • the sum of the silica and alumina contents is greater than 70.5% in order to obtain a satisfactory level of hydrolytic resistance.
  • the sum of the silica and alumina contents is less than or equal to 75% so as not to increase the melting temperature of the vitrifiable raw materials too much.
  • the CaO content makes it possible to adjust the viscosity and control the devitrification of the glasses.
  • a CaO content greater than 20% increases the devitrification rate of Ca.sub.SiO.sub.3 (wollastonite) detrimental to good fiberization.
  • a content of less than 7% decreases the hydrolytic resistance of the glass unacceptably.
  • the CaO content is greater than or equal to 8%, and advantageously less than 12%.
  • Magnesia MgO allows, in connection with CaO, to reduce the liquidus temperature of the glass.
  • the addition of MgO in the indicated content makes it possible to introduce competition between the growth of wollastonite crystals and the growth of diopside crystals (CaO 2 MgO 2 SiO 2), which has the effect of slowing down the growth of these two types. crystals and in the end to give the glass a better resistance to devitrification.
  • MgO contributes to obtaining a high hydrolytic resistance.
  • the MgO content ranges from 1 to 7%, preferably from 3.5 to 6.5%.
  • the alkaline oxides Na 2 O, K 2 O and Li 2 O, may be introduced into the composition according to the invention to help limit devitrification and reduce the viscosity of the glass.
  • the content of alkaline oxides must however remain less than or equal to 14.5% in order not to degrade the hydrolytic resistance of the glass and maintain the mechanical properties of the wire at an acceptable level.
  • the content of alkaline oxides is preferably less than 14%, advantageously greater than 10.5%, more preferably greater than 11% and even more preferably greater than 11.5%.
  • the Li 2 O content is generally less than 1%, advantageously less than or equal to 0.5%, especially zero, essentially for reasons of cost.
  • the addition of Li 2 O in the glass composition is advantageous for the production of son consisting of small diameter filaments because it limits the deposition of the glass at the openings at the base of the die ("sending") which disturbs the fiberization.
  • BaO, SrO and ZnO may be present in the glass composition in a total content of less than 4%, preferably less than 2% in order not to increase the cost.
  • the composition is free of BaO, SrO and ZnO.
  • B2O3 boron oxide acts as a fluidizer. Its content in the glass composition according to the invention is limited to 4%, preferably less than or equal to 2%, to avoid the problems of volatilization and pollutant emission, and not to significantly increase the cost of the composition.
  • Boron may be incorporated as raw material in the form of waste glass son containing boron, in particular E glass. In general, the compositions according to the invention are free of B2O3.
  • Fluorine can be added in small quantities to improve the melting of the glass, or be present in the impurity state from the vitrifiable raw materials, without however exceeding 2%.
  • the fluorine content is less than 1% because beyond this can occur risks of pollutant emissions and corrosion of refractory furnace.
  • the compositions according to the invention are free of fluorine.
  • the glass composition may further comprise AS2O3 arsenic oxide in an amount not exceeding 0.15% to improve the refining of the glass.
  • Arsenic oxide is used in addition to conventional refining agents such as sulphates alone or in combination with coke.
  • the content of AS2O3 is less than or equal to 0.13% and advantageously less than or equal to 0.07% so as to prevent the risks of polluting emissions.
  • the compositions according to the invention do not contain As2O3.
  • the glass yarns according to the invention are obtained from the glasses of composition previously described according to the following method: a plurality of threads of molten glass, flowing from a multiplicity of orifices arranged at the base of a or several dies, in the form of one or more plies of continuous son, and then the filaments are gathered in one or more son that is collected on a moving support.
  • the filaments are generally coated with a sizing composition designed to protect them from abrasion and facilitating their subsequent association with the materials to be reinforced.
