EP2212258A2 - Glass substrate coated with layers with improved resistivity - Google Patents

Glass substrate coated with layers with improved resistivity

Info

Publication number
EP2212258A2
EP2212258A2 EP08843627A EP08843627A EP2212258A2 EP 2212258 A2 EP2212258 A2 EP 2212258A2 EP 08843627 A EP08843627 A EP 08843627A EP 08843627 A EP08843627 A EP 08843627A EP 2212258 A2 EP2212258 A2 EP 2212258A2
Authority
EP
European Patent Office
Prior art keywords
layer
substrate according
layers
blocking layer
electroconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08843627A
Other languages
German (de)
French (fr)
Inventor
Emmanuelle Peter
Eric Gouardes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2212258A2 publication Critical patent/EP2212258A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to transparent conductive layers, in particular based on oxides, of great interest on glass substrate. These transparent layers are generally called TCO for "Transparent Conductive Oxide”.
  • ITO indium tin oxide
  • SnO 2 F layers doped with fluorine-doped tin oxide, or zinc-doped tin oxide oxide layers.
  • These materials are generally deposited chemically, for example by chemical vapor deposition (“CVD”), optionally enhanced by plasma (“PECVD”) or physically, such as by vacuum deposition by cathodic sputtering, possibly assisted. by magnetic field (“magnetron sputtering").
  • CVD chemical vapor deposition
  • PECVD plasma
  • magnetic field magnetic field
  • the TCO-based electrode coating must be deposited at a relatively large physical thickness, of the order of a few hundred nanometers, which is expensive in view of the prices of these materials when deposited in thin layers.
  • TCOs are deposited hot.
  • the deposition process requires a heat input, it further increases the cost of manufacture.
  • TCO-based electrode coatings Another major drawback of TCO-based electrode coatings lies in the fact that for a chosen material, its physical thickness is always a compromise between the electrical conduction finally obtained and the transparency finally obtained because the greater the physical thickness, the greater the conductivity will be strong but more transparency will be weak and vice versa, the greater the physical thickness is weak, the higher the transparency, but the lower the conductivity.
  • TCO thermoelectric cell
  • LCD screen LCD screen
  • plasma screen photovoltaic cell
  • heated glasses glazing low emissive.
  • the present invention therefore aims at overcoming the drawbacks of the preceding techniques by proposing a TCO solution whose optical and electrical conduction properties are not affected by the heat treatment phases, and are even improved by the latter.
  • the subject of the invention is therefore a glass transparent substrate, associated with a stack of thin layers forming an electrode, the stack comprising an alkaline barrier sublayer, an electroconductive layer, said electroconductive layer being coated with an overcoat layer.
  • protection against oxidation is characterized in that the stack comprises a metal blocking layer capable of oxidizing during a heat treatment.
  • this blocking layer Thanks to the presence of this blocking layer, it is possible to obtain, by a cold deposition process, identical performances to those obtained by hot deposition and the performances obtained after heat treatment are improved compared to to those obtained before heat treatment.
  • the metal blocking layer is based on titanium, chromium, nickel, niobium, zinc, tin, used alone or as a mixture,
  • the thickness of the metal blocking layer is between 0.5 and 20 nm, preferably between 0.5 and 10 nm,
  • the metal blocking layer is located below the electroconductive layer,
  • the metal blocking layer is located above the electroconductive layer,
  • the blocking layer is located above and below the electroconductive layer, the materials forming each of the blocking layers being identical,
  • the blocking layer is situated above and below the electroconductive layer, the materials forming each of the blocking layers being different, the barrier sub-layer is based on a dielectric material, the dielectric material is based on nitrides, oxides or oxynitrides of silicon, or nitrides, oxides or aluminum oxy nitrides, or nitrides, oxides or oxynitrides of titanium, nitrides, oxides or oxynitrides of zirconium, used alone or as a mixture, the thickness of the barrier sub-layer is between 3 and 250 nm preferably between 10 and 200 nm and substantially close to 20 to 25 nm, the overcoat of protection against oxidation is identical to the alkali barrier sub-layer the electroconductive layer is based on doped Sn, Zn, Ti or In oxide such as SnO 2 : F, SnO 2 : Sb, ZnO: Al, ZnO: Ga, InO: Sn, ZnO: In or TiO
  • the invention makes it possible to obtain stackings of layers adapted for photovoltaic cells whose mechanical strength on a glass substrate is not affected in the presence of an electric field and at high temperature. This considerable improvement can be achieved for large glass surfaces (PLF - full width float), since deposition methods compatible with such dimensions are available for the relevant layers.
  • the resistivity of the electrode is improved after undergoing heat treatment.
  • the transparent electroconductive layer of the substrate of the invention is not only able to constitute a photovoltaic cell electrode.
  • the transparent substrate of the invention has improved optical properties compared to transparent electroconductive layers on glass substrate: reduced iridescence, more uniform reflection coloration, increased transmission.
  • An element capable of collecting light will be described below.
  • the transparent substrate with a glass function may for example be entirely of glass containing alkalis such as a soda-lime glass. It may also be a thermoplastic polymer such as a polyurethane or a polycarbonate or a polymethylmethacrylate.
  • the entire glass-function substrate is made of material (x) having the best possible transparency and having preferably a linear absorption of less than 0.01 mm 1 in the part of the spectrum useful for the application (solar module), generally the spectrum ranging from 380 to 1200 nm.
  • the substrate can have a total thickness ranging from 0.5 to 10 mm when used as a protective plate of a photovoltaic cell of various chalcopyrite technologies (CIS, CIGS, CIGSe2), or belonging to silicon-based technology , the latter may be amorphous or microcrystalline, or belonging to the technology using cadmium telluride (CdTe).
