EP2199824B1 - Method of selecting frequencies and transmitted beam directions for a radar using a frequency dispersive antenna - Google Patents

Method of selecting frequencies and transmitted beam directions for a radar using a frequency dispersive antenna Download PDF

Info

Publication number
EP2199824B1
EP2199824B1 EP09175493A EP09175493A EP2199824B1 EP 2199824 B1 EP2199824 B1 EP 2199824B1 EP 09175493 A EP09175493 A EP 09175493A EP 09175493 A EP09175493 A EP 09175493A EP 2199824 B1 EP2199824 B1 EP 2199824B1
Authority
EP
European Patent Office
Prior art keywords
frequency
frequencies
beam transmission
candidate
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09175493A
Other languages
German (de)
French (fr)
Other versions
EP2199824A1 (en
Inventor
Frédéric Barbaresco
Jean-Claude Deltour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2199824A1 publication Critical patent/EP2199824A1/en
Application granted granted Critical
Publication of EP2199824B1 publication Critical patent/EP2199824B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/24Systems for measuring distance only using transmission of interrupted, pulse modulated waves using frequency agility of carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/22Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0272Multifunction radar

Definitions

  • the present invention relates to the general field of multifunctional radar management systems with electronic scanning. It relates to methods for managing resources in radar time, that is to say the methods for optimally managing the sequence of the scores made.
  • pointing is meant the exploitation, for the implementation of the same function, of the signals obtained by transmitting a given waveform in a direction of the space given by the diagram of the antenna.
  • the invention applies in particular to the management of clocking by a dispersive slot antenna monitoring radar.
  • the phenomenon of dispersive aperture is a phenomenon that affects some radars (slot antenna radars). It is reflected in a known manner by a deterministic misalignment of the antenna beam as a function of frequency. These radars are generally standby radars, mono function, the cost of implementation is relatively low. For such radars, this phenomenon, which affects the pointing direction of the beam, is very generally considered as a disadvantage that needs to be corrected in real time. To do this, for example, the azimuth deviation caused is conventionally taken into account in the management of the scores so that, in view of this deviation, the desired waveform is transmitted in the desired direction.
  • the good management of the scores is therefore generally dependent on the accuracy and stability of the rotational speed of the antenna.
  • the position of the antenna at a given instant is different from that required.
  • the existence of a fluctuation of the rotational speed on the antenna revolution results in an uncontrolled fluctuation of the value of the difference in azimuth between adjacent beams, fluctuation which can not be regulated by the loaded means. management of radar weather resources.
  • dispersive antennas With regard to dispersive antennas, however, it is known to exploit the variation of the direction of pointing of the antenna lobe caused by a variation of the transmission frequency, so as to provide the radar in question with de-positioning capabilities. making it possible to perform radar transmissions and plays in directions having a given angle with respect to the axis of the antenna.
  • An object of the invention is to take advantage of the dispersive phenomenon to extend the operational capabilities of a dispersive antenna standby radar by making it capable of operating to a certain extent in the manner of a multi-function radar while ensuring the diversity of frequencies played (the equiprobability and non-predictability of the frequencies used according to the authorized frequency plans), the regulation of the load (relative to the current radar time budget and the speed variation of the antenna) and the robustness of the jamming radar (robustness against instantaneous listening of scrambled frequencies and information maintained in turn on scrambled frequency charts).
  • Another object of the invention relating to the management of the radar time budget, is to maintain the rate of operational use of the radar, by regulating, and no longer undergoing, variations in the instantaneous spacing between the contiguous scores. when the antenna period is not at its nominal value (rotation of the antenna on average slower or faster) and that the antenna rotation speed fluctuates quite strongly in the lathe.
  • the method according to the invention also comprises a final complementary step to deal with the case of the scores which are no longer visible at the end of the current iteration taking into account the direction of the antenna.
  • the method according to the invention further comprises a second intermediate step for selecting the scores declared as being the highest priority. This second intermediate step is placed after the second main step.
  • the step of creating new pointing requests proceeds for each candidate pointing to the association of a range of frequencies comprised in a range bounded by two frequencies f min. and f max .
  • the frequency f max is the the highest frequency frequency domain actually allocated to the radar.
  • the frequency f min is a randomly selected frequency in a frequency range extending from the lowest frequency of the authorized frequency plan, to a f- limit-stretching frequency greater than F min and less than f max .
  • the frequency f min can be obtained by a random draw which follows a decreasing density probability law when the frequency increases.
  • the step of creating new pointing requests takes into account, for the determination of the new candidate scores, a first angular window contiguous to the field of visibility for the determination of new watch scores and a second angular window contiguous to the first window for the determination of the other new scores.
  • the angular windows are determined so as to take into account the antenna rotation period and the average duration of the clockings.
  • the first angular window is determined so as to correspond to the angle of rotation of the antenna over a period equivalent to the maximum duration of a half-score, to which the delay is added. maximum that can exist between the moment when a score was selected and the moment when it was actually issued.
  • the size of the second angular window is in turn defined as being proportional to the DAz AdaptationCharge azimuth extension value which corresponds to a multiple of the azimuthal extension corresponding to the partial visibility range, DAz AdaptationCharge being in all cases lower than full visibility area.
  • the step of selecting the least scrambled eligible frequencies takes into account the information relating to the least scrambled frequencies for the selection of the scores in two possible ways, either locally by instantaneous listening of scrambled frequencies either globally through the use of available scrambled frequency cards.
  • the method according to the invention makes it possible to schedule on a dispersive antenna broadband scores referred to as "Recognition of non-cooperative targets" by the optimized sequencing of a series of successive narrow-band scores Each narrow-band score is played successively in time towards the target, using the antenna rotation to play the emissions in narrow bands one after the other.
  • the method according to the invention allows the insertion of addressed punches, tracking points for example, in the general sequencing of the scores, and this in a manner similar to a two-plane electronic scanning multifunction radar.
  • the Figures 1 and 2 schematically illustrate the effect of variations in the antenna rotation speed on the quality of coverage achieved by a standby radar whose management system of the scores does not take into account these variations.
  • the figure 1 corresponds to the theoretical case where the antenna of the radar rotates at a constant speed ⁇ 0 precisely known. In this circumstance, he It is possible to deterministically control the moment t when the lobe of the antenna is directed in a given direction ⁇ . As a result, it is possible to implement a standby mode of operation in which the space is regularly explored, the directions pointed, materialized by the arrows 11 on the figure 1 , being regularly spaced and precisely determined.
  • the figure 2 as for it presents the case of an antenna, for which the speed of rotation is not perfectly regulated.
  • the nominal rotational speed ⁇ 1 of the antenna is not strictly equal to the theoretical rotation speed ⁇ 0 .
  • FIG 14 The variation of the antenna rotation speed, which is reflected in a bias on this speed and in a fluctuation around this bias, has the following effect: consequence, as illustrated by figure 14 the scores 141 are more or less angularly apart.
  • Figure 14-a corresponds to a nominal speed with a difference between scores which corresponds to the 3 dB attenuation value of the corresponding beams (curves representing the beam width at -3 dB are then tangent to the junction point ).
  • Figure 14-b for its part, corresponds to a lower speed for which the consecutive pointing beams 142 and 143 are systematically tightened and superimposed in the zones corresponding to the 3 dB lobe widths.
  • Figure 14-c corresponds, meanwhile, to a higher speed for which the consecutive pointing beams 144 and 145 are systematically disjoint.
  • Figure 14-d corresponds to a situation of fluctuation of the speed around a nominal speed, situation for which the difference between the consecutive pointing beams, 146 and 147 or 148 and 149, evolves from point to point .
  • the operating principle of the method according to the invention is based on the use of the phenomenon of azimuth dispersivity caused to the emission (and reception) diagram of an antenna, of slot antenna type by for example, by the frequency variation of the radar equipped with such an antenna.
  • the figure 3 illustrates this phenomenon which results in the fact that, as a function of the emission frequency, the radiation pattern of such an antenna, represented by the dotted arrows 32 in the figure, has an angular offset 33 with respect to the direction antenna 31, offset whose value is a function of the transmission frequency.
  • antenna direction is meant here the axis perpendicular to the plane of the antenna. This angular offset is included in a sector 34 defined by the operating frequency range of the radar.
  • the sector 34 depends on the frequency band ⁇ f used by the radar and depends on the minimum and maximum frequencies that can be used in the band ⁇ f.
  • the sector 34 is shown as being shifted in advance with respect to the axis of the antenna 31.However, the sector 34 may be offset late with respect to the axis of the antenna 31. It may still be to be positioned on either side of the axis of the antenna 31 and in this case, for a slot antenna, physical constraints make the sector 34 is defined in two subsectors, right and left, separated by an unauthorized intermediate sector.
  • the method according to the invention finds its place in the control chain of the radar operating modes and is positioned between the module responsible for the “management of radar tasks” (GTR) and the module responsible for "Radar Pulse Burst Management” (GRR).
  • the radar task management module (GTR) provides the method according to the invention in the form of task execution requests, information relating to the characteristics of certain scores or families of scores which it requires execution, tracking pointers. mainly as well as some particular standby scores (watch defined by sector). These characteristics are notably the direction of the pointing, the nature of the waveform used, the period of renewal of the scores (for the periodic scores like "the pursuit") as well as the degree of priority associated with the execution of the score considered.
  • the method according to the invention takes into account these requests and incorporates them in a timely manner in a table that it maintains periodically over time.
  • This table, or table of candidate scores contains all the information relating to the scores that can be implemented during a given time interval, referred to herein as "candidate scores”.
  • the GPR method manages the scheduling of the scores recorded in the table taking into account the position of the antenna axis, the instantaneous antenna rotation speed and the usable frequencies (ie the allowed and uncuffed frequencies) by each score then delivers to the module responsible for the management of radar pulse bursts (GRR) the corresponding list of bursts to be transmitted.
  • GRR radar pulse bursts
  • the method according to the invention is a iterative process consisting of eight successive steps 51 to 58.
  • the two steps 52 and 54 have an optional character while the steps 51, 53, 55 to 58 constitute the essential steps of the method.
  • Step 58 is a final step that can be associated with the process and that is intended to deal with the case of scores that have not finally been selected will no longer be visible at the next iteration, given the nominal direction of the antenna.
  • the method according to the invention draws up and maintains the table 50 of the candidate scores, each candidate score being initially associated, at each iteration, with one or more transmission frequencies (a transmission frequency that can be associated with several candidate scores for this step), then regularly analyzes the scores contained in the table so as to determine the order in which these candidate scores are to be implemented.
  • its purpose is to select at each iteration one of the candidate scores contained in the table 50 and one of the candidate frequencies initially associated with this score.
  • This pair (pointing, frequency) is the first in date to be implemented by the radar. It should be noted that there is no bijection in the table between a score and a frequency.
  • a candidate score may have several associated frequencies and conversely a candidate frequency may be associated with several candidate scores.
  • the set of transmission frequencies associated with each score is determined from a random draw realized in the frequency plan globally attributed to the radar for its operation.
  • this random draw is a particular draw, whose main purpose is to ensure the diversity of frequencies that will ultimately played by the radar, all points combined.
  • each candidate score is associated, for a given iteration, with a set of frequencies of its own, two scores can however, by chance, be associated with the same set of frequencies which represents a subset the frequency plan assigned to the radar. This subset is thus defined by a frequency f min and a frequency f max .
  • each of the steps 51 to 56 applies a specific treatment to the candidate scores stored in the table and the associated frequencies
  • the treatment applied to each step to remove from the final selection is one or more scores (steps 51, 52, 54 of the method) or one or more frequencies of the frequency plan allocated to the radar (steps 53, 55 and 56).
  • the processing implemented at a given stage is applied either to the selected candidate scores or to the candidate frequencies retained at the end of the preceding steps.
  • the scores and frequencies that are not discarded at the end of a given stage are subject to the selection of the next step, while the scores that are discarded are set aside for the remainder of the iteration so as to be optionally analyzed for again during the next iteration.
  • the first step 51 consists, as illustrated by figures 6 and 8 , to determine among the candidate scores contained in the table, the scores 81, 82 whose managed range of visibility, which represents a fraction of the allocated range of visibility, does not contain the direction of the antenna at the instant considered. These scores are in principle excluded from the rest of the selection.
  • the table of candidate scores includes for each score at a time the waveform characteristics associated with the score, the level of priority of the score considered with respect to the other scores of the table, the required direction ⁇ 0 of the score, the duration of the score and the fraction of the visibility range allocated to the score.
  • the allocated range of visibility associated with a pointing as the azimuthal aperture accessible by deflection of the radar beam at the instant considered, given the operating frequencies available (usable) to achieve a score in the direction considered .
  • the managed visibility area associated with a score is also defined as the azimuthal aperture accessible by deflection of the radar beam at the instant considered, taking into account the operating frequencies (candidate frequencies) associated by taking the score considered in the candidate score table, these frequencies being selected in the range of usable frequencies.
  • the managed visibility domain is a fraction of the allocated visibility domain. It is determined from the frequency range allocated to the score considered. This frequency range itself represents a subset of the authorized frequency plan allocated to the radar.
  • the allowed frequency plan can take many forms, as illustrated in Figures 6-a through 6-c of the figure 6 . It may for example consist of a set of M consecutive frequencies 61 covering the entire frequency plan B allocated to the operation of the radar (6-a) or a sub-band of N contiguous frequencies 62 (6-b) of the band of B. It may also consist (6-c) in a set of P frequencies 63 distributed disjointly or not on the whole of the band B (called gap gap comb). It will be noted here that the frequency band B allocated to the radar is very generally a set of discrete frequencies regularly spaced between a frequency F min and a frequency F max .
  • the frequency range assigned to each pointing request is determined, as illustrated by the diagram of FIG. figure 6 by a minimum frequency f min chosen by means of a random process among the frequencies constituting the authorized frequency plan B which are lower than a given frequency f draw limit , and a maximum frequency f max greater than f draw limit and lower or equal to the maximum frequency F max of this frequency plan.
  • the set of n frequencies belonging to the interval [f s f max ] forms an area of the managed visibility domain called security window.
  • n is defined as a small number in front of the number of authorized frequencies. The principle of determination of f min is explained in the rest of the description relating to step 57.
  • step 51 selects the scores considered as visible with respect to the criteria mentioned above, the other candidate scores being then discarded. It should also be noted that, if certain candidate frequencies are associated only with candidate scores that are discarded, these frequencies are, consequently, immediately discarded from the choices made subsequently during the iteration considered. Thus, the selection made in step 51, a step which concerns in principle only the candidate scores, can in practice influence the selection of the frequencies.
  • the second step 52 is applied to the candidate scores that were not rejected at the end of the first step 51. It consists, as illustrated by FIG. figure 9 , to discard the scores 82 which, if finally selected during the iteration considered, could lead to the loss of one or more other candidate scores 81 whose deadline is close, that is to say points 81 which, if they were discarded, could no longer be selected at the next iteration, given the time required to issue the score 82 retained at the iteration considered. This is particularly the case if, as illustrated by figure 9 , the direction of the antenna is at the moment of the selection near the exit 93 of the managed visibility area of the (or) pointing (s) aside (s).
  • the principle of this second step is therefore to take into account the execution times 91 and 92 of the scores in question 81 and 82 to determine whether the selection of a candidate score 82 operated at the current iteration may eliminate another candidate score 81 at the next iteration, this score, whose deadline is close, may or may not be a candidate score at the time of selection.
  • the selected candidate scores are either the scores already selected during step 51, or the scores considered to be priorities according to their due dates. In order to deal with the case where several points close to their due date are likely to be lost, the process begins iteratively the tests with the highest priority of these. In case the remaining score at this stage is no playable relative to its frequency, previously deselected scores are reactivated.
  • the third step 53 of the method according to the invention aims to select from the scores selected at the end of the previous step, step 51 or 52 as the case may be, only the scores of which at least one of the associated frequencies corresponds to the azimuthal deflection to operate (relative to the direction of the antenna) to perform this pointing in the required direction, these frequencies being the authorized frequencies corresponding to the managed range of visibility specific to each score.
  • the principle of this selection is illustrated by illustrations 10-a and 10-b of the figure 10 which illustrate two possible cases, the first case 10-a corresponding to a score associated with two frequencies.
  • the frequency or frequencies allocated to it which correspond to the moment of selection to the required direction 101 or 102 (theoretical frequency) 101 of the score, are determined for each score, taking into account a tolerance represented by the window. 103 on illustrations 10-a and 10-b of the figure 10 .
  • Figure 10-a presents the case where for a given score one can only retain one of the associated frequencies 105.
  • Figure 10-b presents the case where for a given score two of the associated frequencies can be retained.
  • 104 and 105 The tolerance materialized by the window 103 makes it possible to limit the difference between the required direction 101 or 102 and the actually pointed direction 104 or 105 because the available frequencies are distributed in a discrete manner.
  • the tolerance window is defined according to the performance constraints of the radar.
  • a candidate frequency 105 may be associated with several candidate scores, and conversely a candidate score may have several frequencies 104, 105 candidates ).
  • the fourth step 54 of the method is applied to candidate scores that were not rejected after the third step 53. It consists in taking into account the level of priority assigned to each of the candidate scores. This level of priority depends, in particular, on the nature of the score considered (for example, different priorities may be assigned according to the importance of the type of score, such as between standby and tracking scores) and the current position of the direction of travel. the antenna in its field of visibility managed (a pointing whose antenna direction enters its window backup sees its priority increase).
  • a score is of a priority level higher than the priority levels of the other scores selected after the third step 53, this score is retained.
  • these scores are retained.
  • step 55 and following can be operably inserted into the GRR, since the ILJF instant listening method is very time-constrained.
  • the sixth step 56 of the method is applied to the candidate scores which were not rejected after the fifth step 55. It constitutes the last selection step and consists in retaining only the candidate score associated with the least used candidate frequency in previous iterations. This score and the corresponding frequency form the pair (pointing, frequency) finally selected.
  • the test performed during this sixth stage, illustrated by the figure 11 is based on the study of the histogram of the authorized frequencies emitted during the last laps of the antenna (for each authorized frequency percentage of scores transmitted at this frequency).
  • the selected frequency (113) is the one which is closest to the nominal frequency f 0 (114 for the frequency 112, 115 for the frequency 113) of the candidate score with which it is associated.
  • the candidate score associated with this frequency is retained and the other scores are discarded.
  • the one selected will be the one for which the antenna direction is closest to the exit of its managed visibility domain, or which is equivalent, the score of which time is the closest.
  • the characteristic waveforms of this pointing are transmitted to the radar pulse burst management (GRR) which will then produce the temporal sequencing of the transmission phase and the radar reception phase corresponding to this score.
  • the candidate score is then either removed from the candidate clocking table (case of idle clocking), or kept in memory in this table but in a deactivated form (case tracking pointers, which are reactivated according to their period of time). program).
  • step 57 of the method according to the invention makes it possible to associate with each of the candidate scores, a frequency range whose starting frequency, f min , is determined so as to induce a more homogeneous distribution of the frequencies that will be set. implemented.
  • These frequencies constitute the zone named "zone of draw of the first frequency".
  • a given number of frequencies is thus assigned to each candidate score at the time of its integration into the table.
  • the determination of the frequency range associated with each candidate score is advantageously carried out completely independently of one score to another.
  • Each frequency determines, taking into account the position of the antenna and its rotational speed, a possible time of realization of the pointing considered.
  • the frequency range thus determined thus makes it possible to define for each pointing request an angular zone of variable size (random) called the managed visibility area which when traversed by the antenna direction allows the radar to implement the matching score using one of the frequencies in the range.
  • the candidate scores 81 and 82 it is possible to determine, for a given direction of the antenna, the candidate scores 81 and 82 likely to be implemented at a given instant, since the antenna azimuth is in at least one of the visibility of candidate scores.
  • step 57 also has the function of constituting dynamically at each iteration, as illustrated by FIG. figure 12 , new pointing requests to take into account.
  • This news queries are both new standby watch requests whose directions are included in a first angular window 121 contiguous to the field of view 122 of the radar (full visibility range if all frequencies are allowed or partial visibility area if only one part of the frequencies is allowed) as well as requests for other types of punishments that may occur, for example pursuit requests, queries whose directions are included in a second angular window 123 contiguous to the first window 121.
  • the position of the Antenna 31 taken for origin is that obtained after taking into account the last score chosen.
  • the size of the first angular window 121 is determined so as to correspond to the angle of rotation of the antenna over a period equivalent to the maximum duration of one half. a score to which is added the maximum delay that may exist between the moment when a score was selected and the moment when it is actually issued.
  • the size of the second angular window 123 is in turn determined as being proportional to the azimuth extension value DAz AdaptationCharge which corresponds to a multiple of the azimuthal extension of the partial visibility domain in the limit of the full visibility range. This window may be for example equal to 0.5 times the azimuth extension value DAz AdaptationCharge .
  • the method according to the invention takes into account the pointing requests concerning scores other than standby scores whose direction is included in the second window 123 and the last standby pointer created at the previous iteration.
  • the standby point of view considered is directed to the direction of the previous standby pointing, to which is added an azimuth deviation Difference Standby defined and calculated as follows.
  • EcartAz VeilleCT DAz Charge ⁇ EcartAz VeilleLT / DAz AdaptationCharge - DAz Charge
  • EcartAz VeineCT is carried out only in case of detection of a new cause of overload or under load (as for example the taking counting a tracking point or a variation of the antenna rotation speed) or when the state of charge has returned to normal. In the latter case, the difference in azimuth is considered to be given by the component EcartAz VeilieLT .
  • FIG. 13 The principle of managing "dead times" by inserting technical scores is illustrated in figure 13 . If at any given time t 1 , no active candidate score is available, either whereas, given the azimuth of the antenna, the visibility ranges, 134, 135 or 136, of available candidate scores 131, 132 or 133, are not accessible by the antenna beam at time t 1 , that part of the field of view 138 of one or more available candidate scores 137 corresponding to the frequencies associated with these scores is not accessible by the antenna beam at time t (see FIG. figure 10 which shows examples of pointing accessible by the antenna due to the tolerance materialized by the window 103), a technical score 139 of a given duration is inserted.
  • the technical score rate is regulated via the function 57 (the difference between scores takes into account a percentage of time for the technical scores defined a priori and fixed by the operator) .
  • the method according to the invention advantageously makes it possible, with regard to the pointing to be performed during the period of rotation of the antenna, to substitute for the notion of execution time the notion of interval of execution time. It thus makes it possible to optimally manage the radar load by determining the order of execution of the scores to be executed in a given time interval (which it has itself created), and makes it possible to insert addressed scores (such as tracking points) to turn this radar into a multifunction radar.
  • the method makes it possible to harmoniously manage the variations of the radar load (caused by the insertion of tracking points and by the fluctuation of the antenna rotation speed) by adapting the spacing of the watch scores to these variations of charge. It also makes it possible to effectively manage the frequencies, by playing randomly and homogeneously the authorized or least scrambled frequencies. With respect to interference, the method makes it possible to adapt to the scrambling card maintained in turn and instantaneous listening of the least scrambled frequencies, to select the best frequencies to use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

