EP2206136B1 - X-ray rotating anode plate, and method for the production thereof - Google Patents

X-ray rotating anode plate, and method for the production thereof Download PDF

Info

Publication number
EP2206136B1
EP2206136B1 EP08836274A EP08836274A EP2206136B1 EP 2206136 B1 EP2206136 B1 EP 2206136B1 EP 08836274 A EP08836274 A EP 08836274A EP 08836274 A EP08836274 A EP 08836274A EP 2206136 B1 EP2206136 B1 EP 2206136B1
Authority
EP
European Patent Office
Prior art keywords
ray
anode plate
rotating anode
plate according
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08836274A
Other languages
German (de)
French (fr)
Other versions
EP2206136A1 (en
Inventor
Hans-Henning Reis
Dieter Melzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2206136A1 publication Critical patent/EP2206136A1/en
Application granted granted Critical
Publication of EP2206136B1 publication Critical patent/EP2206136B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/108Substrates for and bonding of emissive target, e.g. composite structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material

Definitions

  • the invention relates to an x-ray rotary anode plate and a method for its production, wherein the x-ray rotary anode plate has a base body.
  • This base body which carries an applied layer or an inserted body of X-ray active material with the focal path, for example of a tungsten-rhenium alloy with 5 to 10 mass% rhenium, has the function to give the overall structure the necessary strength and the derive heat energy arising in the energetic conversion of electron radiation into X-ray radiation.
  • the material of the base body depends above all on such characteristic values as heat capacity, thermal conductivity, heat transfer and adaptation of the thermal expansion between or from X-ray-active material and base body.
  • the requirements for the thermal and mechanical load capacity of the X-ray rotary anode plates are constantly increasing.
  • high power x-ray tubes can experience temperatures of over 3000 ° C in the electronic focal spot.
  • For better energy distribution of the plate rotates at 9,000 min -1; are planned speed of 15,000 min -1 and more.
  • the diameter of the rotary anode plate is already at 200 mm and planned 300 mm! The strength of the base body material must take this fact into account.
  • X-ray rotary anode plates having a base body made of a molybdenum alloy, such as molybdenum with additions of titanium, zirconium and carbon (“TZM”) have been known ( DE 33 03 529 A1 ). At high rotational speeds of the rotary anode plate, this disturbs the high density of the main component molybdenum of 10.2 g / cm 3 in the base body. Such X-ray rotary anode plates can reach a mass of more than 5 kg.
  • a molybdenum alloy such as molybdenum with additions of titanium, zirconium and carbon
  • base body for the application mentioned of fiber-reinforced graphite have become known.
  • Carbon fibers are preferably used, wherein, via the spatial arrangement of the fibers or fiber braids, for example, an adaptation of the thermal expansion coefficient of the base body to that of the applied X-ray-active material (US Pat. DE 103 01 069 A1 ) or a high thermal expansion in the radial direction associated with a high thermal conductivity in the axial direction to be achieved ( DE 196 50 061 A1 ).
  • Kohtenstoffmaschinen in the fiber direction have good thermal conductivity and very good strength properties, but perpendicular to these properties are orders of magnitude worse.
  • this anisotropy has been attempted to be limited by a three-dimensional weaving of the carbon fibers, but the material nevertheless remains anisotropic in the two-digit micrometer range.
  • carbon nanotubes carbon nanotubes
  • CNT carbon nanotubes
  • the bulk density of these carbon nanotubes according to the manufacturer is in the order of 0.15 g / cm 3 , the material density is given as 1.3 g / cm 3 to 1.4 g / cm 3 , which is significantly lower than that of graphite.
  • the strength is called a theoretical value of 45 GPa, which would be about 20 times that of steel and 200 times the above-mentioned base body material TZM.
  • the theoretical thermal conductivity is 6000 W / mK and thus exceeds that of diamond by twice and that of metallic heat conductors by at least one order of magnitude.
  • a cathode for an X-ray tube in which to achieve a cathode surface of small dimensions, the carbon nanotubes are arranged on a plate with a negative potential and emit electrons as emitter to an opposite target of copper (Japanese Patent Kurz IS 2005166565).
  • cathode ray tube cathode they are arranged behind a control grid and serve to realize a cathode with adjustable emission surface (Japanese Patent Abbreviation 2006086001).
  • an X-ray anode is known, on the anode impact surface of which carbon nanotubes are preferably arranged in the form of a tissue in order to suppress the formation of secondary electrons and the formation of a plasma or the release of neutral gases ( WO 03/043036 A1 ).
  • base bodies for X-ray rotary anodes are known in which carbon fibers are preferably carbon nanotubes in copper ( DE 102005039187 ) or titanium ( DE 102005039188 ) are incorporated to improve heat dissipation.
  • Copper has the disadvantage that its melting point is too low for high heat dissipation performance; Titanium, like copper, has the disadvantage that it tends to carbide at the operating temperature with the carbon present.
  • carbon nanoparticles with graphite structure and substantially spherical shape having a mean grain size of, for example 55 nm have become known (company publication of the company Auer-Remy GmbH, Hamburg “Nanopowders", position “C 1249YD 7440-44-0").
  • properties of carbon nanoparticles prepares for spherical particles with their dimensions in all axial dimensions the achievement of a substantially isotropic properties of the base body securing spatial distribution naturally less procedural difficulties in the preparation of raw materials for the shaping of the base body than in carbon nanotubes their axial extent.
  • Tantalum carbide among other compounds, has been proposed as the backside coating of the rotating anode plate to improve the heat radiation ( DE 2 805 154 ).
  • molybdenum carbide and tungsten carbide have become known in arrangements having a plurality of layers for adjusting the coefficient of thermal expansion between the X-ray active layer and the base body (FIG. DE 10 2005 015 920 ).
  • the invention has for its object to provide an X-ray Rotary anode plate with a base body, which the above-mentioned requirements with respect to the temperature of the focal spot and the target speeds of X-ray machines Rotanodentellern by a lower mass, a corresponding thermal conductivity and a sufficient high temperature strength at least the same or to meet the lowest possible material costs of the base body and thereby able to remedy the deficiencies of the prior art.
  • the object of the invention is furthermore to provide a rational production method for such an X-ray rotary anode plate consisting of the base body with X-ray active layer with necessary or advantageous intermediate layers between the two.
  • a fundamental prerequisite for achieving the desired effects with respect to high-temperature strength, thermal conductivity and thermal expansion is the quasi-homogeneous distribution of the carbon nanotubes in the component in order to obtain a base body that is essentially isotropic in the submaxoscopic region, ie. an anisotropy degree of, for example, ⁇ 1.2 (ratio of the maximum value to the minimum value when measured in the three spatial dimensions) in terms of strength, thermal conductivity and thermal expansion to achieve.
  • Particularly favorable is a slightly angled shape of the individual carbon nanotubes.
  • the macroflexibility of the base material may be enhanced by the addition of high strength compounds such as oxides, nitrides, borides, carbides, silicides of tantalum, niobium, chromium, silicon, molybdenum, hafnium, boron and / or tungsten or mixtures thereof and fibers of these materials be increased. Also, mixtures of these compounds are conceivable.
  • high strength compounds such as oxides, nitrides, borides, carbides, silicides of tantalum, niobium, chromium, silicon, molybdenum, hafnium, boron and / or tungsten or mixtures thereof and fibers of these materials be increased. Also, mixtures of these compounds are conceivable.
  • the proportion of these substances in the axial direction can be varied, it is also advantageous if the optionally present proportion of graphite or graphite fibers to the X-ray active layer in favor of the proportion of Kohlenstoffnano tube and said strength-increasing substances decreases.
  • the base body can be provided with the X-ray-active layer according to the usual coating method, wherein for controlling the harmful carbon diffusion per se known diffusion barrier layers of rhenium, molybdenum, tantalum, niobium, zirconium, titanium or compounds and combinations of these metals as well as in more advantageous Embodiment of the invention, a binding layer, for example, by introducing rhenium or rhenium compounds, or carbides in the surface region of the base body, are arranged.
  • a leveling layer preferably of molybdenum or a molybdenum alloy between the diffusion barrier layer and the X-ray active layer. It serves, for example, to compensate for differences between the two aforementioned layers in terms of thermal expansion and / or ductility.
  • a particularly quickly realizable technical solution is the joining of a conventional X-ray rotating anode plate made of metal with the base body, the plate can be performed much thinner because of the better strength properties of the base body according to the invention as in the prior art, which helps to save mass and cost, in principle It should be noted that the reduced mass is advantageous not only in terms of material costs but also because of the lower centrifugal forces.
  • the advantageous effects of the invention as a result of the production method according to the invention lie in the saving of expensive coating or confectioning process and the necessary investments, in minimizing the use of materials and in an increase in strength of the entire component.
  • the in Fig. 1 X-ray rotary anode plate shown in section consists of a base body 1.1 with 60% by mass of carbon nanotubes and 40% by mass of nano-graphite powder particles, to which a diffusion barrier layer 3.1 made of tungsten-rhenium tantalum, known per se, is used as a bonding layer 4.1 by vacuum plasma spraying. and the X-ray active layer 2.1 are applied.
  • the diameter of the X-ray rotary anode plate is 120 mm, its thickness 15 mm.
  • the base body 1.1 is manufactured by the conventional methods of powder metallurgy and graphite processing by mixing the powders, pressing and heat treatment, under circumstances using the hot pressing method, in dimensions close to the final shape and finished by cutting shaping.
  • an X-ray rotary anode plate shown in section has a base body 1.2, which consists of commercially available carbon nanotubes with an addition of 20% by volume of tungsten carbide.
  • the base body 1.2 is a depression corresponding to the course of the isotherms in the operating state according to patent application no. 10 2005 000 784 A1 introduced, which is filled by the X-ray active layer 2.2 of tungsten with 5 mass% rhenium.
  • the diffusion barrier layer 3.2 which is also the bonding layer 4.2, consists in this case of tantalum and has a thickness of 0.2 mm, is adapted to the shape of the depression and, like the X-ray active layer 2.2, corresponds in function to the corresponding layers 2.1; 3.1 and 4.1 of embodiment 1. The same applies to the geometric dimensions of the X-ray rotary anode plate.
  • the preparation of the complete component with all the layers mentioned above takes place in this case after filling in a suitable mold in one operation by hot pressing by pulse current at 2400 ° C at a pressure of 40 MPa in a residual gas atmosphere of argon with a slight hydrogen content at a residual pressure of about 2 Pa.
  • the final production takes place according to the usual procedures.
  • An improvement in quality of the X-ray rotary anode plate produced according to Embodiment 2 is achieved as follows:
  • the layer 2.2 is adjusted to the composition tungsten with 1 mass% rhenium.
  • the disk bevel is cleanly ground and applied by vacuum plasma spraying an X-ray active layer of the composition tungsten with 5% by mass of rhenium with a thickness of 200 microns.
  • the final production takes place according to the usual procedures.
  • X-ray rotary anode plate shown in section represents technologically and in terms of the manufacturing process, a transitional shape between a conventional X-ray rotary anode plate made of metal and the inventive solution, of course, all the necessary features of the invention are realized.
  • the base body 1.3 beveled at the outer edge towards the axis corresponds in composition and technologically to the base body 1.1 of embodiment 1.
  • This base body 1.3 is a finished metal body 5 made of a molybdenum-TZM alloy with an X-ray active layer 2.3 by diffusion bonding to the surface. 6 connected.
  • the excellent strength properties of the base body 1.3 with a content of carbon nanotubes make it possible despite the intended high speeds and operating temperatures, the metal body 5 much thinner and easier to perform than in X-ray Drehanodentellem metal with a graphite base body after State of the art.
  • the diameter of the X-ray rotary anode plate is, as in the embodiments 1 and 2, also 120 mm; the total thickness is different than in the aforementioned embodiments, a total of 16 mm, namely 6 mm of the metal body 5 plus 10 mm of the base body 1.3.
  • FIG. 4 shows a layered base body of an X-ray rotary anode plate according to claims 4 and 5, wherein the cross-sectional shape of the bonding layer 4.4 and the X-ray active layer 2.4, as in the above embodiments 2 and 3 according to claim 19, in turn, an isotherm of the temperature distribution in the vicinity of the X-ray Layer follows during operation.
  • the layers of the base body From bottom to top, i. towards the X-ray-active layer, the layers of the base body have the following composition:
  • Lower layer 1.41 single-walled carbon nanotubes and on average 30% silicon carbide by volume, the content of which within this layer preferably increasing from top to bottom.
  • Upper layer 143 Single-walled carbon nanotubes with an average of 20% by volume of tungsten carbide, the content of which within this layer preferably increasing from top to bottom.
  • each 80 micron thick base body bonding layers of molybdenum carbide are each 80 micron thick base body bonding layers of molybdenum carbide.
  • a recess corresponding to the mentioned course of an isotherm is incorporated in the region of the focal path.
  • a diffusion barrier layer 3.4 of 100 microns thickness of 40% by volume tantalum carbide and 60 volume 5 niobium carbide.
  • a bonding layer 4.4 made of molybdenum with 12% by weight of tungsten and finally the depression up to the level of the bevel filling up the half-active layer 2.4 made of tungsten with 6% by mass rhenium is arranged approximately to half the depth of the depression.
  • the typical dimensions of such an X-ray rotary anode plate are for example: diameter: 120 mm, thickness of the layers 1.41 and 1.42 per 6 mm and the layer 1.43 8 mm.
  • the width of the depression with the layers 3.4 and 4.4 and the X-ray active layer 2.4 is 35 mm and its maximum depth measured from the beveled surface of 6 mm.