  • CIS chalcopyrite technologies
  • CIGS CIGSe2
  • CdTe cadmium telluride
  • the substrate When the substrate is used as a protective plate, it may be advantageous to subject the plate to a heat treatment (of the quenching type for example) when it is made of glass.
  • A defines the front face of the substrate directed towards the light rays (this is the external face), and B the rear face of the substrate directed towards the rest of the solar module layers (it is acts of the internal face).
  • the B side of the substrate is coated with a stack of thin layers according to the methods of the invention.
  • At least one surface portion of the substrate is coated with an alkali barrier layer.
  • This alkaline barrier layer is based on a dielectric material, this dielectric material being based on nitrides, oxides or oxynitrides of silicon, or nitrides, oxides or oxynitrides of aluminum, based on zirconium nitrides, oxides or oxynitrides, used alone or as a mixture.
  • the thickness of the barrier layer is between 3 and 200 nm, preferably between 10 and 100 nm and substantially close to 20 to 25 nm.
  • This alkali barrier layer for example, based on silicon nitride, may not be stoichiometric. It can be sub-stoichiometric in nature, and even superstoichiometrically. The presence of this barrier layer on the B side of the substrate makes it possible to avoid or even block the diffusion of Na from the glass towards the upper active layers.
  • an electroconductive TCO layer is deposited for "Transparent Conductive Oxide". It may be chosen from the following materials: doped tin oxide, in particular fluorine or antimony (the precursors that can be used in the case of CVD deposition may be organo-metallic or tin halides associated with a fluorine precursor of the hydrofluoric acid or trifluoroacetic acid type), doped zinc oxide, in particular with aluminum (the precursors that can be used, in the case of CVD deposition, may be organometallic or zinc and aluminum halides), or doped indium oxide, in particular with tin (the precursors that can be used in the case of CVD deposition can be organo-metallic or tin and indium halides).
  • the TCO layer for example ZnO may also be deposited by sputtering from metal or ceramic target.
  • This conductive layer must be as transparent as possible, and have a high transmission of light in all wavelengths corresponding to the absorption spectrum of the material constituting the functional layer, so as not to reduce the efficiency of the module unnecessarily. solar.
  • the thickness of this electroconductive layer is between 50 and 1500 nm, preferably between 200 and 800 nm, and substantially close to 500 nm.
  • the conductive layer has a square resistance of at most 40 ohms / square, in particular at most 30 ohms / square.
  • the electroconductive layer is then covered with an oxidation protection layer similar to the alkali migration protection layer.
  • an oxidation protection layer similar to the alkali migration protection layer.
  • it may not be stoichiometric.
  • the metal blocking layer will be based on titanium, nickel, chromium, niobium, used alone or in mixture.
  • This blocking layer according to an alternative embodiment of the invention is located below the electroconductive layer and in contact with the alkali barrier layer, or according to another embodiment of the invention located above the electroconductive layer and therefore in contact with the protective layer against oxidation, or according to another embodiment located above and below the electroconductive layer.
  • the blocking layers located above and below will be made of an identical material, or different.
  • the thickness of this metal blocking layer is between 0.5 and 20 nm, preferably between 0.5 and 10 nm.
  • the stack of thin layers thus formed and producing an electrode is covered with a functional layer based on absorbent agent for energy conversion between light rays and electrical energy.
  • chalcopyrite absorbent agent based on, for example, CIS, CIGS or CIGSe2 or based on silicon-based absorbent agent, for example a thin layer, based on amorphous silicon or silicon. micro crystalline, or is an absorbent agent based on cadmium telluride.
  • the functional layer is covered with a conductive, possibly transparent layer of
  • TCO classically or non-transparent type such as molybdenum metal material or metal oxide.
  • this electrode layer is based on ITO (indium tin oxide) or metal (silver, copper, aluminum, molybdenum), fluorine doped tin oxide or doped zinc oxide.
  • the set of thin layers is trapped between two substrates via a lamination interlayer for example PU, PVB or EVA to form the solar cell.
  • the square resistance can be improved after quenching only if the barrier layers to oxidation and alkali are thick. In this case, there is a high risk that delamination of the layers will occur (problem of adhesion to the substrate), this delamination is visible visually. Examples of embodiments according to the invention are given below.
  • the resistivity is decreased after quenching singularly compared to the examples of the prior art. It is noted that this improvement in electrical properties is not at the expense of mechanical properties (no delamination problem), the thickness of the alkali barrier layers and protection against oxidation is significantly lower than those used in the art prior.
  • Another advantage of the invention is that the light transmission is singularly improved after quenching.
  • Si3N4 Ti: Rcarred before Rcarré after TL before TL after
  • Si3N4 Ti Thickness in nm Rcarred before Rcarred after TL before TL after
  • ZnO Ti: 15: 2: 500: 2: 25 tempering quenching (ohms) quenching quenching
  • Example 1 State of the Art: Encapsulation of AZO in Si3N4 to Withstand Quenching
  • Example 3 showing that the addition of the blocking layer below the electroconductive layer makes it possible to reduce the thickness of Si3N4 less up to 25 nm without increasing Rsq
  • this example shows that, unlike the lower Si3N4, the thickness of the higher Si3N4 can be reduced without affecting the Rsq at 25 nm, which also shows that a blocking layer positioned above the electroconductive layer is not not necessarily necessary