La présente invention concerne le domaine général des systèmes de gestion des radars multifonctions à balayage électronique. Elle se rapporte aux procédés de gestion des ressources en temps radar, c'est-à-dire les procédés permettant de gérer de manière optimale l'enchainement des pointages effectués. Par pointage on entend l'exploitation, pour la mise en oeuvre d'une même fonction, des signaux obtenus par émission d'une forme d'onde donnée dans une direction de l'espace donnée par le diagramme de l'antenne. L'invention s'applique en particulier à la gestion des pointages par un radar de veille à antenne à fente dispersive.The present invention relates to the general field of multifunctional radar management systems with electronic scanning. It relates to methods for managing resources in radar time, that is to say the methods for optimally managing the sequence of the scores made. By pointing is meant the exploitation, for the implementation of the same function, of the signals obtained by transmitting a given waveform in a direction of the space given by the diagram of the antenna. The invention applies in particular to the management of clocking by a dispersive slot antenna monitoring radar.

Le phénomène d'ouverture dispersive, est un phénomène qui affecte certains radars (radars à antenne à fente). Il se traduit notamment de manière connue par un dépointage déterministe du faisceau d'antenne en fonction de la fréquence. Ces radars sont généralement des radars de veille, mono fonction, dont le coût de réalisation est relativement bas.
Pour de tels radars, ce phénomène, qui affecte la direction de pointage du faisceau, est très généralement considéré comme un inconvénient qui nécessite d'être corrigé en temps réel. Pour ce faire, par exemple, la déviation en azimut occasionnée est classiquement prise en compte dans la gestion des pointages de façon à ce que, compte tenu de cette déviation, on émette la forme d'onde voulue dans la direction souhaitée.
The phenomenon of dispersive aperture is a phenomenon that affects some radars (slot antenna radars). It is reflected in a known manner by a deterministic misalignment of the antenna beam as a function of frequency. These radars are generally standby radars, mono function, the cost of implementation is relatively low.
For such radars, this phenomenon, which affects the pointing direction of the beam, is very generally considered as a disadvantage that needs to be corrected in real time. To do this, for example, the azimuth deviation caused is conventionally taken into account in the management of the scores so that, in view of this deviation, the desired waveform is transmitted in the desired direction.

Dans le cas d'un radar de veille classique et en particulier dans le cas d'un radar de veille à antenne dispersive, la simplicité du fonctionnement mis en oeuvre passe par une définition figée et déterministe de l'enchaînement des pointages et des fréquences au cours du balayage de l'espace par l'antenne. Cet enchainement est préétabli à l'avance pour différents plans de fréquences (fréquences autorisées et/ou non brouillées). Il est généralement mémorisé dans une table qui est lue de manière périodique avec une périodicité constante qui correspond à la vitesse de rotation théorique de l'antenne. De la sorte, pour une direction pointée donnée, l'antenne étant considérée comme ayant une vitesse de rotation déterminée et constante, la forme d'onde jouée est connue de façon déterministe d'un tour à l'autre.In the case of a conventional radar standby and in particular in the case of a dispersive antenna standby radar, the simplicity of the operation implemented through a fixed and deterministic definition of the sequence of pointing and frequencies to during the scanning of space by the antenna. This sequence is pre-established in advance for different frequency plans (authorized and / or non-scrambled frequencies). It is generally stored in a table which is read periodically with a constant periodicity which corresponds to the theoretical rotation speed of the antenna. In this way, for a given dotted direction, the antenna being considered to have a determined and constant rotational speed, the waveform played is known deterministically from one turn to another.

Dans ce type de radar, la bonne gestion des pointages est donc généralement dépendante de la précision et de la stabilité de la vitesse de rotation de l'antenne. Ainsi si la vitesse réelle de rotation de l'antenne n'est pas égale à la vitesse théorique, la position de l'antenne à un instant donné est différente de celle requise. De plus l'existence d'une fluctuation de la vitesse de rotation sur le tour d'antenne se traduit par une fluctuation non maîtrisée de la valeur de l'écart en azimut entre faisceaux adjacents, fluctuation qui ne peut être régulée par les moyens chargés de la gestion des ressources de temps radar.In this type of radar, the good management of the scores is therefore generally dependent on the accuracy and stability of the rotational speed of the antenna. Thus, if the actual speed of rotation of the antenna is not equal to the theoretical speed, the position of the antenna at a given instant is different from that required. Moreover, the existence of a fluctuation of the rotational speed on the antenna revolution results in an uncontrolled fluctuation of the value of the difference in azimuth between adjacent beams, fluctuation which can not be regulated by the loaded means. management of radar weather resources.

Concernant les radars de veille à antennes dispersives, il est cependant connu d'exploiter la variation de la direction de pointage du lobe d'antenne occasionnée par une variation de la fréquence d'émission, de façon à doter le radar considéré de capacités de dépointage permettant de réaliser des émissions et des écoutes radar dans des directions présentant un angle donné par rapport à l'axe de l'antenne. Le fascicule de brevet des Etats-Unis d'Amérique délivré à la société COM DEV Ltd, portant le numéro 4,868,574, décrit notamment un radar à antenne dispersive comportant des moyens d'émission et de réception lui permettant d'exploiter cette particularité pour réaliser un pointage du faisceau d'antenne dans des directions variables en fonction de la fréquence exploitée.With regard to dispersive antennas, however, it is known to exploit the variation of the direction of pointing of the antenna lobe caused by a variation of the transmission frequency, so as to provide the radar in question with de-positioning capabilities. making it possible to perform radar transmissions and plays in directions having a given angle with respect to the axis of the antenna. The United States patent specification issued to COM DEV Ltd, numbered 4,868,574, notably describes a dispersive antenna radar comprising transmitting and receiving means enabling it to exploit this feature to realize a pointing the antenna beam in varying directions depending on the frequency used.

Cependant, lorsque l'on souhaite disposer d'un radar capable d'enchaîner des pointages, non plus de manière prédéterminée mais de manière dynamique, il est connu d'utiliser un radar multifonctions de type radar Si balayage électronique, à antenne tournante, équipé de moyens permettant une gestion des pointages réalisés dans le faisceau d'antenne pour chaque azimut et pour chaque tour d'antenne. Une telle gestion est notamment décrite dans la demande de brevet européen déposée par la demanderesse et publiée sous la référence EP 0645839 . Elle est cependant particulièrement adaptée au fonctionnement de tels radars et n'est pas directement utilisable pour gérer le fonctionnement d'un radar de veille, à antenne dispersive, de conception plus simple et ne disposant pas, en particulier, de capacités de dépointage proprement dites du faisceau d'antenne.However, when it is desired to have a radar capable of sequencing stints, no longer in a predetermined manner but in a dynamic manner, it is known to use a radar-type multi-function radar If electronic scanning, rotating antenna, equipped means for managing the scores made in the antenna beam for each azimuth and for each antenna tower. Such management is described in particular in the European patent application filed by the applicant and published under the reference EP 0645839 . However, it is particularly adapted to the operation of such radars and is not directly usable to manage the operation of a watch radar, to dispersive antenna, simpler design and not having, in particular, actual misalignment capabilities of the antenna beam.

Un but de l'invention est de tirer parti du phénomène de dispersivité pour étendre les capacités opérationnelles d'un radar de veille à antenne dispersive en le rendant capable de fonctionner dans une certaine mesure à la manière d'un radar multifonction tout en assurant la diversité des fréquences jouées (l'équiprobabilité et la non-prédictibilité des fréquences utilisées suivant les plans de fréquences autorisés), la régulation de la charge (relatif au budget temps radar courant et la variation de vitesse de l'antenne) et la robustesse du radar au brouillage (robustesse vis à vis de l'écoute instantanée des fréquences brouillées et des informations entretenues tour à tour sur les cartes de fréquences brouillées). Un autre but de l'invention, relatif à la gestion du budget de temps radar, est de maintenir le taux d'utilisation opérationnelle du radar, en régulant, et non plus en subissant, les variations de l'écartement instantané entre les pointages contigus lorsque la période d'antenne n'est pas à sa valeur nominale (rotation de l'antenne en moyenne plus lente ou plus rapide) et que la vitesse de rotation d'antenne fluctue assez fortement dans le tour.An object of the invention is to take advantage of the dispersive phenomenon to extend the operational capabilities of a dispersive antenna standby radar by making it capable of operating to a certain extent in the manner of a multi-function radar while ensuring the diversity of frequencies played (the equiprobability and non-predictability of the frequencies used according to the authorized frequency plans), the regulation of the load (relative to the current radar time budget and the speed variation of the antenna) and the robustness of the jamming radar (robustness against instantaneous listening of scrambled frequencies and information maintained in turn on scrambled frequency charts). Another object of the invention, relating to the management of the radar time budget, is to maintain the rate of operational use of the radar, by regulating, and no longer undergoing, variations in the instantaneous spacing between the contiguous scores. when the antenna period is not at its nominal value (rotation of the antenna on average slower or faster) and that the antenna rotation speed fluctuates quite strongly in the lathe.

A cet effet l'invention a pour objet un procédé pour gérer l'émission des pointages par un radar comportant une antenne dispersive dont la vitesse est susceptible de varier au cours du temps, la gestion étant effectuée en fonction de l'angle de rotation de l'antenne, le procédé étant appliqué à des pointages candidats, chaque pointage candidat étant associé dans une table à une ou plusieurs fréquences candidates, caractérisé en ce qu'il comporte les étapes suivantes:

  • une étape de sélection des pointages requis dont la direction est visible à l'instant considéré;
  • une étape de sélection par les fréquences autorisées;
  • une étape de sélection des fréquences éligibles les moins brouillées;
  • une étape de sélection des fréquences éligibles les moins utilisées;
  • une étape de création de nouvelles requêtes de pointages;
les étapes du procédé formant un cycle répété séquentiellement, la table qui associe les pointages candidats et les fréquences candidates étant actualisée à chaque cycle.For this purpose, the subject of the invention is a method for managing the emission of scores by a radar comprising a dispersive antenna whose speed is liable to vary over time, the management being carried out as a function of the angle of rotation of the antenna. the antenna, the method being applied to candidate scores, each candidate score being associated in a table with one or more candidate frequencies, characterized in that it comprises the following steps:
  • a step of selecting the required scores whose direction is visible at the moment considered;
  • a selection step by the authorized frequencies;
  • a step of selecting the least scrambled eligible frequencies;
  • a step of selecting the least used eligible frequencies;
  • a step of creating new score requests;
the steps of the process forming a sequentially repeated cycle, the table which associates the candidate scores and the candidate frequencies being updated at each cycle.

Dans un mode de mise en oeuvre préféré, le procédé selon l'invention comporte en outre une étape complémentaire finale pour traiter le cas des pointages qui ne sont plus visibles à l'issue de l'itération courante compte tenu de la direction de l'antenne.In a preferred embodiment, the method according to the invention also comprises a final complementary step to deal with the case of the scores which are no longer visible at the end of the current iteration taking into account the direction of the antenna.

Dans un mode de mise en oeuvre particulier, le procédé selon l'invention comporte en outre une première étape intermédiaire qui consiste, à écarter de la sélection les pointages candidats qui, s'ils étaient finalement sélectionnés lors de l'itération considérée, pourraient induire la perte d'un ou de plusieurs autres pointages candidats dont la durée de visibilité est faible. Cette première étape intermédiaire est placée après la première étape principale.In a particular embodiment, the method according to the invention also comprises a first intermediate step which consists in excluding from the selection the candidate scores which, if they were finally selected during the iteration considered, could induce the loss of one or more other candidate scores whose visibility is low. This first intermediate step is placed after the first main step.