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • X-Ray Techniques (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

Die Erfindung betrifft einen Röntgen-Drehanodenteller und ein Verfahren zu seiner Herstellung, wobei der Röntgen-Drehanodenteller einen Basiskörper aufweist. Dieser Basiskörper, welcher eine aufgebrachte Schicht oder einen eingefügten Körper aus röntgenaktivem Material mit der Brennbahn, beispielsweise aus einer Wolfram-Rhenium-Legierung mit 5 bis 10 Masse-% Rhenium, trägt, hat die Funktion, der Gesamtkonstruktion die notwendige Festigkeit zu verleihen und die bei der energetischen Umsetzung von Elektronenstrahlung in Röntgenstrahlung entstehende Wärmeenergie abzuleiten. Im Zusammenhang mit Ableitung der Wärmenergie kommt es beim Material des Basiskörpers vor allem auf solche Kennwerte, wie Wärmekapazität, Wärmeleitvermögen, Wärmeübergang sowie Anpassung der Wärmedehnung zwischen bzw. von röntgenaktivem Material und Basiskörper an.The invention relates to an x-ray rotary anode plate and a method for its production, wherein the x-ray rotary anode plate has a base body. This base body, which carries an applied layer or an inserted body of X-ray active material with the focal path, for example of a tungsten-rhenium alloy with 5 to 10 mass% rhenium, has the function to give the overall structure the necessary strength and the derive heat energy arising in the energetic conversion of electron radiation into X-ray radiation. In connection with the derivation of the heat energy, the material of the base body depends above all on such characteristic values as heat capacity, thermal conductivity, heat transfer and adaptation of the thermal expansion between or from X-ray-active material and base body.

Die Anforderungen an die thermische und mechanische Belastbarkeit der Röntgen-Drehanodenteller steigen ständig. Derzeit können bei Hochleistungsröntgenröhren im elektronischen Brennfleck Temperaturen von über 3000°C auftreten. Zur besseren Energieverteilung rotiert der Teller mit 9.000 min-1; geplant sind Drehzahlen von 15.000 min-1 und mehr. Mit der gleichen Zielstellung liegt der Durchmesser der Drehanodentellers derzeit schon bei 200 mm und geplant sind 300 mm! Die Festigkeit des Basiskörpermaterials muss dieser Tatsache Rechnung tragen.The requirements for the thermal and mechanical load capacity of the X-ray rotary anode plates are constantly increasing. Currently, high power x-ray tubes can experience temperatures of over 3000 ° C in the electronic focal spot. For better energy distribution of the plate rotates at 9,000 min -1; are planned speed of 15,000 min -1 and more. With the same objective, the diameter of the rotary anode plate is already at 200 mm and planned 300 mm! The strength of the base body material must take this fact into account.

Seit langem sind Röntgen-Drehanodenteller mit einem Basiskörper aus einer Molybdänlegierung, wie beispielsweise Molybdän mit Zusätzen von Titan, Zirkon und Kohlenstoff ("TZM") bekannt ( DE 33 03 529 A1 ). Hierbei stört bei hohen Drehzahlen des Drehanodentellers die hohe Dichte der Hauptkomponente Molybdän von 10,2 g/cm3 im Basiskörper. Derartige Röntgen-Drehanodenteller können eine Masse von mehr 5 kg erreichen. Speziell bei Computertomografen wird die Rotation des Röntgen-Drehanodentellers in der Röntgenröhre noch von der Rotation und Translation des gesamten Systems, in welchem sich die Röntgenröhre befindet, überlagert, so dass unkontrollierte Fliehkräfte in mehreren Richtungen auftreten. Nicht zu unterschätzen sind auch die immensen Materialkosten der beschriebenen Metallkonstruktionen.For a long time, X-ray rotary anode plates having a base body made of a molybdenum alloy, such as molybdenum with additions of titanium, zirconium and carbon ("TZM") have been known ( DE 33 03 529 A1 ). At high rotational speeds of the rotary anode plate, this disturbs the high density of the main component molybdenum of 10.2 g / cm 3 in the base body. Such X-ray rotary anode plates can reach a mass of more than 5 kg. Especially in computer tomographs, the rotation of the X-ray rotary anode plate in the X-ray tube is still superimposed by the rotation and translation of the entire system in which the X-ray tube is located, so that uncontrolled centrifugal forces occur in several directions. Not to be underestimated are also the immense material costs of the described metal constructions.