Abstract

Transparent glass substrate, associated with a stack of thin layers forming an electrode, the stack comprising a sublayer that is a barrier to alkali metals, and an electroconductive layer, said electroconductive layer being coated with an overlayer for protection against oxidation, characterized in that the stack includes a metallic blocking layer capable of being oxidized during heat treatment.

Description

SUBSTRAT VERRIER REVETU DE COUCHES A RESISTIVITE AMELIOREE GLASS SUBSTRATE COATED WITH IMPROVED RESISTIVITY LAYERS
La présente invention est relative des couches conductrices transparentes, notamment à base d'oxydes, d'un grand intérêt sur substrat verrier. Ces couches transparentes sont généralement appelées TCO pour « Transparent Conductive Oxide ».The present invention relates to transparent conductive layers, in particular based on oxides, of great interest on glass substrate. These transparent layers are generally called TCO for "Transparent Conductive Oxide".
Des exemples en sont des couches ITO (indium tin oxide) d'oxyde d'indium dopé à l'étain, des couches SnÛ2:F d'oxyde d'étain dopé au fluor, ou à base d'oxyde de zinc dopé à l'aluminium (ZnO: Al) ou dopé au bore (ZnO: B),Examples are indium tin oxide (ITO) layers of tin-doped indium oxide, SnO 2: F layers doped with fluorine-doped tin oxide, or zinc-doped tin oxide oxide layers. aluminum (ZnO: Al) or doped with boron (ZnO: B),
Ces matériaux sont généralement déposés par voie chimique, comme par exemple par dépôt de vapeur chimique (« CVD »), éventuellement améliorée par plasma (« PECVD ») ou par voie physique, comme par exemple par dépôt sous vide par pulvérisation cathodique, éventuellement assistée par champ magnétique (« pulvérisation Magnétron »).These materials are generally deposited chemically, for example by chemical vapor deposition ("CVD"), optionally enhanced by plasma ("PECVD") or physically, such as by vacuum deposition by cathodic sputtering, possibly assisted. by magnetic field ("magnetron sputtering").
Toutefois, pour obtenir la conduction électrique souhaitée, ou plutôt la faible résistance souhaitée, le revêtement électrode à base de TCO doit être déposé à une épaisseur physique relativement importante, de l'ordre de quelques centaines de nanomètres, ce qui coûte cher eu égard au prix de ces matériaux lorsqu'ils sont déposés en couches minces.However, to obtain the desired electrical conduction, or rather the desired low resistance, the TCO-based electrode coating must be deposited at a relatively large physical thickness, of the order of a few hundred nanometers, which is expensive in view of the prices of these materials when deposited in thin layers.
Actuellement, pour obtenir des propriétés électriques optimales, les TCO sont déposés à chaud. Or, le procédé de dépôt nécessite un apport de chaleur, cela augmente encore le coût de fabrication.Currently, to obtain optimal electrical properties, TCOs are deposited hot. However, the deposition process requires a heat input, it further increases the cost of manufacture.
Un autre inconvénient majeur des revêtements électrodes à base de TCO réside dans le fait que pour un matériau choisi, son épaisseur physique est toujours un compromis entre la conduction électrique finalement obtenue et la transparence finalement obtenue car plus l'épaisseur physique est importante, plus la conductivité sera forte mais plus la transparence sera faible et inversement, plus l'épaisseur physique est faible, plus la transparence sera forte mais plus la conductivité sera faible.Another major drawback of TCO-based electrode coatings lies in the fact that for a chosen material, its physical thickness is always a compromise between the electrical conduction finally obtained and the transparency finally obtained because the greater the physical thickness, the greater the conductivity will be strong but more transparency will be weak and vice versa, the greater the physical thickness is weak, the higher the transparency, but the lower the conductivity.
Il n'est donc pas possible avec les revêtements électrode à base de TCO d'optimiser indépendamment la conductivité du revêtement électrode et sa transparence.It is therefore not possible with TCO-based electrode coatings to independently optimize the conductivity of the electrode coating and its transparency.
Un autre problème de ces TCO provient de leur utilisation dans de nombreux produits en tant qu'électrode dans diverses applications : lampes planes, vitrage électroluminescent, vitrage électrochrome, écran d'affichage à cristaux liquides, écran plasma, cellule photovoltaïque, verres chauffants, vitrages bas émissifs.Another problem of these TCO comes from their use in many products as an electrode in various applications: flat lamps, electroluminescent glazing, electrochromic glazing, LCD screen, plasma screen, photovoltaic cell, heated glasses, glazing low emissive.
Pour conférer au substrat verrier sa résistance mécanique, de nombreux de ces produits doivent subir un traitement thermique, telle que par exemple une trempe. Pendant la trempe, l'empilement est porté sous atmosphère ambiante à environ 620 degrés pendant quelques minutes. Malheureusement, la plupart des TCO voient leurs propriétés électriques se dégrader drastiquement lors de cette trempe du fait de l'oxydation du TCO et de la migration des alcalins du verre.To give the glass substrate its mechanical strength, many of these products must undergo a heat treatment, such as for example a quenching. During quenching, the stack is brought under ambient atmosphere at about 620 degrees for a few minutes. Unfortunately, most TCOs see their electrical properties deteriorate drastically during this quenching due to the oxidation of the TCO and the migration of alkali from the glass.
Des solutions existantes (décrites par exemple dans WO2007018951 , ou US20070029186) proposent d'encapsuler le TCO dans des couches barrières protégeant de la migration des alcalins (par la sous-couche) et de l'oxydation (par la sur-couche). Cependant, ces couches barrières permettent de modérer la dégradation du TCO pendant la trempe mais pas de l'améliorer.Existing solutions (described for example in WO2007018951, or US20070029186) propose to encapsulate the TCO in barrier layers protecting the migration of alkali (by the underlayer) and oxidation (by the overcoat). However, these barrier layers make it possible to moderate the degradation of the TCO during quenching but not to improve it.
La présente invention vise donc à pallier les inconvénients des techniques précédentes en proposant une solution de TCO dont les propriétés tant optiques que de conduction électrique ne sont pas affectées par les phases de traitement thermique, et sont même améliorées par ces dernières.The present invention therefore aims at overcoming the drawbacks of the preceding techniques by proposing a TCO solution whose optical and electrical conduction properties are not affected by the heat treatment phases, and are even improved by the latter.
L'invention a donc pour objet un substrat transparent verrier, associé à un empilement de couches minces formant une électrode, l'empilement comprenant une sous-couche barrière aux alcalins, une couche électroconductrice, ladite couche électroconductrice étant revêtue d'une sur-couche de protection contre l'oxydation, se caractérise en ce que l'empilement comprend une couche de blocage métallique susceptible de s'oxyder lors d'un traitement thermique.The subject of the invention is therefore a glass transparent substrate, associated with a stack of thin layers forming an electrode, the stack comprising an alkaline barrier sublayer, an electroconductive layer, said electroconductive layer being coated with an overcoat layer. protection against oxidation, is characterized in that the stack comprises a metal blocking layer capable of oxidizing during a heat treatment.
