EP2196740B1 - Method for determining the performance of a cooling machine - Google Patents

Method for determining the performance of a cooling machine Download PDF

Info

Publication number
EP2196740B1
EP2196740B1 EP09014744.8A EP09014744A EP2196740B1 EP 2196740 B1 EP2196740 B1 EP 2196740B1 EP 09014744 A EP09014744 A EP 09014744A EP 2196740 B1 EP2196740 B1 EP 2196740B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
temperature
compressor
performance
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09014744.8A
Other languages
German (de)
French (fr)
Other versions
EP2196740A2 (en
EP2196740A3 (en
Inventor
Hans-Jürgen BERSCH
Raymond Steils
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copeland Europe GmbH
Original Assignee
Emerson Climate Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Climate Technologies GmbH filed Critical Emerson Climate Technologies GmbH
Publication of EP2196740A2 publication Critical patent/EP2196740A2/en
Publication of EP2196740A3 publication Critical patent/EP2196740A3/en
Application granted granted Critical
Publication of EP2196740B1 publication Critical patent/EP2196740B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator

Definitions

  • the present invention relates to a method for determining the coefficient of performance of a refrigerating machine, in particular a heat pump, comprising a refrigerant having a closed circuit in which an evaporator, a compressor, a condenser and an expansion valve are arranged.
  • the coefficient of performance (COP) of a chiller is the quotient of the heating power of the chiller and the recorded electrical power of the chiller.
  • the electric power consumption of the refrigerating machine is detected by an electricity meter, while the heating power of the refrigerator is detected by a temperature and volume flow measurement on the water side of the refrigerant circuit, i. So behind the condenser, is determined.
  • the temperatures and pressures of the refrigerant are detected at different points of the circuit and used to calculate the coefficient of performance.
  • the electrical power consumption of the chiller is detected.
  • the heating power of the chiller can then be calculated.
  • the EP 0 100 210 A2 discloses a method for determining a coefficient of performance of a refrigeration-conditioned air conditioner, in which four temperatures of the refrigerant are determined by means of at least four temperature sensors, from which enthalpies of the circuit can be calculated, which are used to determine the coefficient of performance COP of the refrigerator.
  • the US 5,735,134 A teaches a method of optimizing a coefficient of performance of an air conditioner using a single measured temperature or pressure value. This method assumes that the maximum performance index is already known, so that when measuring the temperature or pressure value, the ideal operating point of the air conditioning system can be set on the basis of previously known values.
  • the EP 1 914 481 A2 describes an apparatus and method for checking a refrigeration cycle. In this method, a so-called “figure of merit” is calculated, which is coupled to the efficiency, ie the performance of such a system.
  • temperatures and pressures of the refrigerant are determined by means of temperature and pressure sensors. From the determined temperature and pressure values enthalpies of the circuit can be determined, from which then an efficiency factor of the chiller is determined.
  • the JP 2004 176938 A discloses a method for controlling the coefficient of performance of a refrigeration system in which the coefficient of performance is determined by means of two temperature sensors and two pressure sensors.
  • the invention has for its object to provide a cost-effective method for determining the coefficient of performance of a chiller.
  • a refrigerator in particular a heat pump, comprising a refrigerant having a closed circuit in which an evaporator, a compressor, a condenser and an expansion valve are arranged, with the help of exactly three temperature sensors , which are arranged in the circuit, determined three temperatures of the refrigerant. From the determined refrigerant temperatures, enthalpies and pressures of the circuit are calculated, and from differences in the calculated enthalpies, both the heating power and the consumed electric power of the refrigerator are calculated. From the quotient of the calculated heating power and the calculated absorbed electrical power finally the coefficient of performance of the chiller is determined.
  • the coefficient of performance of the refrigerating machine is determined exclusively on the basis of temperature values supplied by three temperature sensors arranged in the refrigerant circuit, assuming some knowledge of the thermodynamic properties of the system, in particular of the refrigerant and of the compressor becomes.