  • the moving support may be a support in rotation when the son are collected in the form of windings, or a support in translation when the son are cut by a member also serving to stretch or projected by a member for stretching to form a mat.
  • These yarns can undergo transformation operations, for example to "voluminize", to give them a twist or to assemble them to form son of even higher linear density.
  • the son can thus be in different forms: continuous or cut son, grids, fabrics, knits, braids, ribbons or mats.
  • the yarns are assembled into structures in the form of grids, fabrics and mats.
  • These yarns intended to be used in textile applications advantageously have a filament diameter less than or equal to 11 micrometers, preferably less than or equal to 9 micrometers. They are usually twisted and / or wired and coated with a specific size to resist weaving operations.
  • the son of greater diameter and linear density are more particularly intended for the reinforcement of plastics.
  • Their linear density may vary to a greater extent and the diameter of the filaments constituting them may be up to 30 ⁇ m.
  • the molten glass feeding the dies is obtained from pure raw materials (for example from the chemical industry) or more generally from natural materials (the latter sometimes containing trace impurities), these raw materials being mixed. in appropriate proportions to obtain the desired composition, and then being melted.
  • the temperature of the molten glass (and therefore its viscosity) is adjusted in a traditional way so as to allow the fiberizing avoiding the problems of devitrification.
  • the "forming range”, denoted ⁇ T, is one of the evaluation criteria for fiber drawing. It corresponds to the difference between the forming temperature of the yarns (noted and the liquidus temperature (denoted T
  • working temperature is meant the temperature at which the glass has a viscosity equal to 1000 poises (denoted by T
  • liquidus temperature (denoted by T
  • the liquidus temperature gives the lower temperature limit at which it is possible to fiberize the glass.
  • the glass strands in accordance with the invention can be fibers under particularly advantageous conditions because the forming range is high, at least 70 ° C., preferably at least 80 ° C., and up to at 135 ° C.
  • 0g 3 is relatively low, at most equal to 1240 0 C, which has the advantage of not having to heat the glass too much and minimize the wear of the die.
  • the forming temperature is at most 1230 ° C and more preferably at most 1220 ° C.
  • the glass yarns according to the invention may be associated with filaments of organic material, either during drawing to form composite yarns, or after forming the glass yarn in a subsequent step to form mixed yarns.
  • the glass son according to the invention are intended in particular to be used as reinforcing elements of composite parts based on organic (s) and / or inorganic (s) material (s).
  • the glass threads according to the invention can represent only part of the glass threads or all of these threads.
  • compositions shown in Table 1 are produced.
  • the compositions of Examples 1 to 3 correspond to glasses having been melted, and the compositions of Examples 4 to 10 are obtained by calculation using a model established by the applicant.
  • Glass threads (filament diameter: 9 ⁇ m and linear density: 68 and 34 tex, filament diameter: 7 ⁇ m and linear density: 22 tex) are obtained in a conventional fiberization plant from the glasses of examples 1, 2 and 3, and conventional glasses E with boron (Reference 1) and without boron (Reference 2).
  • the glass filaments are coated with a composition traditional sizing before their gathering in wire.
  • the amount of sizing deposited is of the order of 0.7 to 1.1% of the weight of the final wire.
  • Table 1 are reported:
  • the fiber-drawing range of the glasses according to the invention is greater than that of boron-free glass E (reference 2), and close to that of glass E with boron (reference 1) for examples 7 and 9, or even greater for the example 8.
  • the working temperature and the liquidus temperature of Examples 1 to 10 are compatible with the usual conditions for fiberizing glasses E.
  • the unit tensile strength of the yarn of Examples 1 to 3, before twisting, is sufficiently high to allow the yarn to be used in textile weaving operations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

