EP2197794B1 - Crystallised material with hierarchised porosity and containing silicon - Google Patents

Crystallised material with hierarchised porosity and containing silicon Download PDF

Info

Publication number
EP2197794B1
EP2197794B1 EP08846541A EP08846541A EP2197794B1 EP 2197794 B1 EP2197794 B1 EP 2197794B1 EP 08846541 A EP08846541 A EP 08846541A EP 08846541 A EP08846541 A EP 08846541A EP 2197794 B1 EP2197794 B1 EP 2197794B1
Authority
EP
European Patent Office
Prior art keywords
zeolite
precursor
surfactant
particles
ranging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08846541A
Other languages
German (de)
French (fr)
Other versions
EP2197794A2 (en
Inventor
Alexandra Chaumonnot
Aurélie COUPE
Clément Sanchez
Cédric BOISSIERE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2197794A2 publication Critical patent/EP2197794A2/en
Application granted granted Critical
Publication of EP2197794B1 publication Critical patent/EP2197794B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/695Pore distribution polymodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination

Definitions

  • the present invention relates to the field of materials comprising silicon, in particular metallosilicate materials and more specifically aluminosilicate materials, having a hierarchical porosity in the field of microporosity, mesoporosity and macroporosity. It also relates to the preparation of these materials which are obtained by the use of the so-called "aerosol" synthesis technique.
  • a technique frequently used to generate materials having this bi-porosity is to create directly within zeolite crystals mesopores by subjecting the latter a hydrothermal treatment under water vapor also called "steaming". Under the effect of this treatment, the mobility of the tetrahedral atoms that make up the framework of the zeolite is increased to the point that some of these atoms are extracted from the network, which causes the formation of amorphous zone, which can be released to leave the room for mesoporous cavities ( AH Jansen, AJ Koster, KP De Jong, J. Phys. Chem. B, 2002, 106, 11905 ). The formation of such cavities can also be obtained by acid treatment of the zeolite ( H.
  • the mesostructured materials are conventionally obtained via so-called soft chemistry synthesis methods which consist of bringing into contact in aqueous solution or in polar solvents inorganic precursors with structuring agents, generally molecular or macromolecular, ionic surfactants. or neutral.
  • structuring agents generally molecular or macromolecular, ionic surfactants. or neutral.
  • the control of electrostatic or hydrogen bonding interactions between the inorganic precursors and the structuring agent together with hydrolysis / condensation reactions of the inorganic precursor leads to a cooperative assembly of the organic and inorganic phases generating micellar aggregates of uniformly sized surfactants. and controlled within an inorganic matrix.
  • the release of the porosity is then obtained by removing the surfactant, which is conventionally carried out by chemical extraction processes or by heat treatment.
  • a first synthesis technique consists of synthesizing in the first step a mesostructured aluminosilicate material according to the conventional methods explained above and then, in the second step, impregnating this material with a structuring agent usually used in the synthesis of zeolite materials.
  • a suitable hydrothermal treatment leads to a zeolitization of the amorphous walls (or walls) of the mesostructured aluminosilicate ( KR Koletstra, H. van Bekkum, JC Jansen, Chem. Commun., 1997, 2281 ; DT On, S. Kaliaguine, Angew.
  • the idea used here is to simultaneously generate the development of an inorganic matrix with organized mesoporosity and the growth within this matrix of zeolite seeds so as to ideally obtain a mesostructured aluminosilicate material having walls (or walls).
  • An alternative to these two techniques consists of a mixture of aluminum precursors and silicon in the presence of two structuring agents, one capable of generating a zeolite system, the other likely to generate mesostructuration.
  • This solution is then subjected to two crystallization steps using variable hydrothermal treatment conditions, a first step which leads to the formation of the mesoporous structure with organized porosity and a second step which leads to the zeolitization of the walls (or walls ) amorphous ( A. Karlsson, M. Stöcker, R. Schmidt, Micropor. Mesopor. Mater., 1999, 27, 181 ; A. Karlsson, M. Stöcker, R. Schmidt, Stud. Surf. Sci.
  • mesostructured / zeolite composite materials in order to benefit from the catalytic properties specific to each of these phases. This can be done by heat treatment of a mixture of a zeolite seed solution and a solution of mesostructured aluminosilicate seeds ( P. Prokesova, S. Mintova, J. Cejka, T. Bein, Micropor. Mesopor. Mater., 2003, 64, 165 ) or by growth of a zeolite layer on the surface of a pre-synthesized mesostructured aluminosilicate ( DT On, S. Kaliaguine, Angew. Chem. Int. Ed., 2002, 41, 1036 ).
  • zeolite zeolite materials obtained by post-treatment of a zeolite we note that, from an experimental point of view, all these materials are obtained by direct precipitation of inorganic precursors in the presence or absence of structuring agents within an aqueous solution or in polar solvents, this step being mostly followed by one or more autoclave ripening steps.
  • the elementary particles usually obtained do not have a regular shape and are generally characterized by a size ranging from 200 to 500 nm.
  • one of the most common synthetic methods consists of using polystyrene beads as a macroporosity generating element and creating around these beads a zeolite network ( GS Zhu, Qiu SL, Gao FF, Li DS, YF Li, Wang RW, Gao B., Li BS, YH Guo, Xu RR, Z. Liu, O. Terasaki, J. Mater. Chem., 2001, 11, 6, 1687 ).
  • the document EP1627853 discloses a hierarchical porosity material consisting of at least two elementary spherical particles, each of said spherical particles comprising zeolitic nanocrystals having a pore size of between 0.2 and 2 nm and a mesostructured silicon oxide matrix, having a pore size between 1.5 and 30 nm and having amorphous walls of thickness between 1 and 20 nm, said elementary spherical particles having a maximum diameter of 10 microns.
  • the invention relates to a material with a hierarchical porosity consisting of at least two elementary spherical particles having a maximum diameter of 200 microns, at least one of said spherical particles comprising at least one matrix based on silicon oxide, said material exhibiting a macroporous volume measured by mercury porosimetry of between 0.05 and 1 ml / g, a mesoporous volume measured by nitrogen volumetry of between 0.01 and 1 ml / g and a microporous volume measured by nitrogen volumetry. between 0.03 and 0.4 ml / g, said matrix having crystallized walls, which consist of zeolite entities at the origin of the microporosity of the material.
  • Said matrix based on silicon oxide optionally further comprises at least one element X selected from aluminum, iron, boron, indium and gallium, preferably aluminum.
  • the present invention also relates to the preparation of the material according to the invention.
  • the method for preparing the material according to the invention comprises a) the preparation of a clear solution containing the precursor elements of zeolitic entities, namely at least one structuring agent, at least one silicic precursor and optionally at least one precursor of at least one element X selected from aluminum, iron, boron, indium and gallium; b) mixing in solution at least one surfactant and at least said clear solution obtained according to a); c) the aerosol atomization of said solution obtained at
  • step b) to lead to the formation of spherical droplets; d) drying said droplets; e) autoclaving the particles obtained according to d); f) drying said particles obtained according to e) and g) the removal of said structuring agent and said surfactant to obtain a crystallized material with hierarchical porosity in the range of microporosity, mesoporosity and macroporosity.
  • microporosity induced by the crystallized walls of zeolite nature of the material according to the invention is consecutive not only to the use of a solution containing the precursor elements of zeolitic entities according to step a) of the process according to the invention, but also to the implementation of an autoclaving of the particles in accordance with step e) of the process for preparing the material according to the invention.
  • the mesoporosity and the macroporosity of the material according to the invention are consecutive to the phenomenon of phase separation by spinodal decomposition of the organic phase generated by the presence of the surfactant and the inorganic phase resulting from the solution containing the precursor elements of zeolitic entities, this phase separation phenomenon being induced by the so-called aerosol technique according to step c) of the process according to the invention.
  • the material according to the invention which comprises a mesoporous and macroporous inorganic matrix, based on silicon oxide, with microporous and crystallized walls, simultaneously exhibits the structural, textural and acid-base properties of the materials of the zeolite family and the textural properties of mesoporous materials and macroporous materials.
  • the presence within the same spherical particle of micrometric or even nanometric size of mesopores and macropores in a microporous and crystallized inorganic matrix leads to a privileged access of the reagents and products of the reaction to the microporous sites during the use of the material.
  • according to the invention as an adsorbent or as an acidic solid in potential industrial applications.
  • the material according to the invention consists of spherical elementary particles, the diameter of these particles being at most equal to 200 ⁇ m, preferably less than 100 ⁇ m, advantageously varying from 50 nm to 20 ⁇ m, very advantageously to 50 nm. at 10 ⁇ m and even more advantageously from 50 to 300 nm.
  • the limited size of these particles as well as their homogeneous spherical shape makes it possible to have a better diffusion of the reagents and the products of the reaction when the material according to the invention is used in potential industrial applications compared with materials. known from the state of the art in the form of elementary particles of non-homogeneous shape, that is to say irregular, and size often greater than 500 nm.
  • the subject of the present invention is a material with a hierarchical porosity consisting of at least two elementary spherical particles having a maximum diameter of 200 microns, at least one of said spherical particles comprising at least one matrix based on silicon oxide and having crystallized walls, said material having a macroporous volume measured by mercury porosimetry of between 0.05 and 1 ml / g, a mesoporous volume measured by nitrogen volumetry of between 0.01 and 1 ml / g and a microporous volume measured by nitrogen volumetry between 0.03 and 0.4 ml / g.
  • the term "hierarchically porous material” means a material having at least one, and generally several, spherical particles (s) having a triple porosity: a macroporosity characterized by a macroporous mercury volume included in a range ranging from 0.05 to 1 ml / g and preferably in a range of from 0.1 to 0.3 ml / g, a mesoporosity characterized by a mesoporous volume measured by nitrogen volumetry in a range of from 0 to , 01 to 1 ml / g and preferably in a range varying from 0.1 to 0.6 ml / g and a zeolite type microporosity whose characteristics (zeolite structural type, chemical composition of the zeolite framework) are function zeolite entities constituting the crystallized walls of each of the matrices spherical particles of the material according to the invention.
  • a macroporosity characterized by a macropor
  • the macroporosity is also characterized by the presence of macroporous domains ranging from 50 to 1000 nm and preferably in a range varying from 80 to 500 nm and / or resulting from an intraparticular textural macroporosity
  • the mesoporosity is also characterized by the presence of mesoporous domains in a range of 2 to 50 nm and preferably in a range of 10 to 50 nm.
  • the material according to the invention may also advantageously have elementary spherical particles without mesoporosity.
  • a porosity of microporous nature may also result from the interlaying of the surfactant, used during the preparation of the material according to the invention, with the inorganic wall at the level of the organic-inorganic interface developed during the treatment. production of said material according to the invention.
  • the matrix based on silicon oxide each forming spherical particles of the material according to the invention has crystallized walls consisting of zeolite entities, which are at the origin of the microporosity present within each spherical particles of the material according to the invention. Any zeolite and in particular, but not exhaustively, those listed in "Atlas of zeolite framework types", 5th revised edition, 2001, C.
  • Baerlocher, WM Meier, DH Olson can be used for the formation of the zeolite entities constituting the crystallized walls of the matrix of each of the particles of the material according to the invention as soon as the dissolution of the precursor elements of these entities, namely at least one structuring agent, at least a silicic precursor and optionally at least one precursor of at least one element X selected from aluminum, iron, boron, indium and gallium, preferably aluminum, lead to obtaining a solution clear.
  • the zeolite entities constituting the crystallized walls of the matrix of each of the particles of the material according to the invention and at the origin of the microporosity thereof preferably comprise at least one zeolite chosen from zeolites ZSM-5, ZSM-48 , ZSM-22, ZSM-23, ZBM-30, EU-2, EU-11, Silicalite, Beta, Zeolite A, Faujasite, Y, USY, VUSY, SDUSY, Mordenite, NU-87, NU-88, NU- 86, NU-85, IM-5, IM-12, Ferrierite and EU-1.
  • the zeolite entities constituting the crystallized walls of the matrix of each of the particles of the material according to the invention comprise at least one zeolite chosen from zeolites of structural type MFI, BEA, FAU and LTA.
  • the matrix based on silicon oxide forming each of the elementary spherical particles of the material according to the invention is either entirely silicic or it comprises, in addition to silicon, at least one element X chosen from aluminum iron, boron, indium and gallium, preferably aluminum.
  • the zeolite entities constituting the crystallized walls of the matrix of each of the spherical particles of the material according to the invention and at the origin of the microporosity thereof advantageously comprise at least one zeolite either entirely silicic or containing, besides silicon at least one element X selected from aluminum, iron, boron, indium and gallium, preferably aluminum.
  • the matrix of the material is in this case an aluminosilicate.
  • This aluminosilicate has a Si / Al molar ratio equal to that of the solution of the silicic and aluminic precursors leading to the formation of the zeolite entities constituting the crystallized walls of the matrix.
  • said elementary spherical particles constituting the material according to the invention have a maximum diameter equal to 200 microns, preferably less than 100 microns, advantageously between 50 nm and 20 ⁇ m, very advantageously between 50 nm and 10 nm. ⁇ m, and even more advantageously between 50 and 300 nm. More specifically, they are present in the material according to the invention in the form of aggregates.
  • the material according to the invention advantageously has a specific surface area of between 100 and 1100 m 2 / g and very advantageously between 200 and 800 m 2 / g.
  • the present invention also relates to the preparation of the material according to the invention.
  • Said method for preparing the material according to the invention comprises: a) the preparation of a clear solution containing the precursor elements of zeolitic entities, namely at least one structuring agent, at least one silicic precursor and optionally at least one precursor of at least one element X selected from aluminum, iron, boron, indium and gallium, preferably aluminum; b) mixing in solution at least one surfactant and at least said clear solution obtained according to a); c) aerosol atomizing said solution obtained in step b) to lead to the formation of spherical droplets; d) drying said droplets; e) autoclaving the particles obtained according to d); f) drying said particles obtained according to e) and g) the removal of said structuring agent and said surfactant to obtain a crystallized material with hierarchical porosity in the range of microporosity, mesoporosity and macroporosity.
  • the clear solution containing the precursor elements of zeolitic entities namely at least one structuring agent, at least one silicic precursor and optionally at least one precursor of at least one less an X element selected from aluminum, iron, boron, indium and gallium, preferably aluminum, is made from operating protocols known to those skilled in the art.
  • the silicic precursor used for the implementation of step a) of the process according to the invention is chosen from the precursors of silicon oxide well known to those skilled in the art.
  • a silicic precursor chosen from the silica precursors usually used in the synthesis of zeolites for example uses solid silica powder, silicic acid, colloidal silica, dissolved silica or tetraethoxysilane also called tetraethylorthosilicate (TEOS).
  • TEOS tetraethylorthosilicate
  • the silicic precursor is TEOS.
  • the precursor of the element X can be any compound comprising the element X and which can release this element in solution, in particular in aqueous solution or aquo-organic, in reactive form.
  • the aluminum precursor is advantageously an inorganic aluminum salt of formula AlZ 3 , Z being a halogen, a nitrate or a hydroxide.
  • Z is chlorine.
  • the aluminum precursor may also be an aluminum sulphate of formula Al 2 (SO 4 ) 3 .
  • R is s-butyl.
  • the aluminum precursor may also be sodium aluminate or alumina proper in one of its crystalline phases known to those skilled in the art (alpha, delta, teta, gamma), preferably in hydrated form or which can be hydrated.
  • aluminic and silicic precursors may optionally be added in the form of a single compound comprising both aluminum atoms and silicon atoms, for example an amorphous alumina silica.
  • the structuring agent used for carrying out step a) of the process according to the invention may be ionic or neutral depending on the zeolite to be synthesized. It is common to use the structuring agents of the following non-exhaustive list: nitrogenous organic cations such as tetrapropylammonium (TPA), elements of the family of alkalis (Cs, K, Na, etc.), ethercouronnes, diamines and any other structuring agent well known to those skilled in the art for the synthesis of zeolite.
  • TPA tetrapropylammonium
  • Cs, K, Na, etc. ethercouronnes
  • diamines diamines and any other structuring agent well known to those skilled in the art for the synthesis of zeolite.
  • the clear solution containing the zeolite entity precursor elements according to step a) of the process for preparing the material according to the invention is generally obtained by preparing a reaction mixture containing at least one silicic precursor, optionally at least one precursor of at least one precursor. at least one element X selected from aluminum, iron, boron, indium and gallium, preferably at least one aluminum precursor, and at least one structuring agent.
  • the reaction mixture is either aqueous or aquo-organic, by example a water-alcohol mixture. It is preferred to work in a basic reaction medium during the various steps of the process according to the invention in order to promote the development of the zeolite entities constituting the crystallized walls of the matrix of each of the particles of the material according to the invention.
  • the basicity of the solution is advantageously ensured by the basicity of the structuring agent used or by basification of the reaction mixture by the addition of a basic compound, for example an alkali metal hydroxide, preferably sodium hydroxide. .
  • the reaction mixture may be placed under hydrothermal conditions under autogenous pressure, optionally by adding a gas, for example nitrogen, at a temperature between room temperature and 200 ° C., preferably between ambient temperature and 170 ° C. and still more preferably at a temperature which does not exceed 120 ° C. until the formation of a clear solution containing the precursor elements of the zeolite entities constituting the crystallized walls of the matrix of each of the spherical particles of the material according to the invention .
  • a gas for example nitrogen
  • the reaction mixture containing at least one structuring agent, at least one silicic precursor and optionally at least one precursor of at least one element X selected from aluminum, iron, boron, indium and the gallium is cured at ambient temperature so as to obtain a clear solution containing the precursor elements of zeolite seeds capable of generating the formation of crystallized zeolite entities during the step e) of autoclaving the process for preparing the material according to the invention.
  • the precursor elements of the zeolitic entities present in the clear solution are synthesized according to operating protocols known to those skilled in the art.
  • a clear solution containing precursor elements of zeolite beta entities is produced from the operating protocol described by P. Prokesova, S. Mintova, J. Cejka, T. Bein et al., Micropor. Mesopor. Mater., 2003, 64, 165 .
  • a clear solution containing precursor elements of zeolite Y entities is produced from the operating protocol described by Y. Liu, WZ Zhang, TJ Pinnavaia et al., J. Am. Chem. Soc., 2000, 122, 8791 .
  • a clear solution containing precursor elements of zeolite faujasite entities is produced from the operating protocol described by KR Kloetstra, HW Zandbergen, Jansen CJ, H. vanBekkum, Microporous Mater., 1996, 6, 287 .
  • a clear solution containing precursor elements of ZSM-5 zeolite species is carried out from the operating protocol described by AE Persson, BJ Schoeman, J. Sterte, J.-E. Otterstedt, Zeolifes, 1995, 15, 611 , the exact operating protocol which is the subject of example 1 of the present application.
  • the clear solution containing the precursor elements of zeolite silicalite species constituting the walls of the material according to the invention is advantageously made from the operating protocol described by AE Persson, BJ Schoeman, J. Sterte, J.-E. Otterstedt, Zeolites, 1994, 14, 557 .
  • the surfactant used is an ionic or nonionic surfactant or a mixture of both.
  • the ionic surfactant is chosen from anionic surfactants such as sulphates, for example sodium dodecyl sulphate (SDS).
  • the nonionic surfactant may be any copolymer having at least two parts of different polarities conferring properties of amphiphilic macromolecules.
  • fluorinated copolymers - [CH 2 -CH 2 -CH 2 -CH 2
  • a block copolymer consisting of poly (alkylene oxide) chains is preferably used.
  • Said block copolymer is preferably a block copolymer having two, three or four blocks, each block consisting of a poly (alkylene oxide) chain.
  • one of the blocks consists of a poly (alkylene oxide) chain of hydrophilic nature and the other block consists of a poly (alkylene oxide) chain of a nature hydrophobic.
  • two of the blocks consist of a chain of poly (alkylene oxide) of hydrophilic nature while the other block, located between the two blocks with the hydrophilic parts, consists of a chain of poly (alkylene oxide) hydrophobic nature.
  • the hydrophilic poly (alkylene oxide) chains are poly (ethylene oxide) chains denoted (PEO) x and (PEO) z and the Poly (alkylene oxide) chains of hydrophobic nature are chains of poly (propylene oxide) denoted (PPO) y, poly (butylene oxide) chains, or mixed chains, each chain of which is a mixture of several alkylene oxide monomers.
  • a compound is used. consisting of two chains of poly (ethylene oxide) and a poly (propylene oxide) chain and more particularly, it is the compound of formula (PEO) x - (PPO) y - (PEO) z where x is between 5 and 300 and y is between 33 and 300 and z is between 5 and 300.
  • PEO poly (ethylene oxide)
  • y poly (propylene oxide)
  • PEO poly (propylene oxide) chain
  • x is between 5 and 300 and y is between 33 and 300 and z is between 5 and 300.
  • the values of x and z are the same.
  • nonionic surfactants known as Pluronic (BASF), Tetronic (BASF), Triton (Sigma), Tergitol (Union Carbide), Brij (Aldrich) are useful as nonionic surfactants in step b ) of the preparation process of the invention.
  • Pluronic BASF
  • Tetronic BASF
  • Triton Sigma
  • Tergitol Union Carbide
  • Brij Brij
  • two of the blocks consist of a poly (alkylene oxide) chain of hydrophilic nature and the other two blocks consist of a chain of poly (alkylene oxide) hydrophobic nature.
  • the solution obtained at the end of step b) of the process for preparing the material according to the invention in which at least said surfactant and at least said clear solution obtained according to step a) are mixed can be acidic, neutral or basic.
  • said solution is basic and preferably has a pH greater than 9, this pH value being generally imposed by the pH of the clear solution containing the precursor elements of zeolitic entities obtained according to step a) of the preparation process of the material according to the invention.
  • the solution obtained at the end of step b) may be aqueous or may be a water-organic solvent mixture, the organic solvent preferably being a polar solvent, in particular an alcohol, preferably ethanol.
  • the amount of surfactant introduced into the mixture according to step b) of the preparation process according to the invention is defined with respect to the amount of inorganic material introduced into said mixture during the addition of the clear solution containing the precursor elements. of zeolitic entities obtained according to step a) of the process according to the invention.
  • the amount of inorganic material corresponds to the amount of silicic precursor material and that of the element X precursor when present.
  • the surfactant is such that the organic-inorganic binary system formed during the atomization step c) of the process for preparing the material according to the invention undergoes a phase separation characterized by the appearance of an interconnected biphasic network of which the mechanism of formation is a spinodal decomposition.
  • the principle of phase separation via a mechanism of spinodal decomposition has been widely described by Nakanishi for obtaining silica gels in the presence of polymers ( K. Nakanishi, Journal of Porous Materials, 1997, 4, 67 ).
  • the initial concentration of surfactant, introduced into the mixture, defined by c 0 is such that c 0 is less than or equal to c mc , the parameter c mc representing the micellar concentration criticism well known to those skilled in the art, that is to say the limit concentration beyond which occurs the phenomenon of self-arrangement of surfactant molecules in the solution.
  • the concentration of surfactant molecules in the solution defined by step b) of the process for preparing the material according to the invention therefore does not lead to the formation of particular micellar phases.
  • the concentration c 0 is less than the c mc
  • the ratio n Inorganic / n Tensloactif is such that the composition of the binary system verifies the composition conditions for which a separation mechanism of phase occurs by spinodal decomposition and said solution referred to in step b) of the preparation process according to the invention is a basic water-alcohol mixture.
  • the step of atomizing the mixture according to step c) of the preparation process according to the invention produces spherical droplets.
  • the size distribution of these droplets is lognormal.
  • the aerosol generator used here is a commercial model 9306A device provided by TSI having a 6-jet atomizer.
  • the atomization of the solution is done in a chamber into which a carrier gas, a mixture O 2 / N 2 (dry air), is sent under a pressure P equal to 1.5 bar.
  • step d) of the preparation process according to the invention said droplets are dried.
  • This drying is carried out by transporting said droplets via the carrier gas, the O 2 / N 2 mixture, in PVC tubes, which leads to the gradual evaporation of the solution, for example from the basic aqueous-organic solution obtained.
  • step b) of the process for preparing the material according to the invention and thus obtaining spherical elementary particles.
  • This drying is perfect by a passage of said particles in an oven whose temperature can be adjusted, the usual range of temperature ranging from 50 to 600 ° C and preferably from 80 to 400 ° C, the residence time of these particles in the oven being of the order of the second.
  • the particles are then harvested in a filter.
  • the dried particles obtained according to step d) of the process according to the invention are autoclaved in the presence of a solvent.
  • This step consists in placing said particles in a closed chamber in the presence of a solvent at a given temperature so as to work with autogenous pressure inherent to the operating conditions chosen.
  • the solvent used is a protic polar solvent.
  • the solvent used is water.
  • the volume of solvent introduced is defined relative to the volume of the autoclave selected.
  • the volume of solvent introduced is in a range of 0.01 to 20% relative to the volume of the autoclave chosen, preferably in a range of 0.05 to 5% and preferably in a range of 0, 05 to 1%.
  • the autoclaving temperature is between 50 and 200 ° C, preferably between 60 and 170 ° C and more preferably between 60 and 120 ° C so as to allow the growth of zeolite entities in the walls of the matrix of each of the particles of the material according to the invention without generating large size zeolite crystals which would disorganize the mesoporosity and macroporosity created within each particle of the material according to the invention.
  • Autoclaving is maintained over a period of 1 to 96 hours and preferably over a period of 20 to 50 hours.
  • step f) of the preparation process according to the invention the drying of the particles after autoclaving is advantageously carried out by placing in an oven at a temperature of between 50 and 150 ° C.
  • the element X is the aluminum element and where the sodium element is present in the clear solution obtained in accordance with step a) of the process according to the invention via the use of sodium hydroxide and / or a sodic structuring agent ensuring the basicity of said clear solution, it is preferred to carry out an additional ion exchange step allowing the exchange of the Na + cation by the NH 4 + cation between steps f) and g) of the process according to the invention.
  • step g) This exchange, which leads to the formation of protons H + after step g) of the process according to the invention in the preferred case where the removal of the structuring agent and the surfactant is carried out by calcination under air, is carried out according to operating protocols well known to those skilled in the art.
  • One of the usual methods consists in suspending the dried solid particles from step f) of the process according to the invention in an aqueous solution of ammonium nitrate. The whole is then refluxed for 1 to 6 hours. The particles are then recovered by filtration (centrifugation at 9000 rpm), washed and then dried by passing in an oven at a temperature between 50 and 150 ° C.
  • This ion exchange / washing / drying cycle can be repeated several times and preferably two more times.
  • This exchange cycle can also be performed after steps f) and g) of the process according to the invention. Under these conditions, step g) is then reproduced after the last exchange cycle so as to generate H + protons as explained above
  • step g) of the preparation process according to the invention the elimination of the structuring agent and the surfactant, in order to obtain the material according to the invention with hierarchical porosity, is advantageously carried out by processes of chemical extraction or by heat treatment and preferably by calcination in air in a temperature range of 300 to 1000 ° C and more precisely in a range of 400 to 600 ° C for a period of 1 to 24 hours and preferably during a duration of 2 to 12 hours.
  • the solution referred to in step b) of the preparation process according to the invention is a water-organic solvent mixture, preferably a basic one
  • the surfactant concentration is less than the critical micellar concentration and that the n- inorganic ratio of the surfactant is such that the variation of the free mixture enthalpy ⁇ G m and the second derivative of the free enthalpy ⁇ 2 G / ⁇ 2 x are greater than 0 so that the evaporation of said aqueous-organic solution, preferably basic, during step c) of the preparation process according to the invention by the aerosol technique induces a separation phenomenon organic and inorganic phases by spinodal decomposition leading to the generation of the mesoporous and macroporous phases of the spherical particles of the material according to the invention.
  • phase separation observed is consecutive to a progressive concentration, within each droplet, of the silicic precursor, optionally of the precursor of the element X, preferably of the aluminum precursor and of the surfactant resulting from evaporation of the aqueous-organic solution preferentially basic, until a concentration of reagents sufficient to cause said phenomenon.
  • the hierarchically porous material of the present invention can be obtained in the form of powder, beads, pellets, granules, or extrusions, the shaping operations being carried out by conventional techniques known to those skilled in the art.
  • the material having a hierarchical porosity according to the invention is obtained in the form of a powder, which consists of elementary spherical particles having a maximum diameter of 200 microns, which facilitates the possible diffusion of the reagents in the case of the use of the material according to the invention in a potential industrial application.
  • the material of the invention with hierarchical porosity is characterized by several analysis techniques and in particular by large-angle X-ray diffraction (XRD), by nitrogen volumetry (BET), by mercury porosimetry, by electron microscopy. transmission (TEM), scanning electron microscopy (SEM) and X-ray fluorescence (FX).
  • XRD large-angle X-ray diffraction
  • BET nitrogen volumetry
  • TEM transmission
  • SEM scanning electron microscopy
  • FX X-ray fluorescence
  • the technique of X-ray diffraction at large angles makes it possible to characterize a crystallized solid defined by the repetition of a unitary unit or unit cell at the molecular scale.
  • the X-ray analysis is performed on powder with a diffractometer operating in reflection and equipped with a rear monochromator using copper radiation (wavelength 1.5406 A).
  • This indexing then allows the determination of the mesh parameters (abc) of the direct network.
  • the wide-angle XRD analysis is therefore adapted to the structural characterization of the zeolite entities constituting the crystallized wall of the matrix of each of the elementary spherical particles constituting the material according to the invention.
  • TEOS silicic precursor
  • Al (O s C 4 H 9 ) 3 as an aluminum precursor
  • TPAOH a structuring agent
  • poly (ethylene oxide) 106 -poly (propylene oxide) 70 -poly (ethylene oxide) 106 (PEO 106 -PPO 70 -PEO 106 or F127) as surfactant exhibits the diffractogram associated with the Pnma symmetry group (No. 62) of zeolite ZSM-5 at large angles.
  • Nitrogen volumetry which corresponds to the physical adsorption of nitrogen molecules in the porosity of the material via a progressive increase in pressure at constant temperature, provides information on textural characteristics (pore diameter, porosity type, specific surface area). of the material obtained according to the process of the invention. In particular, it provides access to the total value of the microporous and mesoporous volume of the material.
  • the shape of the nitrogen adsorption isotherm and the hysteresis loop can provide information on the presence of the microporosity linked to the zeolitic entities constituting the crystallized walls of the matrix of each of the spherical particles of the material according to the invention. and the nature of mesoporosity.
  • MFI zeolite entities ZSM-5
  • the mercury porosimetry analysis corresponds to the intrusion of a volume of mercury characteristic of the existence of mesopores and macropores in the material according to the invention according to the ASTM D4284-83 standard at a maximum pressure of 4000 bar, using a surface tension of 484 dyne / cm, and a contact angle of 140 ° (value chosen according to the recommendations of the book " Technique of the engineer, treated analysis and characterization ", page 1050, written by J. Charpin and B. Rasneur ) and the pores are assumed to be cylindrical in shape. This technique is perfectly suited to the analysis of mesoporous and macroporous samples in addition to the nitrogen volumetric analysis technique described above.
  • this technique makes it possible to access the value of the mesoporous mercury volume (V Hgmeso in ml / g) defined as being the mercury volume adsorbed by all the pores having a diameter included in the range of mesopores, namely between 3.6 nm and 50 nm (value of the upper limit as defined by the IUPAC standard).
  • the macroporous mercury volume (V Hgmacro in ml / g) is defined as the mercury volume adsorbed by all the pores having a diameter greater than 50 nm.
  • the mercury porosimetry analysis of a mesoporous and macroporous porosity material the microporous walls of the matrix of each of the spherical particles consist of zeolite entities ZSM-5 (MFI), obtained according to the method.
  • MFI zeolite entities
  • TEOS a silicic precursor
  • Al (O s C 4 H 9 ) 3 as an aluminum precursor
  • TPAOH as a structuring agent
  • poly (ethylene oxide) 106 -poly (oxide of propylene) 70- poly (ethylene oxide) 106 (PEO 160 -PPO 70 -PEO 106 or F127) as surfactant leads to a mesoporous mercury volume ranging from 0.01 to 1 ml / g and a volume of macroporous mercury in a range of 0.05 to 1 ml / g.
  • Transmission electron microscopy (TEM) analysis is a technique also widely used to characterize the mesoporosity and macroporosity of the material according to the invention. This allows the formation of an image of the studied solid, the observed contrasts being characteristic of the structural organization, the texture, the morphology or the chemical composition of the particles observed, the resolution of the technique reaching the maximum 0.2 nm.
  • the TEM photos will be made from microtome sections of the sample in order to visualize a section of an elementary spherical particle of the material according to the invention.
  • the morphology and size distribution of the elementary particles were established by scanning electron microscopy (SEM) photo analysis.
  • the present invention also relates to the use of the hierarchically porous material according to the invention as an adsorbent for the control of pollution or as a molecular sieve for separation.
  • the present invention therefore also relates to an adsorbent comprising the hierarchically porous material according to the invention. It is also advantageously used as an acid solid to catalyze reactions, for example those involved in the fields of refining and petrochemistry.
  • this material When the hierarchically porous material according to the invention is used as a catalyst, this material may be associated with an inorganic matrix which may be inert or catalytically active and with a metallic phase.
  • the inorganic matrix may be present simply as a binder to hold together the particles of said material in the various known forms of the catalysts (extrudates, pellets, beads, powders) or may be added as a diluent to impose the degree of conversion in a process which otherwise would progress at too fast a rate, leading to clogging of the catalyst as a result of a significant formation of coke.
  • Typical inorganic matrices are, in particular, support materials for catalysts, such as the various forms of silica, alumina, silica-alumina, magnesia, zirconia, titanium oxides, boron oxides, aluminum phosphates, titanium, zirconium, clays such as kaolin, bentonite, montmorillonite, sepiolite, attapulgite, fuller's earth, synthetic porous materials such as SiO 2 -Al 2 O 3 , SiO 2 -ZrO 2 , SiO 2 -ThO 2 , SiO 2 -BeO SiO 2 -TiO 2 or any combination of these compounds.
  • catalysts such as the various forms of silica, alumina, silica-alumina, magnesia, zirconia, titanium oxides, boron oxides, aluminum phosphates, titanium, zirconium, clays such as kaolin, bentonite, montmorillonite, sepio
  • the inorganic matrix may be a mixture of different compounds, in particular an inert phase and an active phase.
  • Said material of the present invention may also be associated with at least one zeolite and play the role of main active phase or additive.
  • the metal phase can be introduced integrally on said material of the invention.
  • cations or oxides chosen from the following elements: Cu, Ag, Ga, Mg, Ca , Sr, Zn, Cd, B, Al, Sn, Pb, V, P, Sb, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Pt, Pd, Ru, Rh, Os, Ir and all other element of the periodic table of elements.
  • the catalyst compositions comprising the material of the present invention are generally suitable for carrying out the main hydrocarbon conversion processes and organic compound synthesis reactions.
  • the catalyst compositions comprising the material of the invention advantageously find their application in isomerization, transalkylation and disproportionation, alkylation and dealkylation, hydration and dehydration, oligomerization and polymerization, cyclization reactions. , aromatization, cracking, reforming, hydrogenation and dehydrogenation, oxidation, halogenation, hydrocracking, hydroconversion, hydrotreatment, hydrodesulfurization and hydrodenitrogenation, catalytic removal nitrogen oxides, said reactions involving fillers comprising saturated and unsaturated aliphatic hydrocarbons, aromatic hydrocarbons, oxygenated organic compounds and organic compounds containing nitrogen and / or sulfur as well as organic compounds containing other functional groups.
  • the ratio V inorganic / V organic of the mixture resulting from step b) is calculated.
  • TPAOH tetrapropylammonium hydroxide 20% by weight in an aqueous solution
  • TPAOH tetrapropylammonium hydroxide
  • demineralized water 9.2 mg of sodium hydroxide NaOH.
  • 0.14 g of aluminum sec-butoxide (Al (O s C 4 H 9 ) 3 are then introduced, the hydrolysis of the aluminum precursor is carried out for 1 hour, 6 g of tetraethylorthosilicate (TEOS) are then added.
  • TEOS tetraethylorthosilicate
  • the harvested powder is then introduced into an oven set at a temperature of 250 ° C to complete their drying for a period of about one second.
  • the harvested powder is then dried for 12 hours in an oven at 95 ° C.
  • 10 mg of powder are then placed in a 100 ml autoclave (closed chamber capable of withstanding temperatures of the order of 200 ° C. and pressures of the order of 5 bars) in the presence of 100 ⁇ l of demineralised water .
  • the autoclave is provided with a system of "basket” or "cell” allowing the powder not to be in direct contact with the water introduced while bathing in the water vapor.
  • the autoclave is then heated to a temperature of 95 ° C for 48 hours. hours.
  • the recovered powder is then dried in an oven at 95 ° C. for 12 hours.
  • the solid is characterized by XRD, nitrogen volumetry, mercury porosimetry, TEM, SEM, FX.
  • the TEM analysis shows that the spherical constitutive particles of the material have a core macroporosity characterized by domains 300 to 500 nm long and 100 to 200 nm wide and a mesoporosity at the periphery of the particles characterized by domains of 20 to 50 nm, the set being characteristic of an organic-inorganic phase separation obtained by a spinodal decomposition mechanism present before the calcination step.
  • the macroporous mercury volume defined by mercury porosimetry is 0.5 ml / g (the value of the mercury mercury volume also obtained by mercury porosimetry is in perfect agreement with the value obtained by nitrogen volumetry).
  • the wide-angle XRD analysis leads to obtaining the diffractogram characteristic of the zeolite ZSM-5 (size of the micopores, measured by XRD, of the order of 0.55 nm).
  • the molar Si / Al ratio obtained by FX is 50.
  • An SEM image of the spherical elementary particles thus obtained indicates that these particles have a size characterized by a diameter ranging from 50 to 700 nm, the size distribution of these particles being centered around 300 nm.
  • Example 2 Preparation of a mesoporous and macroporous porosity material whose microporous walls consist of crystallized entities of zeolite silicalite (MFI).
  • MFI zeolite silicalite
  • the whole is left stirring for 10 minutes.
  • the droplets are dried according to the protocol described in the disclosure of the invention above: they are conveyed via an O 2 / N 2 mixture in PVC tubes. They are then introduced into an oven set at a drying temperature set at 250 ° C. The harvested powder is then dried for 12 hours in an oven at 95 ° C. 10 mg of powder are then placed in a 100 ml autoclave (closed chamber capable of withstanding temperatures of the order of 200 ° C.
  • the autoclave is provided with a system of "basket” or “cell” allowing the powder not to be in direct contact with the water introduced while bathing in the water vapor.
  • the autoclave is then heated to a temperature of 95 ° C for 36 hours.
  • the recovered powder is then dried in an oven at 95 ° C. for 12 hours.
  • the powder is then calcined under air for 5 hours at 550 ° C.
  • the solid is characterized by XRD, nitrogen volumetry, mercury porosimetry, TEM, SEM.
  • the TEM analysis shows that the spherical constitutive particles of the material have a core macroporosity characterized by domains 300 to 500 nm long and 100 to 200 nm wide and a mesoporosity at the periphery of the particles characterized by domains of 20 to 50 nm, the set being characteristic of an organic-inorganic phase separation obtained by a spinodal decomposition mechanism present before the calcination step.
  • the presence of zeolite entities in the walls of the material is also clearly visible during the study by electron diffraction of the michronotropic sections with a thickness of the order of 70 nm on localized areas of the order of 100 nm.
  • Nitrogen volumetric analysis combined with analysis by the ⁇ s method leads to a microporous volume V micro value of 0.3 ml / g (N 2 ), a mesoporous V meso volume value of 0, 6 ml / g (N 2 ) and a specific surface area of the final material of S 680 m 2 / g.
  • the macroporous mercury volume defined by mercury porosimetry is 0.5 ml / g (the value of the mesoporous mercury volume also obtained is in perfect agreement with the value obtained by volumetric nitrogen).
  • the wide-angle XRD analysis leads to obtaining the diffractogram characteristic of the zeolite silicalite (size of the micropores, measured by XRD, of the order of 0.55 nm).
  • An SEM image of the spherical elementary particles thus obtained indicates that these particles have a size characterized by a diameter ranging from 50 to 700 nm, the size distribution of these particles being centered around 300 nm.
  • tetraethylammonium hydroxide hydroxide 20% by weight in an aqueous solution
  • TEAOH tetraethylammonium hydroxide hydroxide
  • demineralized water 7.8 g of demineralized water and 0.03 g of sodium hydroxide NaOH.
  • 0.14 g of aluminum sec-butoxide (Al (O s C 4 H 9 ) 3 ) are then introduced.
  • the whole is left stirring for 10 minutes.
  • the hydrolysis of the aluminum precursor is carried out for 1 hour. 6 g of tetraethylorthosilicate (TEOS) are then added.
  • TEOS tetraethylorthosilicate
  • the harvested powder is then dried for 12 hours in an oven at 95 ° C.
  • 10 mg of powder are then placed in a 100 ml autoclave (closed chamber capable of withstanding temperatures of the order of 200 ° C. and pressures of the order of 5 bars) in the presence of 150 ⁇ l of demineralised water .
  • the autoclave is provided with a system of "basket” or “cell” allowing the powder not to be in direct contact with the water introduced while bathing in the water vapor.
  • the autoclave is then heated to a temperature of 95 ° C for 48 hours.
  • the recovered powder is then dried in an oven at 95 ° C. for 12 hours.
  • the powder is then calcined under air for 5 hours at 550 ° C.
  • the solid is characterized by XRD, nitrogen volumetry, mercury porosimetry, TEM, SEM, FX.
  • the TEM analysis shows that the spherical constitutive particles of the material have a core macroporosity characterized by domains 300 to 500 nm long and 100 to 200 nm wide and a mesoporosity at the periphery of the particles characterized by domains of 20 to 50 nm, the whole being characteristic of a phase separation organic - inorganic obtained by a spinodal decomposition mechanism present before the calcination step.
  • the macroporous mercury volume defined by mercury porosimetry is 0.3 ml / g (the value of the mesoporous mercury volume also obtained is in perfect agreement with the value obtained by nitrogen volumetry).
  • the wide-angle X-ray analysis leads to the characteristic diffractogram of zeolite beta (size of the micopores, measured by XRD, of the order of 0.66 nm).
  • the molar Si / Al ratio obtained by FX is 50.
  • An SEM image of the spherical elementary particles thus obtained indicates that these particles have a size characterized by a diameter ranging from 50 to 700 nm, the size distribution of these particles being centered around 300 nm.
  • the whole is left stirring for 10 minutes.
  • the droplets are dried according to the protocol described in the disclosure of the invention above: they are conveyed via an O 2 / N 2 mixture in PVC tubes. They are then introduced into an oven set at a temperature drying time set at 250 ° C. The harvested powder is then dried for 12 hours in an oven at 95 ° C. 10 mg of powder are then placed in a 100 ml autoclave (closed chamber capable of withstanding temperatures of the order of 200 ° C.
  • the autoclave is provided with a system of "basket” or “cell” allowing the powder not to be in direct contact with the water introduced while bathing in the water vapor.
  • the autoclave is then heated to a temperature of 95 ° C for 48 hours.
  • the recovered powder is then dried in an oven at 95 ° C. for 12 hours.
  • the powder is then calcined under air for 5 hours at 550 ° C.
  • the solid is characterized by XRD and at large angles, by nitrogen volumetry, by mercury porosimetry, by TEM, by SEM and by ICP, by FX.
  • the TEM analysis shows that the spherical constitutive particles of the material have a core macroporosity characterized by domains 300 to 500 nm long and 100 to 200 nm wide and a mesoporosity at the periphery of the particles characterized by domains of 20 to 50 nm, the set being characteristic of an organic-inorganic phase separation obtained by a spinodal decomposition mechanism present before the calcination step.
  • the presence of zeolite entities in the walls of the material is also clearly visible during the study by electron diffraction of the michronotropic sections with a thickness of the order of 70 nm on localized areas of the order of 100 nm.
  • the macroporous mercury volume defined by mercury porosimetry is 0.5 ml / g (the value of the mesoporous mercury volume also obtained is in perfect agreement with the value obtained by volumetric nitrogen).
  • the wide-angle XRD analysis leads to obtaining the diffractogram characteristic of zeolite Y (size of the micopores, measured by XRD, of the order of 0.8 nm).
  • the Si / Al molar ratio obtained by FX is 8.
  • An SEM image of the spherical elementary particles thus obtained indicates that these particles have a size characterized by a diameter ranging from 50 to 700 nm, the size distribution of these particles being centered around 300 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Glass Compositions (AREA)
  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Hierarchical porous material comprises at least two spherical elementary particles having a maximum diameter of 200 microns, where at least one of the spherical particles comprise a silicon oxide based matrix and having crystallized walls, the material has a macroporous volume measured by mercury porosimetry of 0.05-1 ml/g, a mesoporous volume measured by nitrogen volumetry of 0.01-1 ml/g and a microporous volume measured by nitrogen volumetry of 0.03-0.4 ml/g. An independent claim is included for a preparation of the material, comprising preparing a clear solution containing precursor elements of zeolite, such as structuring agent, at least a silica precursor and optionally at least a precursor of an element X comprising aluminum, iron, boron, indium and gallium, mixing at least one surfactant and the clear solution into a solution, spraying the solution by aerosol obtained in the mixing step for the formation of spherical droplets, drying the droplets, and eliminating the structuring agent and the surfactant to obtain an amorphous material with hierarchical porosity in the range of microporosity, mesoporosity and macroporosity.