  • a minimum of refrigerant circuit information necessary to determine the coefficient of performance of the refrigerator is determined.
  • a first temperature in the region of the inlet of the compressor, a second temperature in the region of the outlet of the condenser and a third temperature in the region of the outlet of the expansion valve are measured.
  • the refrigerant temperatures measured at these points of the refrigerant circuit are generally sufficient to determine the enthalpies of the circuit and ultimately to determine the coefficient of performance of the refrigerator.
  • Another object of the invention is also a chiller according to claim 2.
  • the inventive method can perform particularly well and achieve the above advantages accordingly.
  • FIG. 1 an embodiment of a refrigerating machine according to the invention is shown.
  • the refrigerator includes a closed circuit 10 having a refrigerant in which an evaporator 12, a compressor 14, a condenser 16, and an expansion valve 18 are disposed.
  • a temperature sensor 28 in the region of the inlet of the compressor 14, a temperature sensor 30 in the region of the outlet of the condenser 16 and a temperature sensor 32 in the region of the outlet of the expansion valve 18 are arranged.
  • the temperature sensors 28, 30, 32 are connected to an evaluation unit 26, which may be integrated into a controller of the refrigerator.
  • Fig. 2 shows for this purpose a Log p, H - diagram of the refrigerant used in the refrigerator, wherein the pressure p of the refrigerant is plotted logarithmically as a function of enthalpy H. Also marked are the limits of saturated liquid 20 and saturated gas 22.
  • the point E in Fig. 2 indicates the state of the refrigerant after expansion by the expansion valve 18.
  • evaporation (EA) and overheating (AB) of the refrigerant take place.
  • the compressor 14 provides a compression (B-C) of the refrigerant, which is accompanied by a corresponding increase in temperature.
  • B-C compression
  • the temperature of the refrigerant may be raised from about + 10 ° C at the exit of the evaporator 12 through the compressor 14 to about + 90 ° C.
  • the condenser 16 is a liquefaction (C-D) of the refrigerant, wherein the liquefaction temperature may be, for example + 50 ° C.
  • the now liquid and only 50 ° C warm refrigerant is then expanded by the expansion valve 18 (D-E), where it cools, for example, to about 0 ° C.
  • T1 the temperature of the gaseous refrigerant at the inlet of the compressor 14, as T2, the temperature of the liquid refrigerant at the outlet of the condenser 16, as T3, the temperature of the expanded refrigerant at the outlet of the expansion valve 18 and T4 the Temperature of the gaseous refrigerant at the outlet of the compressor 14 is designated.
  • the evaporation pressure i. that is, the pressure of the gaseous refrigerant at the outlet of the evaporator 12
  • the condensing pressure i. that is, the pressure of the liquid refrigerant at the outlet of the condenser 16.
  • the enthalpy H1 at the outlet of the condenser 16 the enthalpy H2 at the inlet of the compressor 14 and the enthalpy H3 at the outlet of the compressor 14 are determined.
  • the determination of the temperatures T1, T2, T3 is carried out by measurement with the aid of the temperature sensors 28, 30 or 32.
  • the temperature values T1, T2, T3 detected by the temperature sensors 28, 30, 32 are transmitted to the evaluation unit 26.
  • the evaluation unit 26 calculates the pressure P2 using the pressure equation of the refrigerant used from the received value for the temperature T2 at the outlet of the condenser 16 and the pressure P1 from the temperature value T3 at the outlet of the expansion valve 18.
  • a pressure equation for example, the well-known Clausius-Clapeyron equation can be used.
  • the enthalpy H3, since the temperature T4 is not known, is calculated from the compressor model.
  • the electric power Qel received by the compressor 14 is not determined by an electricity meter, but calculated by a model describing the thermodynamic characteristics of the compressor 14, e.g. a 10-coefficient model.
  • the calculated values apply only to the documented operating point of the compressor 14 at either constant superheating or constant suction gas temperature, ie constant temperature T1 of the refrigerant at the compressor entrance.
  • the values In order to calculate the values of the real operating point, the values must be corrected as a function of the real compressor input temperature T1.
  • the enthalpy H3-H2 can be easily calculated from the enthalpy difference H3-H2.
  • the refrigerant temperature T4 at the compressor output is obtained from the intersection of the enthalpy line H3 with the line of the pressure P2 in the log p, H diagram of FIG Fig. 2 calculated.