L'invention se rapporte à des fils de verre de renforcement dont la composition comprend les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux : SiO2 62 - 72 % AI2O3 2 - 10 % CaO 7 - 20 % MgO 1 - 7 % Na2O + K2O + Li2O 10 - 14,5 % Li2O O - 2 % BaO + SrO + ZnO O - 4 % B2O3 O - 4 % F2 0 - 2 % As2O3 0 - 0,15 % Ces fils sont constitués d'un verre économique offrant un excellent compromis entre les propriétés mécaniques représentées par la résistance en traction et les conditions de fibrage. L'invention concerne également les composites à base de matière(s) organique(s) et/ou inorganique(s) et les fils de verre précités.

Description

FILS DE VERRE A FAIBLE TENEUR EN ALUMINE APTES A RENFORCER DES MATIERES ORGANIQUES ET/OU INORGANIQUES
L'invention se rapporte à des fils de verre de renforcement et aux composites à base de matières organiques et/ou inorganiques incorporant lesdits fils de verre.
Le domaine des fils de verre de renforcement est un domaine très particulier de l'industrie du verre.
Les fils de verre de renforcement sont obtenus par le procédé qui consiste à étirer mécaniquement des filets de verre fondu s'écoulant d'orifices disposés à la base d'une filière généralement chauffée par effet Joule, et à rassembler lesdits filaments pour former le fil de verre.
Les fils sont élaborés à partir de compositions de verre spécifiques qui doivent permettre l'obtention de filaments de quelques micromètres de diamètre et la formation de fils continus aptes à remplir la fonction de renfort dans des matières organiques et/ou inorganiques qui leur est dévolue, ceci afin de leur conférer de meilleures propriétés mécaniques. Les fils de verre de renforcement sont utilisés tels quels ou sous forme d'assemblages organisés tels que des tissus.
Les propriétés mécaniques de ces matières renforcées sont principalement régies par la composition du verre qui constitue les fils de renforcement. Les verres les plus connus pour cet usage sont les verres de type « E » de composition Siθ2-AI2θ3-CaO dont l'archétype est décrit dans les brevets US-A-2 334 981 et US-A-2 571 074 et qui présentent une composition essentiellement à base de silice, d'alumine, de chaux et d'anhydride borique. Ce dernier constituant, présent à une teneur variant de 5 à 13 %, est ajouté en remplacement de la silice, et il permet de fibrer le verre E dans des conditions très avantageuses, avec notamment une température de travail (température à laquelle le verre a une viscosité égale à 1000 poises) relativement basse, de l'ordre de 12000C, une température de liquidus inférieure d'environ 1200C à la température de travail et une vitesse de dévitrification faible.
La composition du verre E définie dans la norme ASTM D 578-00 est la suivante (en pourcentage pondéral) : 52 à 56 % de SiO2; 12 à 16 % d'AI2O3; 16 à 25 % de CaO; 5 à 10 % de B2O3; 0 à 5 % de MgO; 0 à 2 % de Na2O + K2O; 0 à 0,8 % de TiO2; 0,05 à 0,4 % de Fe2O3; 0 à 1 % de F2.
L'anhydride borique B2O3, ainsi que le fluor F2, joue le rôle de fondant dans le mélange de matières premières vitrifiables, ce qui, comme cela a déjà été mentionné, permet d'effectuer le fibrage du verre dans de meilleures conditions. Cependant, ces constituants ont pour inconvénient d'être volatils et de générer des émissions de bore et de fluor qui doivent nécessairement être traitées dans des installations de dépollution avant leur rejet dans l'atmosphère. La mise en œuvre de ce traitement engendre un coût supplémentaire important au niveau des fils de verre. En outre, les matières premières à partir desquelles sont obtenus ces constituants, notamment B2O3 qui doit représenter au moins 5 % en poids du verre, sont relativement onéreuses.
La norme ASTM D 578-00 prévoit d'autres fils de renforcement de verre E qui peuvent ne pas contenir de bore. Ces fils, qui sont plus particulièrement destinés à la réalisation de tissus pour l'électronique, ont la composition suivante (en pourcentage pondéral) : 52 à 62 % de SiO2; 12 à 16 % d'AI2O3; 16 à 25 % de CaO; O à 10 % de B2O3; O à 5 % de MgO; O à 2 % de Na2O + K2O; O à 1 ,5 % de TiO2; 0,05 à 0,8 % de Fe2O3; O à 1 % de F2.
De nombreuses compositions de verre particulier répondant à cette dernière norme ont été proposées, essentiellement dans le but de réduire le coût en diminuant la teneur en constituants les plus onéreux que sont le bore et le fluor (voir notamment US-A-3 847 626, US-A-4 026 715, US-A-4 199 364, WO 96/39362, WO 99/12858, WO 99/01393, WO 00/73232, WO 00/73231 , WO 01/32576 et US 2003/0224922). Les fils de verre E modifié ainsi obtenus conservent une bonne aptitude du verre au fibrage, un faible niveau d'émissions polluantes et des propriétés compatibles avec un usage en tant que renfort de matières organiques et/ou inorganiques.