Bei gegebener Wärmekapazität sind die Dichte und damit auch die Masse von Graphit geringer, weshalb auch gefügte Röntgen-Drehanodenteller mit einem Basiskörper aus Graphit bekannt geworden sind ( DE 32 38 352 A1 ). Wegen der schichtartigen Mikrostruktur von Graphit ist dessen Festigkeit bei hohen Drehzahlen völlig unzureichend. Dies gilt auch für Basiskörper aus Graphit, welche beispielsweise mittels Vakuumplasmaspritzen mit einer röntgenaktiven Schicht aus Wolfram-Rhenium versehen wurden.For a given heat capacity, the density and thus also the mass of graphite are lower, which is why also joined X-ray rotary anode plates have become known with a base body made of graphite ( DE 32 38 352 A1 ). Because of the layered microstructure of graphite its strength at high speeds is completely insufficient. This also applies to base bodies made of graphite, which were provided, for example, by means of vacuum plasma spraying with an X-ray-active layer of tungsten-rhenium.

Die Festigkeiten des Basiskörpers sowohl auf Molybdänbasis als auch aus Graphit sind begrenzt, so dass bei den oben erwähnten mechanischen und thermischen Belastungen im Einsatz die reale Gefahr einer Beschädigung oder Zerstörung besteht.The strengths of the base body both molybdenum-based and graphite are limited, so that there is a real risk of damage or destruction in the above-mentioned mechanical and thermal stresses in use.

Schließlich sind auch Basiskörper für den genannten Anwendungsfall aus faserverstärktem Graphit bekannt geworden. Vorzugsweise werden Kohlenstofffasern eingesetzt, wobei über die räumliche Anordnung der Fasern bzw. Fasergeflechte beispielsweise eine Anpassung des Wärmedehnungskoeffizienten des Basiskörpers an denjenigen des aufgebrachten röntgenaktiven Materials ( DE 103 01 069 A1 ) oder eine hohe Wärmedehnung in radialer Richtung verbunden mit einer hohen Wärmeleitfähigkeit in der axialen Richtung erreicht werden sollen ( DE 196 50 061 A1 ). Zwar besitzen die erwähnten Kohtenstofffasern in Faserrichtung eine gute Wärmeleitfähigkeit sowie sehr gute Festigkeitseigenschaften, aber senkrecht dazu sind diese Eigenschaften um Größenordnungen schlechter. Bei der letztgenannten technischen Lösung hat man diese Anisotropie durch ein dreidimensionales Verweben der Kohlenstofffasern einzuschränken versucht, aber der Werkstoff bleibt dennoch im zweistelligen Mikrometerbereich anisotrop.Finally, base body for the application mentioned of fiber-reinforced graphite have become known. Carbon fibers are preferably used, wherein, via the spatial arrangement of the fibers or fiber braids, for example, an adaptation of the thermal expansion coefficient of the base body to that of the applied X-ray-active material (US Pat. DE 103 01 069 A1 ) or a high thermal expansion in the radial direction associated with a high thermal conductivity in the axial direction to be achieved ( DE 196 50 061 A1 ). Although the mentioned Kohtenstofffasern in the fiber direction have good thermal conductivity and very good strength properties, but perpendicular to these properties are orders of magnitude worse. In the latter technical solution, this anisotropy has been attempted to be limited by a three-dimensional weaving of the carbon fibers, but the material nevertheless remains anisotropic in the two-digit micrometer range.

Ein neuartiges Material auf Kohlenstoffbasis sind die sogenannten Kohlenstoffnanoröhrchen (engl. carbon nano tubes" oder "CNT"), deren technische Entwicklung von den Anfängen an recht anschaulich im Abschnitt "Hintergrund der Erfindung" in der Übersetzung der Europäischen Patenschrift DE 695 32 044 T2 beschrieben ist, wobei die in dieser Patentschrift beschriebene Erfindung mit chemisch wirksamen Funktionsschichten auf Kohlenstoffnanoröhrchen einen gänzlich anderen Erfindungsgegenstand betrifft als die vorliegende Erfindung.A novel material based on carbon are the so-called carbon nanotubes ("carbon nanotubes" or "CNT"), whose technical development from the very beginning quite vividly in the section "Background of the invention" in the translation of the European patent DE 695 32 044 T2 wherein the invention described in this patent with chemically active functional layers on carbon nanotubes an entirely different subject of the invention as the present invention.

Während beim herkömmlichen Graphit Kohlenstoffatome in hexagonaler Anordnung flächenhaft in einzelnen Ebenen angeordnet sind, sind bei den Kohlenstoffnanoröhrchen solche hexagonalen Anordnungen rohrartig geschlossen, woraus sich hervorragende mechanische, elektrische und thermische Eigenschaften ergeben. Wie die Silbe "nano" ausdrückt, liegen die Durchmesser dieser Kohlenstoffnanoröhrchen im Nanometerbereich; je nach Quelle spricht man 0,4 nm bis 50 nm oder 100 nm.While in conventional graphite carbon atoms are arranged in a hexagonal arrangement planar in individual planes, in the carbon nanotubes such hexagonal arrangements are tube-like closed, resulting in excellent mechanical, electrical and thermal properties. As the syllable "nano" expresses, the diameters of these carbon nanotubes are in the nanometer range; Depending on the source, one speaks 0.4 nm to 50 nm or 100 nm.

Die Schüttdichte dieser Kohlenstoffnanoröhrchen liegt nach Herstellerangaben in der Größenordnung von 0,15 g/cm3, die Materialdichte wird mit 1,3 g/cm3 bis 1,4 g/cm3 angegeben, was deutlich unter derjenigen von Graphit liegt. Als Festigkeit wird ein theoretischer Wert von 45 GPa genannt, was etwa das 20fache von Stahl und das 200fache des oben erwähnten Basiskörperwerkstoffes TZM wäre. Die theoretische Wärmeleitfähigkeit beträgt 6000 W/mK und übertrifft damit jene des Diamanten um das Doppelte und diejenige metallischer Wärmeleiter um mindestens eine Größenordnung.The bulk density of these carbon nanotubes according to the manufacturer is in the order of 0.15 g / cm 3 , the material density is given as 1.3 g / cm 3 to 1.4 g / cm 3 , which is significantly lower than that of graphite. The strength is called a theoretical value of 45 GPa, which would be about 20 times that of steel and 200 times the above-mentioned base body material TZM. The theoretical thermal conductivity is 6000 W / mK and thus exceeds that of diamond by twice and that of metallic heat conductors by at least one order of magnitude.

Es sind auch Anwendungen von Kohlenstoffnanoröhrchen im Zusammenhang mit Röntgenröhren bekannt geworden. Dabei handelt es sich zumeist um Kohlenstoffnanoröhrchen in streng paralleler Ausrichtung.Also, applications of carbon nanotubes in the context of X-ray tubes have become known. These are mostly carbon nanotubes in a strictly parallel orientation.

So ist eine Kathode für eine Röntgenröhre bekannt, bei welcher zur Erzielung einer Kathodenfläche kleiner Abmessungen die Kohlenstoffnanoröhrchen auf einer Platte mit negativem Potenzial angeordnet sind und als Emitter Elektronen zu einem gegenüberliegenden Target aus Kupfer aussenden (Japanische Patentkurzfassung 2005166565).Thus, a cathode for an X-ray tube is known, in which to achieve a cathode surface of small dimensions, the carbon nanotubes are arranged on a plate with a negative potential and emit electrons as emitter to an opposite target of copper (Japanese Patent Kurzfassung 2005166565).

Bei einer anderen Kathode für Röntgenröhren sind sie hinter einem Steuergitter angeordnet und dienen der Realisierung einer Kathode mit einstellbarer Emissionsfläche (Japanische Patentkurzfassung 2006086001).In another cathode ray tube cathode they are arranged behind a control grid and serve to realize a cathode with adjustable emission surface (Japanese Patent Abbreviation 2006086001).

Es ist auch eine technische Lösung bekannt geworden, bei welcher auf einer röntgenaktiven Schicht (also auf der Elektronenauftrefffläche) von Röntgenanoden ein "Wald" bzw. ein "Haarbüschel" senkrechter, paralleler, gut Wärme leitender Kohlenstofffasern angeordnet ist, wobei es sich nicht ausdrücklich um Kohlenstoffnanoröhrchen handelt ( US 5.943.389 ). Der Zweck dieser Anordnung besteht darin, zusätzlich zur Wärmeableitung durch den Basiskörper Wärme durch diese Kohlenstofffasern abzuleiten.There is also known a technical solution in which on an X-ray-active layer (ie on the electron impact surface) of X-ray anodes a "forest" or a "hair tufts" of vertical, parallel, good heat conductive carbon fibers is arranged, which are not expressly carbon nanotubes ( US 5,943,389 ). The purpose of this arrangement is to dissipate heat through these carbon fibers in addition to heat dissipation through the base body.

Weiterhin ist eine Röntgenanode bekannt, auf deren Anoden-Auftrefffläche Kohlenstoffnanoröhrchen vorzugsweise in Gestalt eines Gewebes angeordnet sind, um die Bildung von Sekundärelektronen sowie die Entstehung eines Plasmas bzw. die Freisetzung neutraler Gase zu unterdrücken ( WO 03/043036 A1 ).Furthermore, an X-ray anode is known, on the anode impact surface of which carbon nanotubes are preferably arranged in the form of a tissue in order to suppress the formation of secondary electrons and the formation of a plasma or the release of neutral gases ( WO 03/043036 A1 ).