Grâce à la présence de cette couche de blocage, il est possible d'obtenir par un procédé de dépôt à froid des performances identiques à celles que l'on aurait obtenues par un dépôt à chaud et les performances obtenues après traitement thermique sont améliorées par rapport à celles obtenues avant traitement thermique.Thanks to the presence of this blocking layer, it is possible to obtain, by a cold deposition process, identical performances to those obtained by hot deposition and the performances obtained after heat treatment are improved compared to to those obtained before heat treatment.
Dans des modes de réalisation préférés de l'invention, on peut éventuellement avoir recours en outre à l'une et/ ou à l'autre des dispositions suivantes :In preferred embodiments of the invention, one or more of the following may also be used:
La couche de blocage métallique est à base de titane, de chrome, de nickel, de niobium, de zinc, d'étain, utilisé seul ou en mélange,The metal blocking layer is based on titanium, chromium, nickel, niobium, zinc, tin, used alone or as a mixture,
L'épaisseur de la couche de blocage métallique est comprise entre 0.5 et 20 nm, préférentiellement comprise entre 0.5 et lOnm,The thickness of the metal blocking layer is between 0.5 and 20 nm, preferably between 0.5 and 10 nm,
La couche de blocage métallique est située en dessous de la couche électroconductrice,The metal blocking layer is located below the electroconductive layer,
La couche de blocage métallique est située au dessus de la couche électroconductrice,The metal blocking layer is located above the electroconductive layer,
La couche de blocage est située au dessus et en dessous de la couche électroconductrice, les matériaux formant chacune des couches de blocage étant identiques,The blocking layer is located above and below the electroconductive layer, the materials forming each of the blocking layers being identical,
La couche de blocage est située au dessus et en dessous de la couche électroconductrice, les matériaux formant chacune des couches de blocage étant différents, la sous couche barrière est à base d'un matériau diélectrique, le matériau diélectrique est à base de nitrures, d'oxydes ou d'oxynitrures de silicium, ou de nitrures, d'oxydes ou d'oxy nitrures d'aluminium, ou de nitrures, d'oxydes ou d'oxynitrures de titane, de nitrures, d'oxydes ou d'oxynitrures de zirconium, utilisés seul ou en mélange, l'épaisseur de la sous couche barrière est comprise entre 3 et 250nm préférentiellement comprise entre 10 et 200 nm et sensiblement voisine de 20 à 25 nm, la sur-couche de protection contre l'oxydation est identique à la sous-couche barrière aux alcalins, la couche électroconductrice est à base d'oxyde dopé de Sn, Zn, Ti ou In tel que SnO2:F, SnO2:Sb, ZnO:Al, ZnO:Ga, InO:Sn, ZnO:In ou TiO2:Nb.The blocking layer is situated above and below the electroconductive layer, the materials forming each of the blocking layers being different, the barrier sub-layer is based on a dielectric material, the dielectric material is based on nitrides, oxides or oxynitrides of silicon, or nitrides, oxides or aluminum oxy nitrides, or nitrides, oxides or oxynitrides of titanium, nitrides, oxides or oxynitrides of zirconium, used alone or as a mixture, the thickness of the barrier sub-layer is between 3 and 250 nm preferably between 10 and 200 nm and substantially close to 20 to 25 nm, the overcoat of protection against oxidation is identical to the alkali barrier sub-layer the electroconductive layer is based on doped Sn, Zn, Ti or In oxide such as SnO 2 : F, SnO 2 : Sb, ZnO: Al, ZnO: Ga, InO: Sn, ZnO: In or TiO 2 : Nb.
Ainsi l'invention permet-elle d'obtenir des empilements de couches adaptés pour des cellules photovoltaïques, dont la tenue mécanique sur substrat verrier n'est pas affectée en présence d'un champ électrique et à température élevée. Cette amélioration considérable peut être obtenue pour de grandes surfaces de verre (PLF - pleine largeur float), car des procédés de dépôt compatibles avec de telles dimensions sont disponibles pour les couches concernées.Thus, the invention makes it possible to obtain stackings of layers adapted for photovoltaic cells whose mechanical strength on a glass substrate is not affected in the presence of an electric field and at high temperature. This considerable improvement can be achieved for large glass surfaces (PLF - full width float), since deposition methods compatible with such dimensions are available for the relevant layers.
Par ailleurs, au niveau des propriétés électriques, la résistivité de l'électrode se trouve améliorée après avoir subi un traitement thermique.Moreover, in terms of electrical properties, the resistivity of the electrode is improved after undergoing heat treatment.
Ainsi la couche électroconductrice transparente du substrat de l'invention n'est elle pas seulement apte à constituer une électrode de cellule photovoltaïque.Thus the transparent electroconductive layer of the substrate of the invention is not only able to constitute a photovoltaic cell electrode.
Subsidiairement, le substrat transparent de l'invention présente des propriétés optiques améliorées par rapport à celles des couches électroconductrices transparentes sur substrat verrier : irisation réduite, coloration en réflexion plus uniforme, transmission accrue. On décrira ci-après un élément capable de collecter de la lumièreAlternatively, the transparent substrate of the invention has improved optical properties compared to transparent electroconductive layers on glass substrate: reduced iridescence, more uniform reflection coloration, increased transmission. An element capable of collecting light will be described below.
(une cellule solaire ou photovoltaïque).(a solar or photovoltaic cell).
Le substrat transparent à fonction verrière peut par exemple être entièrement en verre contenant des alcalins comme un verre silico-sodo- calcique. Il peut également être en un polymère thermoplastique tel qu'un polyuréthane ou un polycarbonate ou un polyméthacrylate de méthyle.The transparent substrate with a glass function may for example be entirely of glass containing alkalis such as a soda-lime glass. It may also be a thermoplastic polymer such as a polyurethane or a polycarbonate or a polymethylmethacrylate.
L'essentiel de la masse (c'est-à-dire pour au moins 98 % en masse), voire la totalité du substrat à fonction verrière est constituée de matériau(x) présentant la meilleure transparence possible et ayant de préférence une absorption linéique inférieure à 0,01 mm 1 dans la partie du spectre utile à l'application (module solaire), généralement le spectre allant de 380 à 1200 nm.Most of the mass (that is to say at least 98% by weight), or even the entire glass-function substrate is made of material (x) having the best possible transparency and having preferably a linear absorption of less than 0.01 mm 1 in the part of the spectrum useful for the application (solar module), generally the spectrum ranging from 380 to 1200 nm.
Le substrat peut avoir une épaisseur totale allant de 0,5 à 10 mm lorsqu'on l'utilise comme plaque protectrice d'une cellule photovoltaïque de diverses technologies chalcopyrites (CIS, CIGS, CIGSe2 ), ou appartenant à la technologie à base de silicium, ce dernier pouvant être amorphe ou microcristallin, ou appartenant à la technologie utilisant le tellure de cadmium (CdTe). II existe également une autre famille d'agent absorbant à base de wafers de silicium polycristallin, déposé en couche épaisse, avec une épaisseur comprise entre 50 μm à 250 μm,The substrate can have a total thickness ranging from 0.5 to 10 mm when used as a protective plate of a photovoltaic cell of various chalcopyrite technologies (CIS, CIGS, CIGSe2), or belonging to silicon-based technology , the latter may be amorphous or microcrystalline, or belonging to the technology using cadmium telluride (CdTe). There is also another family of absorbent agent based on polycrystalline silicon wafers, deposited in a thick layer, with a thickness of between 50 μm and 250 μm,