Dans un mode de mise en oeuvre particulier, pouvant être combiné avec le précédant, le procédé selon l'invention comporte en outre une deuxième étape intermédiaire pour effectuer la sélection des pointages déclarés comme étant les plus prioritaires. Cette seconde étape intermédiaire est placée après la deuxième étape principale.In a particular embodiment, which can be combined with the preceding, the method according to the invention further comprises a second intermediate step for selecting the scores declared as being the highest priority. This second intermediate step is placed after the second main step.

Dans un mode de mise en oeuvre préféré du procédé selon l'invention, l'étape de création de nouvelles requêtes de pointages procède pour chaque pointage candidat à l'association d'une plage de fréquences comprises dans un intervalle borné par deux fréquences fmin et fmax. La fréquence fmax est la fréquence la plus élevée du domaine de fréquences effectivement allouées au radar. La fréquence fmin est une fréquence choisie de manière aléatoire dans un domaine de fréquence s'étendant de la fréquence la plus basse du plan de fréquences autorisées, à une fréquence flimite_tirage supérieure à Fmin et inférieure à fmax.In a preferred embodiment of the method according to the invention, the step of creating new pointing requests proceeds for each candidate pointing to the association of a range of frequencies comprised in a range bounded by two frequencies f min. and f max . The frequency f max is the the highest frequency frequency domain actually allocated to the radar. The frequency f min is a randomly selected frequency in a frequency range extending from the lowest frequency of the authorized frequency plan, to a f- limit-stretching frequency greater than F min and less than f max .

Dans ce mode de mise en oeuvre préféré, la fréquence fmin peut être obtenue par un tirage aléatoire qui suit une loi de probabilité de densité décroissante lorsque la fréquence augmente.In this preferred embodiment, the frequency f min can be obtained by a random draw which follows a decreasing density probability law when the frequency increases.

Dans ce mode de mise en oeuvre préféré, la fréquence flimite_tirage peut être déterminée de façon à définir avec fmax un intervalle de fréquences contenant un nombre n de fréquences autorisées faible devant le nombre de fréquences autorisées.In this preferred embodiment, the frequency f_drawing limit can be determined so as to define with f max a frequency interval containing a number n of low allowed frequencies in front of the number of authorized frequencies.

Dans un mode de mise en oeuvre préféré du procédé selon l'invention, l'étape de création de nouvelles requêtes de pointages prends en compte, pour la détermination des nouveaux pointages candidats, une première fenêtre angulaire contiguë au domaine de visibilité pour la détermination des nouveaux pointages de veille et une seconde fenêtre angulaire contiguë à la première fenêtre pour la détermination des autres nouveaux pointages. Les fenêtres angulaires sont déterminées de façon à prendre en compte la période de rotation d'antenne et la durée moyenne des pointages.In a preferred embodiment of the method according to the invention, the step of creating new pointing requests takes into account, for the determination of the new candidate scores, a first angular window contiguous to the field of visibility for the determination of new watch scores and a second angular window contiguous to the first window for the determination of the other new scores. The angular windows are determined so as to take into account the antenna rotation period and the average duration of the clockings.

Dans ce mode de mise en oeuvre préféré, la première fenêtre angulaire est déterminée de façon à correspondre à l'angle de rotation de l'antenne sur une durée équivalente à la durée maximale d'un demi-pointage, à laquelle on ajoute le retard maximum pouvant exister entre le moment ou un pointage a été sélectionné et le moment où il est effectivement émis. La taille de la seconde fenêtre angulaire est quant à elle définie comme étant proportionnelle à la valeur d'extension azimutale DAzAdaptationCharge qui correspond à un multiple de l'extension azimutale correspondant au domaine de visibilité partiel, DAzAdaptationCharge étant dans tous les cas inférieure au domaine de visibilité complet.In this preferred embodiment, the first angular window is determined so as to correspond to the angle of rotation of the antenna over a period equivalent to the maximum duration of a half-score, to which the delay is added. maximum that can exist between the moment when a score was selected and the moment when it was actually issued. The size of the second angular window is in turn defined as being proportional to the DAz AdaptationCharge azimuth extension value which corresponds to a multiple of the azimuthal extension corresponding to the partial visibility range, DAz AdaptationCharge being in all cases lower than full visibility area.

Dans un mode de mise en oeuvre préféré du procédé selon l'invention, l'étape de sélection des fréquences éligibles les moins brouillées prend en compte les informations relatives aux fréquences les moins brouillées pour la sélection des pointages de deux façons possibles, soit localement par écoute instantanée des fréquences brouillées soit globalement par l'utilisation des cartes de fréquences brouillées disponibles.In a preferred embodiment of the method according to the invention, the step of selecting the least scrambled eligible frequencies takes into account the information relating to the least scrambled frequencies for the selection of the scores in two possible ways, either locally by instantaneous listening of scrambled frequencies either globally through the use of available scrambled frequency cards.

Avantageusement, le procédé selon l"invention permet d'ordonnancer sur une antenne dispersive des pointages large bande dites de "Reconnaissance de cibles non coopératives" par le séquencement optimisé d'une série de pointages successifs bande étroite. Chaque pointage bande étroite est joué successivement dans le temps en direction de la cible, en utilisant la rotation d'antenne pour jouer les unes après les autres les émissions en bandes étroites.Advantageously, the method according to the invention makes it possible to schedule on a dispersive antenna broadband scores referred to as "Recognition of non-cooperative targets" by the optimized sequencing of a series of successive narrow-band scores Each narrow-band score is played successively in time towards the target, using the antenna rotation to play the emissions in narrow bands one after the other.

Avantageusement également, le procédé selon l'invention permet l'insertion de pointages adressés, des pointages de poursuites par exemple, dans le séquencement général des pointages, et ce de façon similaire à un radar multifonction à balayage électronique deux plans.Advantageously also, the method according to the invention allows the insertion of addressed punches, tracking points for example, in the general sequencing of the scores, and this in a manner similar to a two-plane electronic scanning multifunction radar.

Les caractéristiques et avantages de l'invention seront mieux appréciés grâce à la description qui suit, description qui expose l'invention au travers d'un mode de réalisation particulier pris comme exemple non limitatif et qui s'appuie sur les figures annexées, figures qui représentent :

  • les figures 1 et 2, des illustrations du problème posé dans la gestion des pointages par la présence de fluctuations temporelles non maîtrisées de la vitesse de rotation d'antenne ;
  • la figure 3, une illustration des paramètres décrivant le phénomène de dispersivité;
  • la figure 4, une illustration du principe d'exploitation du phénomène de dispersivité par le procédé selon l'invention;
  • la figure 5, un organigramme de principe des différentes étapes du procédé de planification des pointages selon l'invention;
  • la figure 6, des illustrations de différents exemples de répartition des plans de fréquences de fonctionnement d'un radar ainsi que des paramètres de gestion des fréquences associées à un pointage;
  • la figure 7, une illustration de la manière dont la borne inférieure de la fenêtre des fréquences de fonctionnement dont l'utilisation est autorisée, attribuée à chaque pointage, est tirée aléatoirement;
  • la figure 8, une illustration du principe de sélection des pointages à partir de leur domaine de visibilité géré et la position courante de l'antenne en azimut;
  • la figure 9, une illustration de la méthode pour limiter le nombre des pointages susceptibles d'être non exécutés du fait de l'expiration des intervalles de temps durant lesquels ils sont exécutables;
  • la figure 10, l'illustration de la façon dont la troisième étape du procédé selon l'invention prend en compte le caractère discret des fréquences de fonctionnement et effectue la sélection des fréquences discrètes candidates compatibles de la fréquence théorique correspondant à la direction du pointage considéré;
  • la figure 11, les illustrations des différents principes de sélection d'une fréquence, pouvant être mis en oeuvre par la sixième étape du procédé selon l'invention, lorsque plusieurs fréquences sont encore candidates à ce stade;
  • la figure 12, l'illustration du principe de réactualisation de la table des pointages candidats mis en oeuvre au cours de la septième étape du procédé selon l'invention.
  • la figure 13, l'illustration du principe de la gestion des temps morts (instant pour lequel aucun pointage n'est jouable ou ne peut être joué) par l'insertion de pointages techniques de durée déterminée;
  • la figure 14, une illustration des effets provoqués par une vitesse de rotation d'antenne différente de la valeur nominale attendue et par des fluctuations de cette vitesse de rotation.
The features and advantages of the invention will be better appreciated thanks to the description which follows, description which sets forth the invention through a particular embodiment taken as a non-limiting example and which is based on the appended figures, figures which represent:
  • the Figures 1 and 2 , illustrations of the problem posed in the management of the scores by the presence of uncontrolled time fluctuations of the antenna rotation speed;
  • the figure 3 , an illustration of the parameters describing the phenomenon of dispersivity;
  • the figure 4 an illustration of the principle of exploitation of the phenomenon of dispersivity by the process according to the invention;
  • the figure 5 a flowchart of principle of the different stages of the method of planning the clockings according to the invention;
  • the figure 6 , illustrations of different examples of the distribution of the operating frequency plans of a radar as well as the parameters management of frequencies associated with a score;
  • the figure 7 , an illustration of how the lower limit of the operating frequency window authorized for use, assigned to each score, is drawn randomly;
  • the figure 8 , an illustration of the principle of selecting the scores from their field of view and the current position of the antenna in azimuth;
  • the figure 9 , an illustration of the method for limiting the number of punishments that may be missed because of the expiration of the time intervals during which they are executable;
  • the figure 10 illustrating how the third step of the method according to the invention takes into account the discrete character of the operating frequencies and selects the compatible candidate discrete frequencies of the theoretical frequency corresponding to the direction of the pointing considered;
  • the figure 11 the illustrations of the different principles of selection of a frequency, which can be implemented by the sixth step of the method according to the invention, when several frequencies are still candidates at this stage;
  • the figure 12 , the illustration of the principle of reactualization of the table of candidate clockings implemented during the seventh step of the method according to the invention.
  • the figure 13 , the illustration of the principle of the management of idle time (instant for which no score is playable or can not be played) by the insertion of fixed-term technical scores;
  • the figure 14 , an illustration of the effects caused by an antenna rotation speed different from the expected nominal value and by fluctuations in this speed of rotation.

Les figures 1 et 2 illustrent de manière schématique l'effet des variations de la vitesse de rotation d'antenne sur la qualité de la couverture réalisée par un radar de veille dont le système de gestion des pointages ne prend pas en compte ces variations.
La figure 1, correspond au cas théorique où l'antenne du radar tourne à une vitesse ω0 constante précisément connue. Dans cette circonstance, il est possible de maitriser de façon déterministe l'instant t où le lobe de l'antenne est dirigé dans une direction θ donnée. Par suite, il est possible de mettre en oeuvre un mode de fonctionnement en veille dans lequel l'espace est régulièrement exploré, les directions pointées, matérialisées par les flèches 11 sur la figure 1, étant régulièrement espacées et précisément déterminées.
La figure 2, quant à elle, présente le cas d'une antenne, pour laquelle la vitesse de rotation n'est pas parfaitement régulée. Dans un tel cas dans certaines conditions atmosphériques (vents en rafales) la vitesse de rotation nominale ω1 de l'antenne n'est pas rigoureusement égale à la vitesse de rotation théorique ω0. En outre, la vitesse de rotation ω1 n'est pas constante au cours du temps de sorte que la vitesse de rotation de l'antenne réelle peut s'écrire : ω 1 = ω 0 + Δω + δω t

Figure imgb0001

où Δω représente un biais constant par rapport à la vitesse de rotation théorique ω0 et où δω(t) représente un terme de fluctuation autour de la vitesse biaisée qui varie en fonction du temps c'est-à-dire en fonction de la direction vers laquelle le lobe d'antenne est orienté.
Par suite de cette variation non maitrisée de la vitesse de rotation, on peut assister à une répartition irrégulière des pointages réalisés, non maîtrisée par la gestion des faisceaux, matérialisés par les flèches 21 sur la figure 2, bien que les pointages soient, comme dans le cas de la figure 1, régulièrement commandés au cours du temps. La conséquence d'une telle variation de la vitesse de rotation de l'antenne est notamment que l'écart angulaire entre pointages n'est pas régulé. Ainsi, du fait d'un séquencement rigide initialement défini pour une vitesse de rotation constante, des fréquences non autorisées dans une direction donnée peuvent par exemple être utilisées. Cette répartition irrégulière des pointages réalisés peut occasionner des surcharges locales du séquencement des pointages radar à exécuter, surcharges que les radars classiques, du type à antenne dispersive, ne peuvent pas absorber.
La variation de la vitesse de rotation d'antenne, qui se traduit par un biais sur cette vitesse et par une fluctuation autour de ce biais, a pour conséquence que, comme l'illustre la figure 14 les pointages 141 sont plus ou moins écartées angulairement.
L'illustration 14-a correspond à une vitesse nominale avec un écart entre pointages qui correspond juste à la valeur d'atténuation à 3 dB des faisceaux correspondants (les courbes figurant la largeur du faisceau à -3 dB sont alors tangentes au point de jonction).
L'illustration 14-b correspond quant à elle, à une vitesse plus faible pour laquelle les faisceaux de pointages consécutifs 142 et 143 sont systématiquement resserrés et se superposent dans les zones correspondant aux largeurs de lobes à 3 dB.
L'illustration 14-c correspond, quant à elle, à une vitesse plus élevée pour laquelle les faisceaux de pointages consécutifs 144 et 145 sont systématiquement disjoints.
Enfin, l'illustration 14-d correspond à une situation de fluctuation de la vitesse autour d'une vitesse nominale, situation pour laquelle l'écart entre les faisceaux de pointages consécutifs, 146 et 147 ou 148 et 149, évolue de pointage à pointage.The Figures 1 and 2 schematically illustrate the effect of variations in the antenna rotation speed on the quality of coverage achieved by a standby radar whose management system of the scores does not take into account these variations.
The figure 1 , corresponds to the theoretical case where the antenna of the radar rotates at a constant speed ω 0 precisely known. In this circumstance, he It is possible to deterministically control the moment t when the lobe of the antenna is directed in a given direction θ. As a result, it is possible to implement a standby mode of operation in which the space is regularly explored, the directions pointed, materialized by the arrows 11 on the figure 1 , being regularly spaced and precisely determined.
The figure 2 as for it, presents the case of an antenna, for which the speed of rotation is not perfectly regulated. In such a case under certain atmospheric conditions (gusty winds) the nominal rotational speed ω 1 of the antenna is not strictly equal to the theoretical rotation speed ω 0 . In addition, the rotational speed ω 1 is not constant over time so that the rotation speed of the actual antenna can be written: ω 1 = ω 0 + Δω + δω t
Figure imgb0001

where Δω represents a constant bias with respect to the theoretical rotation speed ω 0 and where δω (t) represents a fluctuation term around the biased velocity which varies as a function of time, that is to say according to the direction towards which the antenna lobe is oriented.
As a result of this uncontrolled variation in the speed of rotation, there may be an irregular distribution of the scores achieved, not controlled by the management of the beams, shown by the arrows 21 on the figure 2 , although the scores are, as in the case of the figure 1 , regularly ordered over time. The consequence of such a variation in the rotational speed of the antenna is that the angular difference between scores is not regulated. Thus, because of a rigid sequencing initially defined for a constant speed of rotation, unauthorized frequencies in a given direction can for example be used. This irregular distribution of the scores achieved may cause local overloads sequencing radar pointing to perform overloads that conventional radars, type dispersive antenna can not absorb.
The variation of the antenna rotation speed, which is reflected in a bias on this speed and in a fluctuation around this bias, has the following effect: consequence, as illustrated by figure 14 the scores 141 are more or less angularly apart.
Figure 14-a corresponds to a nominal speed with a difference between scores which corresponds to the 3 dB attenuation value of the corresponding beams (curves representing the beam width at -3 dB are then tangent to the junction point ).
Figure 14-b, for its part, corresponds to a lower speed for which the consecutive pointing beams 142 and 143 are systematically tightened and superimposed in the zones corresponding to the 3 dB lobe widths.
The illustration 14-c corresponds, meanwhile, to a higher speed for which the consecutive pointing beams 144 and 145 are systematically disjoint.
Finally, Figure 14-d corresponds to a situation of fluctuation of the speed around a nominal speed, situation for which the difference between the consecutive pointing beams, 146 and 147 or 148 and 149, evolves from point to point .

Par suite, si l'on souhaite maitriser ou du moins réguler les positions des directions réellement pointées de façon instantanée, en tenant compte des fréquences autorisées, il est nécessaire de mettre en place des moyens permettant de compenser du mieux possible ce phénomène de fluctuation de la vitesse de rotation de l'antenne. Le procédé selon l'invention constitue avantageusement un tel moyen.Consequently, if it is desired to control or at least regulate the positions of the directions actually pointed instantaneously, taking into account the authorized frequencies, it is necessary to set up means making it possible to compensate as much as possible for this fluctuation phenomenon. the rotational speed of the antenna. The process according to the invention advantageously constitutes such a means.