Als Stand der Technik für die vorliegende Erfindung sind schließlich auch Basiskörper für Röntgendrehanoden bekannt, bei welchen Kohlenstofffasern vorzugsweise Kohlenstoffnanoröhrchen in Kupfer ( DE 102005039187 ) oder in Titan ( DE 102005039188 ) eingelagert sind, um die Wärmeableitung zu verbessern. Kupfer hat den Nachteil, dass sein Schmelzpunkt für hohe Wärmeableitungsleistungen zu niedrig ist; Titan hat wie auch Kupfer den Nachteil, dass es bei der Einsatztemperatur mit dem vorhandenen Kohlenstoff zur Karbidbildung neigt.Finally, as prior art for the present invention, base bodies for X-ray rotary anodes are known in which carbon fibers are preferably carbon nanotubes in copper ( DE 102005039187 ) or titanium ( DE 102005039188 ) are incorporated to improve heat dissipation. Copper has the disadvantage that its melting point is too low for high heat dissipation performance; Titanium, like copper, has the disadvantage that it tends to carbide at the operating temperature with the carbon present.

Neuerdings sind auch Kohlenstoffnanoteilchen mit Graphitstruktur und im Wesentlichen sphärischer Gestalt mit einer mittleren Korngröße von beispielsweise 55 nm bekannt geworden (Firmendruckschrift der Firma Auer-Remy GmbH, Hamburg "Nanopowders", Position "C 1249YD 7440-44-0"). Neben den im vorliegenden Zusammenhang vorteilhaften Eigenschaften der Kohlenstoffnanoteilchen bereitet bei sphärischen Teilchen mit ihren in allen Achsrichtungen gleichen Abmessungen die Erreichung einer im Wesentlichen isotrope Eigenschaften des Basiskörpers sichernden räumlichen Verteilung naturgemäß weniger verfahrenstechnische Schwierigkeiten bei der Aufbereitung der Rohstoffe für die Formgebung des Basiskörpers als bei Kohlenstoffnanoröhrchen mit ihrer axialen Erstreckung.Recently, carbon nanoparticles with graphite structure and substantially spherical shape having a mean grain size of, for example 55 nm have become known (company publication of the company Auer-Remy GmbH, Hamburg "Nanopowders", position "C 1249YD 7440-44-0"). In addition to advantageous in the present context properties of carbon nanoparticles prepares for spherical particles with their dimensions in all axial dimensions the achievement of a substantially isotropic properties of the base body securing spatial distribution naturally less procedural difficulties in the preparation of raw materials for the shaping of the base body than in carbon nanotubes their axial extent.

Einige der Karbide und Nitride, die bei der vorliegenden Erfindung zur Festigkeitssteigerung eine Rolle spielen, sind bereits bei RöntgenDrehanoden eingesetzt worden, jedoch in gänzlich anderer Funktion und ohne Aussagen zur Korngröße.Some of the carbides and nitrides which play a role in the present invention to increase strength already exist in X-ray rotary anodes used, but in a completely different function and without statements to the grain size.

So sind neben anderen Verbindungen auch Karbide und Nitride von Tantal, Niob, Molybdän und Wolfram für erosionsbeständige, mit Flüssigmetall geschmierte Gleitpaarungen zwischen den Drehanoden-Schaft und dessen Lager eingesetzt worden ( DE 69 121 504 T2 ).Thus, among other compounds, carbides and nitrides of tantalum, niobium, molybdenum and tungsten have been used for erosion resistant, liquid metal lubricated mating couples between the rotating anode shaft and its bearings ( DE 69 121 504 T2 ).

Tantalkarbid ist neben anderen Verbindungen als Rückseitenbeschichtung des Drehanodentellers vorgeschlagen worden, um die Wärmeabstrahlung zu verbessern ( DE 2 805 154 ).Tantalum carbide, among other compounds, has been proposed as the backside coating of the rotating anode plate to improve the heat radiation ( DE 2 805 154 ).

Schließlich sind neben anderen Verbindungen Molybdänkarbid und Wolframkarbid in Anordnungen mit einer Vielzahl von Schichten zur Anpassung des Wärmedehnungskoeffizienten zwischen röntgenaktiver Schicht und Basiskörper bekannt geworden ( DE 10 2005 015 920 ).Finally, among other compounds, molybdenum carbide and tungsten carbide have become known in arrangements having a plurality of layers for adjusting the coefficient of thermal expansion between the X-ray active layer and the base body (FIG. DE 10 2005 015 920 ).

Der Erfindung liegt die Aufgabe zugrunde, einen Röntgen-Drehanodenteller mit einem Basiskörper zu schaffen, welcher die eingangs erwähnten Anforderungen hinsichtlich der Temperatur des Brennfleckes und der angestrebten Drehzahlen von Röntgen-Drehanodentellern durch eine geringere Masse, ein entsprechendes Wärmeleitvermögen und eine ausreichende Hochtemperaturfestigkeit bei mindestens gleichen oder möglichst geringeren Materialkosten des Basiskörpers zu erfüllen und dadurch die Mängel des Standes der Technik zu beheben vermag. Aufgabe der Erfindung ist es weiterhin, ein rationelles Herstellungsverfahren für einen solchen Röntgen-Drehanodenteller bestehend aus dem Basiskörper mit röntgenaktiver Schicht mit notwendigen bzw. vorteilhaften Zwischenschichten zwischen beiden zu schaffen.The invention has for its object to provide an X-ray Rotary anode plate with a base body, which the above-mentioned requirements with respect to the temperature of the focal spot and the target speeds of X-ray machines Rotanodentellern by a lower mass, a corresponding thermal conductivity and a sufficient high temperature strength at least the same or to meet the lowest possible material costs of the base body and thereby able to remedy the deficiencies of the prior art. The object of the invention is furthermore to provide a rational production method for such an X-ray rotary anode plate consisting of the base body with X-ray active layer with necessary or advantageous intermediate layers between the two.

Diese Aufgabe wird durch die in den Patentansprüchen beschriebene Erfindung gelöst.This object is solved by the invention described in the claims.

Die Herstellung des erfindungsgemäßen Basiskörpers mit Kohlenstoffnano röhrchen bzw. aus Hochleistungsgraphit- und/oder Fasergraphitwerkstoffen mit einem Gehalt an solchen Kohlenstoffnano röhrchen ist nach den herkömmlichen sowie auch mit Hilfe der neuesten Pulver-Technologien möglich, wobei dafür Sorge zu tragen ist, dass die Struktur der Kohlenstoffnanoröhrchen nicht zerstört wird.The preparation of the base body according to the invention with carbon nanotubes or of high-performance graphite and / or fiber graphite materials containing such carbon nanotubes is conventional and also with the aid of the latest powder technologies it is important to ensure that the structure of the carbon nanotubes is not destroyed.

Grundsätzliche Voraussetzung zur Erzielung der gewünschten Effekte bezüglich Hochtemperaturfestigkeit, Wärmeleitfähigkeit und Wärmedehnung ist die quasihomogene Verteilung der Kohlenstoffnano röhrchen im Bauteil, um einen im submakroskopischen Bereich im wesentlichen isotropen Basiskörper, d.h. einen Anisotropiegrad von beispielsweise < 1,2 (Verhältnis des Maximalwertes zum Minimalwert bei Messung in den drei räumlichen Dimensionen) bezüglich Festigkeit, Wärmeleitfähigkeit und Wärmedehnung zu erreichen. Besonders günstig ist eine leicht winklige Gestalt der einzelnen Kohlenstoffnanoröhrchen.A fundamental prerequisite for achieving the desired effects with respect to high-temperature strength, thermal conductivity and thermal expansion is the quasi-homogeneous distribution of the carbon nanotubes in the component in order to obtain a base body that is essentially isotropic in the submaxoscopic region, ie. an anisotropy degree of, for example, <1.2 (ratio of the maximum value to the minimum value when measured in the three spatial dimensions) in terms of strength, thermal conductivity and thermal expansion to achieve. Particularly favorable is a slightly angled shape of the individual carbon nanotubes.

Erfindungsgemäß kann die Makrofestigkeit des Basismaterials durch den Zusatz von hochfesten Verbindungen, wie Oxide, Nitride, Boride, Karbide, Silizide des Tantals, Niobs, Chroms, Siliziums, Molybdäns, Hafniums, Bors und/oder Wolframs bzw. Gemische derselben und Fasern aus diesen Materialien gesteigert werden. Auch Mischungen dieser Verbindungen sind denkbar. Im Interesse der Bindungsfestigkeit zwischen Basiskörper und röntgenaktiver Schicht kann der Anteil dieser Stoffe in Achsrichtung variiert werden,wobei es weiterhin vorteilhaft ist, wenn der gegebenenfalls vorhandene Anteil von Graphit bzw. Graphitfasern zur röntgenaktive Schicht hin zugunsten des Anteils der Kohlenstoffnano röhrchen und der genannten festigkeitssteigemden Stoffe abnimmt.According to the invention, the macroflexibility of the base material may be enhanced by the addition of high strength compounds such as oxides, nitrides, borides, carbides, silicides of tantalum, niobium, chromium, silicon, molybdenum, hafnium, boron and / or tungsten or mixtures thereof and fibers of these materials be increased. Also, mixtures of these compounds are conceivable. In the interest of the bond strength between the base body and X-ray active layer, the proportion of these substances in the axial direction can be varied, it is also advantageous if the optionally present proportion of graphite or graphite fibers to the X-ray active layer in favor of the proportion of Kohlenstoffnano tube and said strength-increasing substances decreases.

