EP2198099A1 - Sliding pendulum seismic isolator - Google Patents
Sliding pendulum seismic isolatorInfo
- Publication number
- EP2198099A1 EP2198099A1 EP07827678A EP07827678A EP2198099A1 EP 2198099 A1 EP2198099 A1 EP 2198099A1 EP 07827678 A EP07827678 A EP 07827678A EP 07827678 A EP07827678 A EP 07827678A EP 2198099 A1 EP2198099 A1 EP 2198099A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sliding
- elements
- cylindrical
- intermediate element
- cylindrical concave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
- E04H9/023—Bearing, supporting or connecting constructions specially adapted for such buildings and comprising rolling elements, e.g. balls, pins
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
Definitions
- the present invention relates to a sliding pendulum seismic isolator and particularly to a sliding pendulum seismic isolator of the bi-directional type.
- the seismic isolation technique using sliding pendulum seismic isolators essentially comprising convex supports coupled with concave cylindrical sliding surfaces.
- Such isolators are usually arranged between a superstructure such as, for example, a bridge or a building, and its foundations. In case of earthquakes, the isolators allow a movement and/or a rotation of the superstructure relative to the foundations, thus protecting its integrity.
- the superstructure oscillates increasing and decreasing its potential energy according to the law of motion of a pendulum, whose natural period is defined by the radius of the cylindrical surface.
- the radius of the cylindrical surfaces is designed in order to optimize the natural period of the pendulum for the reduction of the seismic response of the superstructure.
- a certain amount of energy is dissipated through the friction between the contact material and the cylindrical surface, thus reducing more the seismic response of the superstructure.
- seismic isolators comprising different types of isolator, such as, for example, multi-directional isolators and mono- and bi-directional isolators, which define a pattern of constraints between the structure and its foundations such to generate a series of programmed movements and/or rotations during an earthquake.
- Patent application US 2006/0174555 in the name of Earthquake Protection Systems Inc. discloses a sliding pendulum seismic isolator provided with a lower sliding element and an upper sliding element between which two or three intermediate elements are arranged, provided with spherical surfaces defining a spherical joint.
- the spherical joint allows the relative rotation and the movement of the lower part with respect to the upper part.
- the spherical joint also allows to transfer the vertical compression loads and transverse loads occurring during a seismic event from the supported structure to the foundations.
- the spherical joint of the seismic isolator described in the above-mentioned patent application may be applied to multi-directional supports as well as to mono- and bi-directional supports. Concerning bi-directional supports in particular, the above-mentioned patent application describes a very simple and inexpensive solution, wherein the lower sliding element and the upper one are designed as rails arranged along two directions of movement substantially perpendicular to each other.
- the bi-directional sliding pendulum seismic isolator includes a rail-shaped lower sliding element and a rail-shaped upper sliding element that are substantially perpendicular to each other and have cylindrical concave surfaces opposite to each other. Between the lower and upper sliding elements a first and a second intermediate element are arranged, which slide along said cylindrical concave surfaces of the sliding elements by means of corresponding cylindrical convex surfaces.
- the first intermediate element is provided with a cylindrical concave surface opposite to its cylindrical convex sliding surface and having the axis perpendicular to the axis of the cylindrical concave surface of the lower sliding element.
- the second intermediate element is provided with a concave surface opposite to its cylindrical convex sliding surface and having the axis perpendicular to the axis of the cylindrical concave surface of the upper sliding element.
- a third intermediate element is arranged, having a lower surface and an upper surface that are both cylindrical convex surfaces and have their axes perpendicular to each other.
- the three intermediate elements constitute a joint having the shape of a cylindrical double saddle that allows the movement and the relative rotation between the rail-shaped sliding elements.
- the main advantage of the isolator according to the present invention is that, thanks to the particular cylindrical double-saddle design, it is possible to dimension the joint arranged between the rail-shaped sliding elements in function of the actual load conditions as well as the movements and the rotations foreseen in the two sliding directions, thus avoiding a useless oversizing and above all optimizing the design solutions.