Lorsque le substrat est utilisé comme plaque protectrice, il peut être avantageux de faire subir à cette plaque un traitement thermique (du type trempe par exemple) lorsqu'il est en verre.When the substrate is used as a protective plate, it may be advantageous to subject the plate to a heat treatment (of the quenching type for example) when it is made of glass.
De manière conventionnelle, on définit par A la face avant du substrat dirigée vers les rayons lumineux (il s'agit de la face externe), et par B la face arrière du substrat dirigée vers le reste des couches du module solaire (il s'agit de la face interne). La face B du substrat est revêtue d'un empilement de couches minces selon les modalités de l'invention.In a conventional manner, A defines the front face of the substrate directed towards the light rays (this is the external face), and B the rear face of the substrate directed towards the rest of the solar module layers (it is acts of the internal face). The B side of the substrate is coated with a stack of thin layers according to the methods of the invention.
Ainsi, au moins une portion de surface du substrat est revêtue d'une une couche barrière aux alcalins. Cette couche barrière aux alcalins est à base d'un matériau diélectrique, ce matériau diélectrique étant à base de nitrures, d'oxydes ou d'oxynitrures de silicium, ou de nitrures, d'oxydes ou d'oxynitrures d'aluminium, à base de nitrures, d'oxydes ou d'oxynitrures de zirconium, utilisés seul ou en mélange. L'épaisseur de la couche barrière est comprise entre 3 et 200nm préférentiellement comprise entre 10 et lOOnm et sensiblement voisine de 20 à 25 nm.Thus, at least one surface portion of the substrate is coated with an alkali barrier layer. This alkaline barrier layer is based on a dielectric material, this dielectric material being based on nitrides, oxides or oxynitrides of silicon, or nitrides, oxides or oxynitrides of aluminum, based on zirconium nitrides, oxides or oxynitrides, used alone or as a mixture. The thickness of the barrier layer is between 3 and 200 nm, preferably between 10 and 100 nm and substantially close to 20 to 25 nm.
Cette couche barrière aux alcalins, par exemple, à base de nitrure de silicium, peut ne pas être stoechiométrique. Elle peut être de nature sous-stoechiométrique, voire et de manière sur- stoechiométrique. La présence de cette couche barrière en face B du substrat permet d'éviter, voire de bloquer la diffusion du Na, du verre vers les couches actives supérieures.This alkali barrier layer, for example, based on silicon nitride, may not be stoichiometric. It can be sub-stoichiometric in nature, and even superstoichiometrically. The presence of this barrier layer on the B side of the substrate makes it possible to avoid or even block the diffusion of Na from the glass towards the upper active layers.
Sur cette couche barrière, on dépose une couche électroconductrice en TCO pour « Transparent Conductive Oxide ». Elle peut être choisie parmi les matériaux suivants : oxyde d'étain dopé, notamment en fluor ou à l'antimoine (les précurseurs utilisables en cas de dépôt par CVD peuvent être des organo-métalliques ou halogénures d'étain associés avec un précurseur de fluor du type acide fluorhydrique ou acide trifluoracétique), l'oxyde de zinc dopé, notamment à l'aluminium (les précurseurs utilisables, en cas de dépôt par CVD, peuvent être des organo-métalliques ou halogénures de zinc et d'aluminium), ou encore l'oxyde d'indium dopé, notamment à l'étain (les précurseurs utilisables en cas de dépôt par CVD peuvent être des organo-métalliques ou halogénures d'étain et d'indium). En variante, la couche de TCO, par exemple en ZnO peut être aussi déposée par pulvérisation à partir de cible métallique ou céramique.On this barrier layer, an electroconductive TCO layer is deposited for "Transparent Conductive Oxide". It may be chosen from the following materials: doped tin oxide, in particular fluorine or antimony (the precursors that can be used in the case of CVD deposition may be organo-metallic or tin halides associated with a fluorine precursor of the hydrofluoric acid or trifluoroacetic acid type), doped zinc oxide, in particular with aluminum (the precursors that can be used, in the case of CVD deposition, may be organometallic or zinc and aluminum halides), or doped indium oxide, in particular with tin (the precursors that can be used in the case of CVD deposition can be organo-metallic or tin and indium halides). Alternatively, the TCO layer, for example ZnO may also be deposited by sputtering from metal or ceramic target.
Cette couche conductrice doit être aussi transparente que possible, et présenter une transmission élevée de la lumière dans l'ensemble des longueurs d'onde correspondant au spectre d'absorption du matériau constituant la couche fonctionnelle, afin de ne pas réduire inutilement le rendement du module solaire. L'épaisseur de cette couche électroconductrice est comprise entre 50 et 1500 nm, préférentiellement comprise entre 200 et 800 nm, et sensiblement voisine de 500 nm.This conductive layer must be as transparent as possible, and have a high transmission of light in all wavelengths corresponding to the absorption spectrum of the material constituting the functional layer, so as not to reduce the efficiency of the module unnecessarily. solar. The thickness of this electroconductive layer is between 50 and 1500 nm, preferably between 200 and 800 nm, and substantially close to 500 nm.
La couche conductrice présente résistance par carré d'au plus 40 ohms/ carré, notamment d'au plus 30 ohms /carré.The conductive layer has a square resistance of at most 40 ohms / square, in particular at most 30 ohms / square.
La couche électroconductrice est ensuite recouverte d'une couche de protection contre l'oxydation similaire à la couche de protection contre la migration des alcalins. De constitution et d'épaisseur sensiblement similaire, elle peut ne pas être stoechiométrique. Selon une caractéristique avantageuse de l'invention, on prévoit d'incorporer dans l'empilement formant l'électrode au moins une couche de blocage métallique, qui aura la possibilité de s'oxyder, de créer une couche d'oxyde du métal en question lors du traitement thermique de l'électrode, plus exactement lors par exemple de la trempe du substrat revêtu de ladite électrode.The electroconductive layer is then covered with an oxidation protection layer similar to the alkali migration protection layer. Of constitution and of substantially similar thickness, it may not be stoichiometric. According to an advantageous characteristic of the invention, provision is made to incorporate in the stack forming the electrode at least one metal blocking layer, which will be able to oxidize, to create an oxide layer of the metal in question. during the heat treatment of the electrode, more precisely for example the quenching of the substrate coated with said electrode.
La couche de blocage métallique sera à base de titane, de nickel, de chrome, de niobium, utilisé seul ou en mélange. Cette couche de blocage selon une variante de réalisation de l'invention est située en dessous de la couche électroconductrice et au contact de la couche barrière aux alcalins, ou selon une autre variante de réalisation de l'invention située au dessus de la couche électroconductrice et donc au contact de la couche de protection contre l'oxydation, ou encore selon une autre variante de réalisation située au dessus et en dessous de la couche électroconductrice.The metal blocking layer will be based on titanium, nickel, chromium, niobium, used alone or in mixture. This blocking layer according to an alternative embodiment of the invention is located below the electroconductive layer and in contact with the alkali barrier layer, or according to another embodiment of the invention located above the electroconductive layer and therefore in contact with the protective layer against oxidation, or according to another embodiment located above and below the electroconductive layer.