Description

La présente invention se rapporte au domaine des matériaux comprenant du silicium, notamment des matériaux métallosilicates et plus précisément des matériaux aluminosilicates, présentant une porosité hiérarchisée dans le domaine de la microporosité, de la mésoporosité et de la macroporosité. Elle concerne également la préparation de ces matériaux qui sont obtenus par l'emploi de la technique de synthèse dite "aérosol".The present invention relates to the field of materials comprising silicon, in particular metallosilicate materials and more specifically aluminosilicate materials, having a hierarchical porosity in the field of microporosity, mesoporosity and macroporosity. It also relates to the preparation of these materials which are obtained by the use of the so-called "aerosol" synthesis technique.

Etat de la technique antérieureState of the art

Les nouvelles stratégies de synthèse permettant d'obtenir des matériaux à porosité bien définie dans une très large gamme, allant des matériaux microporeux aux matériaux macroporeux en passant par des matériaux à porosité hiérarchisée, c'est-à-dire ayant des pores de plusieurs tailles, connaissent un très large développement au sein de la communauté scientifique depuis le milieu des années 90 ( G. J. de A. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev., 2002, 102, 4093 ). En particulier, de nombreux travaux portent sur le développement de matériaux présentant une microporosité de nature zéolithique et une mésoporosité de façon à bénéficier simultanément des propriétés catalytiques propres aux zéolithes et des propriétés catalytiques et surtout texturales de la phase mésoporeuse.New synthesis strategies to obtain well-defined porosity materials in a very wide range, ranging from microporous materials to macroporous materials through materials with hierarchical porosity, that is to say having pores of several sizes. have been very widely developed in the scientific community since the mid-1990s ( GJ AA Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev., 2002, 102, 4093 ). In particular, many studies relate to the development of materials having a zeolite microporosity and a mesoporosity so as to simultaneously benefit from the zeolite specific catalytic properties and catalytic and especially textural properties of the mesoporous phase.