Der Basiskörper kann nach den üblichen Beschichtungs-Verfahren mit der röntgenaktiven Schicht versehen werden, wobei zur Beherrschung der schädlichen Kohlenstoffdiffusion an sich bekannte Diffusions-Sperrschichten aus Rhenium, Molybdän, Tantal, Niob, Zirkonium, Titan bzw. Verbindungen und Kombinationen dieser Metalle sowie in vorteilhafter Ausgestaltung der Erfindung weiterhin eine Bindungsschicht, beispielsweise durch Einbringen von Rhenium oder Rheniumverbindungen, bzw. -Karbiden in den Oberflächenbereich des Basiskörpers, angeordnet werden.The base body can be provided with the X-ray-active layer according to the usual coating method, wherein for controlling the harmful carbon diffusion per se known diffusion barrier layers of rhenium, molybdenum, tantalum, niobium, zirconium, titanium or compounds and combinations of these metals as well as in more advantageous Embodiment of the invention, a binding layer, for example, by introducing rhenium or rhenium compounds, or carbides in the surface region of the base body, are arranged.

Von Vorteil kann auch die Einbringung einer Ausgleichsschicht, vorzugsweise aus Molybdän oder einer Molybdänlegierung zwischen der Diffusionsbarriereschicht und der röntgenaktiven Schicht sein. Sie dient beispielsweise dem Ausgleich von Unterschieden der beiden vorgenannten Schichten hinsichtlich Wärmedehnung und/oder Duktilität.Of advantage may also be the introduction of a leveling layer, preferably of molybdenum or a molybdenum alloy between the diffusion barrier layer and the X-ray active layer. It serves, for example, to compensate for differences between the two aforementioned layers in terms of thermal expansion and / or ductility.

Eine besonders schnell realisierbare technische Lösung ist das Zusammenfügen eines herkömmlichen Röntgen-Drehanodentellers aus Metall mit dem Basiskörper, wobei der Teller wegen der besseren Festigkeitseigenschaften des erfindungsgemäßen Basiskörpers wesentlich dünner ausgeführt werden kann als beim Stand der Technik, was Masse und Kosten sparen hilft, wobei grundsätzlich anzumerken ist, dass die verringerte Masse nicht nur bezüglich der Materialkosten sondern auch wegen der geringeren Fliehkräfte von Vorteil ist.A particularly quickly realizable technical solution is the joining of a conventional X-ray rotating anode plate made of metal with the base body, the plate can be performed much thinner because of the better strength properties of the base body according to the invention as in the prior art, which helps to save mass and cost, in principle It should be noted that the reduced mass is advantageous not only in terms of material costs but also because of the lower centrifugal forces.

Bei der Verwendung von Kohlenstoffnanoröhrchen ist normalerweise eine gewisse Nanoporosität zu erwarten, so dass eine Verarbeitung im Unterdruckbereich mit einer Restatmoshäre aus Schutzgasen oder auch die Verwendung gedeckelter Kohlenstoffnanoröhrchen von Vorteil sind.With the use of carbon nanotubes, a certain nanoporosity is normally to be expected, so that processing in the vacuum range with a residual atmosphere of protective gases or else the use of capped carbon nanotubes are advantageous.

Die vorteilhaften wirtschaftlichen Auswirkungen der Erfindung infolge der verwendeten innovativen Werkstoffe werden nachfolgend im Vergleich zu einem Basiskörper aus TZM als Stand der Technik dargestellt. Kohlenstoffnanoröhrchen werden in den kleintechnischen Maßstab industriell erzeugt. Das Preisniveau liegt bei etwa 150 EUR/kg, wobei bei einem Vergleich mit einem metallischen Basiskörper nach dem Stand der Technik nicht nur der geringere Kilopreis sondern auch die geringere Dichte zu Buche schlägt. Überschlägig ergibt sich für einen 200 mm-Röntgen-Drehanodenteller: TZM: 5,0 kg entsprechend 1000 EUR Materialkosten Kohlenstoffnanoröhrchen: 0,7 kg entsprechend 100 EUR Materialkosten The advantageous economic effects of the invention as a result of the innovative materials used are presented below as compared to a base body of TZM as prior art. Carbon nanotubes are industrially produced on a small scale. The price level is around 150 EUR / kg, with a comparison with a metallic base body according to the prior art, not only the lower kilogram price but also the lower density to book. The approximate results for a 200 mm X-ray rotary anode plate: TZM: 5.0 kg corresponding to 1000 EUR material costs Carbon nanotubes: 0.7 kg corresponding to 100 EUR material costs

Die vorteilhaften Auswirkungen der Erfindung infolge des erfindungsgemäßen Herstellungsverfahrens liegen in der Einsparung des teuren Beschichtungs- bzw. Konfektionierungsverfahrens sowie der dafür erforderlichen Investitionen, in der Minimierung des Materialeinsatzes sowie in einer Festigkeitssteigerung des Gesamtbauteiles.The advantageous effects of the invention as a result of the production method according to the invention lie in the saving of expensive coating or confectioning process and the necessary investments, in minimizing the use of materials and in an increase in strength of the entire component.

Die Erfindung wird nachstehend an sechs Ausführungsbeispielen näher erläutert.The invention will be explained in more detail below with reference to six exemplary embodiments.

Es zeigen:

Fig. 1:
einen Röntgen-Drehanodenteller entsprechend Ausführungsbeispiel 1,
Fig. 2:
einen Röntgen-Drehanodenteller entsprechend den Ausführungsbeispielen 2 und 3,
Fig. 3:
einen Röntgen-Drehanodenteller entsprechend Ausführungsbeispiel 4 und
Fig. 4:
einen Röntgen-Drehanodenteller entsprechend Ausführungsbeispiel 5.
Show it:
Fig. 1:
an X-ray rotary anode plate according to Embodiment 1,
Fig. 2:
an X-ray rotary anode plate according to embodiments 2 and 3,
3:
an X-ray rotary anode plate according to Embodiment 4 and
4:
an X-ray rotary anode plate according to Embodiment 5.

Ausführungsbeispiel 1:Embodiment 1

Der in Fig. 1 im Schnitt dargestellte Röntgen-Drehanodenteller besteht aus einem Basiskörper 1.1 mit 60 Masse-% Kohlenstoffnanoröhrchen und 40 Masse-% Nano-Graphitpulverteilchen, auf den durch Vakuumplasmaspritzen eine an sich bekannte Diffusionsbarriereschicht 3.1 aus Wolfram-Rhenium-Tantal, die zugleich als Bindungsschicht 4.1 dient, sowie die röntgenaktive Schicht 2.1 aufgebracht sind. Der Durchmesser des Röntgen-Drehanodentellers beträgt 120 mm, seine Dicke 15 mm.The in Fig. 1 X-ray rotary anode plate shown in section consists of a base body 1.1 with 60% by mass of carbon nanotubes and 40% by mass of nano-graphite powder particles, to which a diffusion barrier layer 3.1 made of tungsten-rhenium tantalum, known per se, is used as a bonding layer 4.1 by vacuum plasma spraying. and the X-ray active layer 2.1 are applied. The diameter of the X-ray rotary anode plate is 120 mm, its thickness 15 mm.

Der Basiskörper 1.1 wird nach den üblichen Verfahren der Pulvermetallurgie und der Graphitverarbeitung durch Mischen der Pulver, Pressen und Wärmebehandlung, unter Umständen unter Anwendung des Heißpressverfahren, in Abmessungen nahe an der Endform hergestellt und durch spangebende Formung fertigbearbeitet.The base body 1.1 is manufactured by the conventional methods of powder metallurgy and graphite processing by mixing the powders, pressing and heat treatment, under circumstances using the hot pressing method, in dimensions close to the final shape and finished by cutting shaping.

Es werden handelsübliche ungedeckelte Kohlenstoffnanoröhrchen und feinkörniges Nano-Graphitpulverteilchen hoher Reinheit eingesetzt, wobei die ersteren sich in Länge und Durchmesser untereinander nur wenig unterscheiden und im Durchschnitt kürzer als 10 nm sein sollen. Ihre Längsachse soll nach Möglichkeit von der Geraden abweichenCommercially available uncoated carbon nanotubes and fine-grained nano-graphite powder particles of high purity are used, the former differing only slightly in length and diameter and should be shorter than 10 nm on average. Your longitudinal axis should deviate from the straight line if possible

Nach dem Vakuumplasmaspritzen wird durch eine geeignete Wärmebehandlung eine Diffusionsbindung zwischen dem Basiskörper 1.1 und den Schichten ausgebildet sowie der Röntgen-Drehanodenteller nach den üblichen Verfahren fertigbearbeitet.After the vacuum plasma spraying, a diffusion bonding between the base body 1.1 and the layers is formed by a suitable heat treatment and the X-ray rotary anode plate is finished by the usual methods.