La présente invention a pour but de fournir des fils de renforcement constitués d'un verre ayant une composition différente de celle du verre E, et qui présentent un niveau de performance mécanique satisfaisant, notamment en terme de résistance à la traction, et un coût avantageux.
Bien qu'elle ne soit pas limitée à ce type de fils, la présente invention s'intéresse plus particulièrement aux fils de verre « fins », c'est-à-dire qui présentent une masse linéique inférieure ou égale à 300 tex. Ce but est atteint selon l'invention grâce aux fils de verre à teneur plus faible en alumine, dont la composition comprend les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux :
SiO2 62 - 72 %
AI2O3 2 - 10 %
CaO 7 - 20 %
MgO 1 - 7 %
Na2O + K2O + Li2O 10 - 14,5 %
Li2O O - 2 %
BaO + SrO + ZnO O - 4 %
B2O3 O - 4 %
F2 0 - 2 %
As2O3 0 - 0,15 %
La silice SiO2 est l'un des oxydes qui forme le réseau des verres selon l'invention et joue un rôle essentiel pour leur stabilité. Dans le cadre de l'invention, lorsque le taux de silice est inférieur à 62 %, le verre obtenu n'est pas assez visqueux et dévitrifie trop facilement lors du fibrage. Au-delà de 72 %, le verre devient très visqueux et difficile à fondre. De préférence, le taux de silice est compris entre 64 et 70,5 %.
L'alumine AI2O3 constitue également un formateur du réseau des verres selon l'invention et joue un rôle essentiel à l'égard de la stabilité. La teneur en alumine est limitée à 10 % essentiellement pour des raisons de dévitrification et de réduction du coût final du verre. Une teneur en alumine inférieure à 2 % entraîne une augmentation sensible de l'attaque hydrolytique du verre. De préférence, la teneur en alumine est supérieure ou égale à 3 % et avantageusement supérieure ou égale à 3,5 %. Les fils de verre dont la teneur en alumine est supérieure ou égale à 4 %, avantageusement supérieure ou égale à 5,5 %, et mieux encore supérieure ou égale à 6 % sont particulièrement préférés.
De manière avantageuse, la somme des teneurs en silice et en alumine est supérieure à 70,5 % afin d'obtenir un niveau satisfaisant de résistance hydrolytique. De préférence, la somme des teneurs en silice et en alumine est inférieure ou égale à 75 % de façon à ne pas trop augmenter la température de fusion des matières premières vitrifiables. La teneur en CaO permet d'ajuster la viscosité et de contrôler la dévitrification des verres. Dans le cadre des limites définies selon l'invention, une teneur en CaO supérieure à 20 % augmente la vitesse de dévitrification en Ca.Siθ3 (wollastonite) préjudiciable à un bon fibrage. Une teneur inférieure à 7 % diminue la résistance hydrolytique du verre de manière inacceptable. De préférence, la teneur en CaO est supérieure ou égale à 8 %, et avantageusement inférieure à 12 %.
La magnésie MgO permet, en relation avec CaO, de diminuer la température de liquidus du verre. L'ajout de MgO dans la teneur indiquée permet d'introduire une compétition entre la croissance des cristaux de wollastonite et la croissance des cristaux de diopside (CaO. MgO.2Siθ2), ce qui a pour effet de ralentir la croissance de ces deux types de cristaux et au final de conférer au verre une meilleure résistance à la dévitrification. En outre, MgO contribue à l'obtention d'une résistance hydrolytique élevée. La teneur en MgO varie de 1 à 7 %, de préférence de 3,5 à 6,5 %.
Les oxydes alcalins, Na2θ, K2O et Li2O, peuvent être introduits dans la composition selon l'invention pour contribuer à limiter la dévitrification et réduire la viscosité du verre. La teneur en oxydes alcalins doit cependant rester inférieure ou égale à 14,5 % pour ne pas dégrader la résistance hydrolytique du verre et maintenir les propriétés mécaniques du fil à un niveau acceptable. La teneur en oxydes alcalins est de préférence inférieure à 14 %, avantageusement supérieure à 10,5 %, mieux encore supérieure à 11 % et encore plus avantageusement supérieure à 11 ,5 %. La teneur en Li2O est généralement inférieure à 1 %, avantageusement inférieure ou égale à 0,5 %, notamment nulle, essentiellement pour des raisons de coût. L'ajout de Li2O dans la composition de verre est avantageux pour la réalisation de fils constitués de filaments de faible diamètre car il permet de limiter le dépôt du verre au niveau des orifices situés à la base de la filière (« enverrage ») qui perturbe le fibrage.