Comme il a été dit précédemment, le principe de fonctionnement du procédé selon l'invention repose sur l'utilisation du phénomène de dispersivité en azimut occasionné au diagramme d'émission (et de réception) d'une antenne, de type antenne à fentes par exemple, par la variation de fréquence du radar équipé d'une telle antenne. La figure 3 illustre ce phénomène qui se traduit par le fait que, en fonction de la fréquence d'émission, le diagramme de rayonnement d'une telle antenne, figuré par les flèches pointillées 32 sur la figure, présente un décalage angulaire 33 par rapport à la direction d'antenne 31, décalage dont la valeur est fonction de la fréquence d'émission. Par direction d'antenne, on entend ici, l'axe perpendiculaire au plan de l'antenne.
Ce décalage angulaire est compris dans un secteur 34 défini par la plage des fréquences de fonctionnement du radar. Le secteur 34 dépend de la bande de fréquences Δf utilisée par le radar et dépend des fréquences minimum et maximum pouvant être utilisées dans la bande Δf. Dans l'exemple de la figure 3, le secteur 34 est présenté comme étant décalé en avance par rapport à l'axe de l'antenne 31.Cependant, le secteur 34 peut se trouver décalé vers en retard par rapport à l'axe de l'antenne 31. Il peut encore se trouver positionné de part et d'autre de l'axe de l'antenne 31 et dans ce cas, pour une antenne à fente, des contraintes physiques font que le secteur 34 est défini en deux sous-secteurs, droit et gauche, séparés par un secteur intermédiaire non autorisé.
As stated above, the operating principle of the method according to the invention is based on the use of the phenomenon of azimuth dispersivity caused to the emission (and reception) diagram of an antenna, of slot antenna type by for example, by the frequency variation of the radar equipped with such an antenna. The figure 3 illustrates this phenomenon which results in the fact that, as a function of the emission frequency, the radiation pattern of such an antenna, represented by the dotted arrows 32 in the figure, has an angular offset 33 with respect to the direction antenna 31, offset whose value is a function of the transmission frequency. By antenna direction is meant here the axis perpendicular to the plane of the antenna.
This angular offset is included in a sector 34 defined by the operating frequency range of the radar. The sector 34 depends on the frequency band Δf used by the radar and depends on the minimum and maximum frequencies that can be used in the band Δf. In the example of the figure 3 , the sector 34 is shown as being shifted in advance with respect to the axis of the antenna 31.However, the sector 34 may be offset late with respect to the axis of the antenna 31. It may still be to be positioned on either side of the axis of the antenna 31 and in this case, for a slot antenna, physical constraints make the sector 34 is defined in two subsectors, right and left, separated by an unauthorized intermediate sector.

Inversement, en prenant comme référence angulaire une direction pointée, on constate, comme l'illustre la figure 4, que pour une direction θ donnée 41 et une bande de fréquences d'émission Δf donnée, on peut définir un secteur angulaire 43, de largeur Δθ = [θ-θmin θ-θmax], tel que, compte-tenu de la rotation ω de l'antenne il est toujours possible en jouant sur la fréquence d'émission de défléchir le faisceau de l'antenne dans la direction θ pendant que la direction d'antenne 42 balaye ce secteur. Par suite, on constate que pour une direction θ donnée 41, un pointage peut être exécuté dans cette direction, en profitant de la déflexion due à la présence de dispersivité, dès que et tant que la direction de l'antenne 42 sera présente pendant la rotation d'antenne dans l'intervalle angulaire Δθ = [θ-θmin θ-θmax].
Le procédé selon l'invention met en pratique ce principe pour rendre un radar monofonction capable de fonctionner, dans une certaine mesure comme un radar multifonctions. Les limitations de cette aptitude sont notamment liées aux déflexions maximum et minimum pouvant être réalisées en utilisant la dispersivité et aux fréquences de fonctionnement minimum et maximum pouvant être utilisées. Le procédé selon l'invention met également en pratique ce principe pour compenser au moins en partie les variations de la vitesse de rotation d'antenne.
Dans ce but, il a pour fonction principale de séquencer temporellement l'ordre dans lequel différentes formes d'ondes peuvent être mises en oeuvre, au cours de la rotation de l'antenne, chaque forme d'onde devant être appliquée pour une direction de pointage donnée et dans un laps de temps donné, sachant qu'un nombre conséquent de d'ordonnancement des pointages est possible du fait que le choix à un instant donné d'une fréquence de fonctionnement donnée permet d'exécuter un pointage plutôt qu'un autre. Pour ce faire l'ordonnancement est réalisé en tenant compte, entre autre chose, de la durée maximale durant laquelle le faisceau de l'antenne peut être pointé dans une direction donnée compte tenu de la vitesse de rotation instantanée de l'antenne et de la valeur du secteur angulaire Δθ, sachant que d'autres pointages sont à réaliser dans ce même intervalle de temps.
De manière générale, la forme d'onde devant être mise en oeuvre dans une direction de l'espace couverte par le radar est déterminée par la fonction (fonction de veille ou autres fonctions adressées, comme par exemple une fonction de poursuite) que doit mettre en oeuvre le radar dans cette direction. On parle de manière connue de pointage, un pointage correspondant à l'emploi d'une forme d'onde donnée pour illuminer d'une façon propre à la fonction liée au pointage une direction donnée. Il est à noter que, en ce qui concerne la fonction de pointage adressé (par exemple un pointage de poursuite), celle-ci est généralement gérée par l'organe de gestion globale du radar et se traduit au niveau du procédé selon l'invention par la prise en compte de requêtes de pointages qui définissent les caractéristiques des pointages de poursuite à effectuer au cours de la rotation de l'antenne (direction, forme d'onde de durée adaptée associée et degré de priorité du pointage considéré). En revanche, en ce qui concerne la fonction de veille par contre, celle-ci est directement gérée par le procédé selon l'invention, dans la mesure où la forme d'onde mise en oeuvre est généralement déterminée et où les directions pointées sont déterminées par les durées des pointages, la vitesse de rotation instantanée estimée de l'antenne et par la charge radar considérée localement. Par charge radar on entend ici le nombre de pointage à exécuter dans un intervalle de temps donné.
Par suite, la fonction principale du procédé selon l'invention consiste à déterminer, à instant donné t, parmi l'ensemble des pointages requis celui devant être réalisé à un instant donné t', situé dans un proche avenir, compte tenu de la position prédite de l'antenne à cet instant t' à venir. L'instant t' à venir considéré est généralement celui qui correspond à la date de fin d'exécution du pointage en cours d'exécution à l'instant t considéré. Pour mener à bien cette tâche le procédé selon l'invention comporte différents modules de traitement qui coopèrent pour prendre en compte en temps réel les contraintes suivantes :

  • La nécessité de tenir compte des fréquences d'émission autorisées et leur répartition dans la bande de fréquences allouée au fonctionnement du radar (cet ensemble de fréquences autorisées est constitué de fréquences discrètes qui peuvent être contiguës ou disjointes. Dans le cas de fréquences contiguës l'ensemble peut être défini par la totalité du plan des M fréquences disponibles ou par une sous-bande de N fréquences. Dans le cas de fréquences disjointes les fréquences autorisées sont définies par un peigne de P fréquences non-adjacentes, qui peut se limiter à une seule fréquence).
  • la nécessité de tenir compte du fait que chaque fréquence autorisée doit être employée de façon équiprobable (en moyenne sur le tour et de tour à tour) et non prédictible (le choix d'une fréquence à un instant t ne peut être prédit par la connaissance d'un horizon fini des fréquences jouées) de façon à contrer du mieux possible certains types de brouillages.
  • la nécessité de tenir compte du fait que la durée de la forme d'onde émise est variable d'un pointage à l'autre.
  • la nécessité de tenir compte d'une hiérarchie dans l'importance des pointages demandés, matérialisée par un niveau de priorité accordé à chaque pointage.
  • la nécessité de tenir compte de variations possibles de la vitesse de rotation de l'antenne qui conditionnent l'intervalle de temps durant lequel ce pointage peut être mis en oeuvre.
  • la nécessité d'assurer qu'un nombre réduit de pointages ne sera pas exécuté;
  • la nécessité de tenir compte des fréquences brouillées de façon instantanée (grâce à un temps d'écoute avant l'émission de chaque pointage) en faisant réaliser les dernières étapes de sélection du pointage par l'antenne (envoi de fréquences/pointages candidats et sélection de la fréquence selon la "Fréquence La Moins Brouillée"(FMB)).
  • La nécessité de tenir compte des fréquences brouillées de tour à tour en fonction des informations de la carte des fréquences brouillées entretenue et mise à jour de tour à tour et par secteur.
  • le souhait de minimiser les "temps morts" (temps de non-émission de pointages) par l'utilisation dans ces cas de pointages techniques dont le nombre dépend du budget temps radar courant.
    Dans la suite de ce document le principe des différentes fonctions mises en oeuvre pour prendre en compte ces différentes contraintes dans la planification des pointages est décrit de manière plus détaillée.
Conversely, taking as a reference angular a pointed direction, we see, as illustrated by the figure 4 , that for a given direction θ 41 and a given transmission frequency band Δf, it is possible to define an angular sector 43, of width Δθ = [θ-θ min θ-θ max ], such that, taking into account the rotation ω of the antenna it is always possible by playing on the transmission frequency to deflect the beam of the antenna in the direction θ while the antenna direction 42 scans this sector. As a result, it can be seen that for a given direction θ 41, a pointing can be performed in this direction, taking advantage of the deflection due to the presence of dispersivity, as soon as and as long as the direction of the antenna 42 is present during the antenna rotation in the angular interval Δθ = [θ-θ min θ-θ max ].
The method according to the invention puts into practice this principle to make a single-function radar capable of functioning, to a certain extent as a multi-function radar. The limitations of this ability include the maximum and minimum deflections that can be achieved using dispersivity and the minimum and maximum operating frequencies that can be used. The method according to the invention also puts into practice this principle to compensate at least in part the variations of the antenna rotation speed.
For this purpose, its main function is to temporally sequence the order in which different waveforms can be implemented, during the rotation of the antenna, each waveform to be applied for a given pointing direction and in a given period of time, knowing that a significant number of scheduling of the scores is possible because the choice at a given time of a given operating frequency makes it possible to execute a pointing rather than another. To do this, the scheduling is done taking into account, among other things, the maximum duration during which the beam of the antenna can be pointed in a given direction taking into account the instantaneous rotation speed of the antenna and the antenna. value of the angular sector Δθ, knowing that other points are to be achieved in this same time interval.
In general, the waveform to be implemented in a direction of the space covered by the radar is determined by the function (standby function or other addressed functions, such as a tracking function) that must be set implement the radar in this direction. We speak in known manner of pointing, a score corresponding to the use of a given waveform to illuminate in a manner specific to the pointing function a given direction. It should be noted that, with regard to the aiming function addressed (for example tracking tracking), this is generally managed by the global radar management unit and is reflected in the method according to the invention. by taking into account pointing requests which define the characteristics of the tracking points to be made during the rotation of the antenna (direction, associated adapted duration waveform and degree of priority of the pointing considered). On the other hand, as far as the standby function is concerned, it is directly managed by the method according to the invention, insofar as the waveform used is generally determined and the pointed directions are determined. the duration of the clockings, the estimated instantaneous rotation speed of the antenna and the radar load considered locally. By radar load is meant here the number of points to be executed in a given time interval.
As a result, the main function of the method according to the invention consists in determining, at given instant t, among the set of required scores the one to be performed at a given instant t ', situated in the near future, taking into account the position predicted antenna at this time t 'to come. The moment t 'to come considered is usually the one that corresponds to the end date of execution of the running score at the considered instant t. To carry out this task, the method according to the invention comprises different processing modules that cooperate to take into account in real time the following constraints:
  • The need to take into account the permissible transmission frequencies and their distribution in the frequency band allocated to the operation of the radar (this set of authorized frequencies consists of discrete frequencies which may be contiguous or disjoint.) In the case of contiguous frequencies, can be defined by the totality of the available M frequencies plane or by a sub-band of N frequencies.In the case of disjoint frequencies the allowed frequencies are defined by a comb of P non-adjacent frequencies, which may be limited to single frequency).
  • the need to take into account the fact that each authorized frequency must be used equiprobably (on average on the turn and in turn) and unpredictable (the choice of a frequency at a time t can not be predicted by the knowledge a finite horizon of frequencies played) in order to counter as well as possible certain types of interference.
  • the need to take into account that the duration of the emitted waveform varies from one score to another.
  • the need to take into account a hierarchy in the importance of the requested scores, materialized by a priority level granted to each score.
  • the need to take into account possible variations in the speed of rotation of the antenna which condition the time interval during which this pointing can be implemented.
  • the need to ensure that a reduced number of scores will not be executed;
  • the need to take into account the scrambled frequencies in an instantaneous manner (thanks to a listening time before the emission of each score) by having the last steps of selection of the pointing by the antenna (sending of frequencies / candidate scores and selection the frequency according to the "Lowest Frequency" (FMB)).
  • The need to take into account scrambled frequencies in turn according to the information of the scrambled frequency card maintained and update in turn and by sector.
  • the desire to minimize "dead time" (time of non-emission of scores) by the use in these cases of technical scores whose number depends on the current time radar budget.
    In the remainder of this document the principle of the various functions implemented to take into account these different constraints in the planning of the scores is described in more detail.

Le procédé selon l'invention, appelé "gestion des pointages radar" (GPR) trouve sa place dans la chaîne de commande des modes de fonctionnement radar et se positionne entre le module chargé de la "gestion des tâches radar" (GTR) et le module chargé de la "gestion des rafales d'impulsions radar" (GRR).
Le module de gestion des tâches radar (GTR) fournit au procédé selon l'invention sous forme de requêtes d'exécution de tâches, des informations relatives aux caractéristiques de certains pointages ou familles de pointages dont il requiert l'exécution, des pointages de poursuite principalement ainsi que certains pointages de veille particuliers (veille définie par secteur). Ces caractéristiques sont notamment la direction du pointage, la nature de la forme d'onde mise en oeuvre, la période de renouvellement des pointages (pour les pointages périodiques comme "la poursuite") ainsi que le degré de priorité associé à l'exécution du pointage considéré.
Le procédé selon l'invention GPR prend en compte ces requêtes et les incorpore en temps utile dans une table qu'il entretient périodiquement au fil du temps. Cette table, ou table des pointages candidats, contient l'ensemble des informations relatives aux pointages pouvant être mis en oeuvre durant un intervalle de temps donné, pointages appelés ici "pointages candidats". Le procédé GPR gère l'ordonnancement des pointages inscrits dans la table en tenant compte de la position de l'axe de l'antenne, de la vitesse instantanée de rotation d'antenne et des fréquences utilisables (i. e. les fréquences autorisées et non brouillées) par chaque pointage puis délivre au module chargé de la gestion des rafales d'impulsions radar (GRR) la liste correspondante des rafales à émettre.
Comme l'illustre la figure 5, le procédé selon l'invention (GPR) est un procédé itératif constitué de huit étapes successives 51 à 58. les deux étapes 52 et 54 ont un caractère optionnel tandis que les étapes 51, 53, 55 à 58 constituent les étapes essentielles du procédé. L'étape 58 est quant à elle une étape finale qui peut être associée au procédé et qui a pour objet de traiter le cas des pointages qui n'ayant finalement pas été sélectionnés ne seront plus visibles à l'itération suivante, compte tenu de la direction nominale de l'antenne.
Le procédé selon l'invention élabore et entretient la table 50 des pointages candidats, chaque pointage candidat étant initialement associé, à chaque itération, à une ou plusieurs fréquences d'émission (une fréquence d'émission pouvant être associée à plusieurs pointages candidats à cette étape), puis analyse de manière régulière les pointages contenus dans la table de façon à déterminer l'ordre dans lequel ces pointages candidats doivent être mis en oeuvre. Autrement dit, il a pour objet de sélectionner à chaque itération un des pointages candidats contenus dans la table 50 et une des fréquences candidates initialement associées à ce pointage. Ce couple (pointage, fréquence) est le premier en date à être mis en oeuvre par le radar.
Il est à noter qu'il n'y a pas bijection, dans la table, entre un pointage et une fréquence. Un pointage candidat peut avoir plusieurs fréquences associées et inversement une fréquence candidate peut être associée à plusieurs pointages candidats.
Selon l'invention l'ensemble des fréquences d'émission associées à chaque pointage est déterminé à partir d'un tirage aléatoire réalisé dans le plan des fréquences globalement attribué au radar pour son fonctionnement. Dans la forme préférée de mise en oeuvre de l'invention ce tirage aléatoire est un tirage particulier, qui a principalement pour objet d'assurer la diversité des fréquences qui seront en final jouées par le radar, tous pointages confondus. De la sorte, chaque pointage candidat est associé, pour une itération donnée, à un ensemble de fréquences qui lui est propre, deux pointages pouvant cependant, par le fruit du hasard, être associés à un même ensemble de fréquences qui représente un sous-ensemble du plan de fréquences attribué au radar. Ce sous-ensemble est ainsi défini par une fréquence fmin et une fréquence fmax.
The method according to the invention, called "management of radar pointing" (GPR) finds its place in the control chain of the radar operating modes and is positioned between the module responsible for the "management of radar tasks" (GTR) and the module responsible for "Radar Pulse Burst Management" (GRR).
The radar task management module (GTR) provides the method according to the invention in the form of task execution requests, information relating to the characteristics of certain scores or families of scores which it requires execution, tracking pointers. mainly as well as some particular standby scores (watch defined by sector). These characteristics are notably the direction of the pointing, the nature of the waveform used, the period of renewal of the scores (for the periodic scores like "the pursuit") as well as the degree of priority associated with the execution of the score considered.
The method according to the invention GPR takes into account these requests and incorporates them in a timely manner in a table that it maintains periodically over time. This table, or table of candidate scores, contains all the information relating to the scores that can be implemented during a given time interval, referred to herein as "candidate scores". The GPR method manages the scheduling of the scores recorded in the table taking into account the position of the antenna axis, the instantaneous antenna rotation speed and the usable frequencies (ie the allowed and uncuffed frequencies) by each score then delivers to the module responsible for the management of radar pulse bursts (GRR) the corresponding list of bursts to be transmitted.
As illustrated by figure 5 , the method according to the invention (GPR) is a iterative process consisting of eight successive steps 51 to 58. the two steps 52 and 54 have an optional character while the steps 51, 53, 55 to 58 constitute the essential steps of the method. Step 58 is a final step that can be associated with the process and that is intended to deal with the case of scores that have not finally been selected will no longer be visible at the next iteration, given the nominal direction of the antenna.
The method according to the invention draws up and maintains the table 50 of the candidate scores, each candidate score being initially associated, at each iteration, with one or more transmission frequencies (a transmission frequency that can be associated with several candidate scores for this step), then regularly analyzes the scores contained in the table so as to determine the order in which these candidate scores are to be implemented. In other words, its purpose is to select at each iteration one of the candidate scores contained in the table 50 and one of the candidate frequencies initially associated with this score. This pair (pointing, frequency) is the first in date to be implemented by the radar.
It should be noted that there is no bijection in the table between a score and a frequency. A candidate score may have several associated frequencies and conversely a candidate frequency may be associated with several candidate scores.
According to the invention the set of transmission frequencies associated with each score is determined from a random draw realized in the frequency plan globally attributed to the radar for its operation. In the preferred embodiment of the invention this random draw is a particular draw, whose main purpose is to ensure the diversity of frequencies that will ultimately played by the radar, all points combined. In this way, each candidate score is associated, for a given iteration, with a set of frequencies of its own, two scores can however, by chance, be associated with the same set of frequencies which represents a subset the frequency plan assigned to the radar. This subset is thus defined by a frequency f min and a frequency f max .