Ausführungsbeispiel 2:Embodiment 2:

Der in Fig. 2 im Schnitt dargestellte Röntgen-Drehanodenteller weist im Unterschied zu Ausführungsbeispiel 1 einen Basiskörper 1.2 auf, der aus handelsüblichen Kohlenstoffnanoröhrchen mit einem Zusatz von 20 Volumen-% Wolframkarbid besteht.The in Fig. 2 In contrast to exemplary embodiment 1, an X-ray rotary anode plate shown in section has a base body 1.2, which consists of commercially available carbon nanotubes with an addition of 20% by volume of tungsten carbide.

In den Basiskörper 1.2 ist eine Vertiefung entsprechend dem Verlauf der Isothermen im Betriebszustand nach Patentanmeldung Nr. 10 2005 000 784 A1 eingebracht, welche durch die röntgenaktive Schicht 2.2 aus Wolfram mit 5 Masse-% Rhenium ausgefüllt ist. Die Diffusionsbarriereschicht 3.2, die gleichzeitig auch die Bindungsschicht 4.2 ist, besteht in diesem Falle aus Tantal und hat eine Stärke von 0,2 mm, ist der Form der Vertiefung angepasst und entspricht, wie auch die röntgenaktive Schicht 2.2, in der Funktion den entsprechenden Schichten 2.1; 3.1 bzw. 4.1 von Ausführungsbeispiel 1. Gleiches gilt für die geometrischen Abmessungen des Röntgen-Drehanodentellers.In the base body 1.2 is a depression corresponding to the course of the isotherms in the operating state according to patent application no. 10 2005 000 784 A1 introduced, which is filled by the X-ray active layer 2.2 of tungsten with 5 mass% rhenium. The diffusion barrier layer 3.2, which is also the bonding layer 4.2, consists in this case of tantalum and has a thickness of 0.2 mm, is adapted to the shape of the depression and, like the X-ray active layer 2.2, corresponds in function to the corresponding layers 2.1; 3.1 and 4.1 of embodiment 1. The same applies to the geometric dimensions of the X-ray rotary anode plate.

Die Herstellung des kompletten Bauteiles mit allen oben erwähnten Schichten erfolgt in diesem Falle nach dem Einfüllen in eine geeignete Form in einem Arbeitsgang durch Heißpressen mittels Impulsstrom bei 2400°C bei einem Druck von 40 MPa in einer Restgasatmosphäre aus Argon mit einem geringfügigen Wasserstoffanteil bei einem Restdruck von etwa 2 Pa.The preparation of the complete component with all the layers mentioned above takes place in this case after filling in a suitable mold in one operation by hot pressing by pulse current at 2400 ° C at a pressure of 40 MPa in a residual gas atmosphere of argon with a slight hydrogen content at a residual pressure of about 2 Pa.

Die Endfertigung erfolgt nach den üblichen Verfahren.The final production takes place according to the usual procedures.

Ausführungsbeispiel 3:Embodiment 3

Eine Qualitätsverbesserung des entsprechend Ausführungsbeispiel 2 hergestellten Röntgen-Drehanodentellers wird wie folgt erreicht: Die Schicht 2.2 wird auf die Zusammensetzung Wolfram mit 1 Masse-% Rhenium eingestellt. Nach der Vorfertigung des Bauteiles wird die Tellerschräge sauber überschliffen und durch Vakuum-Plasmaspritzen eine röntgenaktive Schicht der Zusammensetzung Wolfram mit 5 Masse-% Rhenium mit einer Stärke von 200 µm aufgebracht.An improvement in quality of the X-ray rotary anode plate produced according to Embodiment 2 is achieved as follows: The layer 2.2 is adjusted to the composition tungsten with 1 mass% rhenium. After prefabrication of the component, the disk bevel is cleanly ground and applied by vacuum plasma spraying an X-ray active layer of the composition tungsten with 5% by mass of rhenium with a thickness of 200 microns.

Die Endfertigung erfolgt nach den üblichen Verfahren.The final production takes place according to the usual procedures.

Ausführungsbeispiel 4:Embodiment 4

Der in Fig. 3 im Schnitt dargestellte Röntgen-Drehanodenteller stellt technologisch und hinsichtlich des Fertigungsablaufes eine Übergangsform zwischen einem herkömmlichen Röntgen-Drehanodenteller aus Metall und der erfindungsgemäßen Lösung dar, wobei selbstverständlich alle notwendigen Merkmale der Erfindung realisiert sind.The in Fig. 3 X-ray rotary anode plate shown in section represents technologically and in terms of the manufacturing process, a transitional shape between a conventional X-ray rotary anode plate made of metal and the inventive solution, of course, all the necessary features of the invention are realized.

Der am äußeren Rand zur Achse hin abgeschrägte Basiskörper 1.3 entspricht in der Zusammensetzung und technologisch dem Basiskörper 1.1 von Ausführungsbeispiel 1. Mit diesem Basiskörper 1.3 ist ein fertigbearbeiteter Metallkörper 5 aus einer Molybdän-TZM-Legierung mit einer röntgenaktiven Schicht 2.3 durch Diffusionsschweißen an der Fläche 6 verbunden.The base body 1.3 beveled at the outer edge towards the axis corresponds in composition and technologically to the base body 1.1 of embodiment 1. With this base body 1.3 is a finished metal body 5 made of a molybdenum-TZM alloy with an X-ray active layer 2.3 by diffusion bonding to the surface. 6 connected.

Die ausgezeichneten Festigkeitseigenschaften des Basiskörpers 1.3 mit einem Gehalt an Kohlenstoffnanoröhrchen ermöglichen es trotz der vorgesehenen hohen Drehzahlen und Betriebstemperaturen den Metallkörper 5 wesentlich dünner und leichter auszuführen als bei Röntgen-Drehanodentellem aus Metall mit einem Graphit-Basiskörper nach dem Stand der Technik. Der Durchmesser des Röntgen-Drehanodentellers beträgt, wie bei den Ausführungsbeispielen 1 und 2, ebenfalls 120 mm; die Gesamtdicke beträgt anders als bei den vorgenannten Ausführungsbeispielen insgesamt 16 mm, nämlich 6 mm des Metallkörpers 5 plus 10 mm des Basiskörpers 1.3.The excellent strength properties of the base body 1.3 with a content of carbon nanotubes make it possible despite the intended high speeds and operating temperatures, the metal body 5 much thinner and easier to perform than in X-ray Drehanodentellem metal with a graphite base body after State of the art. The diameter of the X-ray rotary anode plate is, as in the embodiments 1 and 2, also 120 mm; the total thickness is different than in the aforementioned embodiments, a total of 16 mm, namely 6 mm of the metal body 5 plus 10 mm of the base body 1.3.

Ausführungsbeispiel 5:Embodiment 5:

Die Figur 4 zeigt einen schichtweise aufgebauten Basiskörper eines Röntgen-Drehanodentellers entsprechend den Ansprüchen 4 und 5, wobei die Querschnittsform der Bindungsschicht 4.4 und der röntgenaktiven Schicht 2.4, wie bei den obigen Ausführungsbeispielen 2 und 3 entsprechend Anspruch 19, wiederum einer Isotherme der Temperaturverteilung in der Umgebung der röntgenaktiven Schicht während des Betriebszustandes folgt.The FIG. 4 shows a layered base body of an X-ray rotary anode plate according to claims 4 and 5, wherein the cross-sectional shape of the bonding layer 4.4 and the X-ray active layer 2.4, as in the above embodiments 2 and 3 according to claim 19, in turn, an isotherm of the temperature distribution in the vicinity of the X-ray Layer follows during operation.

Von unten nach oben, d.h. zur röntgenaktiven Schicht hin, haben die Schichten des Basiskörpers folgende Zusammensetzung:From bottom to top, i. towards the X-ray-active layer, the layers of the base body have the following composition:

Untere Schicht 1.41:einwandige Kohlenstoffnanoröhrchen und durchschnittlich 30 Volumen-% Siliziumkarbid, wobei dessen Gehalt innerhalb dieser Schicht vorzugsweise von oben nach unten zunimmt.Lower layer 1.41: single-walled carbon nanotubes and on average 30% silicon carbide by volume, the content of which within this layer preferably increasing from top to bottom.

Für die Zwischenschicht 1.42 sind drei alternative Varianten vorgesehen:

  • 142a:100 Masse-%t Nano-Graphitpulverteilchen,
  • 142b: 50 % Masse-% Nano-Graphitpulverteilchen und 50 Masse-% einwandige Kohlenstoffnanoröhrchen,
  • 142c: massive, vorgeformte Platte aus röntgentauglichem Graphit, welche zur Verbesserung der Wärmeleitfähigkeit des Basiskörpers 1 beiträgt.
For the intermediate layer 1.42, three alternative variants are provided:
  • 142a: 100% by mass of nano-graphite powder particles,
  • 142b: 50% mass% of nano-graphite powder particles and 50 mass% of single-walled carbon nanotubes,
  • 142 c: massive, preformed plate made of X-ray-compatible graphite, which contributes to improving the thermal conductivity of the base body 1.