BaO, SrO et ZnO peuvent être présents dans la composition de verre en une teneur totale inférieure à 4 %, de préférence inférieure à 2 % afin de ne pas augmenter le coût. En règle générale, la composition est exempte de BaO, de SrO et de ZnO. L'oxyde de bore B2O3 joue le rôle de fluidifiant. Sa teneur dans la composition de verre selon l'invention est limitée à 4 %, de préférence est inférieure ou égale à 2 %, pour éviter les problèmes de volatilisation et d'émission de polluants, et pour ne pas augmenter significativement le coût de la composition. Le bore peut être incorporé en tant que matière première sous la forme de déchets de fils de verre contenant du bore, notamment de verre E. En règle générale, les compositions selon l'invention sont exemptes de B2O3.
Du fluor peut être ajouté en faible quantité pour améliorer la fusion du verre, ou être présent à l'état d'impureté provenant des matières premières vitrifiables, sans toutefois excéder 2 %. De préférence, la teneur en fluor est inférieure à 1 % car au-delà peuvent survenir des risques d'émissions polluantes et de corrosion des réfractaires du four. En règle générale, les compositions selon l'invention sont exemptes de fluor.
La composition de verre peut encore comprendre de l'oxyde d'arsenic AS2O3 en quantité n'excédant pas 0,15 % pour améliorer l'affinage du verre. L'oxyde d'arsenic est utilisé en sus des agents d'affinage conventionnels tels que les sulfates seuls ou associés à du coke. De préférence, la teneur en AS2O3 est inférieure ou égale à 0,13 % et avantageusement inférieure ou égale à 0,07 % de manière à prévenir les risques d'émissions polluantes. En règle générale, les compositions selon l'invention ne renferment pas d'As2θ3.
Les fils de verre selon l'invention sont obtenus à partir des verres de composition précédemment décrite selon le procédé suivant : on étire une multiplicité de filets de verre fondu, s'écoulant d'une multiplicité d'orifices disposés à la base d'une ou plusieurs filières, sous la forme d'une ou plusieurs nappes de fils continus, puis on rassemble les filaments en un ou plusieurs fils que l'on collecte sur un support en mouvement.
Avant leur rassemblement en fil(s), les filaments sont généralement revêtus d'une composition d'ensimage visant à les protéger de l'abrasion et facilitant leur association ultérieure avec les matières à renforcer.
Le support en mouvement peut être un support en rotation lorsque les fils sont collectés sous la forme d'enroulements, ou un support en translation quand les fils sont soit coupés par un organe servant également à les étirer soit projetés par un organe servant à les étirer de façon à former un mat. Ces fils peuvent subir des opérations de transformation, par exemple en vue de les « voluminiser », de leur conférer une torsion ou de les assembler pour former des fils de masse linéique encore plus élevée. Les fils peuvent ainsi se présenter sous différentes formes : fils continus ou coupés, grilles, tissus, tricots, tresses, rubans ou mats. De préférence, les fils sont assemblés en structures se présentant sous la forme de grilles, de tissus et de mats.
Les fils présentant une masse linéique inférieure ou égale à 300 tex, de préférence inférieure ou égale à 200 tex, sont plus particulièrement visés par la présente invention. Ces fils destinés à être utilisés dans des applications textiles ont avantageusement un diamètre de filaments inférieur ou égal à 11 micromètres, de préférence inférieur ou égal à 9 micromètres. Ils sont le plus souvent retordus et/ou câblés et revêtus d'un ensimage spécifique leur permettant de résister aux opérations de tissage.
Les fils de diamètre et de masse linéique plus élevés, de préférence sans torsion, sont plus particulièrement destinés au renforcement des matières plastiques. Leur masse linéique peut varier dans une plus large mesure et le diamètre des filaments qui les constituent peut aller jusqu'à 30 μm.
Le verre fondu alimentant les filières est obtenu à partir de matières premières pures (par exemple provenant de l'industrie chimique) ou plus généralement de matières naturelles (ces dernières contenant parfois des impuretés à l'état de traces), ces matières premières étant mélangées dans des proportions appropriées pour obtenir la composition désirée, puis étant fondues. La température du verre fondu (et donc sa viscosité) est réglée de façon traditionnelle de manière à permettre le fibrage en évitant les problèmes de dévitrification.