- Another advantage of the isolator according to the present invention is that the manufacturing of the joint with cylindrical sliding surfaces is remarkably easier and cheaper than the manufacturing of spherical surfaces, thus being able to achieve sliding surfaces of optimum quality in a relatively easy way, both directly working metal surfaces of hard materials such as stainless steel and in the case of coverings with thin plates, which further contributes to the optimization of the isolator costs.
- figure 1 shows a perspective view of a bi-directional sliding pendulum seismic isolator according to the present invention
- figure 2 is a sectional view of the isolator of figurel along line II-II
- - figure 3 is a detail III of figure 2
- figure 4 is a sectional view of the isolator of figure 1 along line TV-IV
- figure 5 is a detail V of figure 4
- figure 6 is a perspective exploded view of the isolator of figure 1.
- a bi-directional sliding pendulum seismic isolator conventionally includes a rail-shaped lower sliding element 1 and a rail-shaped upper sliding element 2 substantially perpendicular to each other.
- Lower and upper sliding elements 1, 2 are respectively provided with a cylindrical concave sliding surface Ia facing upward and a cylindrical concave sliding surface 2a facing downward.
- a first and a second intermediate element 3, 4 are arranged, each having a cylindrical convex sliding surface 3 a, 4a suitable to allow them to slide respectively along cylindrical concave surfaces Ia, 2a of lower and upper sliding elements 1, 2.
- a third intermediate elements 5 is arranged between the first and second intermediate element 3, 4.
- the first intermediate element 3 is provided with a cylindrical concave surface 3b opposite to its cylindrical convex sliding surface 3 a and having the axis perpendicular to the axis of the cylindrical concave surface Ia of the lower sliding element 1.
- the second intermediate element 4 is provided with a cylindrical concave surface 4b opposite to its cylindrical convex sliding surface 4a and having the axis perpendicular to the axis of the cylindrical concave surface 2a of the upper sliding element 2.
- the third intermediate element 5 has a lower surface 5a and an upper surface 5b that are both cylindrical convex surfaces and have their axes substantially perpendicular to each other.
- the lower surface 5a and the upper surface 5b of the third intermediate element 5 are in contact with surfaces 3b, 4b of the first and second intermediate element 3, 4, respectively, and allow a relative rotation between the intermediate elements 3, 4.
- elements 3, 4 and 5 constitute a joint having the shape of a cylindrical double saddle that allows relative rotations and movements of the lower and upper sliding elements 1, 2 in the two sliding directions defined by the isolator.
- the curvature radiuses of the cylindrical surfaces may be different in the two sliding directions, in order to better fit the actual movements and rotations of the superstructure.
- coupling means are provided between the lower and upper sliding elements 1, 2 and the intermediate elements 3, 4 and 5 in the transverse direction.
- Such coupling means are, for example, lateral guides formed on the sliding elements 1, 2 and on the intermediate elements 3, 4, 5 and arranged along the movement direction allowed by the single coupling.
- the first sliding element 1 is provided with guides Ib, Ic along its sides suitable for retaining the first intermediate element 3 in the transverse direction.
- the transverse constraint between the upper sliding element 2 and the second intermediate element 4 is made up of a pair of guides 4c, 4d fixed on the second intermediate element 4 itself.
- the third intermediate element 5 is constrained to the first and second intermediate element 3, 4 by means of guides 3c, 3d and 4e, 4f respectively formed thereon.
- the sliding surfaces Ia, 3a; 2a, 4a; 3b, 5a; 4b, 5b are covered with plates made of controlled friction materials that are combined between them so as to minimize the wear.
- Controlled friction materials suitable for the application to isolators are, for instance, stainless steel and polymeric materials chosen among, for example, polyethylene, polyamidic resins and PTFE suitably modified and/or filled.
- the cylindrical concave surfaces Ia, 2a of the lower and upper sliding elements 1, 2 are covered with mirror polished stainless steel plates S and the cylindrical convex surfaces 3 a, 4a of the first and second intermediate element 3, 4 are covered with plates T made of polyethylene.