Une technique fréquemment employée pour générer des matériaux présentant cette bi-porosité consiste à créer directement au sein de cristaux de zéolithe des mésopores en faisant subir à cette dernière un traitement hydrothermal sous vapeur d'eau encore appelé "steaming". Sous l'effet de ce traitement, la mobilité des atomes tétraédriques qui composent la charpente de la zéolithe est accrue au point que certains de ces atomes sont extraits du réseau, ce qui engendre la formation de zone amorphe, qui peuvent être dégagés pour laisser la place à des cavités mésoporeuses ( A. H. Jansen, A. J. Koster, K. P. De Jong, J. Phys. Chem. B, 2002, 106, 11905 ). La formation de telles cavités peut aussi être obtenue par traitement acide de la zéolithe ( H. Ajot, J. F. Joly, J. Lynch, F. Raatz, P. Caullet, Stud. Surf. Sci. Catal., 1991, 62, 583 ). Ces méthodes présentent toutefois l'inconvénient de rendre partiellement amorphe une partie de la zéolithe et de modifier ses propriétés par variation de la composition chimique. Dans tous les cas, la mésoporosité ainsi introduite permet d'éliminer ou tout du moins de limiter les problèmes de limitations diffusionnelles rencontrés dans des matériaux microporeux, les mésopores présentant des facteurs de diffusion bien plus importants que les micropores et permettant ainsi l'accès aux sites actifs de la zéolithe ( P. B. Weisz, Chemtech, 1973, 3, 498 ).A technique frequently used to generate materials having this bi-porosity is to create directly within zeolite crystals mesopores by subjecting the latter a hydrothermal treatment under water vapor also called "steaming". Under the effect of this treatment, the mobility of the tetrahedral atoms that make up the framework of the zeolite is increased to the point that some of these atoms are extracted from the network, which causes the formation of amorphous zone, which can be released to leave the room for mesoporous cavities ( AH Jansen, AJ Koster, KP De Jong, J. Phys. Chem. B, 2002, 106, 11905 ). The formation of such cavities can also be obtained by acid treatment of the zeolite ( H. Ajot, JF Joly, J. Lynch, F. Raatz, P. Caullet, Stud. Surf. Sci. Catal., 1991, 62, 583 ). However, these methods have the disadvantage of rendering part of the zeolite partially amorphous and of modifying its properties by variation of the chemical composition. In all cases, the mesoporosity introduced in this way makes it possible to eliminate or at least limit the problems of diffusional limitations encountered in microporous materials, the mesopores having well-diffusing factors. larger than the micropores and thus allowing access to the active sites of the zeolite ( PB Weisz, Chemtech, 1973, 3, 498 ).

Plus récemment, de nombreux travaux ont porté sur l'élaboration de matériaux mixtes mésostructuré/zéolithe, les matériaux mésostructurés présentant l'avantage supplémentaire d'avoir une porosité parfaitement organisée et calibrée dans la gamme des mésopores.More recently, many studies have focused on the development of mixed mesostructured / zeolite materials, the mesostructured materials having the additional advantage of having a perfectly organized and calibrated porosity in the range of mesopores.

Nous rappelons ici brièvement que les matériaux mésostructurés sont classiquement obtenus via des méthodes de synthèse dites de chimie douce qui consistent à mettre en présence en solution aqueuse ou dans des solvants polaires des précurseurs inorganiques avec des agents structurants, généralement des tensioactifs moléculaires ou macromoléculaires, ioniques ou neutres. Le contrôle des interactions électrostatiques ou par liaisons hydrogènes entre les précurseurs inorganiques et l'agent structurant conjointement lié à des réactions d'hydrolyse/condensation du précurseur inorganique conduit à un assemblage coopératif des phases organique et inorganique générant des agrégats micellaires de tensioactifs de taille uniforme et contrôlée au sein d'une matrice inorganique. La libération de la porosité est ensuite obtenue par élimination du tensioactif, celle-ci étant réalisée classiquement par des procédés d'extraction chimique ou par traitement thermique. En fonction de la nature des précurseurs inorganiques et de l'agent structurant employé ainsi que des conditions opératoires imposées, plusieurs familles de matériaux mésostructurés ont été développées comme la famille des M41S obtenue via l'emploi de sels d'ammonium quaternaire comme agent structurant ( J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 27, 10834 ) ou bien la famille des SBA obtenue via l'emploi de copolymères triblocs comme agents structurants ( D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 279, 548 ).We recall here briefly that the mesostructured materials are conventionally obtained via so-called soft chemistry synthesis methods which consist of bringing into contact in aqueous solution or in polar solvents inorganic precursors with structuring agents, generally molecular or macromolecular, ionic surfactants. or neutral. The control of electrostatic or hydrogen bonding interactions between the inorganic precursors and the structuring agent together with hydrolysis / condensation reactions of the inorganic precursor leads to a cooperative assembly of the organic and inorganic phases generating micellar aggregates of uniformly sized surfactants. and controlled within an inorganic matrix. The release of the porosity is then obtained by removing the surfactant, which is conventionally carried out by chemical extraction processes or by heat treatment. Depending on the nature of the inorganic precursors and the structuring agent used as well as the operating conditions imposed, several families of mesostructured materials have been developed, such as the M41S family obtained via the use of quaternary ammonium salts as a structuring agent ( JS Beck, JC Vartuli, WJ Roth, ME Leonowicz, Kresge CT, KD Schmitt, CT-W. Chu, DH Olson, EW Sheppard, SB McCullen, JB Higgins, J. Schlenker, J. Am. Chem. Soc., 1992, 114, 27, 10834 ) or the family of SBA obtained via the use of triblock copolymers as structuring agents ( D. Zhao, J. Feng, Q. Huo, N. Melosh, GH Fredickson, BF Chmelka, GD Stucky, Science, 1998, 279, 548 ).

Plusieurs techniques de synthèse permettant l'élaboration de ces matériaux mixtes mésostructuré/zéolithe ont ainsi été répertoriées dans la littérature ouverte. Une première technique de synthèse consiste à synthétiser en première étape un matériau aluminosilicate mésostructuré selon les méthodes classiques explicitées ci-dessus puis, en deuxième étape, à imprégner ce matériau avec un agent structurant habituellement utilisé dans la synthèse de matériaux zéolithiques. Un traitement hydrothermique adapté conduit à une zéolithisation des parois (ou murs) amorphes de l'aluminosilicate mésostructuré de départ ( K. R. Koletstra, H. van Bekkum, J. C. Jansen, Chem. Commun., 1997, 2281 ; D. T. On, S. Kaliaguine, Angew. Chem. Int. Ed., 2001, 40, 3248 ; D. T. On, D. Lutic, S. Kaliaguine, Micropor. Mesopor. Mater., 2001, 44, 435 ; M. J. Verhoef, P. J. Kooyman, J. C. van der Waal, M. S. Rigutto, J. A. Peters, H. van Bekkum, Chem. Mater., 2001, 13, 683 ). Une deuxième technique de synthèse consiste cette fois-ci à mettre en présence une solution colloïdale de germes de zéolithes avec un tensioactif habituellement utilisé pour créer une mésostructuration du matériau final. L'idée mise à profit ici est de générer simultanément l'élaboration d'une matrice inorganique à mésoporosité organisée et la croissance au sein de cette matrice des germes de zéolithes de façon à obtenir idéalement un matériau aluminosilicate mésostructuré présentant des parois (ou murs) cristallisées ( Z. T. Zhang, Y. Han, F. S. Xiao, S. L. Oiu, L. Zhu, R. W. Wang, Y. Yu, Z. Zhang, B. S. Zou, Y. Q. Wang, H. P. Sun, D. Y. Zhao, Y. Wei, J. Am. Chem. Soc., 2001, 123, 5014 . Une variante à ces deux techniques consiste à partir d'un mélange de précurseurs d'aluminium et de silicium en présence de deux agents structurants, l'un susceptible de générer un système zéolithique, l'autre susceptible de générer une mésostructuration. Cette solution est ensuite soumise à deux étapes de cristallisation à l'aide de conditions de traitement hydrothermal variables, une première étape qui conduit à la formation de la structure mésoporeuse à porosité organisée et une deuxième étape qui conduit à la zéolithisation des parois (ou murs) amorphes ( A. Karlsson, M. Stöcker, R. Schmidt, Micropor. Mesopor. Mater., 1999, 27, 181 ; A. Karlsson, M. Stöcker, R. Schmidt, Stud. Surf. Sci. Catal., 2000, 129, 99 . L'ensemble de ces méthodes de synthèse présente l'inconvénient d'endommager la mésostructure et donc de perdre les avantages de celle-ci dans le cas où la croissance des germes de zéolithes ou la zéolithisation des parois n'est pas parfaitement maîtrisée, ce qui rend ces techniques délicates à mettre en oeuvre.Several synthetic techniques for the preparation of these mixed mesostructured / zeolite materials have thus been listed in the open literature. A first synthesis technique consists of synthesizing in the first step a mesostructured aluminosilicate material according to the conventional methods explained above and then, in the second step, impregnating this material with a structuring agent usually used in the synthesis of zeolite materials. A suitable hydrothermal treatment leads to a zeolitization of the amorphous walls (or walls) of the mesostructured aluminosilicate ( KR Koletstra, H. van Bekkum, JC Jansen, Chem. Commun., 1997, 2281 ; DT On, S. Kaliaguine, Angew. Chem. Int. Ed., 2001, 40, 3248 ; DT On, D. Lutic, S. Kaliaguine, Micropor. Mesopor. Mater., 2001, 44, 435 ; MJ Verhoef, PJ Kooyman, JC van der Waal, MS Rigutto, JA Peters, H van Bekkum, Chem. Mater., 2001, 13, 683 ). A second synthesis technique is this time to bring together a colloidal solution of zeolite seeds with a surfactant usually used to create a mesostructuration of the final material. The idea used here is to simultaneously generate the development of an inorganic matrix with organized mesoporosity and the growth within this matrix of zeolite seeds so as to ideally obtain a mesostructured aluminosilicate material having walls (or walls). crystallized ZT Zhang, Y. Han, Xiao FS, Oiu SL, Zhu L, Wang RW, Yu Y., Z. Zhang, Wu Zou, YQ Wang, Sun HP, Zhao DY, Y. Wei, J. Am. Chem. Soc., 2001, 123, 5014 . An alternative to these two techniques consists of a mixture of aluminum precursors and silicon in the presence of two structuring agents, one capable of generating a zeolite system, the other likely to generate mesostructuration. This solution is then subjected to two crystallization steps using variable hydrothermal treatment conditions, a first step which leads to the formation of the mesoporous structure with organized porosity and a second step which leads to the zeolitization of the walls (or walls ) amorphous ( A. Karlsson, M. Stöcker, R. Schmidt, Micropor. Mesopor. Mater., 1999, 27, 181 ; A. Karlsson, M. Stöcker, R. Schmidt, Stud. Surf. Sci. Catal., 2000, 129, 99 . All of these synthesis methods have the disadvantage of damaging the mesostructure and thus losing the advantages thereof in the case where the growth of zeolite seeds or the zeolitization of the walls is not perfectly controlled, this which makes these techniques tricky to implement.

Nous notons qu'il est également possible d'élaborer directement des matériaux composites mésostructuré/zéolithe de façon à bénéficier des propriétés catalytiques propres à chacune de ces phases. Ceci peut se faire par traitement thermique d'un mélange d'une solution de germes de zéolithes et d'une solution de germes d'aluminosilicates mésostructurés ( P. Prokesova, S. Mintova, J. Cejka, T. Bein, Micropor. Mesopor. Mater., 2003, 64, 165 ) ou bien par croissance d'une couche de zéolithe à la surface d'un aluminosilicate mésostructuré pré-synthétisé ( D. T. On, S. Kaliaguine, Angew. Chem. Int. Ed., 2002, 41, 1036 ).We note that it is also possible to directly develop mesostructured / zeolite composite materials in order to benefit from the catalytic properties specific to each of these phases. This can be done by heat treatment of a mixture of a zeolite seed solution and a solution of mesostructured aluminosilicate seeds ( P. Prokesova, S. Mintova, J. Cejka, T. Bein, Micropor. Mesopor. Mater., 2003, 64, 165 ) or by growth of a zeolite layer on the surface of a pre-synthesized mesostructured aluminosilicate ( DT On, S. Kaliaguine, Angew. Chem. Int. Ed., 2002, 41, 1036 ).

En excluant les matériaux zéolithiques mésoporeux obtenus par post-traitement d'une zéolithe, nous notons que, d'un point de vue expérimental, tous ces matériaux sont obtenus par précipitation directe de précurseurs inorganiques en présence ou non d'agents structurants au sein d'une solution aqueuse ou dans des solvants polaires, cette étape étant la plupart du temps suivie par une ou plusieurs étapes de mûrissement en autoclave. Les particules élémentaires habituellement obtenues ne présentent pas de forme régulière et sont caractérisées généralement par une taille variant de 200 à 500 nm.Excluding the zeolite zeolite materials obtained by post-treatment of a zeolite, we note that, from an experimental point of view, all these materials are obtained by direct precipitation of inorganic precursors in the presence or absence of structuring agents within an aqueous solution or in polar solvents, this step being mostly followed by one or more autoclave ripening steps. The elementary particles usually obtained do not have a regular shape and are generally characterized by a size ranging from 200 to 500 nm.

Plusieurs travaux ont également porté sur l'élaboration de matériaux présentant à la fois une micro et une macroporosité. A titre d'exemple, une des méthodes de synthèse les plus courantes consiste à utiliser des billes de polystyrène comme élément générateur de la macroporosité et à créer autour de ces billes un réseau zéolithique ( G. S. Zhu, S. L. Qiu, F. F. Gao, D. S. Li, Y. F. Li, R. W. Wang, B. Gao, B. S. Li, Y. H. Guo, R. R. Xu, Z. Liu, O. Terasaki, J. Mater. Chem., 2001, 11, 6, 1687 ).Several studies have also focused on the development of materials with both micro and macroporosity. By way of example, one of the most common synthetic methods consists of using polystyrene beads as a macroporosity generating element and creating around these beads a zeolite network ( GS Zhu, Qiu SL, Gao FF, Li DS, YF Li, Wang RW, Gao B., Li BS, YH Guo, Xu RR, Z. Liu, O. Terasaki, J. Mater. Chem., 2001, 11, 6, 1687 ).

Le document EP1627853 décrit un matériau à porosité hiérarchisée constitué d'au moins deux particules sphériques élémentaires, chacune desdites particules sphériques comprenant des nanocristaux zéolithiques ayant une taille de pores comprise entre 0,2 et 2 nm et une matrice à base d'oxyde de silicium, mésostructurée, ayant une taille de pores comprise entre 1,5 et 30 nm et présentant des parois amorphes d'épaisseur comprise entre 1 et 20 nm, lesdites particules sphériques élémentaires ayant un diamètre maximal de 10 microns.The document EP1627853 discloses a hierarchical porosity material consisting of at least two elementary spherical particles, each of said spherical particles comprising zeolitic nanocrystals having a pore size of between 0.2 and 2 nm and a mesostructured silicon oxide matrix, having a pore size between 1.5 and 30 nm and having amorphous walls of thickness between 1 and 20 nm, said elementary spherical particles having a maximum diameter of 10 microns.

Résumé de l'inventionSummary of the invention

L'invention concerne un matériau à porosité hiérarchisée constitué d'au moins deux particules sphériques élémentaires ayant un diamètre maximal de 200 microns, l'une au moins desdites particules sphériques comprend au moins une matrice à base d'oxyde de silicium, ledit matériau présentant un volume macroporeux mesuré par porosimétrie au mercure compris entre 0,05 et 1 ml/g, un volume mésoporeux mesuré par volumétrie à l'azote compris entre 0,01 et 1 ml/g et un volume microporeux mesuré par volumétrie à l'azote compris entre 0,03 et 0,4 ml/g, ladite matrice présentant des parois cristallisées, lesquelles sont constituées d'entités zéolithiques à l'origine de la microporosité du matériau. Ladite matrice à base d'oxyde de silicium comprend éventuellement, en outre, au moins un élément X choisi parmi l'aluminium, le fer, le bore, l'indium et le gallium, de préférence l'aluminium. La présente invention concerne également la préparation du matériau selon l'invention. Le procédé de préparation du matériau selon l'invention comprend a) la préparation d'une solution limpide contenant les éléments précurseurs d'entités zéolithiques, à savoir au moins un agent structurant, au moins un précurseur silicique et éventuellement au moins un précurseur d'au moins un élément X choisi parmi l'aluminium, le fer, le bore, l'indium et le gallium ; b) le mélange en solution d'au moins un tensioactif et d'au moins ladite solution limpide obtenue selon a) ; c) l'atomisation par aérosol de ladite solution obtenue àThe invention relates to a material with a hierarchical porosity consisting of at least two elementary spherical particles having a maximum diameter of 200 microns, at least one of said spherical particles comprising at least one matrix based on silicon oxide, said material exhibiting a macroporous volume measured by mercury porosimetry of between 0.05 and 1 ml / g, a mesoporous volume measured by nitrogen volumetry of between 0.01 and 1 ml / g and a microporous volume measured by nitrogen volumetry. between 0.03 and 0.4 ml / g, said matrix having crystallized walls, which consist of zeolite entities at the origin of the microporosity of the material. Said matrix based on silicon oxide optionally further comprises at least one element X selected from aluminum, iron, boron, indium and gallium, preferably aluminum. The present invention also relates to the preparation of the material according to the invention. The method for preparing the material according to the invention comprises a) the preparation of a clear solution containing the precursor elements of zeolitic entities, namely at least one structuring agent, at least one silicic precursor and optionally at least one precursor of at least one element X selected from aluminum, iron, boron, indium and gallium; b) mixing in solution at least one surfactant and at least said clear solution obtained according to a); c) the aerosol atomization of said solution obtained at

l'étape b) pour conduire à la formation de gouttelettes sphériques ; d) le séchage desdites gouttelettes ; e) l'autoclavage des particules obtenues selon d) ; f) le séchage desdites particules obtenues selon e) et g) l'élimination dudit agent structurant et dudit tensioactif pour l'obtention d'un matériau cristallisé à porosité hiérarchisée dans la gamme de la microporosité, de la mésoporosité et de la macroporosité.step b) to lead to the formation of spherical droplets; d) drying said droplets; e) autoclaving the particles obtained according to d); f) drying said particles obtained according to e) and g) the removal of said structuring agent and said surfactant to obtain a crystallized material with hierarchical porosity in the range of microporosity, mesoporosity and macroporosity.

La microporosité induite par les parois cristallisées de nature zéolithique du matériau selon l'invention est consécutive non seulement à l'emploi d'une solution contenant les éléments précurseurs d'entités zéolithiques conformément à l'étape a) du procédé selon l'invention mais également à la mise en oeuvre d'un autoclavage des particules conformément à l'étape e) du procédé de préparation du matériau selon l'invention. La mésoporosité et la macroporosité du matériau selon l'invention sont consécutives au phénomène de séparation de phase par décomposition spinodale de la phase organique générée par la présence du tensioactif et de la phase inorganique issue de la solution contenant les éléments précurseurs d'entités zéolithiques, ce phénomène de séparation de phase étant induit par la technique dite aérosol conformément à l'étape c) du procédé selon l'invention.The microporosity induced by the crystallized walls of zeolite nature of the material according to the invention is consecutive not only to the use of a solution containing the precursor elements of zeolitic entities according to step a) of the process according to the invention, but also to the implementation of an autoclaving of the particles in accordance with step e) of the process for preparing the material according to the invention. The mesoporosity and the macroporosity of the material according to the invention are consecutive to the phenomenon of phase separation by spinodal decomposition of the organic phase generated by the presence of the surfactant and the inorganic phase resulting from the solution containing the precursor elements of zeolitic entities, this phase separation phenomenon being induced by the so-called aerosol technique according to step c) of the process according to the invention.

Intérêt de l'inventionInterest of the invention

Le matériau selon l'invention qui comprend une matrice inorganique mésoporeuse et macroporeuse, à base d'oxyde de silicium, aux parois microporeuses et cristallisées présente simultanément les propriétés structurales, texturales et d'acido-basicité propres aux matériaux de la famille des zéolithes et les propriétés texturales propres aux matériaux mésoporeux et aux matériaux macroporeux. La présence au sein d'une même particule sphérique de taille micrométrique voire nanométrique de mésopores et de macropores dans une matrice inorganique microporeuse et cristallisée conduit à un accès privilégié des réactifs et des produits de la réaction aux sites microporeux lors de l'emploi du matériau selon l'invention en tant qu'adsorbant ou que solide acide dans des applications industrielles potentielles. De plus, le matériau selon l'invention est constitué de particules élémentaires sphériques, le diamètre de ces particules étant au maximum égal à 200 µm, de préférence inférieur à 100 µm, variant avantageusement de 50 nm à 20 µm, très avantageusement de 50 nm à 10 µm et de manière encore plus avantageuse de 50 à 300 nm. La taille limitée de ces particules ainsi que leur forme sphérique homogène permet d'avoir une meilleure diffusion des réactifs et des produits de la réaction lors de l'emploi du matériau selon l'invention dans des applications industrielles potentielles comparativement à des matériaux connus de l'état de la technique se présentant sous la forme de particules élémentaires de forme non homogène, c'est-à-dire irrégulière, et de taille souvent supérieure à 500 nm.The material according to the invention, which comprises a mesoporous and macroporous inorganic matrix, based on silicon oxide, with microporous and crystallized walls, simultaneously exhibits the structural, textural and acid-base properties of the materials of the zeolite family and the textural properties of mesoporous materials and macroporous materials. The presence within the same spherical particle of micrometric or even nanometric size of mesopores and macropores in a microporous and crystallized inorganic matrix leads to a privileged access of the reagents and products of the reaction to the microporous sites during the use of the material. according to the invention as an adsorbent or as an acidic solid in potential industrial applications. In addition, the material according to the invention consists of spherical elementary particles, the diameter of these particles being at most equal to 200 μm, preferably less than 100 μm, advantageously varying from 50 nm to 20 μm, very advantageously to 50 nm. at 10 μm and even more advantageously from 50 to 300 nm. The limited size of these particles as well as their homogeneous spherical shape makes it possible to have a better diffusion of the reagents and the products of the reaction when the material according to the invention is used in potential industrial applications compared with materials. known from the state of the art in the form of elementary particles of non-homogeneous shape, that is to say irregular, and size often greater than 500 nm.

Exposé de l'inventionPresentation of the invention

La présente invention a pour objet un matériau à porosité hiérarchisée constitué d'au moins deux particules sphériques élémentaires ayant un diamètre maximal de 200 microns, l'une au moins desdites particules sphériques comprend au moins une matrice à base d'oxyde de silicium et présentant des parois cristallisées, ledit matériau présentant un volume macroporeux mesuré par porosimétrie au mercure compris entre 0,05 et 1 ml/g, un volume mésoporeux mesuré par volumétrie à l'azote compris entre 0,01 et 1 ml/g et un volume microporeux mesuré par volumétrie à l'azote compris entre 0,03 et 0,4 ml/g.The subject of the present invention is a material with a hierarchical porosity consisting of at least two elementary spherical particles having a maximum diameter of 200 microns, at least one of said spherical particles comprising at least one matrix based on silicon oxide and having crystallized walls, said material having a macroporous volume measured by mercury porosimetry of between 0.05 and 1 ml / g, a mesoporous volume measured by nitrogen volumetry of between 0.01 and 1 ml / g and a microporous volume measured by nitrogen volumetry between 0.03 and 0.4 ml / g.