  • the heating power Qh and the electric power Qel can be integrated over time to indicate the heating energy and the absorbed electric power.
  • the power consumption of ancillary equipment, such as Pumps, electronics, etc. can be incorporated into the calculation by suitable parameters.
  • a chiller which does not belong to the invention and differs from the embodiment described above in that a connected to the evaluation unit 26 fourth temperature sensor 34 is disposed in the region of the output of the compressor 14 to determine the refrigerant temperature T4 at the compressor output.
  • the refrigerant temperature T4 at the compressor outlet need not be estimated with the aid of a compressor model, but it is measured directly.
  • the evaluation unit 26 calculates the pressure P2 using the pressure equation of the refrigerant used from the received value for the temperature T2 at the outlet of the condenser 16 and the pressure P1 from the temperature T3 at the outlet of the expansion valve 18. Subsequently, according to equations (1) to (3), the enthalpies H1, H2 and H3 are determined from the measured temperatures T1, T2, T4 and the calculated pressures P1, P2, and the coefficient of performance is determined therefrom according to equation (6).
  • Fig. 4 is shown a further refrigerator, which does not belong to the invention and from the reference to Fig.
  • a pressure sensor 36 is arranged in the region of the outlet of the evaporator 12, there to measure the pressure P1 of the refrigerant.
  • the pressure sensor 36 is connected to the evaluation unit 26 in order to transmit the measured refrigerant pressure P1 to it.
  • the pressure P1 thus does not need to be calculated from the refrigerant temperature T3 at the outlet of the expansion valve 18, but it is measured directly. Only the pressure P2 is to be calculated using the pressure equation of the refrigerant used from the temperature T2 at the outlet of the condenser 16, and the refrigerant temperature T4 at the compressor output is as based on Fig. 1 explained using a compressor model, so that according to the equations (1) to (3) the enthalpies H 1, H 2 and H 3 and from this according to equation (6), the coefficient of performance of the chiller can be determined.
  • Fig. 5 is another refrigeration machine shown, which does not belong to the invention and from the in Fig. 4 different in that a connected to the evaluation unit 26 fourth temperature sensor 34 is disposed in the region of the output of the compressor 14 to determine the refrigerant temperature T4 at the compressor output.
  • the refrigerant temperature T4 at the compressor output in this chiller need not be calculated with the aid of a compressor model, but it is similar to the in Fig. 3 shown directly measured chiller.
  • the pressure P2 calculated from the refrigerant temperature T2 at the outlet of the condenser 16.
  • Fig. 6 is another refrigeration machine shown, which does not belong to the invention and from the in Fig. 4 different in that a connected to the evaluation unit 26 second pressure sensor 38 is disposed in the region of the output of the condenser 16 to determine the refrigerant pressure P2 at the condenser output.
  • the pressure P2 in this chiller need not be calculated using the pressure equation of the refrigerant used from the temperature T2 at the outlet of the condenser 16, but it is measured directly. Only the refrigerant temperature T4 at the compressor output is in this chiller as based on Fig. 1 calculated using a compressor model.
  • the enthalpies H1, H2 and H3 are then calculated from the measured temperatures T1, T2 and the measured pressures P1, P2 and the calculated temperature T4 according to equations (1) to (3), and the coefficient of performance is determined therefrom according to equation (6).
  • Fig. 7 is another refrigeration machine shown, which does not belong to the invention and from the in Fig. 6 differs in that a connected to the evaluation unit 26 third temperature sensor 34 is arranged in the region of the output of the compressor 14 in order to determine the refrigerant temperature T4 at the compressor outlet. Unlike the chiller of the Fig. 6 Thus, the refrigerant temperature T4 at the compressor output in this chiller need not be estimated with the aid of a compressor model, but it is measured directly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung der Leistungszahl einer Kältemaschine, insbesondere einer Wärmepumpe, die einen ein Kältemittel aufweisenden geschlossenen Kreislauf umfasst, in dem ein Verdampfer, ein Verdichter, ein Verflüssiger und ein Expansionsventil angeordnet sind.The present invention relates to a method for determining the coefficient of performance of a refrigerating machine, in particular a heat pump, comprising a refrigerant having a closed circuit in which an evaporator, a compressor, a condenser and an expansion valve are arranged.