- the third intermediate element 5 is entirely made of stainless steel with the cylindrical convex surfaces 5 a, 5b being mirror polished and slidable on polyethylene plates T that are respectively arranged in suitable seats formed in the cylindrical concave surfaces 3b, 4b of the first and second intermediate element 3, 4.
- the isolator according to the present invention also preferably comprises a plurality of anchoring elements 6, for example metal plates having a central hole, arranged at the base of the lower and upper sliding elements 1, 2 at their ends.
- Anchoring elements 6 serve to fix the lower and upper sliding elements 1, 2 to the superstructure and to its foundations by using, for instance, screws 7 engaging the threaded holes of anchor bars 8 buried in concrete.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Vibration Prevention Devices (AREA)
- Insulators (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IT2007/000626 WO2009034585A1 (en) | 2007-09-11 | 2007-09-11 | Sliding pendulum seismic isolator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2198099A1 true EP2198099A1 (en) | 2010-06-23 |
EP2198099B1 EP2198099B1 (en) | 2011-02-02 |
Family
ID=39638992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07827678A Not-in-force EP2198099B1 (en) | 2007-09-11 | 2007-09-11 | Sliding pendulum seismic isolator |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2198099B1 (en) |
AT (1) | ATE497565T1 (en) |
DE (1) | DE602007012373D1 (en) |
WO (1) | WO2009034585A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20110257A1 (en) * | 2011-02-21 | 2012-08-22 | Milano Politecnico | ANTI-SEISMIC SUPPORT. |
EP2873883B1 (en) * | 2013-11-18 | 2018-02-21 | Cave S.r.l. | Sliding bearing for structural engineering |
IT201900005478A1 (en) * | 2019-04-09 | 2020-10-09 | Univ Pisa | DEVICE TO PROTECT ARTIFACTS, IN PARTICULAR WORKS OF ART, FROM SEISMIC ACTIONS AND VIBRATORY PHENOMENA IN GENERAL |
IT202000002542A1 (en) * | 2020-02-10 | 2021-08-10 | Fip Mec S R L | ANTI-SEISMIC INSULATOR OF THE SLIDING PENDULUM TYPE |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008096378A1 (en) * | 2007-02-06 | 2008-08-14 | Alga S.P.A. | Sliding pendulum seismic isolator |
IT1396455B1 (en) * | 2009-11-16 | 2012-11-23 | Tecnostrutture S R L | SYSTEM OF PRE-MANUFACTURED SISMORESISTIC ELEMENTS FOR BUILDING AND ITS APPLICATION PROCEDURE. |
ITTO20130111A1 (en) | 2013-02-11 | 2014-08-12 | B2B Srl | ANTI SEISMIC INSULATOR. |
DE102013104064A1 (en) * | 2013-04-22 | 2014-10-23 | Maurer Söhne Engineering GmbH & Co. KG | Structural bearings |
WO2017082839A1 (en) | 2015-11-13 | 2017-05-18 | Ugur Gunduz | Earthquake isolator and production method of such an isolator |
KR102661847B1 (en) | 2018-09-11 | 2024-04-30 | 삼성전자주식회사 | Semiconductor device |
US11421435B2 (en) * | 2018-12-12 | 2022-08-23 | Universidad Catolica De La Santisima Concepcion | Kinematic seismic isolation device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3819591A1 (en) * | 1988-06-09 | 1989-12-14 | Hubert Dipl Ing Gallasch | Design of building such that they are secure with respect to earthquakes, by using a pendulum mounting |
US6021992A (en) * | 1997-06-23 | 2000-02-08 | Taichung Machinery Works Co., Ltd. | Passive vibration isolating system |
DE102005060375A1 (en) * | 2005-12-16 | 2007-06-21 | Steelpat Gmbh & Co. Kg | Bearing for protection for structures, formed as sliding pendulum bearing, has slide material which comprises a plastic with elasto-plastic compensating quality, especially plastic with low friction |
-
2007
- 2007-09-11 WO PCT/IT2007/000626 patent/WO2009034585A1/en active Application Filing
- 2007-09-11 DE DE602007012373T patent/DE602007012373D1/en active Active
- 2007-09-11 EP EP07827678A patent/EP2198099B1/en not_active Not-in-force
- 2007-09-11 AT AT07827678T patent/ATE497565T1/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO2009034585A1 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20110257A1 (en) * | 2011-02-21 | 2012-08-22 | Milano Politecnico | ANTI-SEISMIC SUPPORT. |
WO2012114246A1 (en) * | 2011-02-21 | 2012-08-30 | Politecnico Di Milano | Antiseismic support |
EP2873883B1 (en) * | 2013-11-18 | 2018-02-21 | Cave S.r.l. | Sliding bearing for structural engineering |