Obere Schicht 143: einwandige Kohlenstoffnanoröhrchen mit durchschnittlich 20 Volumen-% Wolframkarbid, wobei dessen Gehalt innerhalb dieser Schicht vorzugsweise von oben nach unten zunimmt.Upper layer 143: Single-walled carbon nanotubes with an average of 20% by volume of tungsten carbide, the content of which within this layer preferably increasing from top to bottom.

Zwischen diesen drei Schichten 141, 142 und 143 befinden sich jeweils 80 µm dicke Basiskörper-Bindungsschichten aus Molybdänkarbid.Between these three layers 141, 142 and 143 are each 80 micron thick base body bonding layers of molybdenum carbide.

In einer Abschrägung der oberen Schicht 143 von 10° gegenüber Horizontalen ist im Bereich der Brennbahn eine Vertiefung entsprechend dem erwähnten Verlauf einer Isotherme eingearbeitet. Dort befinden sich in der Richtung von unten nach oben: eine Diffusionsbarriereschicht 3.4 von 100 µm Dicke aus 40 Volumen-% Tantalkarbid und 60 Volumen-5 Niobkarbid. Darauf ist etwa bis zur halben Tiefe der Vertiefung eine Bindungsschicht 4.4 aus Molybdän mit 12 Masse-% Wolfram und schließlich die Vertiefung bis zum Niveau der Abschrägung auffüllend die röntgenaktive Schicht 2.4 aus Wolfram mit 6 Masse-% Rhenium angeordnet.In a bevel of the upper layer 143 of 10 ° with respect to horizontal, a recess corresponding to the mentioned course of an isotherm is incorporated in the region of the focal path. There are in the direction from bottom to top: a diffusion barrier layer 3.4 of 100 microns thickness of 40% by volume tantalum carbide and 60 volume 5 niobium carbide. Thereupon a bonding layer 4.4 made of molybdenum with 12% by weight of tungsten and finally the depression up to the level of the bevel filling up the half-active layer 2.4 made of tungsten with 6% by mass rhenium is arranged approximately to half the depth of the depression.

Die typischen Abmessungen eines solchen Röntgen-Drehanodentellers betragen beispielsweise:Durchmesser: 120 mm, Dicke der Schichten 1.41 und 1.42 je 6 mm und der Schicht 1.43 8mm. Die Breite der Vertiefung mit den Schichten 3.4 und 4.4 sowie der röntgenaktiven Schicht 2.4 beträgt 35 mm und ihre maximale Tiefe von der Abschrägungsfläche aus gemessen 6 mm.The typical dimensions of such an X-ray rotary anode plate are for example: diameter: 120 mm, thickness of the layers 1.41 and 1.42 per 6 mm and the layer 1.43 8 mm. The width of the depression with the layers 3.4 and 4.4 and the X-ray active layer 2.4 is 35 mm and its maximum depth measured from the beveled surface of 6 mm.

Liste der verwendeten BezugszahlenList of used reference numbers

1.1; 1.2; 1.31.1; 1.2; 1.3
Basiskörperbase body
1.41; 1.42(a, b, c); 1.431:41; 1.42 (a, b, c); 1:43
Schichten des BasiskörpersLayers of the base body
2.1; 2.2; 2.3, 2.42.1; 2.2; 2.3, 2.4
röntgenaktive SchichtX-ray active layer
3.1; 3.2; 3.43.1; 3.2; 3.4
DiffusionsbarriereschichtDiffusion barrier layer
4.1; 4.2; 4.44.1; 4.2; 4.4
Bindungsschichtbonding layer
55
Metallkörpermetal body
66
Lotschichtsolder layer
77
Basiskörper-BindungsschichtBase body bonding layer

Claims (25)

  1. An X-ray rotating anode plate having a base, characterized in that this base comprising carbon nanotubes in a quasi-homogeneous spatial distribution, ensuring substantially isotropic properties of the base in the submacroscopic range.
  2. The X-ray rotating anode plate according to claim 1, characterized in that the base comprises 10 mass % to 90 mass % of carbon nanotubes.
  3. The X-ray rotating anode plate according to claim 2, characterized in that the base comprises 50 mass % to 70 mass % of carbon nanotubes.
  4. An X-ray rotating anode plate according to any one of the preceding claims, characterized in that the proportion of carbon nanotubes in the axial direction varies steadily and/or in layers.
  5. An X-ray rotating anode plate according to any one of the preceding claims, characterized in that, in order to increase stability and improve heat conductivity the following compounds are further added to the base: oxides, nitrides, borides, carbides, silicides of tantalum, niobium, chromium, silicon, molybdenum, hafnium, boron and/or tungsten, or mixtures thereof.
  6. The X-ray rotating anode plate according to claim 5, characterized in that the compounds are present in particle sizes in the nanometer range.
  7. The X-ray rotating anode plate according to claim 6, characterized in that the average particle size of the compounds is 40 nm to 200 nm.
  8. An X-ray rotating anode plate according to any one of claims 5 to 7, characterized in that the compo umds constitute 4% by volume to 80% by volume of the base.
  9. The X-ray rotating anode plate according to claim 8, characterized in that the compounds constitute 20% by volume to 40% by volume of the base.
  10. An X-ray rotating anode plate according to any one of claims 5 to 9, characterized in that the proportion of the additives according to claim 5 varies steadily or in layers in the axial direction.
  11. An X-ray rotating anode plate according to any one of the preceding claims, characterized in that the axial direction of the individual carbon nanotubes deviates from the straight line.
  12. The X-ray rotating anode plate according to claim 11, characterized in that the axial direction of the individual carbon nanotubes has an angled course.
  13. An X-ray rotating anode plate according to any one of claims 1 to 12 comprising carbon nanotubes, characterized in that the carbon nanotubes have multiple walls.
  14. An X-ray rotating anode plate according to any one of the preceding claims, characterized in that the lengths and diameters of the carbon nanotubes do not differ by more than a factor of 10.
  15. The X-ray rotating anode plate according to claim 14, characterized in that the lengths and diameters of the carbon nanotubes do not differ by more than a factor of 3.
  16. The X-ray rotating anode plate according to claim 15, characterized in that the carbon nanotubes have a spherical shape.
  17. An X-ray rotating anode plate according to any one of the preceding claims, characterized in that a diffusion barrier layer (3.1, 3.2, 3.4) made of rhenium, molybdenum, tantalum, niobium, chromium, tungsten, zirconium, or combinations of these metals or compounds thereof, is disposed between the base (1.1, 1.2) and an X-ray active layer (2.1, 2.2, 2.4), the diffusion barrier layer functioning both as a bonding layer (4.1, 4.2, 4.4) and compensating layer.
  18. The X-ray rotating anode plate according to claim 17, characterized in that the diffusion barrier layer (3.1, 3.2, 3.3) on the X-ray rotating anode plate extends beyond the X-ray active layer.
  19. An X-ray rotating anode plate according to any one of the claims 17 or 18, characterized in that the X-ray active layer (2.2, 2.4) fills a groove, the cross-sectional shape of which corresponds to an isotherm of the temperature distribution in the area surrounding the X-ray active region in the operational state.
  20. An X-ray rotating anode plate according to any one of claims 17 to 19, characterized in that the qualitative and/or quantitative composition of the layers in the axial direction varies steadily or in layers.
  21. An X-ray rotating anode plate according to any one of the claims 1 to 16, characterized in that the base (1.3) is joined to a metal body (5) formed by a conventionally know method carries an X-ray active layer (2.3).
  22. A method for producing an X-ray rotating anode plate according to any one of claims 17 to 21, characterized in that the starting materials of the base and of the X-ray active layer are brought into an near net shape in a pressing mold in one operation, by simultaneously applying pressure, temperature and temporally varied electric currents, so as to be compressed to the final density, forming high-strength diffusion bonds between these starting materials.
  23. The method according to claim 22, characterized in that the starting materials also include those for a bonding layer and/or a diffusion barrier between those for the base and the X-ray active layer, in addition to other intermediate layers.
  24. A method according to any one of the claims 22 or 23, characterized in that the starting materials for the base layer according to claim 5 are introduced into a pressing mold as a preshaped body.
  25. A method according to any one of claims 22 to 24, characterized in that, after finishing the near net shape, the plate bevel is machined, whereafter an X-ray active layer is applied using suitable methods.
EP08836274A 2007-10-02 2008-10-01 X-ray rotating anode plate, and method for the production thereof Not-in-force EP2206136B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007047544 2007-10-02
DE102008021551 2008-04-28
PCT/DE2008/001629 WO2009043344A1 (en) 2007-10-02 2008-10-01 X-ray rotating anode plate, and method for the production thereof

Publications (2)