Pour réaliser la sélection d'un couple (pointage, fréquence), chacune des étapes 51 à 56 applique un traitement spécifique aux pointages candidats mémorisés dans la table et aux fréquences associées, le traitement appliqué à chaque étape permettant d'écarter de la sélection finale (fin d'itération) soit un ou plusieurs pointages (étapes 51, 52, 54 du procédé) soit une ou plusieurs fréquences du plan de fréquences alloué au radar (étapes 53, 55 et 56).
Le traitement mis en oeuvre à une étape donnée est appliqué soit aux pointages candidats retenus, soit aux fréquences candidates retenues à l'issue des étapes précédentes.
Les pointages et les fréquences non écartés à l'issue d'une étape donnée sont soumis à la sélection de l'étape suivante, tandis que les pointages écartés sont mis de côté pour le reste de l'itération de façon à être éventuellement analysés de nouveau au cours de l'itération suivante.
To perform the selection of a pair (pointing, frequency), each of the steps 51 to 56 applies a specific treatment to the candidate scores stored in the table and the associated frequencies, the treatment applied to each step to remove from the final selection (end of iteration) is one or more scores (steps 51, 52, 54 of the method) or one or more frequencies of the frequency plan allocated to the radar (steps 53, 55 and 56).
The processing implemented at a given stage is applied either to the selected candidate scores or to the candidate frequencies retained at the end of the preceding steps.
The scores and frequencies that are not discarded at the end of a given stage are subject to the selection of the next step, while the scores that are discarded are set aside for the remainder of the iteration so as to be optionally analyzed for again during the next iteration.

Par suite le couple (pointage, fréquence) finalement retenu à l'issue de la dernière étape du procédé est transmis au module à la gestion des rafales d'impulsions radar (GRR).As a result the torque (pointing, frequency) finally retained at the end of the last step of the method is transmitted to the module to the management of radar pulse bursts (GRR).

Dans la suite du document on décrit l'ensemble des huit étapes que peut comporter le procédé selon l'invention en gardant à l'esprit que Les étapes 52 et 54 étant optionnelles le procédé selon l'invention peut ne comporter dans une version simplifiée que six étapes.In the remainder of the document, the set of eight steps that can comprise the method according to the invention is described keeping in mind that since steps 52 and 54 are optional, the method according to the invention may comprise in a simplified version only six steps.

La première étape 51, consiste, comme l'illustrent les figures 6 et 8, à déterminer parmi les pointages candidats contenus dans la table, les pointages 81, 82 dont le domaine de visibilité géré, qui représente une fraction du domaine de visibilité alloué, ne contient pas la direction de l'antenne à l'instant considéré. Ces pointages sont par principe écartés de la suite de la sélection.
Selon l'invention, la table des pointages candidats comporte en effet pour chaque pointage à la fois les caractéristiques de forme d'onde associées au pointage, le niveau de priorité du pointage considéré vis à vis des autres pointages de la table, la direction requise θ0 du pointage, la durée du pointage et la fraction du domaine de visibilité allouée au pointage. Selon l'invention, on définit le domaine de visibilité alloué associé à un pointage comme l'ouverture azimutale accessible par déflexion du faisceau radar à l'instant considéré, compte tenu des fréquences de fonctionnement disponibles (utilisables) pour réaliser un pointage dans la direction considérée. De manière analogue on définit également le domaine de visibilité géré associé à un pointage comme l'ouverture azimutale accessible par déflexion du faisceau radar à l'instant considéré, compte tenu des fréquences de fonctionnement (fréquences candidates) associées par tirage au pointage considéré dans la table des pointages candidats, ces fréquences étant sélectionnées dans le domaine des fréquences utilisables. Autrement dit, le domaine de visibilité géré constitue une fraction du domaine de visibilité allouée. Il est déterminé à partir de la plage de fréquences allouée au pointage considéré. Cette plage de fréquences représente elle-même un sous-ensemble du plan de fréquences autorisées allouées au radar.
Le plan de fréquences autorisées peut prendre plusieurs formes, comme l'illustrent les illustrations 6-a à 6-c de la figure 6. Il peut par exemple consister en un jeu de M fréquences 61 consécutives couvrant la totalité du plan de fréquences B alloué au fonctionnement du radar (6-a) ou une sous-bande de N fréquences 62 contiguës (6-b) de la bande de fréquences totale B. Il peut également consister (6-c) en un jeu de P fréquences 63 réparties de façon disjointe ou pas sur l'ensemble de la bande B (appelé peigne lacunaire de fréquences). On notera ici que la bande de fréquences B allouée au radar est très généralement un ensemble de fréquences discrètes écartées régulièrement comprises entre une fréquence Fmin et une fréquence Fmax.
Selon l'invention, la plage de fréquences attribuée à chaque requête de pointage, fréquences qui forment le domaine de visibilité géré, est déterminée, comme l'illustre le schéma de la figure 6, par une fréquence minimale fmin choisie à l'aide d'un processus aléatoire parmi les fréquences constituant le plan de fréquences autorisées B qui sont inférieures à une fréquence flimite_tirage donnée, et une fréquence maximale fmax supérieure à flimite_tirage et inférieure ou égale à la fréquence maximale Fmax de ce plan de fréquences. L'ensemble des n fréquences appartenant à l'intervalle [fs fmax] forme une zone du domaine de visibilité géré appelée fenêtre de sécurité. Selon l'invention n est défini comme un nombre petit devant le nombre des fréquences autorisées. Le principe de détermination de fmin est exposé dans la suite de la description relative à l'étape 57.
Par suite, l'étape 51 sélectionne les pointages considérés comme visibles au regard des critères cités précédemment, les autres pointages candidats étant alors écartés.
Il est en outre à noter que, si certaines fréquences candidates ne sont associées qu'à des pointages candidats qui sont écartés, ces fréquences se trouvent, par voie de conséquence immédiate, écartées des choix réalisés ultérieurement durant l'itération considérée. Ainsi, la sélection opérée à l'étape 51, étape qui ne concerne en principe en compte que les pointages candidats peut influencer, en pratique, la sélection des fréquences.
The first step 51 consists, as illustrated by figures 6 and 8 , to determine among the candidate scores contained in the table, the scores 81, 82 whose managed range of visibility, which represents a fraction of the allocated range of visibility, does not contain the direction of the antenna at the instant considered. These scores are in principle excluded from the rest of the selection.
According to the invention, the table of candidate scores includes for each score at a time the waveform characteristics associated with the score, the level of priority of the score considered with respect to the other scores of the table, the required direction θ 0 of the score, the duration of the score and the fraction of the visibility range allocated to the score. according to the invention defines the allocated range of visibility associated with a pointing as the azimuthal aperture accessible by deflection of the radar beam at the instant considered, given the operating frequencies available (usable) to achieve a score in the direction considered . Similarly, the managed visibility area associated with a score is also defined as the azimuthal aperture accessible by deflection of the radar beam at the instant considered, taking into account the operating frequencies (candidate frequencies) associated by taking the score considered in the candidate score table, these frequencies being selected in the range of usable frequencies. In other words, the managed visibility domain is a fraction of the allocated visibility domain. It is determined from the frequency range allocated to the score considered. This frequency range itself represents a subset of the authorized frequency plan allocated to the radar.
The allowed frequency plan can take many forms, as illustrated in Figures 6-a through 6-c of the figure 6 . It may for example consist of a set of M consecutive frequencies 61 covering the entire frequency plan B allocated to the operation of the radar (6-a) or a sub-band of N contiguous frequencies 62 (6-b) of the band of B. It may also consist (6-c) in a set of P frequencies 63 distributed disjointly or not on the whole of the band B (called gap gap comb). It will be noted here that the frequency band B allocated to the radar is very generally a set of discrete frequencies regularly spaced between a frequency F min and a frequency F max .
According to the invention, the frequency range assigned to each pointing request, the frequencies which form the managed visibility domain, is determined, as illustrated by the diagram of FIG. figure 6 by a minimum frequency f min chosen by means of a random process among the frequencies constituting the authorized frequency plan B which are lower than a given frequency f draw limit , and a maximum frequency f max greater than f draw limit and lower or equal to the maximum frequency F max of this frequency plan. The set of n frequencies belonging to the interval [f s f max ] forms an area of the managed visibility domain called security window. According to the invention n is defined as a small number in front of the number of authorized frequencies. The principle of determination of f min is explained in the rest of the description relating to step 57.
As a result, step 51 selects the scores considered as visible with respect to the criteria mentioned above, the other candidate scores being then discarded.
It should also be noted that, if certain candidate frequencies are associated only with candidate scores that are discarded, these frequencies are, consequently, immediately discarded from the choices made subsequently during the iteration considered. Thus, the selection made in step 51, a step which concerns in principle only the candidate scores, can in practice influence the selection of the frequencies.

Selon l'invention, la deuxième étape 52 est appliquée aux pointages candidats qui n'ont pas été rejetés à l'issue de la première étape 51. Elle consiste, comme l'illustre la figure 9, à écarter les pointages 82 qui, s'ils étaient finalement sélectionnés lors de l'itération considérée, pourraient induire la perte d'un ou de plusieurs autres pointages candidats 81 dont l'échéance est proche, c'est-à-dire des pointages 81 qui, s'ils étaient écartés, ne pourraient plus être sélectionnés à l'itération suivante, compte tenu du temps nécessaire pour émettre le pointage 82 retenu à l'itération considérée. C'est en particulier le cas si, comme l'illustre la figure 9, la direction de l'antenne se trouve à l'instant de la sélection proche de la sortie 93 du domaine de visibilité géré du (ou des) pointage(s) écarté(s). Le principe de cette seconde étape consiste donc à prendre en compte les durées d'exécution 91 et 92 des pointages en cause 81 et 82 pour déterminer si la sélection d'un pointage candidat 82 opérée à l'itération courante peut éliminer un autre pointage candidat 81 à l'itération suivante, ce pointage, dont l'échéance est proche, pouvant être ou ne pas être encore un pointage candidat au moment de la sélection.
Par suite à l'issue de la deuxième étape 52 les pointages candidats sélectionnés sont soit les pointages déjà sélectionnés au cours de l'étape 51, soit les pointages jugés prioritaires conformément à leurs dates d'échéance.
Pour traiter le cas où plusieurs pointages proches de leur échéance risquent d'être perdus, le procédé commence itérativement les tests par le plus prioritaire de ceux-ci. En cas ou le pointage restant à cette étape est non jouable relativement à sa fréquence, les pointages précédemment désélectionnés sont réactivés.
According to the invention, the second step 52 is applied to the candidate scores that were not rejected at the end of the first step 51. It consists, as illustrated by FIG. figure 9 , to discard the scores 82 which, if finally selected during the iteration considered, could lead to the loss of one or more other candidate scores 81 whose deadline is close, that is to say points 81 which, if they were discarded, could no longer be selected at the next iteration, given the time required to issue the score 82 retained at the iteration considered. This is particularly the case if, as illustrated by figure 9 , the direction of the antenna is at the moment of the selection near the exit 93 of the managed visibility area of the (or) pointing (s) aside (s). The principle of this second step is therefore to take into account the execution times 91 and 92 of the scores in question 81 and 82 to determine whether the selection of a candidate score 82 operated at the current iteration may eliminate another candidate score 81 at the next iteration, this score, whose deadline is close, may or may not be a candidate score at the time of selection.
As a result of the second step 52, the selected candidate scores are either the scores already selected during step 51, or the scores considered to be priorities according to their due dates.
In order to deal with the case where several points close to their due date are likely to be lost, the process begins iteratively the tests with the highest priority of these. In case the remaining score at this stage is no playable relative to its frequency, previously deselected scores are reactivated.

La troisième étape 53 du procédé selon l'invention a pour objet de sélectionner parmi les pointages retenus à l'issue de l'étape précédente, étape 51 ou 52 selon les cas, uniquement les pointages dont une au moins des fréquences associées correspond à la déflection azimutale à opérer (par rapport à la direction de l'antenne) pour exécuter ce pointage dans la direction requise, ces fréquences étant les fréquences autorisées correspondant au domaine de visibilité géré propre à chaque pointage. Le principe de cette sélection est illustré par les illustrations 10-a et 10-b de la figure 10 qui illustrent deux cas possibles, le premier cas 10-a correspondant à un pointage associé à deux fréquences.
Pour ce faire, on détermine pour chaque pointage la ou les fréquences qui lui sont allouées qui correspondent à l'instant de sélection à la direction requise 101 ou 102 (fréquence théorique) 101 du pointage compte-tenu d'une tolérance matérialisée par la fenêtre 103 sur les illustrations 10-a et 10-b de la figure 10. L'illustration 10-a présente le cas où pour un pointage donné on ne peut retenir qu'une des fréquences associées 105. L'illustration 10-b présente quant à elle le cas où pour un pointage donné on peut retenir deux des fréquences associées 104 et 105.
La tolérance matérialisée par la fenêtre 103 permet de limiter l'écart entre la direction requise 101 ou 102 et la direction réellement pointée 104 ou 105 du fait que les fréquences disponibles sont distribuées de manière discrète. La fenêtre de tolérance est définie en fonction des contraintes de performances du radar.
Par suite, si parmi les fréquences candidates associées au pointage candidat considéré, il existe au moins une fréquence au voisinage de la fréquence f0 correspondant à la direction théorique θ0 du pointage, c'est-à-dire une fréquence allouée se situant dans la fenêtre de tolérance alors le pointage est retenu ainsi que la ou les fréquences voisines de f0 qui lui ont permis d'être retenu
Ainsi, dans l'hypothèse où aucune des fréquences allouées au pointage candidat ne se situe dans cette fenêtre, celui-ci est écarté.
De même, dans l'hypothèse, correspondant à l'illustration 10-a, où une seule fréquence 103 parmi les fréquences allouées se situe dans cette fenêtre, le pointage et cette fréquence sont retenus.
Enfin, dans l'hypothèse, correspondant à l'illustration 10-b, où plusieurs des fréquences 104 et 105 allouées se situent dans cette fenêtre, le pointage ainsi que ces deux fréquences sont retenus.
On rappelle ici que, comme l'illustre la figure 10 et comme cela a été dit précédemment, il n'existe pas de relation bijective entre un pointage candidat et une fréquence candidate (une fréquence candidate 105 peut être associée à plusieurs pointages candidats, et inversement un pointage candidat peut posséder plusieurs fréquences 104, 105 candidates).
The third step 53 of the method according to the invention aims to select from the scores selected at the end of the previous step, step 51 or 52 as the case may be, only the scores of which at least one of the associated frequencies corresponds to the azimuthal deflection to operate (relative to the direction of the antenna) to perform this pointing in the required direction, these frequencies being the authorized frequencies corresponding to the managed range of visibility specific to each score. The principle of this selection is illustrated by illustrations 10-a and 10-b of the figure 10 which illustrate two possible cases, the first case 10-a corresponding to a score associated with two frequencies.
To do this, the frequency or frequencies allocated to it, which correspond to the moment of selection to the required direction 101 or 102 (theoretical frequency) 101 of the score, are determined for each score, taking into account a tolerance represented by the window. 103 on illustrations 10-a and 10-b of the figure 10 . Figure 10-a presents the case where for a given score one can only retain one of the associated frequencies 105. Figure 10-b presents the case where for a given score two of the associated frequencies can be retained. 104 and 105.
The tolerance materialized by the window 103 makes it possible to limit the difference between the required direction 101 or 102 and the actually pointed direction 104 or 105 because the available frequencies are distributed in a discrete manner. The tolerance window is defined according to the performance constraints of the radar.
Consequently, if among the candidate frequencies associated with the candidate score considered, there exists at least one frequency in the vicinity of the frequency f 0 corresponding to the theoretical direction θ 0 of the score, that is to say an allocated frequency lying in the tolerance window then the score is retained and the frequency or frequencies close to f 0 that allowed him to be selected
Thus, in the event that none of the frequencies allocated to the candidate score is in this window, it is discarded.
Similarly, in the hypothesis, corresponding to Figure 10-a, where a only frequency 103 among the allocated frequencies is in this window, the pointing and this frequency are retained.
Finally, assuming, corresponding to the illustration 10-b, where several of the frequencies 104 and 105 allocated are located in this window, the score and these two frequencies are retained.
It is recalled here that, as illustrated by figure 10 and as has been said previously, there is no bijective relationship between a candidate score and a candidate frequency (a candidate frequency 105 may be associated with several candidate scores, and conversely a candidate score may have several frequencies 104, 105 candidates ).