Par matériau à porosité hiérarchisée, on entend au sens de la présente invention un matériau présentant au moins une, et généralement plusieurs, particule(s) sphérique(s) ayant une triple porosité : une macroporosité caractérisée par un volume mercure macroporeux compris dans une gamme variant de 0,05 à 1 ml/g et de préférence dans une gamme variant de 0,1 à 0,3 ml/g, une mésoporosité caractérisée par un volume mésoporeux mesuré par volumétrie à l'azote compris dans une gamme variant de 0,01 à 1 ml/g et de préférence dans une gamme variant de 0,1 à 0,6 ml/g et une microporosité de type zéolithique dont les caractéristiques (type structural de la zéolithe, composition chimique de la charpente zéolithique) sont fonction des entités zéolithiques constitutives des parois cristallisées de chacune des matrices des particules sphériques du matériau selon l'invention. La macroporosité est également caractérisée par la présence de domaines macroporeux compris dans une gamme variant de 50 à 1000 nm et de préférence dans une gamme variant de 80 à 500 nm et/ou résulte d'une macroporosité texturale intraparticulaire, la mésoporosité est aussi caractérisée par la présence de domaines mésoporeux compris dans une gamme variant de 2 à 50 nm et de préférence dans une gamme variant de 10 à 50 nm. Le matériau selon l'invention peut également avantageusement présenter des particules sphériques élémentaires dépourvues de mésoporosité. Il est à noter qu'une porosité de nature microporeuse peut également résulter de l'imbrication du tensioactif, utilisé lors de la préparation du matériau selon l'invention, avec la paroi inorganique au niveau de l'interface organique-inorganique développée lors de l'élaboration dudit matériau selon l'invention. Conformément à l'invention, la matrice à base d'oxyde de silicium formant chacune des particules sphériques du matériau selon l'invention présente des parois cristallisées constituées d'entités zéolithiques, lesquelles sont à l'origine de la microporosité présente au sein de chacune des particules sphériques du matériau selon l'invention. Toute zéolithe et en particulier, mais de façon non exhaustive, celles répertoriées dans l'"Atlas of zeolite framework types", 5th revised Edition, 2001, C. Baerlocher, W. M. Meier, D. H. Olson peut être employée pour la formation des entités zéolithiques constitutives des parois cristallisées de la matrice de chacune des particules du matériau selon l'invention dès lors que la mise en solution des éléments précurseurs de ces entités, à savoir au moins un agent structurant, au moins un précurseur silicique et éventuellement au moins un précurseur d'au moins un élément X choisi parmi l'aluminium, le fer, le bore, l'indium et le gallium, de préférence l'aluminium, conduise à l'obtention d'une solution limpide. Les entités zéolithiques constitutives des parois cristallisées de la matrice de chacune des particules du matériau selon l'invention et à l'origine de la microporosité de celui-ci comprennent de préférence au moins une zéolithe choisie parmi les zéolithes ZSM-5, ZSM-48, ZSM-22, ZSM-23, ZBM-30, EU-2, EU-11, Silicalite, Bêta, zéolithe A, Faujasite, Y, USY, VUSY, SDUSY, mordénite, NU-87, NU-88, NU-86, NU-85, IM-5, IM-12, Ferriérite et EU-1. De manière très préférée, les entités zéolithiques constituant les parois cristallisées de la matrice de chacune des particules du matériau selon l'invention comprennent au moins une zéolithe choisie parmi les zéolithes de type structural MFI, BEA, FAU et LTA.For the purposes of the present invention, the term "hierarchically porous material" means a material having at least one, and generally several, spherical particles (s) having a triple porosity: a macroporosity characterized by a macroporous mercury volume included in a range ranging from 0.05 to 1 ml / g and preferably in a range of from 0.1 to 0.3 ml / g, a mesoporosity characterized by a mesoporous volume measured by nitrogen volumetry in a range of from 0 to , 01 to 1 ml / g and preferably in a range varying from 0.1 to 0.6 ml / g and a zeolite type microporosity whose characteristics (zeolite structural type, chemical composition of the zeolite framework) are function zeolite entities constituting the crystallized walls of each of the matrices spherical particles of the material according to the invention. The macroporosity is also characterized by the presence of macroporous domains ranging from 50 to 1000 nm and preferably in a range varying from 80 to 500 nm and / or resulting from an intraparticular textural macroporosity, the mesoporosity is also characterized by the presence of mesoporous domains in a range of 2 to 50 nm and preferably in a range of 10 to 50 nm. The material according to the invention may also advantageously have elementary spherical particles without mesoporosity. It should be noted that a porosity of microporous nature may also result from the interlaying of the surfactant, used during the preparation of the material according to the invention, with the inorganic wall at the level of the organic-inorganic interface developed during the treatment. production of said material according to the invention. According to the invention, the matrix based on silicon oxide each forming spherical particles of the material according to the invention has crystallized walls consisting of zeolite entities, which are at the origin of the microporosity present within each spherical particles of the material according to the invention. Any zeolite and in particular, but not exhaustively, those listed in "Atlas of zeolite framework types", 5th revised edition, 2001, C. Baerlocher, WM Meier, DH Olson can be used for the formation of the zeolite entities constituting the crystallized walls of the matrix of each of the particles of the material according to the invention as soon as the dissolution of the precursor elements of these entities, namely at least one structuring agent, at least a silicic precursor and optionally at least one precursor of at least one element X selected from aluminum, iron, boron, indium and gallium, preferably aluminum, lead to obtaining a solution clear. The zeolite entities constituting the crystallized walls of the matrix of each of the particles of the material according to the invention and at the origin of the microporosity thereof preferably comprise at least one zeolite chosen from zeolites ZSM-5, ZSM-48 , ZSM-22, ZSM-23, ZBM-30, EU-2, EU-11, Silicalite, Beta, Zeolite A, Faujasite, Y, USY, VUSY, SDUSY, Mordenite, NU-87, NU-88, NU- 86, NU-85, IM-5, IM-12, Ferrierite and EU-1. In a very preferred manner, the zeolite entities constituting the crystallized walls of the matrix of each of the particles of the material according to the invention comprise at least one zeolite chosen from zeolites of structural type MFI, BEA, FAU and LTA.

Conformément à l'invention, la matrice à base d'oxyde de silicium formant chacune des particules sphériques élémentaires du matériau selon l'invention est soit entièrement silicique soit, elle comprend, outre du silicium, au moins un élément X choisi parmi l'aluminium, le fer, le bore, l'indium et le gallium, de préférence l'aluminium. Ainsi, les entités zéolithiques constitutives des parois cristallisées de la matrice de chacune des particules sphériques du matériau selon l'invention et à l'origine de la microporosité de celui-ci comprennent avantageusement au moins une zéolithe soit entièrement silicique soit contenant, outre du silicium, au moins un élément X choisi parmi l'aluminium, le fer, le bore, l'indium et le gallium, de préférence l'aluminium. Lorsque X est l'aluminium, la matrice du matériau est dans ce cas un aluminosilicate. Cet aluminosilicate présente un rapport molaire Si/Al égal à celui de la solution des précurseurs silicique et aluminique conduisant à la formation des entités zéolithiques constitutives des parois cristallisées de la matrice. Conformément à l'invention, lesdites particules sphériques élémentaires constituant le matériau selon l'invention ont un diamètre maximal égal à 200 microns, de préférence inférieur à 100 microns, avantageusement compris entre 50 nm et 20 µm, très avantageusement compris entre 50 nm et 10 µm, et de manière encore plus avantageuse compris entre 50 et 300 nm. Plus précisément, elles sont présentes dans le matériau selon l'invention sous la forme d'agrégats.According to the invention, the matrix based on silicon oxide forming each of the elementary spherical particles of the material according to the invention is either entirely silicic or it comprises, in addition to silicon, at least one element X chosen from aluminum iron, boron, indium and gallium, preferably aluminum. Thus, the zeolite entities constituting the crystallized walls of the matrix of each of the spherical particles of the material according to the invention and at the origin of the microporosity thereof advantageously comprise at least one zeolite either entirely silicic or containing, besides silicon at least one element X selected from aluminum, iron, boron, indium and gallium, preferably aluminum. When X is aluminum, the matrix of the material is in this case an aluminosilicate. This aluminosilicate has a Si / Al molar ratio equal to that of the solution of the silicic and aluminic precursors leading to the formation of the zeolite entities constituting the crystallized walls of the matrix. According to the invention, said elementary spherical particles constituting the material according to the invention have a maximum diameter equal to 200 microns, preferably less than 100 microns, advantageously between 50 nm and 20 μm, very advantageously between 50 nm and 10 nm. μm, and even more advantageously between 50 and 300 nm. More specifically, they are present in the material according to the invention in the form of aggregates.

Le matériau selon l'invention présente avantageusement une surface spécifique comprise entre 100 et 1100 m2/g et de manière très avantageuse comprise entre 200 et 800 m2/g.The material according to the invention advantageously has a specific surface area of between 100 and 1100 m 2 / g and very advantageously between 200 and 800 m 2 / g.

La présente invention a également pour objet la préparation du matériau selon l'invention. Ledit procédé de préparation du matériau selon l'invention comprend : a) la préparation d'une solution limpide contenant les éléments précurseurs d'entités zéolithiques, à savoir au moins un agent structurant, au moins un précurseur silicique et éventuellement au moins un précurseur d'au moins un élément X choisi parmi l'aluminium, le fer, le bore, l'indium et le gallium, de préférence l'aluminium ; b) le mélange en solution d'au moins un tensioactif et d'au moins ladite solution limpide obtenue selon a) ; c) l'atomisation par aérosol de ladite solution obtenue à l'étape b) pour conduire à la formation de gouttelettes sphériques ; d) le séchage desdites gouttelettes ; e) l'autoclavage des particules obtenues selon d) ; f) le séchage desdites particules obtenues selon e) et g) l'élimination dudit agent structurant et dudit tensioactif pour l'obtention d'un matériau cristallisé à porosité hiérarchisée dans la gamme de la microporosité, de la mésoporosité et de la macroporosité.The present invention also relates to the preparation of the material according to the invention. Said method for preparing the material according to the invention comprises: a) the preparation of a clear solution containing the precursor elements of zeolitic entities, namely at least one structuring agent, at least one silicic precursor and optionally at least one precursor of at least one element X selected from aluminum, iron, boron, indium and gallium, preferably aluminum; b) mixing in solution at least one surfactant and at least said clear solution obtained according to a); c) aerosol atomizing said solution obtained in step b) to lead to the formation of spherical droplets; d) drying said droplets; e) autoclaving the particles obtained according to d); f) drying said particles obtained according to e) and g) the removal of said structuring agent and said surfactant to obtain a crystallized material with hierarchical porosity in the range of microporosity, mesoporosity and macroporosity.

Conformément à l'étape a) du procédé de préparation selon l'invention, la solution limpide contenant les éléments précurseurs d'entités zéolithiques, à savoir au moins un agent structurant, au moins un précurseur silicique et éventuellement au moins un précurseur d'au moins un élément X choisi parmi l'aluminium, le fer, le bore, l'indium et le gallium, de préférence l'aluminium, est réalisée à partir de protocoles opératoires connus de l'Homme du métier.According to step a) of the preparation process according to the invention, the clear solution containing the precursor elements of zeolitic entities, namely at least one structuring agent, at least one silicic precursor and optionally at least one precursor of at least one less an X element selected from aluminum, iron, boron, indium and gallium, preferably aluminum, is made from operating protocols known to those skilled in the art.

Le précurseur silicique utilisé pour la mise en oeuvre de l'étape a) du procédé selon l'invention est choisi parmi les précurseurs d'oxyde de silicium bien connus de l'Homme du métier. En particulier, on utilise avantageusement un précurseur silicique choisi parmi les précurseurs de silice habituellement utilisés dans la synthèse des zéolithes, par exemple on utilise de la silice solide en poudre, de l'acide silicique, de la silice colloïdale, de la silice dissoute ou du tétraéthoxysilane encore appelé tétraéthylorthosilicate (TEOS). De manière préférée, le précurseur silicique est le TEOS.The silicic precursor used for the implementation of step a) of the process according to the invention is chosen from the precursors of silicon oxide well known to those skilled in the art. In particular, it is advantageous to use a silicic precursor chosen from the silica precursors usually used in the synthesis of zeolites, for example uses solid silica powder, silicic acid, colloidal silica, dissolved silica or tetraethoxysilane also called tetraethylorthosilicate (TEOS). Preferably, the silicic precursor is TEOS.

Le précurseur de l'élément X, éventuellement utilisé pour la mise en oeuvre de l'étape a) du procédé selon l'invention, peut être tout composé comprenant l'élément X et pouvant libérer cet élément en solution, notamment en solution aqueuse ou aquo-organique, sous forme réactive. Dans le cas préféré où X est l'aluminium, le précurseur aluminique est avantageusement un sel inorganique d'aluminium de formule AlZ3, Z étant un halogène, un nitrate ou un hydroxyde. De préférence, Z est le chlore. Le précurseur aluminique peut également être un sulfate d'aluminium de formule Al2(SO4)3. Le précurseur aluminique peut être aussi un précurseur organométallique de formule Al(OR)3 ou R = éthyle, isopropyle, n-butyle, s-butyle (Al(OsC4H9)3) ou t-butyle ou un précurseur chélaté tel que l'aluminium acétylacétonate (Al(C5H8O2)3). De préférence, R est le s-butyle. Le précurseur aluminique peut aussi être de l'aluminate de sodium ou de l'alumine proprement dite sous l'une de ses phases cristallines connues de l'Homme du métier (alpha, delta, teta, gamma), de préférence sous forme hydratée ou qui peut être hydratée.The precursor of the element X, optionally used for the implementation of step a) of the process according to the invention, can be any compound comprising the element X and which can release this element in solution, in particular in aqueous solution or aquo-organic, in reactive form. In the preferred case where X is aluminum, the aluminum precursor is advantageously an inorganic aluminum salt of formula AlZ 3 , Z being a halogen, a nitrate or a hydroxide. Preferably, Z is chlorine. The aluminum precursor may also be an aluminum sulphate of formula Al 2 (SO 4 ) 3 . The aluminic precursor can also be an organometallic precursor of formula Al (OR) 3 or R = ethyl, isopropyl, n-butyl, s-butyl (Al (O s C 4 H 9 ) 3 ) or t-butyl or a chelated precursor such as aluminum acetylacetonate (Al (C 5 H 8 O 2 ) 3 ). Preferably, R is s-butyl. The aluminum precursor may also be sodium aluminate or alumina proper in one of its crystalline phases known to those skilled in the art (alpha, delta, teta, gamma), preferably in hydrated form or which can be hydrated.

On peut également utiliser des mélanges des précurseurs cités ci-dessus. Certains ou l'ensemble des précurseurs aluminiques et siliciques peuvent éventuellement être ajoutés sous la forme d'un seul composé comprenant à la fois des atomes d'aluminium et des atomes de silicium, par exemple une silice alumine amorphe.It is also possible to use mixtures of the precursors mentioned above. Some or all of the aluminic and silicic precursors may optionally be added in the form of a single compound comprising both aluminum atoms and silicon atoms, for example an amorphous alumina silica.

L'agent structurant utilisé pour la mise en oeuvre de l'étape a) du procédé selon l'invention peut être ionique ou neutre selon la zéolithe à synthétiser. Il est fréquent d'utiliser les agents structurants de la liste non exhaustive suivante : des cations organiques azotés tel que le tétrapropylammonium (TPA), des éléments de la famille des alcalins (Cs, K, Na, etc.), des éthercouronnes, des diamines ainsi que tout autre agent structurant bien connu de l'Homme de l'Art pour la synthèse de zéolithe.The structuring agent used for carrying out step a) of the process according to the invention may be ionic or neutral depending on the zeolite to be synthesized. It is common to use the structuring agents of the following non-exhaustive list: nitrogenous organic cations such as tetrapropylammonium (TPA), elements of the family of alkalis (Cs, K, Na, etc.), ethercouronnes, diamines and any other structuring agent well known to those skilled in the art for the synthesis of zeolite.

On obtient généralement la solution limpide contenant les éléments précurseurs d'entités zéolithiques selon l'étape a) du procédé de préparation du matériau selon l'invention en préparant un mélange réactionnel renfermant au moins un précurseur silicique, éventuellement au moins un précurseur d'au moins un élément X choisi parmi l'aluminium, le fer, le bore, l'indium et le gallium, de préférence au moins un précurseur aluminique, et au moins un agent structurant. Le mélange réactionnel est soit aqueux soit aquo-organique, par exemple un mélange eau-alcool. Il est préféré de travailler dans un milieu réactionnel basique au cours des diverses étapes du procédé selon l'invention afin de favoriser le développement des entités zéolithiques constitutives des parois cristallisées de la matrice de chacune des particules du matériau selon l'invention. La basicité de la solution est avantageusement assurée par la basicité de l'agent structurant employé ou bien par basification du mélange réactionnel par l'ajout d'un composé basique, par exemple un hydroxyde de métal alcalin, de préférence de l'hydroxyde de sodium. Le mélange réactionnel peut être mis sous conditions hydrothermales sous une pression autogène, éventuellement en ajoutant un gaz, par exemple de l'azote, à une température comprise entre la température ambiante et 200°C, de préférence entre la température ambiante et 170°C et de manière encore préférentielle à une température qui ne dépasse pas 120°C jusqu'à la formation d'une solution limpide contenant les éléments précurseurs des entités zéolithiques constituant les parois cristallisées de la matrice de chacune des particules sphériques du matériau selon l'invention. Selon un mode opératoire préféré, le mélange réactionnel renfermant au moins un agent structurant, au moins un précurseur silicique et éventuellement au moins un précurseur d'au moins un élément X choisi parmi l'aluminium, le fer, le bore, l'indium et le gallium est mûri à température ambiante de façon à obtenir une solution limpide contenant les éléments précurseurs de germes de zéolithes susceptibles de générer la formation d'entités zéolithiques cristallisées au cours de l'étape e) d'autoclavage du procédé de préparation du matériau selon l'invention.The clear solution containing the zeolite entity precursor elements according to step a) of the process for preparing the material according to the invention is generally obtained by preparing a reaction mixture containing at least one silicic precursor, optionally at least one precursor of at least one precursor. at least one element X selected from aluminum, iron, boron, indium and gallium, preferably at least one aluminum precursor, and at least one structuring agent. The reaction mixture is either aqueous or aquo-organic, by example a water-alcohol mixture. It is preferred to work in a basic reaction medium during the various steps of the process according to the invention in order to promote the development of the zeolite entities constituting the crystallized walls of the matrix of each of the particles of the material according to the invention. The basicity of the solution is advantageously ensured by the basicity of the structuring agent used or by basification of the reaction mixture by the addition of a basic compound, for example an alkali metal hydroxide, preferably sodium hydroxide. . The reaction mixture may be placed under hydrothermal conditions under autogenous pressure, optionally by adding a gas, for example nitrogen, at a temperature between room temperature and 200 ° C., preferably between ambient temperature and 170 ° C. and still more preferably at a temperature which does not exceed 120 ° C. until the formation of a clear solution containing the precursor elements of the zeolite entities constituting the crystallized walls of the matrix of each of the spherical particles of the material according to the invention . According to a preferred procedure, the reaction mixture containing at least one structuring agent, at least one silicic precursor and optionally at least one precursor of at least one element X selected from aluminum, iron, boron, indium and the gallium is cured at ambient temperature so as to obtain a clear solution containing the precursor elements of zeolite seeds capable of generating the formation of crystallized zeolite entities during the step e) of autoclaving the process for preparing the material according to the invention.

Conformément à l'étape a) du procédé selon l'invention, les éléments précurseurs des entités zéolithiques présents dans la solution limpide sont synthétisés selon des protocoles opératoires connus de l'Homme du métier. En particulier, pour un matériau selon l'invention dont la matrice de chaque particule est constituée d'entités de zéolithe bêta, une solution limpide contenant des éléments précurseurs d'entités de zéolithe bêta est réalisée à partir du protocole opératoire décrit par P. Prokesova, S. Mintova, J. Cejka, T. Bein et coll., Micropor. Mesopor. Mater., 2003, 64, 165 . Pour un matériau selon l'invention dont la matrice de chaque particule est constituée d'entités de zéolithe Y, une solution limpide contenant des éléments précurseurs d'entités de zéolithe Y est réalisée à partir du protocole opératoire décrit par Y. Liu, W. Z. Zhang, T. J. Pinnavaia et coll., J. Am. Chem. Soc., 2000, 122, 8791 . Pour un matériau selon l'invention dont la matrice de chaque particule est constituée d'entités de zéolithe faujasite, une solution limpide contenant des éléments précurseurs d'entités de zéolithe faujasite est réalisée à partir du protocole opératoire décrit par K. R. Kloetstra, H. W. Zandbergen, J. C. Jansen, H. vanBekkum, Microporous Mater., 1996, 6, 287 . Pour un matériau selon l'invention dont la matrice de chaque particule est constituée d'entités de zéolithe ZSM-5, une solution limpide contenant des éléments précurseurs d'entités de zéolithe ZSM-5 est réalisée à partir du protocole opératoire décrit par A. E. Persson, B. J. Schoeman, J. Sterte, J. -E. Otterstedt, Zeolifes, 1995, 15, 611 , le protocole opératoire exacte faisant l'objet de l'exemple 1 de la présente demande. Dans le cas particulier d'un matériau purement silicique, la solution limpide contenant les éléments précurseurs d'entités de zéolithe silicalite constitutives des parois du matériau selon l'invention est avantageusement réalisée à partir du protocole opératoire décrit par A. E. Persson, B. J. Schoeman, J. Sterte, J. -E. Otterstedt, Zeolites, 1994, 14, 557 .According to step a) of the process according to the invention, the precursor elements of the zeolitic entities present in the clear solution are synthesized according to operating protocols known to those skilled in the art. In particular, for a material according to the invention in which the matrix of each particle consists of zeolite beta entities, a clear solution containing precursor elements of zeolite beta entities is produced from the operating protocol described by P. Prokesova, S. Mintova, J. Cejka, T. Bein et al., Micropor. Mesopor. Mater., 2003, 64, 165 . For a material according to the invention in which the matrix of each particle consists of zeolite Y entities, a clear solution containing precursor elements of zeolite Y entities is produced from the operating protocol described by Y. Liu, WZ Zhang, TJ Pinnavaia et al., J. Am. Chem. Soc., 2000, 122, 8791 . For a material according to the invention in which the matrix of each particle consists of faujasite zeolite entities, a clear solution containing precursor elements of zeolite faujasite entities is produced from the operating protocol described by KR Kloetstra, HW Zandbergen, Jansen CJ, H. vanBekkum, Microporous Mater., 1996, 6, 287 . For a material according to the invention in which the matrix of each particle consists of ZSM-5 zeolite entities, a clear solution containing precursor elements of ZSM-5 zeolite species is carried out from the operating protocol described by AE Persson, BJ Schoeman, J. Sterte, J.-E. Otterstedt, Zeolifes, 1995, 15, 611 , the exact operating protocol which is the subject of example 1 of the present application. In the particular case of a purely silicic material, the clear solution containing the precursor elements of zeolite silicalite species constituting the walls of the material according to the invention is advantageously made from the operating protocol described by AE Persson, BJ Schoeman, J. Sterte, J.-E. Otterstedt, Zeolites, 1994, 14, 557 .