Als Leistungszahl (COP) einer Kältemaschine wird der Quotient aus Heizleistung der Kältemaschine und aufgenommener elektrischer Leistung der Kältemaschine bezeichnet. Herkömmlicherweise wird die elektrische Leistungsaufnahme der Kältemaschine über einen Stromzähler erfasst, während die Heizleistung der Kältemaschine durch eine Temperatur- und Volumenstrommessung auf der Wasserseite des Kältemittelkreislaufs, d.h. also hinter dem Verflüssiger, ermittelt wird.The coefficient of performance (COP) of a chiller is the quotient of the heating power of the chiller and the recorded electrical power of the chiller. Conventionally, the electric power consumption of the refrigerating machine is detected by an electricity meter, while the heating power of the refrigerator is detected by a temperature and volume flow measurement on the water side of the refrigerant circuit, i. So behind the condenser, is determined.

Bekannt ist auch ein Verfahren, bei dem mit Hilfe von zwei Drucksensoren und drei Temperatursensoren die Temperaturen und Drücke des Kältemittels an verschiedenen Stellen des Kreislaufs erfasst und zur Berechnung der Leistungszahl herangezogen werden. Mittels eines Stromzählers wird außerdem die elektrische Leistungsaufnahme der Kältemaschine erfasst. Durch Multiplikation der Leistungszahl mit der aufgenommenen elektrischen Leistung kann dann die Heizleistung der der Kältemaschine errechnet werden.Also known is a method in which, with the aid of two pressure sensors and three temperature sensors, the temperatures and pressures of the refrigerant are detected at different points of the circuit and used to calculate the coefficient of performance. By means of an electricity meter also the electrical power consumption of the chiller is detected. By multiplying the coefficient of performance with the recorded electrical power, the heating power of the chiller can then be calculated.

Als problematisch erweist sich bei den bekannten Verfahren bzw. Kältemaschinen, dass sowohl der Stromzähler als auch die Drucksensoren einen nicht unerheblichen Kostenfaktor darstellen.As problematic proves in the known methods or refrigeration that both the electricity meter and the pressure sensors represent a significant cost factor.

Die EP 0 100 210 A2 offenbart ein Verfahren zur Bestimmung einer Leistungszahl einer ein Kältemittel aufweisenden Klimaanlage, bei dem mit Hilfe von mindestens vier Temperatursensoren vier Temperaturen des Kältemittels ermittelt werden, aus welchen Enthalpien des Kreislaufs berechnet werden können, die zur Bestimmung der Leistungszahl COP der Kältemaschine verwendet werden.The EP 0 100 210 A2 discloses a method for determining a coefficient of performance of a refrigeration-conditioned air conditioner, in which four temperatures of the refrigerant are determined by means of at least four temperature sensors, from which enthalpies of the circuit can be calculated, which are used to determine the coefficient of performance COP of the refrigerator.

Die US 5,735,134 A lehrt ein Verfahren zum Optimieren einer Leistungszahl einer Klimaanlage mittels eines einzigen gemessenen Temperatur- oder Druckwertes. Dieses Verfahren setzt voraus, dass die maximale Leistungskennzahl schon bekannt ist, so dass bei Messung des Temperatur- oder Druckwertes der ideale Betriebspunkt der Klimaanlage anhand von vorbekannten Werten eingestellt werden kann.The US 5,735,134 A teaches a method of optimizing a coefficient of performance of an air conditioner using a single measured temperature or pressure value. This method assumes that the maximum performance index is already known, so that when measuring the temperature or pressure value, the ideal operating point of the air conditioning system can be set on the basis of previously known values.

Die EP 1 914 481 A2 beschreibt eine Vorrichtung und ein Verfahren zum Überprüfen eines Kältekreislaufs. In diesem Verfahren wird ein so genannter "figure of merit" berechnet, der an die Effizienz, d.h. die Leistung eines solchen Systems gekoppelt ist. In dem Kältekreislauf werden mittels Temperatur- und Drucksensoren Temperaturen und Drücke des Kältemittels ermittelt. Aus den ermittelten Temperatur- und Druckwerten können Enthalpien des Kreislaufs bestimmt werden, aus welchen dann ein Effizienzfaktor der Kältemaschine ermittelt wird.The EP 1 914 481 A2 describes an apparatus and method for checking a refrigeration cycle. In this method, a so-called "figure of merit" is calculated, which is coupled to the efficiency, ie the performance of such a system. In the refrigeration cycle, temperatures and pressures of the refrigerant are determined by means of temperature and pressure sensors. From the determined temperature and pressure values enthalpies of the circuit can be determined, from which then an efficiency factor of the chiller is determined.