IT201900005478A1 (en) * | 2019-04-09 | 2020-10-09 | Univ Pisa | DEVICE TO PROTECT ARTIFACTS, IN PARTICULAR WORKS OF ART, FROM SEISMIC ACTIONS AND VIBRATORY PHENOMENA IN GENERAL |
IT202000002542A1 (en) * | 2020-02-10 | 2021-08-10 | Fip Mec S R L | ANTI-SEISMIC INSULATOR OF THE SLIDING PENDULUM TYPE |
EP3862593A1 (en) | 2020-02-10 | 2021-08-11 | Fip Mec S.R.L. | Anti-seismic isolator of the sliding pendulum type |
Also Published As
Publication number | Publication date |
---|---|
WO2009034585A1 (en) | 2009-03-19 |
ATE497565T1 (en) | 2011-02-15 |
DE602007012373D1 (en) | 2011-03-17 |
EP2198099B1 (en) | 2011-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2198099B1 (en) | Sliding pendulum seismic isolator | |
US8011142B2 (en) | Sliding pendulum seismic isolator | |
US6631593B2 (en) | Directional sliding pendulum seismic isolation systems and articulated sliding assemblies therefor | |
US8484911B2 (en) | Sliding pendulum seismic isolation system | |
CN102953327B (en) | Be applicable to the lateral shock absorption damper of bridge construction | |
CN100434603C (en) | Building insulating vibration -isolating system | |
KR200398506Y1 (en) | A pot bearing for bridge of spherical type | |
KR20130001468U (en) | Friction pendulum bearing | |
CN104131616A (en) | Self-restoration prefabricated reinforced concrete frame | |
KR20110019587A (en) | Damper separting type seismic isolation device lead | |
KR101062220B1 (en) | A rubber bearing damper shoe structure for bridge | |
CN116181141A (en) | Triple friction pendulum shock absorption and insulation support improved by SMA inhaul cable | |
CN109972502B (en) | Adjustable rubber support and installation method and adjustment method thereof | |
KR20100062560A (en) | Supporting device for bridge | |
KR101051059B1 (en) | Disk bearing for seismic isolation | |
CN215052041U (en) | Durable beam falling prevention spherical support | |
KR100722220B1 (en) | Bridge of pot beraing for aseismativ strengthened device | |
KR102087999B1 (en) | Anchor socket for bridge structure | |
KR200262491Y1 (en) | A Structural Bearing with a Large Shock Absorbing Force | |
CN206256370U (en) | Firm arm speed lockup's vibration absorption and isolation support such as one kind | |
CN112681118A (en) | Energy-consuming type swing pier | |
KR20110010014U (en) | Anchor Socket for Bridge Structure | |
KR200471176Y1 (en) | Friction pendulum bearing with pressure plates | |
CN206397236U (en) | A kind of Low rigidity multiple dimension shock-proof device | |
CN2380605Y (en) | Multidirectional moving plate type rubber supporting seat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100323 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602007012373 Country of ref document: DE Date of ref document: 20110317 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007012373 Country of ref document: DE Effective date: 20110317 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110202 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20110400992 Country of ref document: GR Effective date: 20110513 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110602 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110602 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110513 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110502 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20111103 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007012373 Country of ref document: DE Effective date: 20111103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110911 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110911 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110911 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20120829 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130911 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20190923 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20190925 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190927 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602007012373 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210401 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200911 |