Conformément à l'étape b) du procédé de préparation du matériau selon l'invention, le tensioactif utilisé est un tensioactif ionique ou non ionique ou un mélange des deux. De préférence, le tensioactif ionique est choisi parmi des tensioactifs anioniques tels que les sulfates comme par exemple le dodécylsulfate de sodium (SDS). De préférence, le tensioactif non ionique peut être tout copolymère possédant au moins deux parties de polarités différentes leur conférant des propriétés de macromolécules amphiphiles. Ces copolymères peuvent faire partie de la liste non exhaustive des familles de copolymères suivantes : les copolymères fluorés (-[CH2-CH2-CH2-CH2-O-CO-R1- avec R1 = C4F9, C8F17, etc.), les copolymères biologiques comme les polyacides aminés (poly-lysine, alginates, etc.), les dendrimères, les copolymères bloc constitués de chaînes de poly(oxyde d'alkylène) et tout autre copolymère à caractère amphiphile connu de l'Homme du métier ( S. Förster, M. Antionnetti, Adv.Mater, 1998, 10, 195-217 ; S. Förster, T.Plantenberg, Angew. Chem. Int. Ed, 2002, 41, 688-714 ; H. Cölfen, Macromol Rapid Commun, 2001, 22, 219-252 ).According to step b) of the process for preparing the material according to the invention, the surfactant used is an ionic or nonionic surfactant or a mixture of both. Preferably, the ionic surfactant is chosen from anionic surfactants such as sulphates, for example sodium dodecyl sulphate (SDS). Preferably, the nonionic surfactant may be any copolymer having at least two parts of different polarities conferring properties of amphiphilic macromolecules. These copolymers can be part of the non-exhaustive list of the following families of copolymers: fluorinated copolymers (- [CH 2 -CH 2 -CH 2 -CH 2 -O-CO-R 1-with R 1 = C 4 F 9 , C 8 F 17 , etc.), biological copolymers such as polyamino acids (poly-lysine, alginates, etc.), dendrimers, block copolymers consisting of poly (alkylene oxide) chains and any other known amphiphilic copolymers of the skilled person ( S. Förster, M. Antionnetti, Adv.Mater, 1998, 10, 195-217 ; S. Förster, T.Plantenberg, Angew. Chem. Int. Ed, 2002, 41, 688-714 ; H. Cölfen, Macromol Rapid Common, 2001, 22, 219-252 ).

De manière préférée, on utilise dans le cadre de la présente invention un copolymère bloc constitué de chaînes de poly(oxyde d'alkylène). Ledit copolymère bloc est de préférence un copolymère bloc ayant deux, trois ou quatre blocs, chaque bloc étant constitué d'une chaîne de poly(oxyde d'alkylène). Pour un copolymère à deux blocs, l'un des blocs est constitué d'une chaîne de poly(oxyde d'alkylène) de nature hydrophile et l'autre bloc est constitué d'une chaîne de poly(oxyde d'alkylène) de nature hydrophobe. Pour un copolymère à trois blocs, deux des blocs sont constitués d'une chaîne de poly(oxyde d'alkylène) de nature hydrophile tandis que l'autre bloc, situé entre les deux blocs aux parties hydrophiles, est constitué d'une chaîne de poly(oxyde d'alkylène) de nature hydrophobe. De préférence, dans le cas d'un copolymère à trois blocs, les chaînes de poly(oxyde d'alkylène) de nature hydrophile sont des chaînes de poly(oxyde d'éthylène) notées (PEO)x et (PEO)z et les chaînes de poly(oxyde d'alkylène) de nature hydrophobe sont des chaînes de poly(oxyde de propylène) notées (PPO)y, des chaînes de poly(oxyde de butylène), ou des chaînes mixtes dont chaque chaîne est un mélange de plusieurs monomères d'oxyde d'alkylène. De manière très préférée, dans le cas d'un copolymère à trois blocs, on utilise un composé constitué de deux chaînes de poly(oxyde d'éthylène) et d'une chaîne de poly(oxyde de propylène)et plus particulièrement, il s'agit du composé de formule (PEO)x-(PPO)y-(PEO)z où x est compris entre 5 et 300 et y est compris entre 33 et 300 et z est compris entre 5 et 300. De préférence, les valeurs de x et z sont identiques. On utilise très avantageusement un composé dans lequel x = 20, y = 70 et z = 20 (P123) et un composé dans lequel x = 106, y = 70 et z = 106 (F127). Les tensioactifs non-ioniques commerciaux connus sous le nom de Pluronic (BASF), Tetronic (BASF), Triton (Sigma), Tergitol (Union Carbide), Brij (Aldrich) sont utilisables en tant que tensioactifs non-ioniques dans l'étape b) du procédé de préparation de l'invention. Pour un copolymère à quatre blocs, deux des blocs sont constitués d'une chaîne de poly(oxyde d'alkylène) de nature hydrophile et les deux autres blocs sont constitués d'une chaîne de poly(oxyde d'alkylène) de nature hydrophobe.In the context of the present invention, a block copolymer consisting of poly (alkylene oxide) chains is preferably used. Said block copolymer is preferably a block copolymer having two, three or four blocks, each block consisting of a poly (alkylene oxide) chain. For a two-block copolymer, one of the blocks consists of a poly (alkylene oxide) chain of hydrophilic nature and the other block consists of a poly (alkylene oxide) chain of a nature hydrophobic. For a three-block copolymer, two of the blocks consist of a chain of poly (alkylene oxide) of hydrophilic nature while the other block, located between the two blocks with the hydrophilic parts, consists of a chain of poly (alkylene oxide) hydrophobic nature. Preferably, in the case of a three-block copolymer, the hydrophilic poly (alkylene oxide) chains are poly (ethylene oxide) chains denoted (PEO) x and (PEO) z and the Poly (alkylene oxide) chains of hydrophobic nature are chains of poly (propylene oxide) denoted (PPO) y, poly (butylene oxide) chains, or mixed chains, each chain of which is a mixture of several alkylene oxide monomers. Very preferably, in the case of a three-block copolymer, a compound is used. consisting of two chains of poly (ethylene oxide) and a poly (propylene oxide) chain and more particularly, it is the compound of formula (PEO) x - (PPO) y - (PEO) z where x is between 5 and 300 and y is between 33 and 300 and z is between 5 and 300. Preferably, the values of x and z are the same. A compound is advantageously used in which x = 20, y = 70 and z = 20 (P123) and a compound in which x = 106, y = 70 and z = 106 (F127). Commercial nonionic surfactants known as Pluronic (BASF), Tetronic (BASF), Triton (Sigma), Tergitol (Union Carbide), Brij (Aldrich) are useful as nonionic surfactants in step b ) of the preparation process of the invention. For a four-block copolymer, two of the blocks consist of a poly (alkylene oxide) chain of hydrophilic nature and the other two blocks consist of a chain of poly (alkylene oxide) hydrophobic nature.

La solution obtenue à l'issue de l'étape b) du procédé de préparation du matériau selon l'invention dans laquelle sont mélangés au moins ledit tensioactif et au moins ladite solution limpide obtenue selon l'étape a) peut être acide, neutre ou basique. De préférence, ladite solution est basique et présente de préférence un pH supérieur à 9, cette valeur du pH étant généralement imposée par le pH de la solution limpide contenant les éléments précurseurs d'entités zéolithiques obtenue selon l'étape a) du procédé de préparation du matériau selon l'invention. La solution obtenue à l'issue de l'étape b) peut être aqueuse ou peut être un mélange eau-solvant organique, le solvant organique étant préférentiellement un solvant polaire, notamment un alcool, préférentiellement de l'éthanol.The solution obtained at the end of step b) of the process for preparing the material according to the invention in which at least said surfactant and at least said clear solution obtained according to step a) are mixed can be acidic, neutral or basic. Preferably, said solution is basic and preferably has a pH greater than 9, this pH value being generally imposed by the pH of the clear solution containing the precursor elements of zeolitic entities obtained according to step a) of the preparation process of the material according to the invention. The solution obtained at the end of step b) may be aqueous or may be a water-organic solvent mixture, the organic solvent preferably being a polar solvent, in particular an alcohol, preferably ethanol.

La quantité en tensioactif introduit dans le mélange conformément à l'étape b) du procédé de préparation selon l'invention est définie par rapport à la quantité de matière inorganique introduite dans ledit mélange lors de l'ajout de la solution limpide contenant les éléments précurseurs d'entités zéolithiques obtenue selon l'étape a) du procédé selon l'invention. La quantité de matière inorganique correspond à la quantité de matière du précurseur silicique et à celle du précurseur de l'élément X lorsqu'il est présent. Le rapport molaire inorganique. /nTensioactif est tel que le système binaire organique - inorganique formée lors de l'étape d'atomisation c) du procédé de préparation du matériau selon l'invention subisse une séparation de phase caractérisée par l'apparition d'un réseau biphasique interconnecté dont le mécanisme de formation est une décomposition spinodale. Le domaine de composition pour lequel se produit une séparation de phase par un mécanisme de décomposition spinodale est délimité par des bornes pour lesquelles l'enthalpie libre G du système binaire est minimisée (∂G/∂x = 0, x étant la fraction molaire de la phase organique, 1-x celle de la phase inorganique) et pour chaque composition appartenant à ce domaine, la dérivée seconde de l'enthalpie ∂2G/∂2x est supérieure à 0. Le principe de la séparation de phase via un mécanisme de décomposition spinodale a largement été décrit par Nakanishi pour l'obtention de gels de silice en présence de polymères ( K. Nakanishi, Journal of Porous Materials, 1997, 4, 67 ). L'interconnexion particulière du réseau biphasique organique - inorganique résultant de ce phénomène de séparation de phase par décomposition spinodale est à l'origine de la texture mésoporeuse et macroporeuse particulière présentée par le matériau selon l'invention. Conformément à l'étape b) du procédé selon l'invention, la concentration initiale en tensioactif, introduit dans le mélange, définie par c0 est telle que c0 est inférieure ou égale à cmc, le paramètre cmc représentant la concentration micellaire critique bien connue de l'Homme du métier, c'est-à-dire la concentration limite au-delà de laquelle se produit le phénomène d'auto-arrangement des molécules du tensioactif dans la solution. Avant atomisation, la concentration en molécules de tensioactif de la solution définie par l'étape b) du procédé de préparation du matériau selon l'invention ne conduit donc pas à la formation de phases micellaires particulières. Dans une mise en oeuvre préférée du procédé selon l'invention, la concentration c0 est inférieure à la cmc, le rapport nInorganique /nTensloactif est tel que la composition du système binaire vérifie les conditions de composition pour lesquelles un mécanisme de séparation de phase se produit par décomposition spinodale et ladite solution visée à l'étape b) du procédé de préparation selon l'invention est un mélange eau basique-alcool.The amount of surfactant introduced into the mixture according to step b) of the preparation process according to the invention is defined with respect to the amount of inorganic material introduced into said mixture during the addition of the clear solution containing the precursor elements. of zeolitic entities obtained according to step a) of the process according to the invention. The amount of inorganic material corresponds to the amount of silicic precursor material and that of the element X precursor when present. The inorganic molar ratio. The surfactant is such that the organic-inorganic binary system formed during the atomization step c) of the process for preparing the material according to the invention undergoes a phase separation characterized by the appearance of an interconnected biphasic network of which the mechanism of formation is a spinodal decomposition. The composition domain for which a phase separation occurs by a spinodal decomposition mechanism is delimited by limits for which the free enthalpy G of the binary system is minimized (∂G / ∂x = 0, x being the molar fraction of the organic phase, 1-x that of the inorganic phase) and for each composition belonging to this domain, the second derivative of the enthalpy ∂ 2 G / ∂ 2 x is greater than 0. The principle of phase separation via a mechanism of spinodal decomposition has been widely described by Nakanishi for obtaining silica gels in the presence of polymers ( K. Nakanishi, Journal of Porous Materials, 1997, 4, 67 ). The particular interconnection of the organic-inorganic biphasic network resulting from this phase separation phenomenon by spinodal decomposition is at the origin of the particular mesoporous and macroporous texture presented by the material according to the invention. According to step b) of the process according to the invention, the initial concentration of surfactant, introduced into the mixture, defined by c 0 is such that c 0 is less than or equal to c mc , the parameter c mc representing the micellar concentration criticism well known to those skilled in the art, that is to say the limit concentration beyond which occurs the phenomenon of self-arrangement of surfactant molecules in the solution. Before atomization, the concentration of surfactant molecules in the solution defined by step b) of the process for preparing the material according to the invention therefore does not lead to the formation of particular micellar phases. In a preferred implementation of the process according to the invention, the concentration c 0 is less than the c mc , the ratio n Inorganic / n Tensloactif is such that the composition of the binary system verifies the composition conditions for which a separation mechanism of phase occurs by spinodal decomposition and said solution referred to in step b) of the preparation process according to the invention is a basic water-alcohol mixture.

L'étape d'atomisation du mélange selon l'étape c) du procédé de préparation selon l'invention produit des gouttelettes sphériques. La distribution en taille de ces gouttelettes est de type lognormale. Le générateur d'aérosol utilisé ici est un appareil commercial de modèle 9306 A fourni par TSI ayant un atomiseur 6 jets. L'atomisation de la solution se fait dans une chambre dans laquelle est envoyé un gaz vecteur, un mélange O2/N2 (air sec), sous une pression P égale à 1,5 bar.The step of atomizing the mixture according to step c) of the preparation process according to the invention produces spherical droplets. The size distribution of these droplets is lognormal. The aerosol generator used here is a commercial model 9306A device provided by TSI having a 6-jet atomizer. The atomization of the solution is done in a chamber into which a carrier gas, a mixture O 2 / N 2 (dry air), is sent under a pressure P equal to 1.5 bar.

Conformément à l'étape d) du procédé de préparation selon l'invention, on procède au séchage desdites gouttelettes. Ce séchage est réalisé par le transport desdites gouttelettes via le gaz vecteur, le mélange O2/N2, dans des tubes en PVC, ce qui conduit à l'évaporation progressive de la solution, par exemple de la solution aquo-organique basique obtenue au cours de l'étape b) du procédé de préparation du matériau selon l'invention, et ainsi à l'obtention de particules élémentaires sphériques. Ce séchage est parfait par un passage desdites particules dans un four dont la température peut être ajustée, la gamme habituelle de température variant de 50 à 600°C et de préférence de 80 à 400°C, le temps de résidence de ces particules dans le four étant de l'ordre de la seconde. Les particules sont alors récoltées dans un filtre. Une pompe placée en fin de circuit favorise l'acheminement des espèces dans le dispositif expérimental aérosol. Le séchage des gouttelettes selon l'étape d) du procédé selon l'invention est avantageusement suivi d'un passage à l'étuve à une température comprise entre 50 et 150°C.According to step d) of the preparation process according to the invention, said droplets are dried. This drying is carried out by transporting said droplets via the carrier gas, the O 2 / N 2 mixture, in PVC tubes, which leads to the gradual evaporation of the solution, for example from the basic aqueous-organic solution obtained. during step b) of the process for preparing the material according to the invention, and thus obtaining spherical elementary particles. This drying is perfect by a passage of said particles in an oven whose temperature can be adjusted, the usual range of temperature ranging from 50 to 600 ° C and preferably from 80 to 400 ° C, the residence time of these particles in the oven being of the order of the second. The particles are then harvested in a filter. A pump placed at the end of the circuit promotes the routing of species in the aerosol experimental device. Drying the droplets according to step d) of the process according to the invention is advantageously followed by a passage in the oven at a temperature between 50 and 150 ° C.

Conformément à l'étape e) du procédé selon l'invention, on procède à un autoclavage des particules séchées obtenues selon l'étape d) du procédé selon l'invention en présence d'un solvant. Cette étape consiste à placer lesdites particules dans une enceinte fermée en présence d'un solvant à une température donnée de façon à travailler en pression autogène inhérente aux conditions opératoires choisies. Le solvant utilisé est un solvant polaire protique. De préférence le solvant utilisé est de l'eau. Le volume de solvant introduit est défini par rapport au volume de l'autoclave choisi. Ainsi le volume de solvant introduit est compris dans une gamme de 0,01 à 20% par rapport au volume de l'autoclave choisi, de préférence dans une gamme de 0,05 à 5% et de façon préférée dans une gamme de 0,05 à 1 %. La température d'autoclavage est comprise entre 50 et 200°C, de préférence comprise entre 60 et 170°C et de manière encore préférentielle comprise entre 60 et 120°C de façon à permettre la croissance d'entités zéolithiques dans les parois de la matrice de chacune des particules du matériau selon l'invention sans générer de cristaux de zéolithe de taille trop importante qui désorganiseraient la mésoporosité et la macroporosité créées au sein de chaque particule du matériau selon l'invention. L'autoclavage est maintenu sur une période de 1 à 96 heures et de préférence sur une période de 20 à 50 heures.According to step e) of the process according to the invention, the dried particles obtained according to step d) of the process according to the invention are autoclaved in the presence of a solvent. This step consists in placing said particles in a closed chamber in the presence of a solvent at a given temperature so as to work with autogenous pressure inherent to the operating conditions chosen. The solvent used is a protic polar solvent. Preferably the solvent used is water. The volume of solvent introduced is defined relative to the volume of the autoclave selected. Thus the volume of solvent introduced is in a range of 0.01 to 20% relative to the volume of the autoclave chosen, preferably in a range of 0.05 to 5% and preferably in a range of 0, 05 to 1%. The autoclaving temperature is between 50 and 200 ° C, preferably between 60 and 170 ° C and more preferably between 60 and 120 ° C so as to allow the growth of zeolite entities in the walls of the matrix of each of the particles of the material according to the invention without generating large size zeolite crystals which would disorganize the mesoporosity and macroporosity created within each particle of the material according to the invention. Autoclaving is maintained over a period of 1 to 96 hours and preferably over a period of 20 to 50 hours.

Conformément à l'étape f) du procédé de préparation selon l'invention, le séchage des particules après autoclavage est avantageusement réalisé par une mise à l'étuve à une température comprise entre 50 et 150°C.According to step f) of the preparation process according to the invention, the drying of the particles after autoclaving is advantageously carried out by placing in an oven at a temperature of between 50 and 150 ° C.

Dans le cas particulier où l'élément X, éventuellement utilisé pour la mise en oeuvre de l'étape a) du procédé selon l'invention, est l'élément aluminium et où l'élément sodium est présent dans la solution limpide obtenue conformément à l'étape a) du procédé selon l'invention via l'emploi de l'hydroxyde de sodium et/ou d'un agent structurant sodé assurant la basicité de ladite solution limpide, il est préféré de réaliser une étape supplémentaire d'échange ionique permettant d'échanger le cation Na+ par le cation NH4 + entre les étapes f) et g) du procédé selon l'invention. Cet échange, qui conduit à la formation de protons H+ après l'étape g) du procédé selon l'invention dans le cas préféré où l'élimination de l'agent structurant et du tensioactif est réalisée par calcination sous air, est réalisé selon des protocoles opératoires bien connus de l'Homme du métier. Une des méthodes usuelles consiste à mettre en suspension les particules solides séchées issues de l'étape f) du procédé selon l'invention dans une solution aqueuse de nitrate d'ammonium. L'ensemble est ensuite porté à reflux pendant une durée de 1 à 6 heures. Les particules sont alors récupérées par filtration (centrifugation 9000 tr/mn), lavées puis séchées par passage à l'étuve à une température comprise entre 50 et 150°C. Ce cycle d'échange ionique/lavage/séchage peut être reconduit plusieurs fois et de préférence deux autres fois. Ce cycle d'échange peut être également réalisé après les étapes f) et g) du procédé selon l'invention. Dans ces conditions, l'étape g) est alors reproduite après le dernier cycle d'échange de façon à générer les protons H+ comme explicité ci-dessus.In the particular case where the element X, optionally used for the implementation of step a) of the process according to the invention, is the aluminum element and where the sodium element is present in the clear solution obtained in accordance with step a) of the process according to the invention via the use of sodium hydroxide and / or a sodic structuring agent ensuring the basicity of said clear solution, it is preferred to carry out an additional ion exchange step allowing the exchange of the Na + cation by the NH 4 + cation between steps f) and g) of the process according to the invention. This exchange, which leads to the formation of protons H + after step g) of the process according to the invention in the preferred case where the removal of the structuring agent and the surfactant is carried out by calcination under air, is carried out according to operating protocols well known to those skilled in the art. One of the usual methods consists in suspending the dried solid particles from step f) of the process according to the invention in an aqueous solution of ammonium nitrate. The whole is then refluxed for 1 to 6 hours. The particles are then recovered by filtration (centrifugation at 9000 rpm), washed and then dried by passing in an oven at a temperature between 50 and 150 ° C. This ion exchange / washing / drying cycle can be repeated several times and preferably two more times. This exchange cycle can also be performed after steps f) and g) of the process according to the invention. Under these conditions, step g) is then reproduced after the last exchange cycle so as to generate H + protons as explained above.

Conformément à l'étape g) du procédé de préparation selon l'invention, l'élimination de l'agent structurant et du tensioactif, afin d'obtenir le matériau selon l'invention à porosité hiérarchisée, est avantageusement réalisée par des procédés d'extraction chimique ou par traitement thermique et de préférence par calcination sous air dans une gamme de température de 300 à 1000°C et plus précisément dans une gamme de 400 à 600°C pendant une durée de 1 à 24 heures et de façon préférée pendant une durée de 2 à 12 heures.According to step g) of the preparation process according to the invention, the elimination of the structuring agent and the surfactant, in order to obtain the material according to the invention with hierarchical porosity, is advantageously carried out by processes of chemical extraction or by heat treatment and preferably by calcination in air in a temperature range of 300 to 1000 ° C and more precisely in a range of 400 to 600 ° C for a period of 1 to 24 hours and preferably during a duration of 2 to 12 hours.

Dans le cas où la solution visée à l'étape b) du procédé de préparation selon l'invention est un mélange eau-solvant organique, de préférence basique, il est essentiel au cours de l'étape b) du procédé de préparation selon l'invention que la concentration en tensioactif soit inférieure à la concentration micellaire critique et que le rapport nInorganique/nTensioactif soit tel que la variation de l'enthalpie libre de mélange ΔGm et la dérivée seconde de l'enthalpie libre ∂2G/∂2x soient supérieures à 0 de sorte que l'évaporation de ladite solution aquo-organique, préférentiellement basique, au cours de l'étape c) du procédé de préparation selon l'invention par la technique d'aérosol induise un phénomène de séparation des phases organique et inorganique par décomposition spinodale conduisant à la génération des phases mésoporeuse et macroporeuse des particules sphériques du matériau selon l'invention. Ladite séparation de phase observée est consécutive à une concentration progressive, au sein de chaque gouttelette, du précurseur silicique, éventuellement du précurseur de l'élément X, de préférence du précurseur aluminique et du tensioactif résultant d'une évaporation de la solution aquo-organique, préférentiellement basique, jusqu'à une concentration en réactifs suffisante pour provoquer ledit phénomène.In the case where the solution referred to in step b) of the preparation process according to the invention is a water-organic solvent mixture, preferably a basic one, it is essential during step b) of the preparation process according to the invention. It is an object of the present invention that the surfactant concentration is less than the critical micellar concentration and that the n- inorganic ratio of the surfactant is such that the variation of the free mixture enthalpy ΔG m and the second derivative of the free enthalpy ∂ 2 G / ∂ 2 x are greater than 0 so that the evaporation of said aqueous-organic solution, preferably basic, during step c) of the preparation process according to the invention by the aerosol technique induces a separation phenomenon organic and inorganic phases by spinodal decomposition leading to the generation of the mesoporous and macroporous phases of the spherical particles of the material according to the invention. Said phase separation observed is consecutive to a progressive concentration, within each droplet, of the silicic precursor, optionally of the precursor of the element X, preferably of the aluminum precursor and of the surfactant resulting from evaporation of the aqueous-organic solution preferentially basic, until a concentration of reagents sufficient to cause said phenomenon.