La « plage de formage », notée ΔT, fait partie des critères d'évaluation du fibrage. Elle correspond à la différence entre la température de formage des fils (notée et la température de liquidus (notée T|iq) et elle est représentative de l'aptitude d'une composition de verre fondu à cristalliser. En règle générale, le risque de dévitrification lors de l'étirage des filaments est évité quand la plage de fibrage ΔT est positive, de préférence supérieure ou égale à 500C.
Par « température de travail » on entend la température à laquelle le verre a une viscosité égale à 1000 poises (notée T|0g3)- Par « température de liquidus » (notée T|iq) on entend la température à laquelle la phase la plus réfractaire, qui peut dévitrifier dans le verre, a une croissance nulle et correspond ainsi à la température de fusion de cette phase dévitrifiée. La température de liquidus donne la limite inférieure de température à laquelle il est possible de fibrer le verre.
Les fils de verre conformes à l'invention peuvent être fibres dans des conditions particulièrement intéressantes du fait que la plage de formage est élevée, au moins égale à 700C, de préférence au moins égale à 800C, et pouvant aller jusqu'à 135°C.
De surcroît, la température de formage T|0g3 est relativement basse, au plus égale à 12400C, ce qui a pour avantage de ne pas avoir à chauffer le verre de manière trop intense et de réduire au minimum l'usure de la filière. De préférence, la température de formage est au plus à 1230°C et mieux encore au plus égale à 1220°C.
Les fils de verre selon l'invention peuvent être associés à des filaments de matière organique, soit au cours de l'étirage pour former des fils composites, soit après la formation du fil de verre dans une étape ultérieure pour former des fils mixtes.
Les fils de verre selon l'invention sont destinés notamment à être utilisés en tant qu'éléments de renfort de pièces composites à base de matière(s) organique(s) et/ou inorganique(s). Dans les composites, les fils de verre selon l'invention peuvent représenter une partie seulement des fils de verre ou la totalité de ces fils.
Les exemples qui suivent permettent d'illustrer l'invention sans toutefois la limiter.
EXEMPLES 1 A 10
On élabore des verres ayant la composition figurant dans le tableau 1 , exprimée en pourcentages pondéraux. Les compositions des exemples 1 à 3 correspondent à des verres ayant été fondus, et les compositions des exemples 4 à 10 sont obtenues par calcul à l'aide d'un modèle établi par le demandeur.
Des fils de verre (diamètre des filaments : 9 μm et masse linéique : 68 et 34 tex ; diamètre des filaments : 7 μm et masse linéique : 22 tex) sont obtenus dans une installation de fibrage conventionnelle à partir des verres des exemples 1 , 2 et 3, et de verres conventionnels E avec bore (Référence 1) et sans bore (Référence 2). Les filaments de verre sont revêtus d'une composition d'ensimage traditionnel avant leur rassemblement en fil. La quantité d'ensimage déposée représente de l'ordre de 0,7 à 1 ,1 % du poids du fil final. Dans le tableau 1 sont reportées :
> la température de travail T|0g3 correspondant à la température à laquelle la viscosité du verre est égale à 103 poises,
> la température de liquidus T|iq correspondant à la température à laquelle la phase la plus réfractaire, qui peut dévitrifier dans le verre, a une vitesse de croissance nulle et correspond ainsi à la température de fusion de cette phase dévitrifiée,
> la plage de fibrage ΔT correspondant à la différence des températures entre T|0g3 et T|iq
> la résistance en traction unitaire du fil (RTU), mesurée dans les conditions de la norme ISO 3341.
La plage de fibrage des verres selon l'invention est supérieure à celle du verre E sans bore (Référence 2), et proche de celle du verre E avec bore (Référence 1 ) pour les exemples 7 et 9, voire supérieure pour l'exemple 8. La température de travail et la température de liquidus des exemples 1 à 10 sont compatibles avec les conditions habituelles de fibrage des verres E.
La résistance en traction unitaire du fil des exemples 1 à 3, avant retordage, est suffisamment élevée pour permettre que le fil soit utilisé dans opérations de tissage textile.
n. d. : non déterminé