Selon l'invention quatrième étape 54 du procédé est appliquée aux pointages candidats qui n'ont pas été rejetés à l'issue de la troisième étape 53. Elle consiste à prendre en compte le niveau de priorité attribué à chacun des pointages candidats. Ce niveau de priorité est notamment fonction de la nature du pointage considéré (par exemple des priorités différentes peuvent être attribuées suivant l'importance du type de pointage, comme entre des pointages de veille et de poursuite) et de la position courante de la direction de l'antenne dans son domaine de visibilité géré (un pointage dont la direction d'antenne entre dans sa fenêtre sauvegarde voit sa priorité augmenter). A l'issue de cette étape, si un pointage est d'un niveau de priorité supérieur aux niveaux de priorité des autres pointages retenus à l'issue de la troisième étape 53, ce pointage est conservé. De même, si plusieurs pointages ont un niveau de priorité identique, supérieur au niveau de priorité des autres pointages candidats retenus à l'issue de la troisième étape 53, ces pointages sont conservés.According to the invention, the fourth step 54 of the method is applied to candidate scores that were not rejected after the third step 53. It consists in taking into account the level of priority assigned to each of the candidate scores. This level of priority depends, in particular, on the nature of the score considered (for example, different priorities may be assigned according to the importance of the type of score, such as between standby and tracking scores) and the current position of the direction of travel. the antenna in its field of visibility managed (a pointing whose antenna direction enters its window backup sees its priority increase). At the end of this step, if a score is of a priority level higher than the priority levels of the other scores selected after the third step 53, this score is retained. Similarly, if several scores have an identical priority level, higher than the priority level of the other candidate scores selected after the third step 53, these scores are retained.

La cinquième étape 55 du procédé selon l'invention, a pour objet de d'écarter de la sélection finale ceux des pointages candidats retenus à l'étape précédente, étape 53 ou 54 selon les cas, pour lesquels toutes les fréquences associées sont déclarées brouillées ou, dans le cas ou les fréquences associées aux pointages candidats sont toutes brouillées, d'écarter tous les pointages candidats hormis celui ou ceux associés à la fréquence la moins brouillée.
La détermination des fréquences brouillées peut être réalisée de différentes manières connues. Il est par exemple possible d'utiliser une carte des fréquences brouillées, établie par ailleurs par le radar lors de phases d'écoute par exemple. Cette carte est généralement établie pour l'ensemble du plan de fréquences autorisées du radar. Cette carte est entretenue de tour à tour par secteur en fonction des résultats des fréquences écoutées. Alternativement il est également possible de déterminer de manière dynamique ces fréquences brouillées, en limitant l'analyse du brouillage aux seules fréquences candidates, c'est-à-dire aux fréquences autorisées réellement accessibles par le radar à l'instant courant, c'est à dire celles qui ont été sélectionnées par l'étape de sélection précédente 54. L'analyse est alors réalisée par le radar en temps réel en procédant, avant l'émission d'un pointage, à une écoute ciblée sur un jeu restreint de ces quelques fréquences. Cette dernière façon de procéder est connue sous la dénomination anglo-saxonne "Instantaneous Least Jammed Frequencies" (ILJF).
Par suite la cinquième étape 55 du procédé selon l'invention distingue trois cas :

  • Si aucune des fréquences candidates associées aux pointages candidats retenus n'est brouillée aucun des pointages candidats n'est écarté.
  • si toutes les fréquences candidates sont brouillées, le pointage conservé est celui associé à la fréquence la moins brouillée.
  • si seulement certaines fréquences candidates sont brouillées, seuls les pointages candidats qui ne sont associés qu'à des fréquences brouillées sont écartés.
The fifth step 55 of the method according to the invention, aims to remove from the final selection those candidate scores retained in the previous step, step 53 or 54 depending on the case, for which all the associated frequencies are declared scrambled or, in the case where the frequencies associated with the candidate scores are all scrambled, to exclude all the candidate scores other than those associated with the least scrambled frequency.
The determination of the scrambled frequencies can be carried out different known ways. It is for example possible to use a map of scrambled frequencies, also established by the radar during listening phases for example. This map is generally established for the entire radar authorized frequency plan. This map is maintained in turn by sector according to the results of the frequencies listened to. Alternatively, it is also possible to dynamically determine these scrambled frequencies, by limiting the interference analysis to the only candidate frequencies, that is to say to the authorized frequencies actually accessible by the radar at the current instant, it is to say those that were selected by the previous selection step 54. The analysis is then performed by the radar in real time by proceeding, before the issuance of a score, to a targeted listening to a restricted set of these some frequencies. This last way of proceeding is known under the name Anglo-Saxon "Instantaneous Least Jammed Frequencies" (ILJF).
As a result, the fifth step 55 of the method according to the invention distinguishes three cases:
  • If none of the candidate frequencies associated with the selected candidate scores are scrambled, none of the candidate scores are discarded.
  • if all the candidate frequencies are scrambled, the retained score is that associated with the least scrambled frequency.
  • if only certain candidate frequencies are scrambled, only candidate scores that are only associated with scrambled frequencies are discarded.

Il est à noter que pour des contraintes de fonctionnement en temps réel, l'étape 55 et les suivantes peuvent être opérationnellement insérées dans la GRR, car le procédé d'écoute instantané ILJF est très contraint en temps.
Selon l'invention la sixième étape 56 du procédé est appliquée aux pointages candidats qui n'ont pas été rejetés à l'issue de la cinquième étape 55. Elle constitue la dernière étape de sélection et consiste à ne retenir que le pointage candidat associé à la fréquence candidate la moins utilisée au cours des itérations précédentes. Ce pointage et la fréquence correspondante forment le couple (pointage, fréquence) finalement sélectionné.
Le test pratiqué au cours de cette sixième étape, illustrée par la figure 11, est basé sur l'étude de l'histogramme des fréquences autorisées émises lors des derniers tours d'antenne (pour chaque fréquence autorisée pourcentage de pointages émis à cette fréquence). Dans l'illustration de la figure 11 on considère le cas où seuls deux pointages candidats associés chacun à une seule fréquence sont encore retenus (représentés par des segments de droites en traits pleins).
Selon l'invention, si une fréquence 111, correspondant aux pointages candidats retenus à l'issue de l'étape précédente, présente un taux d'utilisation plus faible que l'autre fréquence retenue (illustration 11-a, en traits continus les fréquences candidates), cette fréquence est choisie. Par suite le ou les pointages correspondants sont retenus et les autres pointages candidats sont écartés. En revanche si toutes les fréquences correspondant aux pointages retenus présentent un taux d'utilisation identique comme le montre la figure 11-b où deux fréquences 112 et 113 se trouvent avoir un taux d'utilisation égal, alors la fréquence choisie (113) est celle qui est la plus proche de la fréquence nominale f0 (114 pour la fréquence 112, 115 pour la fréquence 113) du pointage candidat auquel elle est associée. Par suite le pointage candidat auquel est associée cette fréquence est retenu et les autres pointages sont écartés.
En dernier lieu si plusieurs pointages sont associés à la fréquence retenue, celui qui sera retenu est celui pour lequel la direction d'antenne est la plus proche de la sortie de son domaine de visibilité géré, ou ce qui est équivalent, le pointage dont l'échéance temporelle est la plus proche.
It should be noted that for real-time operating constraints, step 55 and following can be operably inserted into the GRR, since the ILJF instant listening method is very time-constrained.
According to the invention the sixth step 56 of the method is applied to the candidate scores which were not rejected after the fifth step 55. It constitutes the last selection step and consists in retaining only the candidate score associated with the least used candidate frequency in previous iterations. This score and the corresponding frequency form the pair (pointing, frequency) finally selected.
The test performed during this sixth stage, illustrated by the figure 11 , is based on the study of the histogram of the authorized frequencies emitted during the last laps of the antenna (for each authorized frequency percentage of scores transmitted at this frequency). In the illustration of the figure 11 we consider the case where only two candidate scores each associated with a single frequency are still retained (represented by segments of lines in solid lines).
According to the invention, if a frequency 111, corresponding to the candidate scores retained at the end of the preceding step, has a lower utilization rate than the other frequency selected (FIG. 11-a, in solid lines the frequencies candidates), this frequency is chosen. As a result the corresponding score (s) are retained and the other candidate scores are discarded. On the other hand, if all the frequencies corresponding to the scores selected have an identical utilization rate as shown in FIG. figure 11-b where two frequencies 112 and 113 are to have an equal utilization rate, then the selected frequency (113) is the one which is closest to the nominal frequency f 0 (114 for the frequency 112, 115 for the frequency 113) of the candidate score with which it is associated. As a result, the candidate score associated with this frequency is retained and the other scores are discarded.
Finally, if several scores are associated with the selected frequency, the one selected will be the one for which the antenna direction is closest to the exit of its managed visibility domain, or which is equivalent, the score of which time is the closest.

A l'issue de la sixième étape 56 du procédé selon l'invention, un seul pointage candidat est finalement retenu. Les formes d'ondes caractéristiques de ce pointage sont transmises à la gestion des rafales d'impulsions radar (GRR) qui produira ensuite le séquencement temporel de la phase d'émission et de la phase de réception radar correspondant à ce pointage. Le pointage candidat est ensuite soit supprimé de la table des pointages candidats (cas des pointages de veille), soit maintenue en mémoire dans cette table mais sous une forme désactivée (cas des pointages de poursuite, qui sont réactivés en fonction de leur période d'émission).At the end of the sixth step 56 of the method according to the invention, only one candidate score is finally selected. The characteristic waveforms of this pointing are transmitted to the radar pulse burst management (GRR) which will then produce the temporal sequencing of the transmission phase and the radar reception phase corresponding to this score. The candidate score is then either removed from the candidate clocking table (case of idle clocking), or kept in memory in this table but in a deactivated form (case tracking pointers, which are reactivated according to their period of time). program).

La sixième étape du procédé selon l'invention est suivie par une septième étape 57 qui a pour objet d'alimenter la table des pointages candidats à partir de nouvelles requêtes de pointage ou de réactiver des requêtes de pointage de poursuite qui vont bientôt de nouveau être visibles par l'antenne.
Cette étape réalise en particulier le choix de la plage des fréquences qui sont associées à chaque pointage, fréquences qui, comme cela a été dit précédemment, sont choisies en mettant en oeuvre un tirage aléatoire particulier. Ce tirage aléatoire des fréquences, a principalement pour objet d'assurer la diversité des fréquences qui seront en final jouées par le radar, tous pointages confondus. Il consiste à déterminer les fréquences fmin et fmax de début et de fin de plage.
La fréquence fmin de début de plage est choisie de manière aléatoire parmi les fréquences de la plage suffisamment éloignées de la fenêtre de sécurité afin d'assurer la réalisation de la contrainte de diversité de fréquences. Cependant, la détermination de la fréquence fmin, qui caractérise le début de la plage de fréquences allouée au pointage, ne résulte pas d'un simple tirage aléatoire équiprobable pour lequel la probabilité de choisir, pour fmin, une fréquence donnée du plan de fréquence cité précédemment est la même pour toutes les fréquences de la zone de tirage de la première fréquence. Elle résulte en réalité d'un tirage pour lequel la probabilité de choisir, pour fmin, une fréquence donnée est une fonction décroissante de la position relative de cette fréquence dans la zone de tirage de la première fréquence, les fréquences les plus basses ayant plus de chance d'être choisies que les plus hautes.
Selon l'invention, la loi de décroissance est établie de telle sorte que la fréquence minimum (fmin) est tirée en mettant de côté les fréquences les plus élevées du domaine de fréquences, fréquence inférieures à la fréquence maximale Fmax. On définit ainsi une fréquence minimale limite flimite_tirage inférieure à la fréquence Fmax de sorte que la zone de tirage de la fréquence fmin est comprise dans l'intervalle [Fmin, flimite_tirage]. La zone de tirage aléatoire [Fmin, flimite_tirage] est telle que la probabilité de tirer une fréquence au delà de flimite_tirage est nulle. La loi des probabilités de tirage dans l'intervalle [Fmin, flimite_tirage] de la fréquence minimum fmin est en outre décroissante, ce qui a avantageusement pour effet de compenser le fait que l'intersection de tous les ensembles, qui seront en final attribués aux pointages, favoriseront l'occurrence de sélection des fréquences élevées dans ces ensembles.
Le caractère décroissant de la loi de tirage de fmin qui favorise les fréquences faibles vient avantageusement compenser l'effet induit de favorisation systématique des fréquences élevées naturellement provoqué par le mode de sélection des fréquences mis en oeuvre au cours des étapes du procédé selon l'invention. Il permet ainsi d'établir une équiprobabilité des fréquences jouées par le radar.
Selon l'invention, la formule du tirage de la fréquence minimum fmin est donnée par l'expression : i freq = Nb freq_aleatoire - 1 - E Nb freq_aleatoire Tirage_uniforme . Coeff_tirage

Figure imgb0002

dans laquelle:

  • Nbfreq_aleatoire est le nombre de fréquences de la plage du tirage aléatoire;
  • E() est la fonction qui renvoie la partie entière d'un nombre;
  • Tirage_uniforme(.) est la fonction qui renvoie un nombre entre 0 et 1 suivant une loi uniforme;
  • Coeff_tirage est un coefficient réel entre 0 et 1, utilisé en exposant de la fonction Tirage_uniforme(.). On pourra prendre, par exemple, une valeur égale à 0.5 et obtenir ainsi un tirage selon une loi qui suit une décroissance uniforme (loi linéaire) comme dans le cas illustré par la figure 7. Alternativement, on pourra prendre, par exemple, une valeur égale à 0.25 et obtenir ainsi un tirage selon une loi qui suit une décroissance quadratique.
  • ifreq est l'indice de la fréquence sélectionnée, les fréquences de la plage du tirage aléatoire étant indicées de 0 pour la fréquence la plus basse à (Nbfreq_aleatoire - 1) pour la fréquence la plus haute. La fréquence correspondant à l'indice ifreq correspondra à la fréquence fmin de la fenêtre attribuée au pointage.
    Comme le montre des simulations effectuées par la déposante, ce tirage aléatoire particulier contrairement à un tirage aléatoire équiprobable contribue à obtenir avantageusement une distribution homogène au cours du temps des fréquences autorisées. Il contribue ainsi à ce que le radar soit moins sensible à certains types de brouillages.
The sixth step of the method according to the invention is followed by a seventh step 57 which aims to feed the table of candidate scores from new pointing requests or to reactivate tracking pointing requests that will soon be again visible by the antenna.
This step realizes in particular the choice of the range of frequencies that are associated with each score, frequencies which, as has been said above, are chosen by implementing a particular random draw. This random draw of frequencies, is primarily to ensure the diversity of frequencies that will ultimately played by the radar, all points combined. It consists in determining the frequencies f min and f max of beginning and end of range.
The starting range frequency f min is randomly selected from frequencies in the range sufficiently far from the security window to ensure the achievement of the frequency diversity constraint. However, the determination of the frequency f min , which characterizes the beginning of the frequency range allocated to the score, does not result from a simple equiprobable random draw for which the probability of choosing, for f min , a given frequency of the plane of frequency mentioned above is the same for all the frequencies of the draw zone of the first frequency. It actually results from a draw for which the probability of choosing, for f min , a given frequency is a decreasing function of the relative position of this frequency in the draw zone of the first frequency, the lowest frequencies having more lucky to be chosen as the highest.
According to the invention, the decay law is established in such a way that the minimum frequency (f min ) is drawn by setting aside the highest frequencies of the frequency domain, frequency lower than the maximum frequency F max . Thus, a minimum limit frequency f is set lower than the frequency F max so that the draw area of the frequency f min is in the range [F min , f limit_drawn ]. The random draw area [F min , f draw-limit ] is such that the probability of drawing a frequency beyond f draw- limit is zero. The law of the probabilities of drawing in the interval [F min , f limit_drawing ] of the minimum frequency f min is also decreasing, which has advantageously the effect of compensating for the fact that the intersection of all the sets, which will ultimately be attributed to the scores, will favor the occurrence of selection of high frequencies in these sets.
The decreasing character of the f min pulling law which favors the low frequencies advantageously compensates for the induced effect of systematic favoring of the high frequencies naturally caused by the frequency selection mode used during the steps of the method according to the invention. invention. It thus makes it possible to establish an equiprobability of the frequencies played by the radar.
According to the invention, the formula for drawing the minimum frequency f min is given by the expression: i freq = Nb freq_aleatoire - 1 - E Nb freq_aleatoire Tirage_uniforme . Coeff_tirage
Figure imgb0002

in which:
  • Random_freq is the number of frequencies in the random draw range;
  • E () is the function that returns the integer part of a number;
  • Uniform_draw (.) Is the function that returns a number between 0 and 1 according to a uniform law;
  • Coeff_tirage is a real coefficient between 0 and 1, used by exponent of the function Tirage_uniforme (.). We can take, for example, a value equal to 0.5 and thus obtain a draw according to a law which follows a uniform decay (linear law) as in the case illustrated by the figure 7 . Alternatively, we can take, for example, a value equal to 0.25 and thus obtain a draw according to a law that follows a quadratic decay.
  • i freq is the index of the selected frequency, the frequencies of the random draw range being indexed from 0 for the lowest frequency to (Nb freq_aleatoire - 1) for the highest frequency. The frequency corresponding to the index i freq will correspond to the frequency f min of the window assigned to the score.
    As shown by the simulations performed by the applicant, this particular random draw, unlike a random draw equiprobable contributes advantageously to obtain a homogeneous distribution over time of the authorized frequencies. It thus contributes to the radar being less sensitive to certain types of interference.