De même, selon des variantes de réalisation de l'invention, les couches de blocage situées au dessus et en dessous seront constituées d'un matériau identique, ou différent. L'épaisseur de cette couche de blocage métallique L'épaisseur de la couche de blocage métallique est comprise entre 0.5 et 20 nm, préférentiellement comprise entre 0.5 et 10 nm.Similarly, according to alternative embodiments of the invention, the blocking layers located above and below will be made of an identical material, or different. The thickness of this metal blocking layer The thickness of the metal blocking layer is between 0.5 and 20 nm, preferably between 0.5 and 10 nm.
L'empilement de couches minces ainsi formé et réalisant une électrode est recouverte d'une couche fonctionnelle à base d'agent absorbant permettant la conversion énergétique entre les rayons lumineux et l'énergie électrique.The stack of thin layers thus formed and producing an electrode is covered with a functional layer based on absorbent agent for energy conversion between light rays and electrical energy.
On pourra utiliser comme couche fonctionnelle soit un agent absorbant à chalcopyrite, à base par exemple de CIS, CIGS, ou CIGSe2 ou à base d'agent absorbant à base de silicium comme par exemple une couche mince, à base de silicium amorphe, ou silicium micro cristallin, ou soit un agent absorbant à base de tellure de cadmium.It is possible to use as functional layer either a chalcopyrite absorbent agent based on, for example, CIS, CIGS or CIGSe2 or based on silicon-based absorbent agent, for example a thin layer, based on amorphous silicon or silicon. micro crystalline, or is an absorbent agent based on cadmium telluride.
Afin de former la seconde électrode, la couche fonctionnelle est recouverte d'une couche conductrice, éventuellement transparente de typeIn order to form the second electrode, the functional layer is covered with a conductive, possibly transparent layer of
TCO classiquement ou de type non transparente comme par exemple en molybdène en matériau métallique ou d'oxyde métallique. Classiquement cette couche électrode est à base d'ITO (oxyde d'indium et d'étain) ou en métal (argent, cuivre, aluminium, molybdène), en oxyde d'étain dopé au fluor ou en oxyde de zinc dopé. L'ensemble de couches minces est emprisonné entre deux substrats par l'intermédiaire d'un intercalaire de feuilletage par exemple en PU, PVB ou EVA pour conformer la cellule solaire.TCO classically or non-transparent type such as molybdenum metal material or metal oxide. Conventionally this electrode layer is based on ITO (indium tin oxide) or metal (silver, copper, aluminum, molybdenum), fluorine doped tin oxide or doped zinc oxide. The set of thin layers is trapped between two substrates via a lamination interlayer for example PU, PVB or EVA to form the solar cell.
On donne ci-après des exemples de réalisation de l'art antérieurExamples of embodiments of the prior art are given below.
Comme on peut le voir sur ces exemples de l'art antérieur la résistance carré ne peut être améliorée après trempe que si les couches barrières à l'oxydation et aux alcalins sont épaisses. Dans ce cas de figure, il y a un risque élevé qu'il se produise une délamination des couches (problème d'adhésion au substrat), cette délamination se constatant visuellement. On donne ci-après des exemples de réalisation selon l'inventionAs can be seen from these examples of the prior art the square resistance can be improved after quenching only if the barrier layers to oxidation and alkali are thick. In this case, there is a high risk that delamination of the layers will occur (problem of adhesion to the substrate), this delamination is visible visually. Examples of embodiments according to the invention are given below.
La résistivité se trouve diminuée après la trempe singulièrement par rapport aux exemples de l'art antérieur. On remarque que cette amélioration des propriétés électriques ne se fait pas au détriment des propriétés mécaniques (pas de problème de délamination), l'épaisseur des couches barrières aux alcalins et de protection contre l'oxydation est nettement inférieure de celles utilisées dans l'art antérieur.The resistivity is decreased after quenching singularly compared to the examples of the prior art. It is noted that this improvement in electrical properties is not at the expense of mechanical properties (no delamination problem), the thickness of the alkali barrier layers and protection against oxidation is significantly lower than those used in the art prior.
On peut remarquer que l'on obtient des résultats similaires en utilisant à la place de la couche de blocage métallique en titane, ou en nickel, ou en chrome, ou en niobium, une couche d'ITO (Indium Tin Oxide) néanmoins avec une épaisseur un peu plus conséquente, correspondant en fait sensiblement à 10 % de l'épaisseur de la couche conductrice, par exemple en oxyde de zinc.It may be noted that similar results are obtained by using instead of the metal blocking layer made of titanium, or nickel, or chromium, or niobium, a layer of ITO (Indium Tin Oxide) nevertheless with a thickness a little more consistent, corresponding in fact substantially 10% of the thickness of the conductive layer, for example zinc oxide.
On donnera d'autres exemples de réalisation selon l'invention, montrant que l'on obtient des résultats similaires avec un autre matériau pour la couche de blocage.Other embodiments will be given according to the invention, showing that similar results are obtained with another material for the blocking layer.
On peut remarquer un autre avantage de l'invention, la transmission lumineuse se trouve singulièrement améliorée après la trempe.Another advantage of the invention is that the light transmission is singularly improved after quenching.
Si3N4 : Ti : Rcarré avant Rcarré après TL avant TL aprèsSi3N4: Ti: Rcarred before Rcarré after TL before TL after
Epaisseurs en nm ZnO : Si3N4 trempe trempe(ohms) trempe trempe 25 : 2 : 500 : 25Thickness in nm ZnO: Si3N4 quenching quenching (ohms) quenching quenching 25: 2: 500: 25
(ohms)33 10 72% 85.7%(ohms) 33 10 72% 85.7%
Si3N4 : Ti Epaisseurs en nm Rcarré avant Rcarré après TL avant TL aprèsSi3N4: Ti Thickness in nm Rcarred before Rcarred after TL before TL after
ZnO: Ti : 15 : 2 : 500 : 2 : 25 trempe trempe (ohms) trempe trempeZnO: Ti: 15: 2: 500: 2: 25 tempering quenching (ohms) quenching quenching
Si3N4 (ohms) 15,5 65,9% 84,9%Si3N4 (ohms) 15.5 65.9% 84.9%
4040
Les exemples suivants permettent de démontrer l'avantage obtenu du fait de la présence d'une couche de blocage en dessous de la couche électroconductriceThe following examples demonstrate the advantage obtained due to the presence of a blocking layer below the electroconductive layer.
Exemple 1 : Etat de l'art : encapsulation d'AZO dans Si3N4 pour résister à la trempeExample 1: State of the Art: Encapsulation of AZO in Si3N4 to Withstand Quenching
Exemple 2 montrant que la réduction du Si3N4 inférieur conduit à une augmentation de Rsq après trempe Example 2 showing that the reduction of the lower Si3N4 leads to an increase in Rsq after quenching
Exemple 3 montrant que l'ajout du couche de blocage en dessous de la couche électroconductrice permet de diminuer l'épaisseur de Si3N4 inférieur jusqu'à 25 nm sans augmentation de RsqExample 3 showing that the addition of the blocking layer below the electroconductive layer makes it possible to reduce the thickness of Si3N4 less up to 25 nm without increasing Rsq
De plus, cet exemple montre que, contrairement au Si3N4 inférieur, l'épaisseur du Si3N4 supérieur peut être réduite sans affecter la Rsq à 25 nm, ce qui montre aussi qu'une couche de blocage positionnée au dessus de la couche électroconductrice n'est pas obligatoirement nécessaireIn addition, this example shows that, unlike the lower Si3N4, the thickness of the higher Si3N4 can be reduced without affecting the Rsq at 25 nm, which also shows that a blocking layer positioned above the electroconductive layer is not not necessarily necessary