Claims

REVENDICATIONS
1. Fil de verre de renforcement dont la composition comprend les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux :
SiO2 62 - 72 %
AI2O3 2 - 10 %
CaO 7 - 20 %
MgO 1 - 7 %
Na2O + K2O + Li2O 10 - 14,5 %
Li2O O - 2 %
BaO + SrO + ZnO O - 4 %
B2O3 O - 4 %
F2 0 - 2 %
As2O3 0 - 0,15 %
2. Fil de verre selon la revendication 1 , caractérisé en ce que la teneur en SiO2 est comprise entre 64 et 70,5 %.
3. Fil de verre selon l'une des revendications 1 ou 2, caractérisé en ce que la teneur en AI2O3 est supérieure ou égale à 3 %, de préférence supérieure ou égale à 3,5 %.
4. Fil de verre selon la revendication 3, caractérisé en ce que la teneur en AI2O3 est supérieure ou égale à 4 %, de préférence supérieure ou égale à 5,5 % et avantageusement supérieure ou égale à 6 %.
5. Fil de verre selon l'une des revendications 1 à 4, caractérisé en ce que la somme des teneurs en SiO2 et AI2O3 est supérieure à 70,5 %, de préférence inférieure ou égale à 75 %.
6. Fil de verre selon l'une des revendications 1 à 5, caractérisé en ce que la teneur en CaO est supérieure ou égale à 8 %, de préférence inférieure à 12 %.
7. Fil de verre selon l'une des revendications 1 à 6, caractérisé en ce que la teneur en MgO varie de 3,5 à 6,5 %.
8. Fil de verre selon l'une des revendications 1 à 7, caractérisé en ce que la teneur en oxydes alcalins Na2O, K2O et Li2O est inférieure à 14 %, de préférence supérieure à 10,5 %, avantageusement supérieure à 11 % et mieux encore supérieure à 11 ,5 %.
9. Fil de verre selon l'une des revendications 1 à 8, caractérisé en ce que la teneur en Li2O est inférieure à 1 %, de préférence inférieure ou égale à 0,5 % et notamment nulle.
10. Fil de verre selon l'une des revendications 1 à 9, caractérisé en ce que la teneur en BaO, SrO et ZnO est inférieure à 2 %, de préférence est nulle.
11. Fil de verre selon l'une des revendications 1 à 10, caractérisé en ce que la teneur en B2θ3 est inférieure ou égale à 2 %, de préférence est nulle.
12. Fil de verre selon l'une des revendications 1 à 11 , caractérisé en ce que la teneur en fluor est inférieure à 1 %, de préférence est nulle.
13. Fil de verre selon l'une des revendications 1 à 12, caractérisé en ce que la teneur en AS2O3 est inférieure ou égale à 0,13 %, de préférence est inférieure ou égale à 0,07 %, et mieux encore est nulle.
14. Fil de verre selon l'une des revendications 1 à 13, caractérisé en ce qu'il présente une masse linéique inférieure ou égale à 300 tex, de préférence inférieure ou égale à 200 tex.
15. Fil de verre selon la revendication 14, caractérisé en ce qu'il présente un diamètre de filaments inférieur ou égal à 11 micromètres, de préférence inférieur ou égal à 9 micromètres.
16. Composite de fils de verre et de matière(s) organique(s) et/ou inorganique(s), caractérisé en ce qu'il comprend des fils de verre tels que définis par l'une des revendications 1 à 15.
EP08845842A 2007-10-31 2008-10-30 Fils de verre a faible teneur en alumine aptes a renforcer des matieres organiques et/ou inorganiques Withdrawn EP2215027A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0758731A FR2922885B1 (fr) 2007-10-31 2007-10-31 Fils de verre a faible teneur en alumine aptes a renforcer des matieres organiques et/ou inorganiques.
PCT/FR2008/051953 WO2009056768A2 (fr) 2007-10-31 2008-10-30 Fils de verre a faible teneur en alumine aptes a renforcer des matieres organiques et/ou inorganiques

Publications (1)

Publication Number Publication Date
EP2215027A2 true EP2215027A2 (fr) 2010-08-11

Family

ID=39474029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08845842A Withdrawn EP2215027A2 (fr) 2007-10-31 2008-10-30 Fils de verre a faible teneur en alumine aptes a renforcer des matieres organiques et/ou inorganiques

Country Status (6)

Country Link
US (1) US8367571B2 (fr)
EP (1) EP2215027A2 (fr)
CN (1) CN101842327B (fr)
FR (1) FR2922885B1 (fr)
MX (1) MX2010004443A (fr)
WO (1) WO2009056768A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910462B1 (fr) * 2006-12-22 2010-04-23 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US9593038B2 (en) * 2009-08-03 2017-03-14 Ppg Industries Ohio, Inc. Glass compositions and fibers made therefrom
US9556059B2 (en) 2009-08-03 2017-01-31 Hong Li Glass compositions and fibers made therefrom
US9446983B2 (en) 2009-08-03 2016-09-20 Ppg Industries Ohio, Inc. Glass compositions and fibers made therefrom
DE102012215824A1 (de) * 2012-07-26 2014-11-13 Schott Ag Zusatzstoff für elektrochemische Energiespeicher und elektrochemischer Energiespeicher