Die JP 2004 176938 A offenbart ein Verfahren zum Steuern der Leistungszahl eines Kühlsystems, bei dem die Leistungszahl mittels zweier Temperatursensoren und zweier Drucksensoren bestimmt wird.The JP 2004 176938 A discloses a method for controlling the coefficient of performance of a refrigeration system in which the coefficient of performance is determined by means of two temperature sensors and two pressure sensors.

Der Erfindung liegt die Aufgabe zugrunde, ein kostengünstigeres Verfahren zur Bestimmung der Leistungszahl einer Kältemaschine zu schaffen.The invention has for its object to provide a cost-effective method for determining the coefficient of performance of a chiller.

Zur Lösung der Aufgabe ist ein Verfahren mit den Merkmalen des Anspruchs 1 vorgesehen.To solve the problem, a method with the features of claim 1 is provided.

Bei dem erfindungsgemäßen Verfahren nach Anspruch 1 werden zur Bestimmung der Leistungszahl einer Kältemaschine, insbesondere einer Wärmepumpe, die einen ein Kältemittel aufweisenden geschlossenen Kreislauf umfasst, in dem ein Verdampfer, ein Verdichter, ein Verflüssiger und ein Expansionsventil angeordnet sind, mit Hilfe von genau drei Temperatursensoren, die in dem Kreislauf angeordnet sind, drei Temperaturen des Kältemittels ermittelt. Aus den ermittelten Kältemitteltemperaturen werden Enthalpien und Drücke des Kreislaufs berechnet, und aus Differenzen der berechneten Enthalpien werden sowohl die Heizleistung als auch die aufgenommene elektrische Leistung der Kältemaschine berechnet. Aus dem Quotienten der berechneten Heizleistung und der berechneten aufgenommenen elektrischen Leistung wird schließlich die Leistungszahl der Kältemaschine bestimmt.In the method according to claim 1 of the invention for determining the coefficient of performance of a refrigerator, in particular a heat pump, comprising a refrigerant having a closed circuit in which an evaporator, a compressor, a condenser and an expansion valve are arranged, with the help of exactly three temperature sensors , which are arranged in the circuit, determined three temperatures of the refrigerant. From the determined refrigerant temperatures, enthalpies and pressures of the circuit are calculated, and from differences in the calculated enthalpies, both the heating power and the consumed electric power of the refrigerator are calculated. From the quotient of the calculated heating power and the calculated absorbed electrical power finally the coefficient of performance of the chiller is determined.

Bei dem erfindungsgemäßen Verfahren nach Anspruch 1 wird die Leistungszahl der Kältemaschine mit anderen Worten ausschließlich anhand von Temperaturwerten ermittelt, die von drei in dem Kältemittelkreislauf angeordneten Temperatursensoren geliefert werden, wobei eine gewisse Kenntnis der thermodynamischen Eigenschaften des Systems, insbesondere des Kältemittels und des Verdichters, vorausgesetzt wird. Durch die Messung der Kältemitteltemperaturen an drei verschiedenen Stellen des Kältemittelkreislaufs wird ein Minimum von Information über den Kältemittelkreislauf ermittelt, der erforderlich ist, um die Leistungszahl der Kältemaschine bestimmen zu können.In other words, in the method according to the invention, the coefficient of performance of the refrigerating machine is determined exclusively on the basis of temperature values supplied by three temperature sensors arranged in the refrigerant circuit, assuming some knowledge of the thermodynamic properties of the system, in particular of the refrigerant and of the compressor becomes. By measuring the refrigerant temperatures at three different locations of the refrigerant circuit, a minimum of refrigerant circuit information necessary to determine the coefficient of performance of the refrigerator is determined.

Eine Verwendung von zusätzlichen Sensoren, z.B. weiteren Temperatursensoren oder Drucksensoren, die typischerweise etwa zehnmal teurer als Temperatursensoren sind, ist somit grundsätzlich nicht erforderlich. Insbesondere kann auf den Einsatz eines kostspieligen Stromzählers verzichtet werden. Die erfindungsgemäße Verwendung einer minimalen Anzahl von Temperatursensoren ermöglicht es also, die Leistungszahl einer Kältemaschine mit einem minimalen Kostenaufwand zu ermitteln.Use of additional sensors, e.g. further temperature sensors or pressure sensors, which are typically about ten times more expensive than temperature sensors, is therefore generally not required. In particular, can be dispensed with the use of a costly electricity meter. The inventive use of a minimum number of temperature sensors thus makes it possible to determine the coefficient of performance of a chiller with a minimum cost.