Claims

REVENDICATIONS
1- Substrat transparent verrier, associé à un empilement de couches minces formant une électrode, l'empilement comprenant une sous-couche barrière aux alcalins, une couche électroconductrice, ladite couche électroconductrice étant revêtue d'une sur-couche de protection contre l'oxydation, caractérisé en ce que l'empilement comprend une couche de blocage métallique susceptible de s'oxyder lors d'un traitement thermique, cette couche de blocage étant située en dessous de la couche électroconductrice.Transparent glass substrate, associated with a stack of thin layers forming an electrode, the stack comprising an alkaline barrier sub-layer, an electroconductive layer, said electroconductive layer being coated with an overcoat of protection against oxidation; , characterized in that the stack comprises a metal blocking layer capable of being oxidized during a heat treatment, this blocking layer being located below the electroconductive layer.
2- Substrat selon la revendication 1 , caractérisé en ce que la couche de blocage métallique est à base de titane, de chrome, de nickel, de niobium, de zinc, d'étain utilisé seul ou en mélange.2- Substrate according to claim 1, characterized in that the metal blocking layer is based on titanium, chromium, nickel, niobium, zinc, tin used alone or in mixture.
3- Substrat selon l'une des revendications 1 ou 2, caractérisé en ce que l'épaisseur de la couche de blocage métallique est comprise entre 0.5 et 20 nm, préférentiellement comprise entre 0,5 et lOnm.3. Substrate according to one of claims 1 or 2, characterized in that the thickness of the metal blocking layer is between 0.5 and 20 nm, preferably between 0.5 and 10 nm.
4- Substrat selon l'une des revendications 1 à 3, caractérisé en ce qu'une couche de blocage métallique est située au dessus de la couche électroconductrice . 5- Substrat selon l'une des revendications 1 à 3, caractérisé en ce que la couche de blocage est située au dessus et en dessous de la couche électroconductrice, les matériaux formant chacune des couches de blocage étant différents.4. Substrate according to one of claims 1 to 3, characterized in that a metal blocking layer is located above the electroconductive layer. 5. Substrate according to one of claims 1 to 3, characterized in that the blocking layer is located above and below the electroconductive layer, the materials each forming blocking layers being different.
6- Substrat selon l'une des revendications précédentes, caractérisé en ce que la sous couche barrière est à base d'un matériau diélectrique.6. Substrate according to one of the preceding claims, characterized in that the barrier sub-layer is based on a dielectric material.
7 - Substrat selon la revendication précédente, caractérisé en ce que le matériau diélectrique est à base de nitrures, d'oxydes ou d'oxynitrures de silicium, ou de nitrures, d'oxydes ou d'oxynitrures d'aluminium, ou de nitrures, d'oxydes ou d'oxynitrures de titane, de nitrures, d'oxydes ou d'oxynitrures de zirconium, utilisés seul ou en mélange.7 - Substrate according to the preceding claim, characterized in that the dielectric material is based on nitrides, oxides or oxynitrides of silicon, or nitrides, oxides or oxynitrides of aluminum, or nitrides, oxides or oxynitrides of titanium, nitrides, oxides or oxynitrides of zirconium, used alone or as a mixture.
8- Substrat selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur de la sous couche barrière est comprise entre 3 et 250nm préférentiellement comprise entre 10 et 200 nm et sensiblement voisine de 15 à 25 nm.8- Substrate according to one of the preceding claims, characterized in that the thickness of the barrier sub-layer is between 3 and 250 nm preferably between 10 and 200 nm and substantially close to 15 to 25 nm.
9- Substrat selon l'une des revendications précédentes, caractérisé en ce que la sur-couche de protection contre l'oxydation est identique à la sous-couche barrière aux alcalins.9- Substrate according to one of the preceding claims, characterized in that the overcoat of protection against oxidation is identical to the alkali barrier sub-layer.
10- Substrat selon l'une des revendications précédentes, caractérisé en ce que la couche électroconductrice est à base d'oxyde dopé de Sn, Zn, Ti ou In, tel que SnO2:F, SnO2:Sb, ZnO:Al, ZnO:Ga, InO:Sn, ZnO:In ou TiO2: Nb. 1 1- Substrat selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur de la couche électroconductrice est comprise entre 50 et 1500 nm, préférentiellement comprise entre 200 et 800 nm, et sensiblement voisine de 500 nm.10- The substrate according to one of the preceding claims, characterized in that the electroconductive layer is based on doped Sn, Zn, Ti or In oxide, such as SnO 2 : F, SnO 2 : Sb, ZnO: Al, ZnO: Ga, InO: Sn, ZnO: In or TiO 2 : Nb. 1-substrate according to one of the preceding claims, characterized in that the thickness of the electroconductive layer is between 50 and 1500 nm, preferably between 200 and 800 nm, and substantially close to 500 nm.
12 - Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que la résistivité de l'électrode est diminuée après avoir subi un traitement thermique.12 - Substrate according to any one of the preceding claims, characterized in that the resistivity of the electrode is decreased after undergoing heat treatment.
13- Cellule photovoltaïque comprenant un substrat selon l'une des revendications 1 à 12. 13- Photovoltaic cell comprising a substrate according to one of claims 1 to 12.
EP08843627A 2007-10-25 2008-10-22 Glass substrate coated with layers with improved resistivity Withdrawn EP2212258A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0758571A FR2922886B1 (en) 2007-10-25 2007-10-25 GLASS SUBSTRATE COATED WITH LAYERS WITH IMPROVED RESISTIVITY.
PCT/FR2008/051904 WO2009056732A2 (en) 2007-10-25 2008-10-22 Glass substrate coated with layers with improved resistivity

Publications (1)

Publication Number Publication Date
EP2212258A2 true EP2212258A2 (en) 2010-08-04

Family

ID=39471922

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08843627A Withdrawn EP2212258A2 (en) 2007-10-25 2008-10-22 Glass substrate coated with layers with improved resistivity

Country Status (7)