Le matériau à porosité hiérarchisée de la présente invention peut être obtenu sous forme de poudre, de billes, de pastilles, de granulés, ou d'extrudés, les opérations de mises en forme étant réalisées par les techniques classiques connues de l'homme du métier. De préférence, le matériau à porosité hiérarchisée selon l'invention est obtenu sous forme de poudre, laquelle est constituée de particules sphériques élémentaires ayant un diamètre maximal de 200 µm, ce qui facilite la diffusion éventuelle des réactifs dans le cas de l'emploi du matériau selon l'invention dans une application industrielle potentielle.The hierarchically porous material of the present invention can be obtained in the form of powder, beads, pellets, granules, or extrusions, the shaping operations being carried out by conventional techniques known to those skilled in the art. . Preferably, the material having a hierarchical porosity according to the invention is obtained in the form of a powder, which consists of elementary spherical particles having a maximum diameter of 200 microns, which facilitates the possible diffusion of the reagents in the case of the use of the material according to the invention in a potential industrial application.

Le matériau de l'invention à porosité hiérarchisée est caractérisé par plusieurs techniques d'analyses et notamment par diffraction des rayons X aux grands angles (DRX), par volumétrie à l'azote (BET), par porosimétrie au mercure, par microscopie électronique à transmission (MET), par microscopie électronique à balayage (MEB) et par fluorescence X (FX).The material of the invention with hierarchical porosity is characterized by several analysis techniques and in particular by large-angle X-ray diffraction (XRD), by nitrogen volumetry (BET), by mercury porosimetry, by electron microscopy. transmission (TEM), scanning electron microscopy (SEM) and X-ray fluorescence (FX).

La technique de diffraction des rayons X aux grands angles (valeurs de l'angle 2θ comprises entre 5 et 70°) permet de caractériser un solide cristallisé défini par la répétition d'un motif unitaire ou maille élémentaire à l'échelle moléculaire. Dans l'exposé qui suit, l'analyse des rayons X est réalisée sur poudre avec un diffractomètre opérant en réflexion et équipé d'un monochromateur arrière en utilisant la radiation du cuivre (longueur d'onde de 1,5406 A). Les pics habituellement observés sur les diffractogrammes correspondants à une valeur donnée de l'angle 2θ sont associés aux distances inter-réticulaires d(hkl) caractéristiques de la (des) symétrie(s) structurale(s) du matériau, ((hkl) étant les indices de Miller du réseau réciproque) par la relation de Bragg : 2 d (hkl) * sin (θ) = n * λ. Cette indexation permet alors la détermination des paramètres de maille (abc) du réseau direct. L'analyse DRX aux grands angles est donc adaptée à la caractérisation structurale des entités zéolithiques constitutives de la paroi cristallisée de la matrice de chacune des particules sphériques élémentaires constituant le matériau selon l'invention. En particulier, elle permet d'accéder à la taille des pores des entités zéolithiques. Pour exemple, le diffractogramme de rayons X aux grands angles d'un matériau à porosité mésoporeuse et macroporeuse, dont les parois microporeuses de la matrice de chacune des particules sphériques sont constituées d'entités de zéolithe ZSM-5 (MFI), obtenu selon le procédé selon l'invention en utilisant du TEOS comme précurseur silicique; Al(OsC4H9)3 comme précurseur aluminique, TPAOH comme agent structurant et le copolymère à bloc particulier dénommé poly(oxyde d'éthylène)106-poly(oxyde de propylène)70-poly(oxyde d'éthylène)106 (PEO106-PPO70-PEO106 ou F127) comme tensioactif présente le diffractogramme associé au groupe de symétrie Pnma (N°62) de la zéolithe ZSM-5 aux grands angles. La valeur de l'angle obtenue sur le diffractogramme RX permet de remonter à la distance de corrélation d selon la loi de Bragg : 2 d * sin (θ) = n * λ. Les valeurs des paramètres de maille a, b, c (a = 20,1 Å , b = 19,7 Å et c = 13,1 Å) obtenues pour la caractérisation des entités zéolithiques sont cohérentes avec les valeurs obtenues pour une zéolithe ZSM-5 (type structural MFI) bien connues de l'homme de l'art (" Collection of simulated XRD powder patterns for zeolites", 4th revised Edition, 2001, M. M. J. Treacy, J. B. Higgins ).The technique of X-ray diffraction at large angles (values of the angle 2θ between 5 and 70 °) makes it possible to characterize a crystallized solid defined by the repetition of a unitary unit or unit cell at the molecular scale. In the following discussion, the X-ray analysis is performed on powder with a diffractometer operating in reflection and equipped with a rear monochromator using copper radiation (wavelength 1.5406 A). The peaks usually observed on the diffractograms corresponding to a given value of the angle 2θ are associated with the inter-reticular distances d (hkl) characteristic of the structural symmetry (s) of the material, ((hkl) being the Miller indices of the reciprocal lattice) by the Bragg relation: 2 d (hkl) * sin (θ) = n * λ. This indexing then allows the determination of the mesh parameters (abc) of the direct network. The wide-angle XRD analysis is therefore adapted to the structural characterization of the zeolite entities constituting the crystallized wall of the matrix of each of the elementary spherical particles constituting the material according to the invention. In particular, it provides access to the pore size of the zeolite entities. For example, the large-angle X-ray diffractogram of a mesoporous and macroporous porosity material, whose microporous walls of the matrix of each of the spherical particles consist of zeolite entities ZSM-5 (MFI), obtained according to FIG. process according to the invention using TEOS as silicic precursor; Al (O s C 4 H 9 ) 3 as an aluminum precursor, TPAOH as a structuring agent and the particular block copolymer called poly (ethylene oxide) 106 -poly (propylene oxide) 70 -poly (ethylene oxide) 106 (PEO 106 -PPO 70 -PEO 106 or F127) as surfactant exhibits the diffractogram associated with the Pnma symmetry group (No. 62) of zeolite ZSM-5 at large angles. The value of the angle obtained on the diffractogram RX makes it possible to go back to the correlation distance d according to the Bragg law: 2 d * sin (θ) = n * λ. The values of the parameters of mesh a, b, c (a = 20.1 Å, b = 19.7 Å and c = 13.1 Å) obtained for the characterization of the zeolite entities are coherent with the values obtained for a zeolite ZSM -5 (MFI structural type) well known to those skilled in the art ( ' Collection of simulated XRD powder patterns for zeolites ", 4th revised edition, 2001, MMJ Treacy, JB Higgins ).

La volumétrie à l'azote qui correspond à l'adsorption physique de molécules d'azote dans la porosité du matériau via une augmentation progressive de la pression à température constante renseigne sur les caractéristiques texturales (diamètre de pores, type de porosité, surface spécifique) particulières du matériau obtenu selon le procédé de l'invention. En particulier, elle permet d'accéder à la valeur totale du volume microporeux et mésoporeux du matériau. L'allure de l'isotherme d'adsorption d'azote et de la boucle d'hystérésis peut renseigner sur la présence de la microporosité liée aux entités zéolithiques constitutives des parois cristallisées de la matrice de chacune des particules sphériques du matériau selon l'invention et sur la nature de la mésoporosité. L'analyse quantitative de la microporosité du matériau selon l'invention est effectuée à partir des méthodes "t" (méthode de Lippens-De Boer, 1965) ou "αs" (méthode proposée par Sing) qui correspondent à des transformées de l'isotherme d'adsorption de départ comme décrit dans l'ouvrage " Adsorption by powders and porous solids. Principles, methodology and applications" écrit par F. Rouquerol, J. Rouquerol et K. Sing, Academic Press, 1999 . Ces méthodes permettent d'accéder en particulier à la valeur du volume microporeux caractéristique de la microporosité du matériau selon l'invention ainsi qu'à la surface spécifique de l'échantillon. Le solide de référence utilisé est une silice LiChrospher Si-1000 ( M. Jaroniec, M. Kruck, J. P. Olivier, Langmuir, 1999, 15, 5410 ). Pour exemple, l'isotherme d'adsorption d'azote d'un matériau à porosité mésoporeuse et macroporeuse, dont les parois microporeuses de la matrice de chacune des particules sphériques sont constituées d'entités de zéolithe ZSM-5 (MFI), obtenu selon le procédé de préparation du matériau selon l'invention en utilisant du TEOS comme précurseur silicique, Al(OsC4H9)3 comme précurseur aluminique, TPAOH comme agent structurant et le copolymère à bloc particulier dénommé poly(oxyde d'éthylène)106-poly(oxyde de propylène)70-poly(oxyde d'éthylène)106 (PEO106-PPO70-PEO106 ou F127) comme tensioactif présente un saut d'adsorption élevé dans le domaine des faibles valeurs de P/P0 (où P0 est la pression de vapeur saturante à la température T) suivi d'un plateau de très faible pente sur un grand domaine de pression, caractéristiques d'un matériau microporeux ainsi qu'une isotherme de type IV et une boucle d'hystérésis de type H1 dans le domaine des valeurs élevées de P/P0 représentatives de mésopores dont la taille est comprise dans une gamme de 1,5 à 50 nm. De même, la courbe Vads (ml/g) = f(αs) obtenue via la méthode αs citée ci-dessus est caractéristique de la présence de microporosité au sein du matériau et conduit à une valeur du volume microporeux comprise dans une gamme de 0,03 à 0,4 ml/g. La détermination du volume microporeux et mésoporeux total et du volume microporeux comme décrite ci-dessus conduit à une valeur du volume mésoporeux du matériau selon l'invention dans une gamme de 0,01 à 1 ml/gNitrogen volumetry, which corresponds to the physical adsorption of nitrogen molecules in the porosity of the material via a progressive increase in pressure at constant temperature, provides information on textural characteristics (pore diameter, porosity type, specific surface area). of the material obtained according to the process of the invention. In particular, it provides access to the total value of the microporous and mesoporous volume of the material. The shape of the nitrogen adsorption isotherm and the hysteresis loop can provide information on the presence of the microporosity linked to the zeolitic entities constituting the crystallized walls of the matrix of each of the spherical particles of the material according to the invention. and the nature of mesoporosity. The quantitative analysis of the microporosity of the material according to the invention is carried out using methods "t" (method Lippens-De Boer, 1965) or "α s " (method proposed by Sing) that correspond to transformations of the isothermal adsorption starting as described in the book " Adsorption by powders and porous solids. Principles, methodology and applications "written by F. Rouquerol, J. Rouquerol and K. Sing, Academic Press, 1999 . These methods make it possible to access in particular the value of the microporous volume characteristic of the microporosity of the material according to the invention as well as the specific surface of the sample. The reference solid used is LiChrospher Si-1000 silica ( M. Jaroniec, M. Kruck, JP Olivier, Langmuir, 1999, 15, 5410 ). For example, the nitrogen adsorption isotherm of a mesoporous and macroporous porosity material, whose microporous walls of the matrix of each of the spherical particles consist of zeolite entities ZSM-5 (MFI), obtained according to the process for the preparation of the material according to the invention using TEOS as silicic precursor, Al (O s C 4 H 9 ) 3 as an aluminum precursor, TPAOH as structuring agent and the particular block copolymer called poly (ethylene oxide) 106 -poly (propylene oxide) 70 -poly (ethylene oxide) 106 (PEO 106 -PPO 70 -PEO 106 or F127) as surfactant exhibits a high adsorption jump in the low P / P0 domain ( where P0 is the saturated vapor pressure at temperature T) followed by a plateau of very low slope over a large pressure range, characteristics of a microporous material as well as a type IV isotherm and a hysteresis loop of type H1 in the field of val High levels of representative P / P0 of mesopores ranging in size from 1.5 to 50 nm. Similarly, the curve V ads (ml / g) = f (α s ) obtained via the α s method mentioned above is characteristic of the presence of microporosity within the material and leads to a value of the microporous volume included in a range from 0.03 to 0.4 ml / g. Determination of total microporous and mesoporous volume and volume microporous as described above leads to a value of the mesoporous volume of the material according to the invention in a range of 0.01 to 1 ml / g

L'analyse porosimétrie au mercure correspond à l'intrusion d'un volume de mercure caractéristique de l'existence de mésopores et de macropores dans le matériau selon l'invention selon la norme ASTM D4284-83 à une pression maximale de 4000 bars, utilisant une tension de surface de 484 dyne/cm, et un angle de contact de 140° (valeur choisie suivant les recommandations de l'ouvrage " Technique de l'ingénieur, traité analyse et caractérisation", page 1050, écrit par J. Charpin et B. Rasneur ) et les pores étant supposés de forme cylindrique. Cette technique est parfaitement adaptée à l'analyse d'échantillons mésoporeux et macroporeux en complément de la technique d'analyse par volumétrie à l'azote décrite ci-dessus. En particulier, cette technique permet d'accéder à la valeur du volume mercure mésoporeux (VHgméso en ml/g) défini comme étant le volume mercure adsorbé par l'ensemble des pores ayant un diamètre compris dans la gamme des mésopores à savoir compris entre 3,6 nm et 50 nm (valeur de la borne supérieure comme définie selon la norme IUPAC). De même, le volume mercure macroporeux (VHgmacro en ml/g) est défini comme étant le volume mercure adsorbé par l'ensemble des pores ayant un diamètre supérieur à 50 nm. Pour exemple, l'analyse par porosimétrie au mercure d'un matériau à porosité mésoporeuse et macroporeuse, dont les parois microporeuses de la matrice de chacune des particules sphériques sont constituées d'entités de zéolithe ZSM-5 (MFI), obtenu selon le procédé de l'invention en utilisant du TEOS comme précurseur silicique, Al(OsC4H9)3 comme précurseur aluminique, TPAOH comme agent structurant et le copolymère à bloc particulier dénommé poly(oxyde d'éthylène)106-poly(oxyde de propylène)70-poly(oxyde d'éthylène)106 (PEO160-PPO70-PEO106 ou F127) comme tensioactif conduit à un volume mercure mésoporeux compris dans une gamme de 0,01 à 1 ml/g et à un volume-mercure macroporeux compris dans une gamme de 0,05 à 1 ml/g.The mercury porosimetry analysis corresponds to the intrusion of a volume of mercury characteristic of the existence of mesopores and macropores in the material according to the invention according to the ASTM D4284-83 standard at a maximum pressure of 4000 bar, using a surface tension of 484 dyne / cm, and a contact angle of 140 ° (value chosen according to the recommendations of the book " Technique of the engineer, treated analysis and characterization ", page 1050, written by J. Charpin and B. Rasneur ) and the pores are assumed to be cylindrical in shape. This technique is perfectly suited to the analysis of mesoporous and macroporous samples in addition to the nitrogen volumetric analysis technique described above. In particular, this technique makes it possible to access the value of the mesoporous mercury volume (V Hgmeso in ml / g) defined as being the mercury volume adsorbed by all the pores having a diameter included in the range of mesopores, namely between 3.6 nm and 50 nm (value of the upper limit as defined by the IUPAC standard). Similarly, the macroporous mercury volume (V Hgmacro in ml / g) is defined as the mercury volume adsorbed by all the pores having a diameter greater than 50 nm. For example, the mercury porosimetry analysis of a mesoporous and macroporous porosity material, the microporous walls of the matrix of each of the spherical particles consist of zeolite entities ZSM-5 (MFI), obtained according to the method. of the invention using TEOS as a silicic precursor, Al (O s C 4 H 9 ) 3 as an aluminum precursor, TPAOH as a structuring agent and the particular block copolymer called poly (ethylene oxide) 106 -poly (oxide of propylene) 70- poly (ethylene oxide) 106 (PEO 160 -PPO 70 -PEO 106 or F127) as surfactant leads to a mesoporous mercury volume ranging from 0.01 to 1 ml / g and a volume of macroporous mercury in a range of 0.05 to 1 ml / g.

L'analyse par microscopie électronique par transmission (MET) est une technique également largement utilisée pour caractériser la mésoporosité et la macroporosité du matériau selon l'invention. Celle-ci permet la formation d'une image du solide étudié, les contrastes observés étant caractéristiques de l'organisation structurale, de la texture, de la morphologie ou bien de la composition chimique des particules observées, la résolution de la technique atteignant au maximum 0,2 nm. Dans l'exposé qui suit, les photos MET seront réalisées à partir dé sections microtomes de l'échantillon afin de visualiser une section d'une particule sphérique élémentaire du matériau selon l'invention. Pour exemple, les images MET obtenues pour un matériau à porosité mésoporeuse et macroporeuse dont les parois microporeuses sont constituées d'entités de zéolithe ZSM-5 (MFI) obtenu selon le procédé de préparation selon l'invention en utilisant du TEOS comme précurseur silicique, Al(OsC4H9)3 comme précurseur aluminique, TPAOH comme agent structurant et le copolymère à bloc particulier dénommé poly(oxyde d'éthylène)106-Poly(oxyde de propylène)70-poly(oxyde d'éthylène)106 (PEO106-PPO70-PEO106 ou F127) comme tensioactif présentent au sein d'une même particule sphérique une mésoporosité et une macroporosité caractéristiques d'une séparation de phase organique - inorganique par un mécanisme de décomposition spinodale consécutive à l'étape c) d'atomisation du procédé de préparation du matériau selon l'invention dont la taille des domaines est respectivement comprise dans une gamme de 15 à 50 nm et dans une gamme de 100 à 500 nm. L'analyse de l'image permet également de visualiser la présence des entités zéolithiques constitutives des parois du matériau selon l'invention.Transmission electron microscopy (TEM) analysis is a technique also widely used to characterize the mesoporosity and macroporosity of the material according to the invention. This allows the formation of an image of the studied solid, the observed contrasts being characteristic of the structural organization, the texture, the morphology or the chemical composition of the particles observed, the resolution of the technique reaching the maximum 0.2 nm. In the following description, the TEM photos will be made from microtome sections of the sample in order to visualize a section of an elementary spherical particle of the material according to the invention. For example, the MET images obtained for a mesoporous and macroporous porosity material whose walls microporous particles consist of zeolite entities ZSM-5 (MFI) obtained according to the preparation method according to the invention using TEOS as silicic precursor, Al (O s C 4 H 9 ) 3 as an aluminum precursor, TPAOH as structuring agent and the particular block copolymer designated poly (ethylene oxide) 106 - P oly (propylene oxide) 70- poly (ethylene oxide) 106 (PEO 106 -PPO 70 -PEO 106 or F127) as surfactant have within of the same spherical particle, a mesoporosity and a macroporosity characteristic of an organic-inorganic phase separation by a spinodal decomposition mechanism subsequent to the atomization stage c) of the process for preparing the material according to the invention, the size of which domains is respectively in a range of 15 to 50 nm and in a range of 100 to 500 nm. The analysis of the image also makes it possible to visualize the presence of the zeolite entities constituting the walls of the material according to the invention.

La morphologie et la distribution en taille des particules élémentaires ont été établies par analyse de photos obtenues par microscopie électronique à balayage (MEB).The morphology and size distribution of the elementary particles were established by scanning electron microscopy (SEM) photo analysis.

La présente invention concerne aussi l'utilisation du matériau à porosité hiérarchisé selon l'invention comme adsorbant pour le contrôle de la pollution ou comme tamis moléculaire pour la séparation. La présente invention a donc également pour objet un adsorbant comprenant le matériau à porosité hiérarchisé selon l'invention. Il est également avantageusement utilisé comme solide acide pour catalyser des réactions, par exemple celles intervenant dans les domaines du raffinage et de la pétrochimie.The present invention also relates to the use of the hierarchically porous material according to the invention as an adsorbent for the control of pollution or as a molecular sieve for separation. The present invention therefore also relates to an adsorbent comprising the hierarchically porous material according to the invention. It is also advantageously used as an acid solid to catalyze reactions, for example those involved in the fields of refining and petrochemistry.

Lorsque le matériau à porosité hiérarchisé selon l'invention est utilisé comme catalyseur, ce matériau peut être associé à une matrice inorganique qui peut être inerte ou catalytiquement active et à une phase métallique. La matrice inorganique peut être présente simplement comme liant pour maintenir ensemble les particules dudit matériau sous les différentes formes connues des catalyseurs (extrudés, pastilles, billes, poudres) ou bien peut être ajoutée comme diluant pour imposer le degré de conversion dans un procédé qui sinon progresserait à une allure trop rapide, conduisant à un encrassement du catalyseur en conséquence d'une formation importante de coke. Des matrices inorganiques typiques sont notamment des matières de support pour les catalyseurs comme les différentes formes de silice, d'alumine, de silice-alumine, la magnésie, la zircone, les oxydes de titane, de bore, les phosphates d'aluminium, de titane, de zirconium, les argiles telles que le kaolin, la bentonite, la montmorillonite, la sépiolite, l'attapulgite, la terre à foulon, les matières poreuses synthétiques comme SiO2-Al2O3, SiO2-ZrO2, SiO2-ThO2, SiO2-BeO SiO2-TiO2 ou toute combinaison de ces composés. La matrice inorganique peut être un mélange de différents composés, en particulier d'une phase inerte et d'une phase active. Ledit matériau de la présente invention peut aussi être associé à au moins une zéolithe et jouer le rôle de phase active principale ou d'additif. La phase métallique peut être introduite intégralement sur ledit matériau de l'invention. Elle peut être également introduite intégralement sur la matrice inorganique ou encore sur l'ensemble matrice inorganique - matériau à porosité hiérarchisée par échange d'ions ou imprégnation avec des cations ou oxydes choisis parmi les éléments suivants : Cu, Ag, Ga, Mg, Ca, Sr, Zn, Cd, B, Al, Sn, Pb, V, P, Sb, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Pt, Pd, Ru, Rh, Os, Ir et tout autre élément de la classification périodique des éléments.When the hierarchically porous material according to the invention is used as a catalyst, this material may be associated with an inorganic matrix which may be inert or catalytically active and with a metallic phase. The inorganic matrix may be present simply as a binder to hold together the particles of said material in the various known forms of the catalysts (extrudates, pellets, beads, powders) or may be added as a diluent to impose the degree of conversion in a process which otherwise would progress at too fast a rate, leading to clogging of the catalyst as a result of a significant formation of coke. Typical inorganic matrices are, in particular, support materials for catalysts, such as the various forms of silica, alumina, silica-alumina, magnesia, zirconia, titanium oxides, boron oxides, aluminum phosphates, titanium, zirconium, clays such as kaolin, bentonite, montmorillonite, sepiolite, attapulgite, fuller's earth, synthetic porous materials such as SiO 2 -Al 2 O 3 , SiO 2 -ZrO 2 , SiO 2 -ThO 2 , SiO 2 -BeO SiO 2 -TiO 2 or any combination of these compounds. The inorganic matrix may be a mixture of different compounds, in particular an inert phase and an active phase. Said material of the present invention may also be associated with at least one zeolite and play the role of main active phase or additive. The metal phase can be introduced integrally on said material of the invention. It may also be introduced integrally onto the inorganic matrix or onto the inorganic matrix-ionized porosity hierarchical material or impregnation with cations or oxides chosen from the following elements: Cu, Ag, Ga, Mg, Ca , Sr, Zn, Cd, B, Al, Sn, Pb, V, P, Sb, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Pt, Pd, Ru, Rh, Os, Ir and all other element of the periodic table of elements.