Ainsi, l'étape 57 du procédé selon l'invention permet d'associer à chacun des pointages candidats, une plage de fréquences dont la fréquence de début, fmin, est déterminée de façon à induire une répartition plus homogène des fréquences qui seront mises en oeuvre. Ces fréquences constituent la zone nommée "zone de tirage de la première fréquence". Un nombre donné de fréquences est de cette manière attribué à chaque pointage candidat au moment de son intégration dans la table. La détermination de la plage de fréquences associée à chaque pointage candidat est avantageusement réalisée de manière complètement indépendante d'un pointage à l'autre. Chaque fréquence détermine, compte tenu de la position de l'antenne et de sa vitesse de rotation, un instant de réalisation possible du pointage considéré. Comme l'illustre la figure 7, la plage de fréquences ainsi déterminée permet donc de définir pour chaque requête de pointage une zone angulaire de taille variable (aléatoire) appelée domaine de visibilité géré qui lorsqu'elle est parcourue par la direction d'antenne autorise le radar à mettre en oeuvre le pointage correspondant en utilisant une des fréquences de la plage. De la sorte, comme l'illustre la figure 8, il est possible de déterminer, pour une direction donnée de l'antenne, les pointages candidats 81 et 82 susceptibles d'être mis en oeuvre à un instant donné, dès lors que l'azimut antenne se trouve dans un au moins des domaines de visibilité des pointages candidats.Thus, step 57 of the method according to the invention makes it possible to associate with each of the candidate scores, a frequency range whose starting frequency, f min , is determined so as to induce a more homogeneous distribution of the frequencies that will be set. implemented. These frequencies constitute the zone named "zone of draw of the first frequency". A given number of frequencies is thus assigned to each candidate score at the time of its integration into the table. The determination of the frequency range associated with each candidate score is advantageously carried out completely independently of one score to another. Each frequency determines, taking into account the position of the antenna and its rotational speed, a possible time of realization of the pointing considered. As illustrated by figure 7 , the frequency range thus determined thus makes it possible to define for each pointing request an angular zone of variable size (random) called the managed visibility area which when traversed by the antenna direction allows the radar to implement the matching score using one of the frequencies in the range. In this way, as illustrated by figure 8 , it is possible to determine, for a given direction of the antenna, the candidate scores 81 and 82 likely to be implemented at a given instant, since the antenna azimuth is in at least one of the visibility of candidate scores.

Par la suite les requêtes de pointages qui ont étés choisies et celles dont la mise en oeuvre n'est plus possible (direction d'antenne située après les domaines de visibilités de ces requêtes) sont éliminées de la table tandis que les autres y restent (direction d'antenne située avant ou dans les domaines de visibilités de ces requêtes) de façon à être pris en compte à l'itération suivante.Subsequently, the requests for scores that have been chosen and those whose implementation is no longer possible (antenna direction located after the visibility domains of these requests) are eliminated from the table while the others remain there ( antenna direction located before or in the areas of visibility of these requests) so as to be taken into account at the next iteration.

Outre le choix de la plage des fréquences qui sont associées à chaque pointage candidat, l'étape 57 a également pour fonction de constituer dynamiquement à chaque itération, comme l'illustre la figure 12, les nouvelles requêtes de pointage à prendre en compte. Ces nouvelles requêtes sont à la fois de nouvelles requêtes de pointages de veille dont les directions sont incluses dans une première fenêtre angulaire 121 contiguë au domaine de visibilité 122 du radar (domaine de visibilité complet si toutes les fréquences sont autorisées ou domaine de visibilité partiel si seule une partie des fréquences est autorisée) ainsi que des requêtes de pointages d'autres types pouvant éventuellement survenir, des requêtes de poursuite par exemple, requêtes dont les directions sont incluses dans une seconde fenêtre angulaire 123 contiguë à la première fenêtre 121. La position de l'antenne 31 prise pour origine est celle obtenue après prise en compte du dernier pointage choisi.
Selon un mode de mise en oeuvre préféré de l'invention, la taille de la première fenêtre angulaire 121 est déterminée de façon à correspondre à l'angle de rotation de l'antenne sur une durée équivalente à la durée maximale d'un demi-pointage à laquelle on ajoute le retard maximum pouvant exister entre le moment ou un pointage a été sélectionné et le moment où il est effectivement émis.
Selon ce mode de mise en oeuvre préféré, la taille de la seconde fenêtre angulaire 123 est quant à elle déterminée comme étant proportionnelle à la valeur d'extension azimutale DAzAdaptationCharge qui correspondant à un multiple de l'extension azimutale du domaine de visibilité partiel dans la limite de celle du domaine de visibilité complet. Cette fenêtre peut être par exemple égale à 0.5 fois la valeur d'extension azimutale DAzAdaptationCharge. La limite théorique au delà de laquelle une surcharge locale centrée sur ce secteur ne peut plus être traitée, est quant à elle égale à deux fois le domaine de visibilité partiel.
En pratique, pour créer dynamiquement un pointage de veille dans une direction donnée, incluse dans la première fenêtre 121, le procédé selon l'invention prends en compte les requêtes de pointage concernant des pointages autres que des pointages de veille dont la direction est incluse dans la seconde fenêtre 123 et le dernier pointage de veille créé à l'itération précédente. Par suite le pointage de veille considéré a pour direction la direction du pointage de veille précédent à laquelle on ajoute un écart azimutal EcartAzVeille défini et calculé comme suit.
In addition to choosing the range of frequencies that are associated with each candidate score, step 57 also has the function of constituting dynamically at each iteration, as illustrated by FIG. figure 12 , new pointing requests to take into account. This news queries are both new standby watch requests whose directions are included in a first angular window 121 contiguous to the field of view 122 of the radar (full visibility range if all frequencies are allowed or partial visibility area if only one part of the frequencies is allowed) as well as requests for other types of punishments that may occur, for example pursuit requests, queries whose directions are included in a second angular window 123 contiguous to the first window 121. The position of the Antenna 31 taken for origin is that obtained after taking into account the last score chosen.
According to a preferred embodiment of the invention, the size of the first angular window 121 is determined so as to correspond to the angle of rotation of the antenna over a period equivalent to the maximum duration of one half. a score to which is added the maximum delay that may exist between the moment when a score was selected and the moment when it is actually issued.
According to this preferred embodiment, the size of the second angular window 123 is in turn determined as being proportional to the azimuth extension value DAz AdaptationCharge which corresponds to a multiple of the azimuthal extension of the partial visibility domain in the limit of the full visibility range. This window may be for example equal to 0.5 times the azimuth extension value DAz AdaptationCharge . The theoretical limit beyond which a local overhead focused on this sector can no longer be treated, is in turn equal to twice the partial visibility area.
In practice, to dynamically create a standby watch in a given direction, included in the first window 121, the method according to the invention takes into account the pointing requests concerning scores other than standby scores whose direction is included in the second window 123 and the last standby pointer created at the previous iteration. As a result, the standby point of view considered is directed to the direction of the previous standby pointing, to which is added an azimuth deviation Difference Standby defined and calculated as follows.

La mise en oeuvre de cette logique d'adaptation du radar à la charge est faite en considérant que l'écart azimutal imposé par le procédé selon l'invention entre deux pointages de veille voisins, EcartAzVeille, comprend une composante long terme, EcartAzVeilieLT, et une composante court terme, EcartAzVeilleCT.
EcartAzVeilleLT est très peu influencée par les écarts locaux de charge. Sa valeur correspond au secteur en azimut balayé par l'antenne pendant la durée moyenne d'un pointage, durée calculée sur une période de temps de plusieurs secondes, en tenant compte d'un pourcentage de pointages techniques fixé a priori.
EcartAzVeilleCT réagit uniquement aux variations de charge locales. Sa valeur est donnée par l'expression suivante: EcartAz VeilleCT = DAz Charge EcartAz VeilleLT / DAz AdaptationCharge - DAz Charge

Figure imgb0003
The implementation of this logic of adaptation of the radar to the load is made considering that the azimuthal deviation imposed by the process according to the invention between two neighboring watchpoints, EcartAz Veille , comprises a long-term component, EcartAz VeilieLT , and a short-term component, EcartAz VeilleCT .
EcartAz VeilleLT is very little affected by local load differences. Its value corresponds to the sector in azimuth swept by the antenna during the average duration of a score, duration calculated over a period of time of several seconds, taking into account a percentage of technical scores fixed a priori.
EcartAz VeilleCT responds only to local load variations. Its value is given by the following expression: EcartAz VeilleCT = DAz Charge EcartAz VeilleLT / DAz AdaptationCharge - DAz Charge
Figure imgb0003

Dans laquelle DAzCharge correspond à l'écart de charge radar instantané constaté, ramené à une valeur azimutale positive en cas de surcharge et négative en cas de sous-charge.
On constate que EcartAzVeiueCT est positif en cas de surcharge (on écarte plus les pointages de veille pendant un certain temps de manière à libérer progressivement de la charge radar), négatif en cas de sous charge (on resserre les pointages de veille pendant un certain temps de manière à profiter progressivement du surplus de charge radar disponible) et nul lorsque la charge est normale. En cas de surcharge locale importante et brusque, l'écartement maximum entre pointages par le procédé sera limité.
De manière à ce que l'écart en azimut reste pratiquement constant dans la zone traitée, le calcul de EcartAzVeineCT n'est effectué qu'en cas de détection d'une nouvelle cause de surcharge ou de sous charge (comme par exemple la prise en compte d'un pointage de poursuite ou une variation de la vitesse de rotation d'antenne) ou lorsque l'état de charge est redevenu normal. Dans ce dernier cas, l'écart en azimut est considéré comme étant donné par la composante EcartAzVeilieLT.
In which DAz Charge corresponds to the observed instantaneous radar load difference, reduced to a positive azimuth value in case of overload and negative in case of underload.
It can be seen that EcartAz VeiueCT is positive in the event of an overload (the standby times are no longer set aside for a certain period of time so as to gradually release the radar load), negative in the case of underloading (the standby times are tightened during a certain period of time). time to gradually take advantage of the surplus radar load available) and zero when the load is normal. In case of large and sudden local overload, the maximum spacing between punches by the process will be limited.
So that the difference in azimuth remains almost constant in the treated area, the calculation of EcartAz VeineCT is carried out only in case of detection of a new cause of overload or under load (as for example the taking counting a tracking point or a variation of the antenna rotation speed) or when the state of charge has returned to normal. In the latter case, the difference in azimuth is considered to be given by the component EcartAz VeilieLT .

Le calcul de l'écart azimutal ainsi calculé permet de faire en sorte qu'un état de surcharge ou de sous charge radar soit traité au mieux dans un secteur azimutal de largeur égale à DAzAdaptationCharge. Dans ce secteur les écarts en azimut entre pointages de veille seront quasiment constants et l'entrée et la sortie de ce secteur se feront sans variation trop brusque de ces écarts, garanti en cela par la largeur suffisante du secteur en question.
On détermine ainsi pour chaque pointage de veille à venir, mémorisé dans la table des pointages candidats, la direction pointée correspondante.
Calculation of the azimuthal deviation thus calculated makes it possible to ensure that a state of radar overload or underload is best treated in an azimuthal sector of width equal to DAz AdaptationCharge . In this sector Azimuth deviations between watch-points will be almost constant and the entry and exit of this sector will be without abrupt variation of these deviations, guaranteed in this by the sufficient width of the sector in question.
For each standby score to come, stored in the table of the candidate scores, the corresponding pointed direction is thus determined.

La septième étape 57 est finalement suivie par une ultime étape 58 consistant à traiter les pointages candidats qui n'ont pas été retenus lors des dernières itérations et qui ne sont plus des candidats possibles pour l'itération suivante du fait que la direction de l'antenne à quittée leurs domaines de visibilité gérés respectifs, deux cas sont à prendre en compte:

  • si le pointage candidat est de veille il est purement et simplement supprimé de la table des pointages candidats,
  • si le pointage candidat n'est pas un pointage de veille mais qu'il est cependant périodique (pointage de poursuite par exemple) il est conservé dans la table des pointages candidats mais l'état désactivé (il n'est pas pris en compte dans les étapes de sélection) et il sera de nouveau activé et ses paramètres seront alors réactualisés (comme par exemple sa position et son domaine de visibilité géré) au tour d'antenne suivant ou à sa période suivante lors de son nouveau passage dans la fenêtre angulaire 123.
The seventh step 57 is finally followed by a final step 58 of processing candidate scores that have not been selected in the last iterations and are no longer possible candidates for the next iteration because the direction of the antenna has left their respective managed visibility domains, two cases must be taken into account:
  • if the candidate score is standby it is purely and simply deleted from the table of candidate scores,
  • if the candidate score is not a standby score but it is however periodic (tracking pointing for example) it is kept in the table of candidate scores but the disabled state (it is not taken into account in the selection steps) and it will be activated again and its parameters will then be updated (for example its position and its field of visibility managed) at the next antenna revolution or at its next period when it is again in the angular window 123.

Il est à noter que si, à l'issue d'une itération des différentes étapes du procédé selon l'invention, aucun pointage n'est sélectionné (détection de "temps morts"), un pointage technique est mis en oeuvre (cf. figure 13). Une nouvelle itération est ensuite engagée.
De la même façon, si les pointages candidats sont en nombre insuffisant lors de la première étape d'une itération donnée, un pointage technique est sélectionné. Le traitement d'un nombre insuffisant de pointages candidats ne permettrait en effet pas une gestion efficiente des fréquences, c'est à dire un maintien de l'équiprobabilité des fréquences. Une nouvelle itération est ensuite engagée.
It should be noted that if, after an iteration of the various steps of the method according to the invention, no pointing is selected (detection of "dead time"), a technical score is implemented (cf. figure 13 ). A new iteration is then initiated.
In the same way, if the candidate scores are insufficient in the first step of a given iteration, a technical score is selected. The treatment of an insufficient number of candidate scores would not allow an efficient management of the frequencies, ie a maintenance of the equiprobability of the frequencies. A new iteration is then initiated.