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1137393A (fr) * 1955-07-05 1957-05-28 Saint Gobain Nouvelles compositions de verre
US3013888A (en) * 1959-11-06 1961-12-19 Saint Gobain Glass composition
FR1355739A (fr) * 1963-02-07 1964-03-20 Saint Gobain Compositions de verre
US4325724A (en) * 1974-11-25 1982-04-20 Owens-Corning Fiberglas Corporation Method for making glass
DE2954307C2 (de) * 1978-12-08 1986-08-28 Spafi - Societe Anonyme De Participations Financieres Et Industrielles, Courbevoie Glasfaser aus Gläsern im System SiO↓2↓-Al↓2↓O↓3↓-Na↓2↓O-CaO-MnO-Fe↓2↓O↓3↓(-K↓2↓O-MgO)
US4381347A (en) * 1979-05-09 1983-04-26 Oy Partek Ab Fibre glass composition
SE418961C (sv) * 1979-05-09 1987-03-12 Partek Ab Fiberglassammansettning
US4756732A (en) * 1982-04-06 1988-07-12 Isover Saint-Gobain Glass fiberization method
JPS63147843A (ja) * 1986-12-10 1988-06-20 Nippon Sheet Glass Co Ltd ガラス組成物
JPH0764593B2 (ja) * 1989-08-23 1995-07-12 日本電気硝子株式会社 耐アルカリ性ガラス繊維組成物
DE4032460A1 (de) * 1990-10-10 1992-06-11 Brattendorfer Glasfaser Gmbh Spinnfaehiges glas hoher alkaliresistenz
GB9111401D0 (en) 1991-05-25 1991-07-17 Pilkington Insulation Ltd Glass composition and use
RU2077515C1 (ru) * 1992-06-29 1997-04-20 Научно-производственное объединение "Хрусталь" Стекло для стекловолокна
RU2036869C1 (ru) * 1993-02-04 1995-06-09 Научно-производственное объединение "Стеклопластик" Стекло для стекловолокна
JP4077536B2 (ja) * 1997-07-11 2008-04-16 日本無機株式会社 極細ガラス繊維
JP2003267753A (ja) * 2000-10-11 2003-09-25 Paramount Glass Kogyo Kk 無機質繊維製造用硝子組成物及びその成型物
JP2003212596A (ja) * 2002-01-23 2003-07-30 Paramount Glass Kogyo Kk 無機質繊維製造用硝子組成物、その製造方法及びその無機質繊維成型物
US20030166446A1 (en) * 2002-03-04 2003-09-04 Albert Lewis High temperature glass fiber insulation
FR2854626B1 (fr) * 2003-05-07 2006-12-15 Saint Gobain Isover Produit a base de fibres minerales et dispositif d'obtention des fibres
FR2867775B1 (fr) * 2004-03-17 2006-05-26 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
FR2867776B1 (fr) * 2004-03-17 2006-06-23 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
FR2872155B1 (fr) * 2004-06-24 2006-09-08 Saint Gobain Vetrotex Matiere plastique renforcee par des fils de verre resistant a la corrosion
FR2879591B1 (fr) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
JP4932225B2 (ja) * 2005-04-08 2012-05-16 旭ファイバーグラス株式会社 環状ポリオレフィン樹脂組成物及び成形品
US7763558B2 (en) * 2006-12-27 2010-07-27 Johns Manville Glass compositions for fiber formation
FR2916438B1 (fr) * 2007-05-23 2010-08-20 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US7803731B2 (en) * 2007-08-15 2010-09-28 Johns Manville Fire resistant glass fiber

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009056768A2 *

Also Published As

Publication number Publication date
FR2922885B1 (fr) 2010-10-29
CN101842327B (zh) 2013-06-19
WO2009056768A3 (fr) 2009-06-25
MX2010004443A (es) 2010-05-05
US8367571B2 (en) 2013-02-05
FR2922885A1 (fr) 2009-05-01
US20100248928A1 (en) 2010-09-30
CN101842327A (zh) 2010-09-22
WO2009056768A2 (fr) 2009-05-07

Similar Documents

Publication Publication Date Title
CA2687626C (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
EP1831118B1 (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques.
CA2528923C (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques, composites les renfermant et composition utilisee
CA2721384C (fr) Fils de verre et composites a matrice organique et/ou inorganique contenant lesdits fils
CA2272001C (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
EP1732855B1 (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
EP2094615A2 (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
FR2867775A1 (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
EP2215027A2 (fr) Fils de verre a faible teneur en alumine aptes a renforcer des matieres organiques et/ou inorganiques
EP1230184B1 (fr) Fils de verre de renforcement, composite de ceux-ci, procede de leur fabrication et composition de verre
EP1841703B1 (fr) Fils de verre de renforcement biosolubles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100531

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LALANDE, JEROME

Inventor name: PICARD, EMMANUELLE

Inventor name: BERTHEREAU, ANNE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C03C 3/087 20060101ALI20170217BHEP

Ipc: C03C 13/00 20060101AFI20170217BHEP

INTG Intention to grant announced

Effective date: 20170329

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170809