Les compositions catalytiques comportant le matériau de la présente invention conviennent de façon générale à la mise en oeuvre des principaux procédés de transformation des hydrocarbures et des réactions de synthèse de composés organiques.The catalyst compositions comprising the material of the present invention are generally suitable for carrying out the main hydrocarbon conversion processes and organic compound synthesis reactions.

Les compositions catalytiques comportant le matériau de l'invention trouvent avantageusement leur application dans les réactions d'isomérisation, de transalkylation et de dismutation, d'alkylation et de désalkylation, d'hydratation et de déshydratation, d'oligomérisation et de polymérisation, de cyclisation, d'aromatisation, de craquage, de reformage, d'hydrogénation et de déshydrogénation, d'oxydation, d'halogénation, d'hydrocraquage, d'hydroconversion, d'hydrotraitement, d'hydrodésulfuration et d'hydrodéazotation, d'élimination catalytique des oxydes d'azote, les dites réactions impliquant des charges comprenant des hydrocarbures aliphatiques saturés et insaturés, des hydrocarbures aromatiques, des composés organiques oxygénés et des composés organiques contenant de l'azote et/ou du soufre ainsi que des composés organiques contenant d'autres groupes fonctionnels.The catalyst compositions comprising the material of the invention advantageously find their application in isomerization, transalkylation and disproportionation, alkylation and dealkylation, hydration and dehydration, oligomerization and polymerization, cyclization reactions. , aromatization, cracking, reforming, hydrogenation and dehydrogenation, oxidation, halogenation, hydrocracking, hydroconversion, hydrotreatment, hydrodesulfurization and hydrodenitrogenation, catalytic removal nitrogen oxides, said reactions involving fillers comprising saturated and unsaturated aliphatic hydrocarbons, aromatic hydrocarbons, oxygenated organic compounds and organic compounds containing nitrogen and / or sulfur as well as organic compounds containing other functional groups.

L'invention est illustrée au moyen des exemples suivants.The invention is illustrated by means of the following examples.

EXEMPLESEXAMPLES

Dans les exemples qui suivent, la technique aérosol utilisée est celle décrite ci-dessus dans l'exposé de l'invention.In the examples which follow, the aerosol technique used is that described above in the description of the invention.

Pour chacun des exemples ci-dessous, on calcule le rapport Vinorganique/Vorganique du mélange issu de l'étape b). Ce rapport est défini comme suit : V inorganique/Vorganique = (minorg * ρorg) / (morginorg) avec minorg la masse finale de la fraction inorganique sous forme d'oxyde(s) condensé(s), à savoir SiO2 et AlO2, dans la particule élémentaire solide, morg la masse totale de la faction organique non volatile se retrouvant dans la particule élémentaire solide, à savoir le tensioactif et l'agent structurant, ρorg et ρinorg les densités respectivement associées aux fractions organique non volatile et inorganique. Dans les exemples qui suivent, on considère que ρorg = 1 et ρinorg = 2. Aussi le rapport Vinorganique/Vorganique est calculé comme étant égal à Vinorganique/Norganique = (MSiO2 + mAlO2) [2*(magent structurant + Mtensioactif)]. L'éthanol, la soude, l'eau n'entrent pas en compte dans le calcul dudit rapport Vinorganique/Norganique.For each of the examples below, the ratio V inorganic / V organic of the mixture resulting from step b) is calculated. This ratio is defined as follows: inorganic V / organic V = (m inorg * ρ org ) / (m org * ρ inorg ) with m inorg the final mass of the inorganic fraction in oxide form (s) condensed (s), namely SiO 2 and AlO 2 , in the solid elementary particle, m org the total mass of the nonvolatile organic fraction found in the solid elementary particle, namely the surfactant and the structuring agent, ρ org and ρ inorg the densities respectively associated with the nonvolatile and inorganic organic fractions. In the following examples, it is considered that ρ org = 1 and ρ inorg = 2. Also the ratio V inorganic / V organic is calculated as being equal to V inorganic / N organic = (M SiO2 + m AlO2 ) [2 * ( m structuring agent + M surfactant )]. Ethanol, sodium hydroxide and water are not taken into account in the calculation of said inorganic V / organic N ratio.

Exemple 1 (invention) : Préparation d'un matériau ayant un rapport molaire Si/Al = 50 à porosité mésoporeuse et macroporeuse dont les parois microporeuses sont constituées d'entités cristallisées de zéolithe ZSM-5 (MFI)Example 1 (Invention): Preparation of a material having a Si / Al = 50 molar ratio with mesoporous and macroporous porosity, the microporous walls of which consist of crystalline zeolite entities ZSM-5 (MFI)

10,05 g d'une solution d'hydroxyde de tétrapropylammonium (TPAOH 20% en masse dans une solution aqueuse) sont ajoutés à 4,3 g d'eau déminéralisée et 9,2 mg d'hydroxyde de sodium NaOH. Le tout est laissé sous agitation pendant 10 minutes. 0,14 g de sec-butoxyde d'aluminium (Al(OsC4H9)3 sont alors introduits. L'hydrolyse du précurseur aluminique est réalisée pendant 1 heure. 6 g de tétraéthylorthosilicate (TEOS) sont alors ajoutés. Le tout est maintenu sous agitation pendant 18 heures à température ambiante de manière à obtenir une solution limpide. 18 ml de cette solution sont alors ajoutés à une solution contenant 35,2 g d'éthanol, 11,3 g d'eau et 2 g de tensioactif F127 (pH du mélange = 10,5). Le rapport Vinorganique/Norganique du mélange est égal à 0,20 et est calculé comme décrit ci-dessus. Le tout est laissé sous agitation pendant 10 minutes. L'ensemble est envoyé dans la chambre d'atomisation du générateur d'aérosol tel qu'il a été décrit dans la description ci-dessus et la solution est pulvérisée sous la forme de fines gouttelettes sous l'action du gaz vecteur (air sec) introduit sous pression (P = 1,5 bar). Les gouttelettes sont séchées selon le protocole décrit dans l'exposé de l'invention ci-dessus : elles sont acheminées via un mélange O2/N2 dans des tubes en PVC. Elles sont ensuite introduites dans un four réglé à une température de 250°C pour parfaire leur séchage pendant une durée de l'ordre de la seconde. La poudre récoltée est alors séchée 12 heures à l'étuve à 95°C. 10 mg de poudre sont alors placés dans un autoclave de 100 ml (enceinte fermée susceptible de résister à des températures de l'ordre de 200°C et des pressions de l'ordre de 5 bars) en présence de 100 µl d'eau déminéralisée. L'autoclave est muni d'un système de "panier" ou de "cellule" permettant à la poudre de ne pas être en contact direct avec l'eau introduite tout en baignant dans la vapeur d'eau. L'autoclave est ensuite porté à une température de 95°C pendant 48 heures. La poudre récupérée est ensuite séchée à l'étuve à 95°C pendant 12 heures. La poudre est alors calcinée sous air pendant 5 h à T = 550°C. Le solide est caractérisé par DRX, par Volumétrie à l'azote, par porosimétrie au mercure, par MET, par MEB, par FX. L'analyse MET montre que les particules sphériques constitutives du matériau présentent une macroporosité de coeur caractérisée par des domaines de 300 à 500 nm de long et de 100 à 200 nm de large et une mésoporosité en périphérie des particules caractérisée par des domaines de 20 à 50 nm, l'ensemble étant caractéristique d'une séparation de phase organique - inorganique obtenue par un mécanisme de décomposition spinodale présente avant l'étape de calcination. La présence d'entités zéolithiques dans les parois du matériau est également clairement visible lors de l'étude par diffraction électronique des coupes michrotomées d'une épaisseur de l'ordre de 70 nm sur des zones localisées de l'ordre de 100 nm. L'analyse par volumétrie à l'azote combinée à l'analyse par la méthode αs conduit à une valeur du volume microporeux Vmicro de 0,26 ml/g (N2) , une valeur du volume mésoporeux Vméso de 0,6 ml/g (N2) et une surface spécifique du matériau final de S = 690 m2/g. Le volume mercure macroporeux défini par porosimétrie au mercure est de 0,5 ml/g (la valeur du volume mercure mésoporeux également obtenue par porosimétrie au mercure est en parfait accord avec la valeur obtenue par volumétrie à l'azote). L'analyse DRX aux grands angles conduit à l'obtention du diffractogramme caractéristique de la zéolithe ZSM-5 (taille des micopores, mesurée par DRX, de l'ordre de 0,55 nm). Le rapport molaire Si/Al obtenu par FX est de 50. Un cliché MEB des particules élémentaires sphériques ainsi obtenues indique que ces particules ont une taille caractérisée par un diamètre variant de 50 à 700 nm, la distribution en taille de ces particules étant centrée autour de 300 nm.10.05 g of a solution of tetrapropylammonium hydroxide (TPAOH 20% by weight in an aqueous solution) are added to 4.3 g of demineralized water and 9.2 mg of sodium hydroxide NaOH. The whole is left stirring for 10 minutes. 0.14 g of aluminum sec-butoxide (Al (O s C 4 H 9 ) 3 are then introduced, the hydrolysis of the aluminum precursor is carried out for 1 hour, 6 g of tetraethylorthosilicate (TEOS) are then added. all is stirred for 18 hours at room temperature so as to obtain a clear solution, 18 ml of this solution are then added to a solution containing 35.2 g of ethanol, 11.3 g of water and 2 g of water. surfactant F127 (pH of the mixture = 10.5) The inorganic V / organic N ratio of the mixture is equal to 0.20 and is calculated as described above, the whole is left stirring for 10 minutes. sent to the atomization chamber of the aerosol generator as described in the description above and the solution is sprayed in the form of fine droplets under the action of the carrier gas (dry air) introduced under pressure (P = 1.5 bar) The droplets are dried according to the protocol described in According to the invention above, they are conveyed via an O 2 / N 2 mixture into PVC tubes. They are then introduced into an oven set at a temperature of 250 ° C to complete their drying for a period of about one second. The harvested powder is then dried for 12 hours in an oven at 95 ° C. 10 mg of powder are then placed in a 100 ml autoclave (closed chamber capable of withstanding temperatures of the order of 200 ° C. and pressures of the order of 5 bars) in the presence of 100 μl of demineralised water . The autoclave is provided with a system of "basket" or "cell" allowing the powder not to be in direct contact with the water introduced while bathing in the water vapor. The autoclave is then heated to a temperature of 95 ° C for 48 hours. hours. The recovered powder is then dried in an oven at 95 ° C. for 12 hours. The powder is then calcined under air for 5 hours at T = 550 ° C. The solid is characterized by XRD, nitrogen volumetry, mercury porosimetry, TEM, SEM, FX. The TEM analysis shows that the spherical constitutive particles of the material have a core macroporosity characterized by domains 300 to 500 nm long and 100 to 200 nm wide and a mesoporosity at the periphery of the particles characterized by domains of 20 to 50 nm, the set being characteristic of an organic-inorganic phase separation obtained by a spinodal decomposition mechanism present before the calcination step. The presence of zeolite entities in the walls of the material is also clearly visible during the study by electron diffraction of the michronotropic sections with a thickness of the order of 70 nm on localized areas of the order of 100 nm. Nitrogen volumetric analysis combined with analysis by the α s method leads to a microporous volume V micro value of 0.26 ml / g (N 2 ), a mesoporous V meso volume value of 0, 6 ml / g (N 2 ) and a specific surface area of the final material of S = 690 m 2 / g. The macroporous mercury volume defined by mercury porosimetry is 0.5 ml / g (the value of the mercury mercury volume also obtained by mercury porosimetry is in perfect agreement with the value obtained by nitrogen volumetry). The wide-angle XRD analysis leads to obtaining the diffractogram characteristic of the zeolite ZSM-5 (size of the micopores, measured by XRD, of the order of 0.55 nm). The molar Si / Al ratio obtained by FX is 50. An SEM image of the spherical elementary particles thus obtained indicates that these particles have a size characterized by a diameter ranging from 50 to 700 nm, the size distribution of these particles being centered around 300 nm.

Exemple 2 (invention) : Préparation d'un matériau à porosité mésoporeuse et macroporeuse dont les parois microporeuses sont constituées d'entités cristallisées de zéolithe silicalite (MFI).Example 2 (Invention): Preparation of a mesoporous and macroporous porosity material whose microporous walls consist of crystallized entities of zeolite silicalite (MFI).

10,05 g d'une solution d'hydroxyde de tetrapropylammonium (TPAOH 20% en masse dans une solution aqueuse) sont ajoutés à 4,3 g d'eau déminéralisée et 9,2 mg d'hydroxyde de sodium NaOH. Le tout est laissé sous agitation pendant 10 minutes. 6 g de tétraéthylorthosilicate (TEOS) sont alors ajoutés. Le tout est maintenu sous agitation pendant 18 heures à température ambiante de manière à obtenir une solution limpide. 18 ml de cette solution sont alors ajoutés à une solution contenant 35,2 g d'éthanol, 11,3 g d'eau et 2 g de tensioactif F127 (pH du mélange = 10,5). Le rapport Vinorganique/Vorganique du mélange est égal à 0,20 et est calculé comme décrit ci-dessus. Le tout est laissé sous agitation pendant 10 minutes. L'ensemble est envoyé dans la chambre d'atomisation du générateur d'aérosol tel qu'il a été décrit dans la description ci-dessus et la solution est pulvérisée sous la forme de fines gouttelettes sous l'action du gaz vecteur (air sec) introduit sous pression (P = 1,5 bar). Les gouttelettes sont séchées selon le protocole décrit dans l'exposé de l'invention ci-dessus : elles sont acheminées via un mélange O2/N2 dans des tubes en PVC. Elles sont ensuite introduites dans un four réglé à une température de séchage fixée à 250°C. La poudre récoltée est alors séchée 12 heures à l'étuve à 95°C. 10 mg de poudre sont alors placés dans un autoclave de 100 ml (enceinte fermée susceptible de résister à des températures de l'ordre de 200°C et des pressions de l'ordre de 5 bars) en présence de 100 µl d'eau déminéralisée. L'autoclave est muni d'un système de "panier" ou de "cellule" permettant à la poudre de ne pas être en contact direct avec l'eau introduite tout en baignant dans la vapeur d'eau. L'autoclave est ensuite porté à une température de 95°C pendant 36 heures. La poudre récupérée est ensuite séchée à l'étuve à 95°C pendant 12 heures. La poudre est alors calcinée sous air pendant 5 h à 550°C. Le solide est caractérisé par DRX, par Volumétrie à l'azote, par porosimétrie au mercure, par MET, par MEB. L'analyse MET montre que les particules sphériques constitutives du matériau présentent une macroporosité de coeur caractérisée par des domaines de 300 à 500 nm de long et de 100 à 200 nm de large et une mésoporosité en périphérie des particules caractérisée par des domaines de 20 à 50 nm, l'ensemble étant caractéristique d'une séparation de phase organique - inorganique obtenue par un mécanisme de décomposition spinodale présente avant l'étape de calcination. La présence d'entités zéolithiques dans les parois du matériau est également clairement visible lors de l'étude par diffraction électronique des coupes michrotomées d'une épaisseur de l'ordre de 70 nm sur des zones localisées de l'ordre de 100 nm. L'analyse par volumétrie à l'azote combinée à l'analyse par la méthode αs conduit à une valeur du volume microporeux Vmicro de 0,3 ml/g (N2), une valeur du volume mésoporeux Vméso de 0,6 ml/g (N2) et une surface spécifique du matériau final de S = 680 m2/g. Le volume mercure macroporeux défini par porosimétrie au mercure est de 0,5 ml/g (la valeur du volume mercure mésoporeux également obtenue est en parfait accord avec la valeur obtenue par volumétrie à l'azote). L'analyse DRX aux grands angles conduit à l'obtention du diffractogramme caractéristique de la zéolithe silicalite (taille des micropores, mesurée par DRX, de l'ordre de 0,55 nm). Un cliché MEB des particules élémentaires sphériques ainsi obtenues indique que ces particules ont une taille caractérisée par un diamètre variant de 50 à 700 nm, la distribution en taille de ces particules étant centrée autour de 300 nm.10.05 g of a solution of tetrapropylammonium hydroxide (TPAOH 20% by weight in an aqueous solution) are added to 4.3 g of demineralized water and 9.2 mg of sodium hydroxide NaOH. The whole is left stirring for 10 minutes. 6 g of tetraethylorthosilicate (TEOS) are then added. The whole is stirred for 18 hours at room temperature so as to obtain a clear solution. 18 ml of this solution are then added to a solution containing 35.2 g of ethanol, 11.3 g of water and 2 g of surfactant F127 (pH of the mixture = 10.5). The ratio V inorganic / V organic mixture is 0.20 and is calculated as described above. The whole is left stirring for 10 minutes. The assembly is sent into the atomization chamber of the aerosol generator as described in the description above and the solution is sprayed in the form of fine droplets under the action of the carrier gas (dry air ) introduced under pressure (P = 1.5 bar). The droplets are dried according to the protocol described in the disclosure of the invention above: they are conveyed via an O 2 / N 2 mixture in PVC tubes. They are then introduced into an oven set at a drying temperature set at 250 ° C. The harvested powder is then dried for 12 hours in an oven at 95 ° C. 10 mg of powder are then placed in a 100 ml autoclave (closed chamber capable of withstanding temperatures of the order of 200 ° C. and pressures of the order of 5 bars) in the presence of 100 μl of demineralised water . The autoclave is provided with a system of "basket" or "cell" allowing the powder not to be in direct contact with the water introduced while bathing in the water vapor. The autoclave is then heated to a temperature of 95 ° C for 36 hours. The recovered powder is then dried in an oven at 95 ° C. for 12 hours. The powder is then calcined under air for 5 hours at 550 ° C. The solid is characterized by XRD, nitrogen volumetry, mercury porosimetry, TEM, SEM. The TEM analysis shows that the spherical constitutive particles of the material have a core macroporosity characterized by domains 300 to 500 nm long and 100 to 200 nm wide and a mesoporosity at the periphery of the particles characterized by domains of 20 to 50 nm, the set being characteristic of an organic-inorganic phase separation obtained by a spinodal decomposition mechanism present before the calcination step. The presence of zeolite entities in the walls of the material is also clearly visible during the study by electron diffraction of the michronotropic sections with a thickness of the order of 70 nm on localized areas of the order of 100 nm. Nitrogen volumetric analysis combined with analysis by the α s method leads to a microporous volume V micro value of 0.3 ml / g (N 2 ), a mesoporous V meso volume value of 0, 6 ml / g (N 2 ) and a specific surface area of the final material of S = 680 m 2 / g. The macroporous mercury volume defined by mercury porosimetry is 0.5 ml / g (the value of the mesoporous mercury volume also obtained is in perfect agreement with the value obtained by volumetric nitrogen). The wide-angle XRD analysis leads to obtaining the diffractogram characteristic of the zeolite silicalite (size of the micropores, measured by XRD, of the order of 0.55 nm). An SEM image of the spherical elementary particles thus obtained indicates that these particles have a size characterized by a diameter ranging from 50 to 700 nm, the size distribution of these particles being centered around 300 nm.

Exemple 3 (invention) : Préparation d'un matériau à porosité mésoporeuse et macroporeuse dont les parois microporeuses sont constituées d'entités cristallisées de zéolithe bêta (BEA) et ayant un rapport molaire Si/Al = 50.Example 3 (Invention): Preparation of a mesoporous and macroporous porosity material whose microporous walls consist of crystallized entities of zeolite beta (BEA) and having a molar ratio Si / Al = 50.

11,70 g d'une solution d'hydroxyde de tetraéthylammonium hydroxide (TEAOH 20% en masse dans une solution aqueuse) sont ajoutés à 7,8 g d'eau déminéralisée et 0,03 g d'hydroxyde de sodium NaOH. Le tout est laissé sous agitation pendant 10 minutes. 0,14 g de sec-butoxyde d'aluminium (Al(OsC4H9)3) sont alors introduits. Le tout est laissé sous agitation pendant 10 minutes. L'hydrolyse du précurseur aluminique est réalisée pendant 1 heure. 6 g de tétraéthylorthosilicate (TEOS) sont alors ajoutés. Le tout est maintenu sous agitation pendant 18 heures à température ambiante de manière à obtenir une solution limpide. 18 ml de cette solution sont alors ajoutés à une solution contenant 35,2 g d'éthanol, 11,3 g d'eau et 2 g de tensioactif F127 (pH du mélange = 10). Le rapport Vinorganique/Vorganique du mélange est égal à 0,17 et est calculé comme décrit ci-dessus. Le tout est laissé sous agitation pendant 10 minutes. L'ensemble est envoyé dans la chambre d'atomisation du générateur d'aérosol tel qu'il a été décrit dans la description ci-dessus et la solution est pulvérisée sous la forme de fines gouttelettes sous l'action du gaz vecteur (air sec) introduit sous pression (P = 1,5 bar). Les gouttelettes sont séchées selon le protocole décrit dans l'exposé de l'invention ci-dessus : elles sont acheminées via un mélange O2/N2 dans des tubes en PVC. Elles sont ensuite introduites dans un four réglé à une température de séchage fixée à 250°C. La poudre récoltée est alors séchée 12 heures à l'étuve à 95°C. 10 mg de poudre sont alors placés dans un autoclave de 100 ml (enceinte fermée susceptible de résister à des températures de l'ordre de 200°C et des pressions de l'ordre de 5 bars) en présence de 150 µl d'eau déminéralisée. L'autoclave est muni d'un système de "panier" ou de "cellule" permettant à la poudre de ne pas être en contact direct avec l'eau introduite tout en baignant dans la vapeur d'eau. L'autoclave est ensuite porté à une température de 95°C pendant 48 heures. La poudre récupérée est ensuite séchée à l'étuve à 95°C pendant 12 heures. La poudre est alors calcinée sous air pendant 5 h à 550°C. Le solide est caractérisé par DRX, par Volumétrie à l'azote, par porosimétrie au mercure, par MET, par MEB, par FX. L'analyse MET montre que les particules sphériques constitutives du matériau présentent une macroporosité de coeur caractérisée par des domaines de 300 à 500 nm de long et de 100 à 200 nm de large et une mésoporosité en périphérie des particules caractérisée par des domaines de 20 à 50 nm, l'ensemble étant caractéristique d'une séparation de phase organique - inorganique obtenue par un mécanisme de décomposition spinodale présente avant l'étape de calcination. La présence d'entités zéolithiques dans les parois du matériau est également clairement visible lors de l'étude par diffraction électronique des coupes michrotomées d'une épaisseur de l'ordre de 70 nm sur des zones localisées de l'ordre de 100 nm. L'analyse par volumétrie à l'azote combinée à l'analyse par la méthode αs conduit à une valeur du volume microporeux Vmicro de 0,35 ml/g (N2), une valeur du volume mésoporeux Vméso de 0,6 ml/g (N2) et une surface spécifique du matériau final de S = 700 m2/g. Le volume mercure macroporeux défini par porosimétrie au mercure est de 0,3 ml/g (la valeur du volume mercure mésoporeux également obtenue est en parfait accord avec la valeur obtenue par volumétrie à l'azote). L'analyse DRX aux grands angles conduit à l'obtention du diffractogramme caractéristique de la zéolithe bêta (taille des micopores, mesurée par DRX, de l'ordre de 0,66 nm). Le rapport molaire Si/Al obtenu par FX est de 50. Un cliché MEB des particules élémentaires sphériques ainsi obtenues indique que ces particules ont une taille caractérisée par un diamètre variant de 50 à 700 nm, la distribution en taille de ces particules étant centrée autour de 300 nm.11.70 g of a solution of tetraethylammonium hydroxide hydroxide (TEAOH 20% by weight in an aqueous solution) are added to 7.8 g of demineralized water and 0.03 g of sodium hydroxide NaOH. The whole is left stirring for 10 minutes. 0.14 g of aluminum sec-butoxide (Al (O s C 4 H 9 ) 3 ) are then introduced. The whole is left stirring for 10 minutes. The hydrolysis of the aluminum precursor is carried out for 1 hour. 6 g of tetraethylorthosilicate (TEOS) are then added. The whole is stirred for 18 hours at room temperature so as to obtain a clear solution. 18 ml of this solution are then added to a solution containing 35.2 g of ethanol, 11.3 g of water and 2 g of surfactant F127 (pH of the mixture = 10). The inorganic / organic V ratio of the mixture is 0.17 and is calculated as described above. The whole is left stirring for 10 minutes. The assembly is sent into the atomization chamber of the aerosol generator as described in the description above and the solution is sprayed in the form of fine droplets under the action of the carrier gas (dry air ) introduced under pressure (P = 1.5 bar). The droplets are dried according to the protocol described in the disclosure of the invention above: they are conveyed via an O 2 / N 2 mixture in PVC tubes. They are then introduced into an oven set at a drying temperature set at 250 ° C. The harvested powder is then dried for 12 hours in an oven at 95 ° C. 10 mg of powder are then placed in a 100 ml autoclave (closed chamber capable of withstanding temperatures of the order of 200 ° C. and pressures of the order of 5 bars) in the presence of 150 μl of demineralised water . The autoclave is provided with a system of "basket" or "cell" allowing the powder not to be in direct contact with the water introduced while bathing in the water vapor. The autoclave is then heated to a temperature of 95 ° C for 48 hours. The recovered powder is then dried in an oven at 95 ° C. for 12 hours. The powder is then calcined under air for 5 hours at 550 ° C. The solid is characterized by XRD, nitrogen volumetry, mercury porosimetry, TEM, SEM, FX. The TEM analysis shows that the spherical constitutive particles of the material have a core macroporosity characterized by domains 300 to 500 nm long and 100 to 200 nm wide and a mesoporosity at the periphery of the particles characterized by domains of 20 to 50 nm, the whole being characteristic of a phase separation organic - inorganic obtained by a spinodal decomposition mechanism present before the calcination step. The presence of zeolite entities in the walls of the material is also clearly visible during the study by electron diffraction of the michronotropic sections with a thickness of the order of 70 nm on localized areas of the order of 100 nm. Nitrogen volumetric analysis combined with analysis by the α s method leads to a microporous volume V micro value of 0.35 ml / g (N 2 ), a mesoporous V meso volume value of 0, 6 ml / g (N 2 ) and a specific surface area of the final material of S = 700 m 2 / g. The macroporous mercury volume defined by mercury porosimetry is 0.3 ml / g (the value of the mesoporous mercury volume also obtained is in perfect agreement with the value obtained by nitrogen volumetry). The wide-angle X-ray analysis leads to the characteristic diffractogram of zeolite beta (size of the micopores, measured by XRD, of the order of 0.66 nm). The molar Si / Al ratio obtained by FX is 50. An SEM image of the spherical elementary particles thus obtained indicates that these particles have a size characterized by a diameter ranging from 50 to 700 nm, the size distribution of these particles being centered around 300 nm.