Country Link
US (1) US20100282301A1 (en)
EP (1) EP2212258A2 (en)
JP (1) JP5330400B2 (en)
KR (1) KR20100089854A (en)
CN (1) CN101910082A (en)
FR (1) FR2922886B1 (en)
WO (1) WO2009056732A2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100319775A1 (en) * 2009-06-22 2010-12-23 First Solar, Inc. Method and Apparatus for Annealing a Deposited Cadmium Stannate Layer
KR101240900B1 (en) * 2009-07-29 2013-03-08 삼성코닝정밀소재 주식회사 Substrate of photovoltaic cell
KR101134595B1 (en) * 2009-07-29 2012-04-09 삼성코닝정밀소재 주식회사 Substrate of photovoltaic cell, method for manufacturing the same and photovoltaic cell
JP5381562B2 (en) * 2009-09-29 2014-01-08 大日本印刷株式会社 Thin film solar cell and manufacturing method thereof
FR2956924B1 (en) * 2010-03-01 2012-03-23 Saint Gobain PHOTOVOLTAIC CELL INCORPORATING A NEW TCO LAYER
FR2956925B1 (en) * 2010-03-01 2012-03-23 Saint Gobain PHOTOVOLTAIC CELL
FR2961954B1 (en) 2010-06-25 2012-07-13 Saint Gobain CELL COMPRISING A CADMIUM-BASED PHOTOVOLTAIC MATERIAL
FR2961953B1 (en) * 2010-06-25 2012-07-13 Saint Gobain CELL COMPRISING A CADMIUM-BASED PHOTOVOLTAIC MATERIAL
WO2012015989A2 (en) * 2010-07-27 2012-02-02 Indiana University Research & Technology Corporation Layer-by-layer nanoassembled nanoparticles based thin films for solar cell and other applications
KR101154774B1 (en) 2011-04-08 2012-06-18 엘지이노텍 주식회사 Solar cell apparatus and method of fabricating the same
FR2977078B1 (en) * 2011-06-27 2013-06-28 Saint Gobain CONDUCTIVE SUBSTRATE FOR PHOTOVOLTAIC CELL
KR101380509B1 (en) * 2011-08-12 2014-04-01 (주)엘지하우시스 Manufacturing method of thermochromic glass using metal deposition and the thermochromic glass using thereof
JPWO2013031978A1 (en) * 2011-08-31 2015-03-23 旭硝子株式会社 Thin film solar cell module and manufacturing method thereof
CN102403378B (en) * 2011-11-17 2014-03-05 华中科技大学 Flexible film solar cell with quantum dot structure and preparation method thereof
FR2988387B1 (en) * 2012-03-21 2017-06-16 Saint Gobain GLAZING OF SOLAR CONTROL
DE102012105810B4 (en) * 2012-07-02 2020-12-24 Heliatek Gmbh Transparent electrode for optoelectronic components
KR102128943B1 (en) 2012-07-02 2020-07-01 헬리아텍 게엠베하 Transparent electrode for optoelectronic components
US20140272455A1 (en) * 2013-03-12 2014-09-18 Intermolecular Inc. Titanium nickel niobium alloy barrier for low-emissivity coatings
FR3012133B1 (en) * 2013-10-17 2021-01-01 Saint Gobain PROCESS FOR OBTAINING A SUBSTRATE COATED BY A STACK CONTAINING A TRANSPARENT CONDUCTIVE OXIDE LAYER
CN103803808A (en) * 2014-02-22 2014-05-21 蚌埠玻璃工业设计研究院 Method for large-area preparation of transparent conductive film glass
DE102017102377B4 (en) 2017-02-07 2019-08-22 Schott Ag Protective glazing, thermal processing unit and process for the production of protective glazing
CN107452818A (en) * 2017-08-16 2017-12-08 蚌埠兴科玻璃有限公司 A kind of copper-indium-galliun-selenium film solar cell back electrode and preparation method thereof
CN108863102A (en) * 2018-06-27 2018-11-23 广东旗滨节能玻璃有限公司 A kind of coating containing indium obstructs the glass film layers and its manufacturing method of harmful light
GB2582886B (en) * 2018-10-08 2023-03-29 Pilkington Group Ltd Process for preparing a coated glass substrate
CN111129207B (en) * 2018-11-01 2022-02-08 杭州朗旭新材料科技有限公司 Cadmium stannate transparent conductive film, cadmium telluride cell preparation method and thin film solar cell
CN109704592B (en) * 2019-01-29 2021-12-17 西安理工大学 Fluorine-doped titanium dioxide nano-array electrochromic film and preparation method thereof
CN109704591B (en) * 2019-01-29 2021-10-22 西安理工大学 Visible-near infrared double-frequency modulated single-phase electrochromic film and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963773A (en) * 1982-10-01 1984-04-11 Fuji Electric Corp Res & Dev Ltd Thin-film solar cell
US5270517A (en) * 1986-12-29 1993-12-14 Ppg Industries, Inc. Method for fabricating an electrically heatable coated transparency
US5101260A (en) * 1989-05-01 1992-03-31 Energy Conversion Devices, Inc. Multilayer light scattering photovoltaic back reflector and method of making same
JP2784841B2 (en) * 1990-08-09 1998-08-06 キヤノン株式会社 Substrates for solar cells
DE69220901T3 (en) * 1991-10-30 2005-01-20 Asahi Glass Co., Ltd. Process for the preparation of a heat-treated coated glass
US5229194A (en) * 1991-12-09 1993-07-20 Guardian Industries Corp. Heat treatable sputter-coated glass systems
US5344718A (en) * 1992-04-30 1994-09-06 Guardian Industries Corp. High performance, durable, low-E glass
US5376455A (en) * 1993-10-05 1994-12-27 Guardian Industries Corp. Heat-treatment convertible coated glass and method of converting same
US5756192A (en) * 1996-01-16 1998-05-26 Ford Motor Company Multilayer coating for defrosting glass
DE19958878B4 (en) * 1999-12-07 2012-01-19 Saint-Gobain Glass Deutschland Gmbh Thin film solar cell
EP1362834A1 (en) * 2002-05-06 2003-11-19 Glaverbel Transparent substrate comprising a conductive coating
US7335421B2 (en) * 2005-07-20 2008-02-26 Ppg Industries Ohio, Inc. Heatable windshield
US20080105298A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
KR20090091175A (en) * 2006-11-17 2009-08-26 쌩-고벵 글래스 프랑스 Electrode for an organic light-emitting device, acid etching thereof, and also organic light-emitting device incorporating it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009056732A2 *

Also Published As

Publication number Publication date
FR2922886A1 (en) 2009-05-01
KR20100089854A (en) 2010-08-12
JP2011501455A (en) 2011-01-06
US20100282301A1 (en) 2010-11-11
FR2922886B1 (en) 2010-10-29
WO2009056732A3 (en) 2009-06-25
CN101910082A (en) 2010-12-08
JP5330400B2 (en) 2013-10-30
WO2009056732A2 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
WO2009056732A2 (en) Glass substrate coated with layers with improved resistivity
EP2227829B2 (en) Improvements to elements capable of collecting light
EP1952194B1 (en) Electrochromic system on a plastic substrate
EP2183787A2 (en) Photovoltaic cell front face substrate and use of a substrate for a photovoltaic cell front face
FR2932009A1 (en) PHOTOVOLTAIC CELL AND PHOTOVOLTAIC CELL SUBSTRATE
EP2386119A1 (en) Substrate for the front surface of a photovoltaic panel, photovoltaic panel, and use of a substrate for the front surface of a photovoltaic panel
WO2010063974A1 (en) Layered element, and photovoltaic device including such an element
WO2009103929A2 (en) Photovoltaic cell and substrate for photovoltaic cell
EP2539292A1 (en) Glass substrate coated with layers having improved mechanical strength
WO2011107697A1 (en) Photovoltaic cell
WO2010001013A2 (en) Photovoltaic cell, and substrate for same
EP2400555A1 (en) Cell including a cadmium-based photovoltaic material
WO2012110613A2 (en) Conductive transparent glass substrate for photovoltaic cell
WO2014023886A1 (en) Diffusing conductive support for an oled device, and an oled device incorporating same
WO2010001014A2 (en) Photovoltaic cell, and substrate for same
EP2104145A1 (en) Glass substrate coated with thin films and method of manufacturing same
FR2939788A1 (en) Glass substrate for a photovoltaic module, comprises a transparent coating to form an electrode, where the transparent coating is a doped transparent metal oxide having a wavelength of maximum efficiency of an absorber
FR2919114A1 (en) PHOTOVOLTAIC CELL AND PHOTOVOLTAIC CELL SUBSTRATE
EP2400556A2 (en) Cell including a cadmium-based photovoltaic material
EP2521183A2 (en) Photovoltaic cell including a buffer layer of zinc and tin oxide(s)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100525

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170503