Publication Number Publication Date
EP2206136A1 EP2206136A1 (en) 2010-07-14
EP2206136B1 true EP2206136B1 (en) 2013-03-27

Family

ID=40317029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08836274A Not-in-force EP2206136B1 (en) 2007-10-02 2008-10-01 X-ray rotating anode plate, and method for the production thereof

Country Status (6)

Country Link
US (1) US8280008B2 (en)
EP (1) EP2206136B1 (en)
JP (1) JP2010541172A (en)
DE (1) DE102008050716A1 (en)
ES (1) ES2409579T3 (en)
WO (1) WO2009043344A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009022082A1 (en) 2009-05-19 2010-11-25 Arno Cloos Material, useful e.g. for crucible and mold for metal casting, comprises carbon nanotube and/or nano-graphite powder particle having maximum average grain size in three-dimensional nanometer region in quasihomogeneous spatial distribution
WO2010133189A1 (en) * 2009-05-19 2010-11-25 Arno Cloos Materials comprising carbon nanoparticles and the use thereof
CN103370764B (en) * 2010-12-16 2016-12-21 皇家飞利浦电子股份有限公司 There is refractory intermediate layer and the anode disk element of VPS focal track
US9449782B2 (en) * 2012-08-22 2016-09-20 General Electric Company X-ray tube target having enhanced thermal performance and method of making same
JP2014216290A (en) * 2013-04-30 2014-11-17 株式会社東芝 X-ray tube and anode target
US8942353B2 (en) 2013-06-11 2015-01-27 General Electric Company Field assisted sintering of X-ray tube components
AT14991U1 (en) * 2015-05-08 2016-10-15 Plansee Se X-ray anode
KR102030813B1 (en) * 2018-03-28 2019-10-10 경북대학교 산학협력단 Target of X-ray tube, X-ray tube with the same, and method for fabricating the X-ray target
CN110797244B (en) * 2019-10-31 2022-11-04 西北核技术研究院 Long-life high-current diode composite anode and manufacturing method thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132916A (en) 1977-02-16 1979-01-02 General Electric Company High thermal emittance coating for X-ray targets
JPS5857247A (en) * 1981-09-30 1983-04-05 Toshiba Corp Rotary anode for x-ray tube and its manufacture
AT376064B (en) 1982-02-18 1984-10-10 Plansee Metallwerk X-RAY TUBE ROTATING ANODE
DE3238352A1 (en) 1982-10-15 1984-04-19 Siemens AG, 1000 Berlin und 8000 München X-ray rotating anode
FR2625606B1 (en) * 1987-12-30 1995-05-19 Thomson Cgr METHOD FOR MANUFACTURING A ROTATING ANODE FOR X-RAY TUBE, AND ROTATING ANODE OBTAINED ACCORDING TO THIS METHOD
DE69121504T2 (en) 1990-10-01 1997-02-06 Toshiba Kawasaki Kk Rotating anode x-ray tube
JPH056750A (en) * 1991-06-27 1993-01-14 Toshiba Corp X-ray tube
US5866434A (en) * 1994-12-08 1999-02-02 Meso Scale Technology Graphitic nanotubes in luminescence assays
US6203814B1 (en) 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes
JPH09213248A (en) 1995-12-05 1997-08-15 General Electric Co <Ge> Manufacture of carbon-carbon compound material
US5825848A (en) * 1996-09-13 1998-10-20 Varian Associates, Inc. X-ray target having big Z particles imbedded in a matrix
US5943389A (en) 1998-03-06 1999-08-24 Varian Medical Systems, Inc. X-ray tube rotating anode
US6980627B2 (en) * 2000-10-06 2005-12-27 Xintek, Inc. Devices and methods for producing multiple x-ray beams from multiple locations
DE10155424B4 (en) 2001-11-12 2010-04-29 Qimonda Ag Method for the homogeneous magnetization of an exchange-coupled layer system of a digital magnetic memory cell device
US6645628B2 (en) 2001-11-13 2003-11-11 The United States Of America As Represented By The Secretary Of The Air Force Carbon nanotube coated anode
DE10301069B4 (en) 2003-01-14 2007-08-02 Siemens Ag Thermally resilient material composite of a fiber-reinforced and another material
JP2005166565A (en) 2003-12-05 2005-06-23 Mitsubishi Heavy Ind Ltd Negative electrode, x-ray generating device, and x-ray generation method
JP3900149B2 (en) * 2003-12-17 2007-04-04 三菱電機株式会社 Ignition coil
JP2005276760A (en) * 2004-03-26 2005-10-06 Shimadzu Corp X-ray generating device
US7194066B2 (en) * 2004-04-08 2007-03-20 General Electric Company Apparatus and method for light weight high performance target
JP2006086001A (en) 2004-09-15 2006-03-30 Shimadzu Corp X-ray tube device
JP2006164651A (en) * 2004-12-06 2006-06-22 Hitachi Zosen Corp Target for x-ray generation and its manufacturing method
DE102005034687B3 (en) * 2005-07-25 2007-01-04 Siemens Ag Rotary bulb radiator for producing x-rays has rotary bulb whose inner floor contains anode of first material; floor exterior carries structure for accommodating heat conducting element(s) of higher thermal conductivity material
DE102005039187B4 (en) 2005-08-18 2012-06-21 Siemens Ag X-ray tube
DE102005039188B4 (en) * 2005-08-18 2007-06-21 Siemens Ag X-ray tube
JP2007123022A (en) * 2005-10-27 2007-05-17 Shimadzu Corp X-ray source and target used for it
DE102006010232A1 (en) * 2006-03-02 2007-09-06 Schunk Kohlenstofftechnik Gmbh Method for producing a heat sink and heat sink

Also Published As

Publication number Publication date
WO2009043344A1 (en) 2009-04-09
DE102008050716A1 (en) 2009-04-09
ES2409579T3 (en) 2013-06-27
EP2206136A1 (en) 2010-07-14
US8280008B2 (en) 2012-10-02
US20100284520A1 (en) 2010-11-11
JP2010541172A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
EP2206136B1 (en) X-ray rotating anode plate, and method for the production thereof
EP2193538B1 (en) X-ray anode having improved heat dissipation
EP3688200B1 (en) Molybdenum sintered part and method of manufacturing
DE112010002588B4 (en) Erosion-resistant underground drill bits with infiltrated metal matrix bodies
EP3109889B1 (en) Rotating anode
EP2178664A1 (en) Aluminium-based duplex-aluminium material with a first phase and a second phase and method for producing said duplex-aluminium material
AT501142B1 (en) X-RAY TUBES WITH A ROSET AGENT COMPOSITE AND A METHOD FOR THE PRODUCTION THEREOF
DE102012217182A1 (en) Producing a refractory metal component
DE102015216749A1 (en) Additive production of a molded article
DE102009053636A1 (en) X-ray rotary anode plate for use in x-ray tube, has binding-and diffusion barrier layer provided for preventing solid diffusion of carbon, and non-surface processing x-ray active layer applied according to physical vapor deposition-method
EP3411516B1 (en) Crucible
DE102009022082A1 (en) Material, useful e.g. for crucible and mold for metal casting, comprises carbon nanotube and/or nano-graphite powder particle having maximum average grain size in three-dimensional nanometer region in quasihomogeneous spatial distribution
DE3637930C1 (en) Mfg. composite material for armour piercing ammunition - using alloy powder contg. tungsten@, nickel@, iron@, copper@, titanium@, aluminium@ and/or molybdenum@
DE102009056504A1 (en) Use of powder metallurgy starting material for producing an inclusion-free Nb alloy
EP4334052A1 (en) Method for manufacturing a cemented-carbide body
EP1560799A2 (en) Ceramic-metal or metal-ceramic composite
WO2010133189A1 (en) Materials comprising carbon nanoparticles and the use thereof
DE102008052363B4 (en) Anode for an X-ray tube
WO2023193030A1 (en) Rotor component for a rotary x-ray anode
DE102015218408A1 (en) Component and / or surface of a refractory metal or a refractory metal alloy for thermocyclic loads and manufacturing method thereto
DE102008034257B4 (en) Sintered sound and vibration damping material and method for its production
DE102023135181A1 (en) hard metal
DE102021120273A1 (en) Process for the production of a cemented carbide material with a reinforced binder phase
DE102021128591A1 (en) Process for producing a cemented carbide body
DE102009015156A1 (en) Method for the production of copper-based dispersion materials, comprises introducing base materials and particles of chemically inert materials in a container, and subjecting the material powder and the particle with mechanical impulses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 603887

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008009596

Country of ref document: DE

Effective date: 20130523

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2409579

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130628

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130729

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008009596

Country of ref document: DE

Effective date: 20140103

BERE Be: lapsed

Owner name: REIS, HANS-HENNING

Effective date: 20131031

Owner name: MELZER, DIETER

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140917

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140916

Year of fee payment: 7

Ref country code: ES

Payment date: 20141027

Year of fee payment: 7

Ref country code: GB

Payment date: 20141001

Year of fee payment: 7

Ref country code: FR

Payment date: 20140924

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20141007

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141028

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008009596

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 603887

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151002