Exempte 4 (invention) : Préparation d'un matériau à porosité mésoporeuse et macroporeuse dont les parois microporeuses sont constituées d'entités cristallisées de zéolithe Y (FAU) et ayant un rapport molaire Si/Ai = 8.Exempt 4 (Invention): Preparation of a material with mesoporous and macroporous porosity whose microporous walls consist of crystallized entities of zeolite Y (FAU) and having a molar ratio Si / Al = 8.

0,41 g d'aluminate de sodium (NaAlO2) sont ajoutés à une solution contenant 0,17 g d'hydroxyde de sodium et 7,6 g d'eau déminéralisée. La solution est laissée sous agitation jusqu'à la dissolution du précurseur d'aluminium. 10 g de silicate de sodium (27% en poids en SiO2 et 14 % en NaOH) sont alors ajoutés sous vigoureuse agitation. Le tout est maintenu sous agitation pendant 18 heures à température ambiante de manière à obtenir une solution limpide. 15 ml de cette solution sont alors ajoutés à une solution contenant 35,2 g d'éthanol, 11,6 g d'eau et 6,3 g de tensioactif F127 (pH du mélange = 9,8). Le rapport Vinorganique/Vorganique du mélange est égal à 0,24 et est calculé comme décrit ci-dessus. Le tout est laissé sous agitation pendant 10 minutes. L'ensemble est envoyé dans la chambre d'atomisation du générateur d'aérosol tel qu'il a été décrit dans la description ci-dessus et la solution est pulvérisée sous la forme de fines gouttelettes sous l'action du gaz vecteur (air sec) introduit sous pression (P = 1,5 bar). Les gouttelettes sont séchées selon le protocole décrit dans l'exposé de l'invention ci-dessus : elles sont acheminées via un mélange O2/N2 dans des tubes en PVC. Elles sont ensuite introduites dans un four réglé à une température de séchage fixée à 250°C. La poudre récoltée est alors séchée 12 heures à l'étuve à 95°C. 10 mg de poudre sont alors placés dans un autoclave de 100 ml (enceinte fermée susceptible de résister à des températures de l'ordre de 200°C et des pressions de l'ordre de 5 bars) en présence de 150 µl d'eau déminéralisée. L'autoclave est muni d'un système de "panier" ou de "cellule" permettant à la poudre de ne pas être en contact direct avec l'eau introduite tout en baignant dans la vapeur d'eau. L'autoclave est ensuite porté à une température de 95°C pendant 48 heures. La poudre récupérée est ensuite séchée à l'étuve à 95°C pendant 12 heures. La poudre est alors calcinée sous air pendant 5 h à 550°C. Le solide est caractérisé par DRX et aux grands angles, par Volumétrie à l'azote, par porosimétrie au mercure, par MET, par MEB et par ICP, par FX. L'analyse MET montre que les particules sphériques constitutives du matériau présentent une macroporosité de coeur caractérisée par des domaines de 300 à 500 nm de long et de 100 à 200 nm de large et une mésoporosité en périphérie des particules caractérisée par des domaines de 20 à 50 nm, l'ensemble étant caractéristique d'une séparation de phase organique - inorganique obtenue par un mécanisme de décomposition spinodale présente avant l'étape de calcination. La présence d'entités zéolithiques dans les parois du matériau est également clairement visible lors de l'étude par diffraction électronique des coupes michrotomées d'une épaisseur de l'ordre de 70 nm sur des zones localisées de l'ordre de 100 nm. L'analyse par volumétrie à l'azote combinée à l'analyse par la méthode αs conduit à une valeur du volume microporeux Vmicro de 0,33 ml/g (N2), une valeur du volume mésoporeux Vméso de 0,8 ml/g (N2) et une surface spécifique du matériau final de S = 720 m2/g. Le volume mercure macroporeux défini par porosimétrie au mercure est de 0,5 ml/g (la valeur du volume mercure mésoporeux également obtenue est en parfait accord avec la valeur obtenue par volumétrie à l'azote). L'analyse DRX aux grands angles conduit à l'obtention du diffractogramme caractéristique de la zéolithe Y (taille des micopores, mesurée par DRX, de l'ordre de 0,8 nm). Le rapport molaire Si/Al obtenu par FX est de 8. Un cliché MEB des particules élémentaires sphériques ainsi obtenues indique que ces particules ont une taille caractérisée par un diamètre variant de 50 à 700 nm, la distribution en taille de ces particules étant centrée autour de 300 nm.0.41 g of sodium aluminate (NaAlO 2 ) are added to a solution containing 0.17 g of sodium hydroxide and 7.6 g of demineralized water. The solution is stirred until the aluminum precursor is dissolved. 10 g of sodium silicate (27% by weight of SiO 2 and 14% of NaOH) are then added with vigorous stirring. The whole is stirred for 18 hours at room temperature so as to obtain a clear solution. 15 ml of this solution are then added to a solution containing 35.2 g of ethanol, 11.6 g of water and 6.3 g of surfactant F127 (pH of the mixture = 9.8). The inorganic / organic V ratio of the mixture is 0.24 and is calculated as described above. The whole is left stirring for 10 minutes. The assembly is sent into the atomization chamber of the aerosol generator as described in the description above and the solution is sprayed in the form of fine droplets under the action of the carrier gas (dry air ) introduced under pressure (P = 1.5 bar). The droplets are dried according to the protocol described in the disclosure of the invention above: they are conveyed via an O 2 / N 2 mixture in PVC tubes. They are then introduced into an oven set at a temperature drying time set at 250 ° C. The harvested powder is then dried for 12 hours in an oven at 95 ° C. 10 mg of powder are then placed in a 100 ml autoclave (closed chamber capable of withstanding temperatures of the order of 200 ° C. and pressures of the order of 5 bars) in the presence of 150 μl of demineralised water . The autoclave is provided with a system of "basket" or "cell" allowing the powder not to be in direct contact with the water introduced while bathing in the water vapor. The autoclave is then heated to a temperature of 95 ° C for 48 hours. The recovered powder is then dried in an oven at 95 ° C. for 12 hours. The powder is then calcined under air for 5 hours at 550 ° C. The solid is characterized by XRD and at large angles, by nitrogen volumetry, by mercury porosimetry, by TEM, by SEM and by ICP, by FX. The TEM analysis shows that the spherical constitutive particles of the material have a core macroporosity characterized by domains 300 to 500 nm long and 100 to 200 nm wide and a mesoporosity at the periphery of the particles characterized by domains of 20 to 50 nm, the set being characteristic of an organic-inorganic phase separation obtained by a spinodal decomposition mechanism present before the calcination step. The presence of zeolite entities in the walls of the material is also clearly visible during the study by electron diffraction of the michronotropic sections with a thickness of the order of 70 nm on localized areas of the order of 100 nm. The analysis by nitrogen volumetric analysis combined with the α s method leads to a value of the micropore volume V micro of 0.33 ml / g (N 2), a value of the mesopore volume V meso 0, 8 ml / g (N 2 ) and a specific surface area of the final material of S = 720 m 2 / g. The macroporous mercury volume defined by mercury porosimetry is 0.5 ml / g (the value of the mesoporous mercury volume also obtained is in perfect agreement with the value obtained by volumetric nitrogen). The wide-angle XRD analysis leads to obtaining the diffractogram characteristic of zeolite Y (size of the micopores, measured by XRD, of the order of 0.8 nm). The Si / Al molar ratio obtained by FX is 8. An SEM image of the spherical elementary particles thus obtained indicates that these particles have a size characterized by a diameter ranging from 50 to 700 nm, the size distribution of these particles being centered around 300 nm.

Claims (19)

  1. A hierarchical porosity material consisting of at least two elementary spherical particles having a maximum diameter of 200 microns, at least one of said spherical particles comprises at least one matrix based on silicon oxide and exhibiting crystallized walls, said material having a macropore volume measured by mercury porosimetry ranging between 0.05 and 1 ml/g, a mesopore volume measured by nitrogen volumetric analysis ranging between 0.01 and 1 ml/g and a micropore volume measured by nitrogen volumetric analysis ranging between 0.03 and 0.4 ml/g.
  2. A material as claimed in claim 1, such that the macropore volume measured by mercury porosimetry ranges between 0.1 and 0.3 ml/g.
  3. A material as claimed in claim 1 or 2, such that the mesopore volume measured by nitrogen volumetric analysis ranges between 0.1 and 0.6 ml/g.
  4. A material as claimed in any one of claims 1 to 3, such that macroporosity is present in domains ranging between 50 and 1000 nm.
  5. A material as claimed in any one of claims 1 to 4, such that mesoporosity is present in domains ranging between 2 and 50 nm.
  6. A material as claimed in any one of claims 1 to 5, such that it exhibits mesoporosity-free elementary spherical particles.
  7. A material as claimed in any one of claims 1 to 6, such that said matrix has crystallized walls consisting of zeolitic entities.
  8. A material as claimed in claim 7, such that said zeolitic entities comprise at least one zeolite selected from among the zeolites of MFI, BEA, FAU and LTA structural type.
  9. A material as claimed in any one of claims 1 to 8, such that said matrix based on silicon oxide is entirely silicic.
  10. A material as claimed in any one of claims 1 to 8, such that said matrix based on silicon oxide comprises at least one element X selected from among aluminium, iron, boron, indium and gallium.
  11. A material as claimed in claim 10, such that element X is aluminium.
  12. A material as claimed in any one of claims 1 to 11, such that said elementary spherical particles have a diameter ranging between 50 nm and 10 microns.
  13. A material as claimed in any one of claims 1 to 12, such that it has a specific surface area ranging between 100 and 1100 m2/g.
  14. A method of preparing a material as claimed in any one of claims 1 to 13, comprising: a) preparing a clear solution containing the zeolitic entity precursor elements, i.e. at least one structuring agent, at least one silicic precursor and possibly at least one precursor of at least one element X selected from among aluminium, iron, boron, indium and gallium ; b) mixing into a solution at least one surfactant and at least said clear solution obtained in stage a), the surfactant initial concentration being lower than the critical micellar concentration and the variation of the free enthalpy of mixing ΔGm as well as the second derivative of the free enthalpy ∂2G/∂2x being greater than 0; c) aerosol atomizing said solution obtained in stage b) so as to lead to the formation of spherical droplets ; d) drying said droplets ; e) autoclaving the particles obtained in stage d) ; f) drying said particles obtained in stage e) ; and g) eliminating said structuring agent and said surfactant so as to obtain a hierarchical porosity crystallized material in the microporosity, mesoporosity and macroporosity range.
  15. A method as claimed in claim 14, such that element X is aluminium.
  16. A method as claimed in claim 14 or 15, such that said surfactant is a three-block copolymer, each block consisting of a poly(alkylene oxide) chain.
  17. A method as claimed in claim 16, such that said three-block copolymer consists of two poly(ethylene oxide) chains and of one poly(propylene oxide) chain.
  18. An adsorbent comprising the hierarchical porosity material as claimed in any one of claims 1 to 13 or prepared according to the method as claimed in any one of claims 14 to 17.
  19. A catalyst comprising the hierarchical porosity material as claimed in any one of claims 1 to 13 or prepared according to the method as claimed in any one of claims 14 to 17.
EP08846541A 2007-09-07 2008-08-29 Crystallised material with hierarchised porosity and containing silicon Not-in-force EP2197794B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0706295A FR2920758B1 (en) 2007-09-07 2007-09-07 CRYSTALLIZED MATERIAL WITH HIERARCHISED POROSITY AND COMPRISING SILICON
PCT/FR2008/001215 WO2009060143A2 (en) 2007-09-07 2008-08-29 Crystallised material with hierarchised porosity and containing silicon

Publications (2)

Publication Number Publication Date
EP2197794A2 EP2197794A2 (en) 2010-06-23
EP2197794B1 true EP2197794B1 (en) 2011-10-26

Family

ID=39427684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08846541A Not-in-force EP2197794B1 (en) 2007-09-07 2008-08-29 Crystallised material with hierarchised porosity and containing silicon

Country Status (9)

Country Link
US (1) US8685366B2 (en)
EP (1) EP2197794B1 (en)
JP (1) JP5386489B2 (en)
CN (1) CN101795970B (en)
AT (1) ATE530499T1 (en)
DK (1) DK2197794T3 (en)
FR (1) FR2920758B1 (en)
WO (1) WO2009060143A2 (en)
ZA (1) ZA201000907B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953854B1 (en) * 2009-12-16 2012-12-28 Inst Francais Du Petrole METHOD FOR CONVERTING CHARGES FROM RENEWABLE SOURCES WITH PRETREATMENT OF LOADS BY HOT DEPHOSPHATION
FR2969514B1 (en) * 2010-12-22 2013-04-12 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A SPHERICAL MATERIAL HIERARCHISED POROSITY COMPRISING METALLIC PARTICLES PIEGEES IN A MATRIX BASED ON SILICON
FR2969513B1 (en) 2010-12-22 2013-04-12 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A SPHERICAL MATERIAL HIERARCHISED POROSITY COMPRISING METALLIC PARTICLES PIEGEES IN A MESOSTRUCTURED MATRIX
US10286391B2 (en) * 2012-02-17 2019-05-14 Inaeris Technologies, Llc Catalyst system having meso and macro hierarchical pore structure
CN102826557A (en) * 2012-09-25 2012-12-19 复旦大学 Method for preparing silicon oxide nanotube and two-dimensional ordered assembly body thereof
WO2014186207A2 (en) * 2013-05-13 2014-11-20 University Of Connecticut Mesoporous materials and processes for preparation thereof
CN103708488B (en) * 2013-12-27 2015-04-22 复旦大学 Method for preparing multilevel porous zeolite through microwave assisted decomposition of hydrogen peroxide
CN103979570B (en) * 2014-05-14 2016-01-06 武汉理工大学 The synthetic method of a kind of novel ordered big hole-mesoporous-micropore multi-stage porous Si-Al molecular sieve
EP3017866B1 (en) 2014-11-05 2019-09-11 Geoservices Equipements SAS Method for producing a silica-based stationary phase for a chromatography column
RU2706241C2 (en) * 2015-07-02 2019-11-15 Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайенсез Catalyst and method of producing light olefins directly from synthesis gas as result of single-step process
WO2017143978A1 (en) * 2016-02-22 2017-08-31 The University Of Hong Kong Method of producing a porous crystalline material with a highly uniform structure
US10434496B2 (en) 2016-03-29 2019-10-08 Agilent Technologies, Inc. Superficially porous particles with dual pore structure and methods for making the same
US10434870B2 (en) 2016-05-11 2019-10-08 GM Global Technology Operations LLC Adsorption storage tank for natural gas
CN106906971A (en) * 2017-03-13 2017-06-30 安徽倍立达住工科技有限公司 A kind of super-hydrophobicity GRC products and its preparation technology
US10381170B2 (en) 2017-03-29 2019-08-13 GM Global Technology Operations LLC Microporous and hierarchical porous carbon
FR3108332B1 (en) * 2020-03-23 2022-10-21 Centre Nat Etd Spatiales Homogeneous suspension for zeolite paints

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3386802A (en) * 1967-07-28 1968-06-04 Universal Oil Prod Co Method for preparing spherically-shaped crystalline zeolite particles
DE4203789A1 (en) * 1992-02-10 1993-08-12 Henkel Kgaa METHOD FOR STABILIZING AQUEOUS ZEOLITE SUSPENSIONS
IT1295267B1 (en) * 1997-10-03 1999-05-04 Enichem Spa PROCESS FOR PREPARING ALLOYED ZEOLITES
US6814950B1 (en) * 1999-09-07 2004-11-09 Abb Lummus Global Inc. Inorganic oxides with mesoporosity or combined meso-and microporosity and process for the preparation thereof
IT1314263B1 (en) * 1999-12-03 2002-12-06 Enichem Spa PROCESS FOR THE PREPARATION OF ZEOLITHIC CATALYSTS.
JP3949336B2 (en) * 2000-02-03 2007-07-25 触媒化成工業株式会社 Process for producing catalyst composition for catalytic cracking of hydrocarbons
US6509290B1 (en) * 2000-07-17 2003-01-21 Exxon Mobil Chemical Patents, Inc. Catalyst composition including attrition particles and method for making same
ITMI20012470A1 (en) * 2001-11-23 2003-05-23 Enichem Spa PROCEDURE FOR THE PREPARATION OF MFI TYPE ZEOLITHIC VITALIZERS
US6793911B2 (en) * 2002-02-05 2004-09-21 Abb Lummus Global Inc. Nanocrystalline inorganic based zeolite and method for making same
US7122496B2 (en) * 2003-05-01 2006-10-17 Bp Corporation North America Inc. Para-xylene selective adsorbent compositions and methods
FR2872152B1 (en) * 2004-06-24 2006-08-11 Inst Francais Du Petrole HIERARCHISED POROSITY MATERIAL COMPRISING SILICON
FR2872151B1 (en) * 2004-06-24 2007-06-29 Inst Francais Du Petrole MATERIAL ALUMINOSILICATE MESOSTRUCTURE
US8575054B2 (en) * 2004-07-15 2013-11-05 Nikki-Universal Co., Ltd. Catalyst for purifying organic nitrogen compound-containing exhaust gas and method for purifying the exhaust gas
FR2873116B1 (en) * 2004-07-15 2012-11-30 Inst Francais Du Petrole OLEFIN OLIGOMERIZATION METHOD USING SILICA-ALUMINATED CATALYST
FR2882941B1 (en) * 2005-03-08 2007-12-21 Inst Francais Du Petrole PROCESS FOR PURIFYING NATURAL GAS BY ADSORPTING MERCAPTANS
FR2905122B1 (en) * 2006-08-24 2009-07-24 Inst Francais Du Petrole PROCESS FOR PRODUCTION OF PROPYLENE IN THE PRESENCE OF A MACROPOROUS CATALYST IN THE FORM OF SPHERICAL BALLS
FR2920756B1 (en) * 2007-09-07 2010-08-20 Inst Francais Du Petrole AMORPHOUS MATERIAL COMPRISING HIERARCHISED AND ORGANIC POROSITY SILICON
FR2920757B1 (en) * 2007-09-07 2009-11-13 Inst Francais Du Petrole CRYSTALLIZED MATERIAL COMPRISING SILICON HIERARCHISED AND ORGANIZED POROSITY

Also Published As

Publication number Publication date
WO2009060143A3 (en) 2009-08-06
JP5386489B2 (en) 2014-01-15
US20110033375A1 (en) 2011-02-10
DK2197794T3 (en) 2012-02-20
ATE530499T1 (en) 2011-11-15
US8685366B2 (en) 2014-04-01
CN101795970B (en) 2012-10-03
ZA201000907B (en) 2011-04-28
WO2009060143A2 (en) 2009-05-14
EP2197794A2 (en) 2010-06-23
FR2920758B1 (en) 2009-11-13
JP2010537940A (en) 2010-12-09
CN101795970A (en) 2010-08-04
FR2920758A1 (en) 2009-03-13

Similar Documents

Publication Publication Date Title
EP2197794B1 (en) Crystallised material with hierarchised porosity and containing silicon
EP2197791B1 (en) Amorphous material having a hierarchised porosity and comprising silicon
EP1910226B1 (en) Mesostructured material with high aluminum content
EP1627852B1 (en) Mesostructured aluminosilicate material
EP1627853B1 (en) Material with hirarchized porosity, comprising silicium
EP2197792B1 (en) Crystallised material containing silicon with hierarchised and organised porosity
EP2197793B1 (en) Amorphous material comprising silicon and having an organised and hierarchised porosity
WO2009153421A1 (en) Catalyst containing a crystallised material with hierarchised and organised porosity, and use thereof for oligomerising light olefins
WO2009153420A1 (en) Method for oligomerising light olefins using a catalyst comprising an amorphous material with hierarchised and organised porosity
EP2274237B1 (en) Mesostructured aluminosilicate material formed from spherical particles of specific size
EP2274236B1 (en) Mesostructured material having a high aluminium content and composed of spherical particles of specific size
WO2018054810A1 (en) Process for preparing a nanometric zeolite y
FR3052449A1 (en) PROCESS FOR THE PREPARATION OF A BETA ZEOLITHE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100407

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008010954

Country of ref document: DE

Effective date: 20111222

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111026

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 530499

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120227

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120126

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008010954

Country of ref document: DE

Effective date: 20120727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120206

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140902

Year of fee payment: 7

Ref country code: NL

Payment date: 20140821

Year of fee payment: 7

Ref country code: DK

Payment date: 20140823

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140718

Year of fee payment: 7

Ref country code: GB

Payment date: 20140826

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140825

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008010954

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150829

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150829

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831