Le principe de gestion des "temps morts" par l'insertion de pointages techniques est illustré à la figure 13.
Si à un instant donné t1, on ne dispose d'aucun pointage candidat actif, soit que, compte tenu de l'azimut de l'antenne, les domaines de visibilité, 134, 135 ou 136, des pointages candidats disponibles 131, 132 ou 133, n'est pas accessible par le faisceau d'antenne à l'instant t1, soit que la partie du domaine de visibilité 138 d'un ou plusieurs pointages candidats disponibles 137 correspondant aux fréquences associées à ces pointages n'est pas accessible par le faisceau d'antenne à l'instant t (cf. la figure 10 qui montre des exemples de pointages accessibles par l'antenne du fait de la tolérance matérialisée par la fenêtre 103), un pointage technique 139 d'une durée donnée, est inséré. On détermine ensuite l'instant t2 de fin d'exécution du pointage technique et on regarde si à cet instant, compte tenu de la rotation de l'antenne, certains des pointages candidats précédents, 131, 132, 133 ou 137, sont devenus actifs.
Dans l'affirmative les pointages candidats actifs sont pris en considération.
Dans la négative, aucun pointage candidat n'étant encore accessible, un autre pointage technique 1311 est inséré.
L'opération est répétée jusqu'à ce que pour un instant donné t3, compte tenu de l'azimut de l'antenne à cet instant, un premier pointage candidat 132 devienne compte tenu de la direction de l'antenne potentiellement accessible.
Il est à noter que, selon l'invention, le taux de pointages techniques est régulé via la fonction 57 (l'écart entre pointages tient compte d'un pourcentage de temps pour les pointages techniques défini a priori et fixé par l'opérateur).
The principle of managing "dead times" by inserting technical scores is illustrated in figure 13 .
If at any given time t 1 , no active candidate score is available, either whereas, given the azimuth of the antenna, the visibility ranges, 134, 135 or 136, of available candidate scores 131, 132 or 133, are not accessible by the antenna beam at time t 1 , that part of the field of view 138 of one or more available candidate scores 137 corresponding to the frequencies associated with these scores is not accessible by the antenna beam at time t (see FIG. figure 10 which shows examples of pointing accessible by the antenna due to the tolerance materialized by the window 103), a technical score 139 of a given duration is inserted. Then we determine the end time t 2 of completion of the technical score and we examine whether at this moment, taking into account the rotation of the antenna, some of the preceding candidate scores, 131, 132, 133 or 137, have become assets.
If yes, the active candidate scores are taken into consideration.
If no, no candidate score is yet available, another technical score 1311 is inserted.
The operation is repeated until for a given time t 3 , given the azimuth of the antenna at this time, a first candidate score 132 becomes in view of the direction of the potentially accessible antenna.
It should be noted that, according to the invention, the technical score rate is regulated via the function 57 (the difference between scores takes into account a percentage of time for the technical scores defined a priori and fixed by the operator) .

En utilisant le caractère dispersif de l'antenne utilisée par le radar dans lequel il est mis en oeuvre le procédé selon l'invention permet avantageusement, en ce qui concerne les pointages à exécuter durant la période de rotation de l'antenne, de substituer à la notion d'instant d'exécution la notion d'intervalle de temps d'exécution. Il permet ainsi de gérer de manière optimale la charge radar en déterminant l'ordre d'exécution des pointages à exécuter dans un intervalle de temps donné (qu'il a lui-même créé), et permet d'insérer des pointages adressés (comme les pointages de poursuite) permettant de transformer ce radar en un radar multifonction.By using the dispersive nature of the antenna used by the radar in which it is implemented, the method according to the invention advantageously makes it possible, with regard to the pointing to be performed during the period of rotation of the antenna, to substitute for the notion of execution time the notion of interval of execution time. It thus makes it possible to optimally manage the radar load by determining the order of execution of the scores to be executed in a given time interval (which it has itself created), and makes it possible to insert addressed scores (such as tracking points) to turn this radar into a multifunction radar.

Il permet de gérer harmonieusement les variations de la charge radar (provoquées par l'insertion de pointages de poursuites et par la fluctuation de la vitesse de rotation d'antenne) grâce à une adaptation de l'écartement des pointages de veille à ces variations de charge.
Il permet également de gérer efficacement les fréquences, en jouant de façon aléatoire et homogène les fréquences autorisées ou les moins brouillées. Vis à vis du brouillage, le procédé permet de s'adapter à la carte brouillage entretenue tour à tour et à l'écoute instantanée des fréquences les moins brouillées, pour sélectionner au mieux les fréquences à utiliser.
It makes it possible to harmoniously manage the variations of the radar load (caused by the insertion of tracking points and by the fluctuation of the antenna rotation speed) by adapting the spacing of the watch scores to these variations of charge.
It also makes it possible to effectively manage the frequencies, by playing randomly and homogeneously the authorized or least scrambled frequencies. With respect to interference, the method makes it possible to adapt to the scrambling card maintained in turn and instantaneous listening of the least scrambled frequencies, to select the best frequencies to use.

La possibilité de fonctionnement de type multifonction est disponible grâce à la capacité d'insérer de façon dynamique des pointages adressés de type "poursuite active", "Reconnaissance Non-Coopérative de Cible (RNCC)", "désignation externe", ...; mais également de fonctions évoluées d'antibrouillage "Pick-A-Boo" (écartement des pointages autour d'une direction brouillée, pour limiter les effets du brouillage). Pour une capacité de pointage RNCC avec des formes d'ondes large bande (modulation de fréquence en rampe), et éviter le dépointage du faisceau par rapport à la position de la cible, le pointage sera ordonnancé grâce au procédé de l'invention en plusieurs sous pointages de rampes en fréquence réduites (principe de formes d'onde multi-rampes).The possibility of multifunction type operation is available thanks to the ability to dynamically insert addressed pointers of the "active tracking", "Non-Cooperative Target Recognition (RNCC)", "external designation", ...; but also advanced anti-jam functions "Pick-A-Boo" (spacing scores around a scrambled direction, to limit the effects of jamming). For an RNCC pointing capability with broadband waveforms (ramp frequency modulation), and avoid misalignment of the beam with respect to the position of the target, the pointing will be scheduled by the method of the invention in several under reduced frequency ramps (principle of multi-ramp waveforms).

Claims (9)

  1. A method for managing transmitted beam directions by a radar comprising a rotating dispersive antenna, the rotation speed of which is likely to vary over time, said management being carried out as a function of the field of visibility of the antenna at the considered instant, said method being applied in an iterative manner to candidate beam transmission directions, each candidate beam transmission direction being associated in a table to a set of candidate frequencies that are determined from the set of authorised radar frequencies, said method consisting in selecting, at each iteration, which of the candidate beam transmission directions has to be executed first, as well as the frequency that is associated with this beam transmission direction for its execution, characterised in that it comprises the following steps:
    - a step (51) which involves eliminating for the considered iteration the candidate beam transmissions which are not accessible to the antenna lobe, taking into account the frequencies associated therewith in the table and the beam transmission direction in which the antenna is pointed;
    - a step (53) which involves eliminating for each of the remaining beam transmission directions the associated candidate frequencies that are not located in a given neighbourhood of the theoretical frequency allowing the considered beam transmission to be executed in the required beam transmission direction, taking into account the beam transmission direction in which the antenna is pointed;
    - a step (55) which involves determining whether some of the remaining frequencies are jammed and in the case that all of the remaining frequencies are jammed the least jammed frequency is determined, the jammed frequencies being eliminated with the exception of the least jammed frequency;
    - a step (56) which involves selecting the least used frequency from the remaining candidate frequencies, with the remaining candidate beam transmission directions that are not associated with this frequency being eliminated;
    wherein the non-eliminated candidate beam transmission direction to which the least used candidate frequency is associated is transmitted to means that are designed to implement the corresponding waveforms;
    - a step (57) of creating new beam transmission direction requests, each new beam transmission direction request being constituted by a new candidate beam transmission direction or a candidate beam transmission direction that is not yet executed and a set of associated candidate frequencies, said frequencies being those of the authorised frequencies that are contained in a frequency band that is determined in a random manner from the frequency band B assigned to the radar;
    - a final step (58) of processing the case of beam transmission directions that are no longer visible on completion of the current iteration, taking into account the displacement of the field of visibility following the rotation of the antenna;
    the steps of the forming method being repeated in an iterative manner, with the table that associates the candidate beam transmission directions and the candidate frequencies being renewed at each cycle.
  2. The method according to claim 1, characterised in that it further comprises an intermediate step (52) that consists in eliminating the candidate beam transmission directions that, if they were ultimately selected during the considered iteration, could induce the loss of one or more other candidate beam transmission directions with a short duration of visibility.
  3. The method according to claim 2, characterised in that it further comprises a second intermediate step (54) for carrying out the selections of the beam transmission directions that are declared as having the highest priority.
  4. The method according to any one of the preceding claims, characterised in that the step (57) of creating new beam transmission direction requests undertakes for each candidate beam transmission direction the association of a frequency range that is within an interval that is limited by two frequencies fmin and fmax, the frequency fmax being the highest frequency of the authorised frequency field, the frequency fmin being a frequency that is selected randomly in a frequency field that extends from the lowest frequency of the authorised frequency field to a frequency flimite_tirage that is greater than fmin and lower than fmax.
  5. The method according to claim 4, characterised in that the frequency fmin is obtained by a random draw with a likelihood density that decreases as the frequency increases.
  6. The method according to claim 4 or 5, characterised in that the frequency flimite_tirage is determined so as to define with fmax a frequency interval that contains a number n of authorised frequencies that is low in relation to the number of authorised frequencies contained in the interval that is limited by fmin and fmax.
  7. The method according to any one of the preceding claims, characterised in that, for determining new candidate beam transmission directions, step (57) for creating new beam transmission direction requests takes into account a first angular window (121) that is contiguous with the field of visibility (122) for determining new monitoring beam transmission directions and a second angular window (123) that is contiguous with the first window (121) for determining other new beam transmission directions, the angular windows (121) and (123) being determined so as to take into account the rotation of the antenna.
  8. The method according to claim 7, characterised in that the first angular window (121) is determined so as to correspond to the angle of rotation of the antenna over a duration that is equivalent to the maximum duration of a half-beam transmission direction, to which is added the maximum delay that can exist between the moment at which a beam transmission direction has been selected and the moment at which a beam is effectively transmitted, the size of the second angular window (123) being, for its part, defined as being proportional to the value of azimuth extension DAzAdaptationCharge that corresponds to a multiple of the azimuth extension that corresponds to the partial field of visibility, DAzAdaptationCharge being in all cases lower than the complete field of visibility.
  9. The method according to any one of the preceding claims, characterised in that the step (55) takes into account the information that relates to the least jammed frequencies for selecting beam transmission directions in two possible manners, either locally by instantaneously listening to the jammed frequencies or globally by using the available jammed frequency maps.
EP09175493A 2008-12-19 2009-11-10 Method of selecting frequencies and transmitted beam directions for a radar using a frequency dispersive antenna Not-in-force EP2199824B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0807213A FR2940464A1 (en) 2008-12-19 2008-12-19 METHOD FOR MANAGING FREQUENCIES AND POINTS ISSUED BY A DISPERSIVE ANTENNA RADAR

Publications (2)

Publication Number Publication Date
EP2199824A1 EP2199824A1 (en) 2010-06-23
EP2199824B1 true EP2199824B1 (en) 2012-12-26

Family

ID=40756830

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09175493A Not-in-force EP2199824B1 (en) 2008-12-19 2009-11-10 Method of selecting frequencies and transmitted beam directions for a radar using a frequency dispersive antenna

Country Status (7)

Country Link
US (1) US20100156700A1 (en)
EP (1) EP2199824B1 (en)
JP (1) JP2010156689A (en)
CN (1) CN101833085A (en)
CA (1) CA2688657A1 (en)
ES (1) ES2399954T3 (en)
FR (1) FR2940464A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2500931A (en) * 2012-04-05 2013-10-09 Selex Galileo Ltd Radar surveillance system
FR2993714B1 (en) * 2012-07-18 2015-05-29 Thales Sa MULTIFREQUENCY POINTING DEVICE AND METHOD FOR ELECTRONIC SCAN ANTENNA
US10263329B1 (en) * 2015-01-12 2019-04-16 Raytheon Company Dynamic azimuth scanning for rotating active electronic scanned array radar

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771205B1 (en) * 1977-07-28 2004-08-03 Raytheon Company Shipboard point defense system and elements therefor
US5359329A (en) * 1981-03-18 1994-10-25 The United States Of America As Represented By The Secretary Of The Navy Jammer reference target measurement system
US6079666A (en) * 1986-04-25 2000-06-27 Hornback; Alton B. Real time boresight error slope sensor
CA1234903A (en) * 1987-07-16 1988-04-05 Anthony R. Raab Electronically scanned radar system
US5045858A (en) * 1989-08-16 1991-09-03 Cubic Defense Systems, Inc. Sidelobe identification and discrimination system with signal multiplexer-separator
US5066956A (en) * 1989-11-27 1991-11-19 Westinghouse Electric Corp. Azimuth-stacked radar method and apparatus
US5101209A (en) * 1990-03-09 1992-03-31 The United States Of America As Represented By The Secretary Of The Air Force Jam strobe resolution using a monopulse antenna
US5239309A (en) * 1991-06-27 1993-08-24 Hughes Aircraft Company Ultra wideband radar employing synthesized short pulses
US6867726B1 (en) * 1991-12-16 2005-03-15 Lockheed Martin Corporation Combining sidelobe canceller and mainlobe canceller for adaptive monopulse radar processing
US5200753A (en) * 1992-02-20 1993-04-06 Grumman Aerospace Corporation Monopulse radar jammer using millimeter wave techniques
FR2710784B1 (en) * 1993-09-28 1995-10-27 Thomson Csf Method for managing the beam of a rotating antenna with electronic scanning.
US5651512A (en) * 1995-09-28 1997-07-29 Hughes Electronics Missile tracking system with a thermal track link
US5659319A (en) * 1995-12-21 1997-08-19 Cardion, Inc. Method and apparatus for operating a surface detection surveillance radar using frequency agile pulse transmissions
US6411249B1 (en) * 2000-07-19 2002-06-25 Northrop Grumman Corporation Apparatus and method for the monopulse linking of frequency agile emitter pulses intercepted in on single interferometer baseline
US6531976B1 (en) * 2001-09-07 2003-03-11 Lockheed Martin Corporation Adaptive digital beamforming radar technique for creating high resolution range profile for target in motion in the presence of jamming
FR2886772B1 (en) * 2005-06-03 2007-09-07 Thales Sa DISPERSIVE ANTENNA IN FREQUENCY ADAPTED ESPECIALLY TO THE LOCATION OF OBJECTS ON AN ANGULAR DOMAIN EXCEEDING THE NATURAL WIDTH OF THIS ANTENNA.
US7843376B1 (en) * 2006-12-27 2010-11-30 Lockheed Martin Corporation Cross-eye jamming detection and mitigation
US8164037B2 (en) * 2009-09-26 2012-04-24 Raytheon Company Co-boresighted dual-mode SAL/IR seeker including a SAL spreader

Also Published As

Publication number Publication date
US20100156700A1 (en) 2010-06-24
JP2010156689A (en) 2010-07-15
CA2688657A1 (en) 2010-06-19
FR2940464A1 (en) 2010-06-25
CN101833085A (en) 2010-09-15
ES2399954T3 (en) 2013-04-04
EP2199824A1 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
EP3772192B1 (en) Method for determining the constraints of a non-geostationary system with respect to another non-geostationary system
EP2199824B1 (en) Method of selecting frequencies and transmitted beam directions for a radar using a frequency dispersive antenna
EP1851568B1 (en) Method for detecting in bistatic mode by passively operating on non-co-operating radioelectric transmissions
WO2010069886A1 (en) Method for filtering the radar echoes produced by wind turbines
EP4005111B1 (en) Method for determining constraints of a non-geostationary system with respect to another non-geostationary system
WO2006008227A1 (en) Cfar method by statistical segmentation and normalisation
EP2453251B1 (en) Method for performing high-resolution analysis of an area of space by means of a frequency-agile pulsed wave
EP2388758A1 (en) Satellite telecommunication system comprising a mechanism for separating messages transmitted by a plurality of transmitters
EP2725722B1 (en) Method and system for detecting broadcast signals transmitted by terrestrial sources and received by a satellite.
EP2662701B1 (en) Receiver sequencing method
EP0376374A1 (en) Radio altimeter with fixed echo elimination, and method of performing same
EP3772191B1 (en) Method for determining a maximum transmission power of a non-geostationary satellite
EP3538916A1 (en) Method for testing the electromagnetic compatibility of a radar detector with at least one onboard pulse signal transmitter
EP0645839B1 (en) Method for beam managing of a rotatable antenna with electronic scanning
EP1336867B1 (en) Method for regulating the workload of a radar, particularly by means of adaptation of the surveillance pattern
EP0395480B1 (en) Method and apparatus for spectral analysis with high resolution of non stationary signals from an electromagnetic detection system
BE1011770A4 (en) Improved co-operative scrambling device and process
FR2734368A1 (en) Angular radioelectric scrambling of tracking radar from aircraft
EP3538917B1 (en) Method for testing the electromagnetic compatibility of a radar detector with at least one onboard pulse signal transmitter
WO2023057729A1 (en) Method and device for detecting satellite signal decoying
WO2018087186A1 (en) Method for testing the electromagnetic compatibility of a radar detector with at least one onboard pulse signal transmitter
FR2832808A1 (en) RADAR LOAD REGULATION METHOD
FR2762668A1 (en) ROCKET PROXIMITY, PREFERABLY FOR THE FIGHT AGAINST FLYING OBJECTIVES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101223

17Q First examination report despatched

Effective date: 20110118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 7/36 20060101ALI20120625BHEP

Ipc: G01S 13/42 20060101ALI20120625BHEP

Ipc: G01S 13/24 20060101AFI20120625BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BARBARESCO, FREDERIC

Inventor name: DELTOUR, JEAN-CLAUDE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 590756

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009012196

Country of ref document: DE

Effective date: 20130307

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2399954

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 590756

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130326

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

26N No opposition filed

Effective date: 20130927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009012196

Country of ref document: DE

Effective date: 20130927

BERE Be: lapsed

Owner name: THALES

Effective date: 20131130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091110

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131110

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211019

Year of fee payment: 13

Ref country code: ES

Payment date: 20211206

Year of fee payment: 13

Ref country code: FR

Payment date: 20211108

Year of fee payment: 13

Ref country code: GB

Payment date: 20211021

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211027

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009012196

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221110

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221110

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221111