Gemäß der Erfindung wird eine erste Temperatur im Bereich des Eingangs des Verdichters, eine zweite Temperatur im Bereich des Ausgangs des Verflüssigers und eine dritte Temperatur im Bereich des Ausgangs des Expansionsventils gemessen. Die an diesen Stellen des Kältemittelkreislaufs gemessenen Kältemitteltemperaturen reichen grundsätzlich aus, um die Enthalpien des Kreislaufs zu ermitteln und hieraus letztlich die Leistungszahl der Kältemaschine zu bestimmen.According to the invention, a first temperature in the region of the inlet of the compressor, a second temperature in the region of the outlet of the condenser and a third temperature in the region of the outlet of the expansion valve are measured. The refrigerant temperatures measured at these points of the refrigerant circuit are generally sufficient to determine the enthalpies of the circuit and ultimately to determine the coefficient of performance of the refrigerator.

Weiterer Gegenstand der Erfindung ist außerdem eine Kältemaschine nach Anspruch 2. Mit Hilfe dieser Kältemaschine lassen sich das erfindungsgemäße Verfahren besonders gut durchführen und die voranstehenden Vorteile entsprechend erreichen.Another object of the invention is also a chiller according to claim 2. With the help of this chiller, the inventive method can perform particularly well and achieve the above advantages accordingly.

Nachfolgend wird die vorliegende Erfindung rein beispielhaft anhand einer vorteilhaften Ausführungsform und unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Es zeigen:

Fig. 1
eine schematische Darstellung einer Ausführungsform einer erfindungsgemäßen Kältemaschine;
Fig. 2
ein Log p, H - Diagram des Kältemittels der Kältemaschine von Fig. 1 und den zugehörigen Kreisprozess;
Fig. 3
eine schematische Darstellung einer Variante einer Kältemaschine;
Fig. 4
eine schematische Darstellung einer weiteren Variante einer Kältemaschine;
Fig. 5
eine schematische Darstellung einer weiteren Variante einer Kältemaschine;
Fig. 6
eine schematische Darstellung einer weiteren Variante einer Kältemaschine; und
Fig. 7
eine schematische Darstellung einer weiteren Variante einer Kältemaschine.
Hereinafter, the present invention will be described purely by way of example with reference to an advantageous embodiment and with reference to the accompanying drawings. Show it:
Fig. 1
a schematic representation of an embodiment of a refrigerator according to the invention;
Fig. 2
a Log p, H - Diagram of the refrigerant of the chiller of Fig. 1 and the associated cycle process;
Fig. 3
a schematic representation of a variant of a refrigerator;
Fig. 4
a schematic representation of another variant of a refrigerator;
Fig. 5
a schematic representation of another variant of a refrigerator;
Fig. 6
a schematic representation of another variant of a refrigerator; and
Fig. 7
a schematic representation of another variant of a refrigerator.

In Fig. 1 ist eine Ausführungsform einer erfindungsgemäßen Kältemaschine dargestellt. Die Kältemaschine umfasst einen ein Kältemittel aufweisenden geschlossenen Kreislauf 10, in dem ein Verdampfer 12, ein Verdichter 14, ein Verflüssiger 16 und ein Expansionsventil 18 angeordnet sind.In Fig. 1 an embodiment of a refrigerating machine according to the invention is shown. The refrigerator includes a closed circuit 10 having a refrigerant in which an evaporator 12, a compressor 14, a condenser 16, and an expansion valve 18 are disposed.

Zur Ermittlung der Kältemitteltemperatur ist ein Temperatursensor 28 im Bereich des Eingangs des Verdichters 14, ein Temperatursensor 30 im Bereich des Ausgangs des Verflüssigers 16 und ein Temperatursensor 32 im Bereich des Ausgangs des Expansionsventils 18 angeordnet. Die Tem-peratursensoren 28, 30, 32 sind mit einer Auswerteeinheit 26 verbunden, die in eine Steuerung der Kältemaschine integriert sein kann.For determining the refrigerant temperature, a temperature sensor 28 in the region of the inlet of the compressor 14, a temperature sensor 30 in the region of the outlet of the condenser 16 and a temperature sensor 32 in the region of the outlet of the expansion valve 18 are arranged. The temperature sensors 28, 30, 32 are connected to an evaluation unit 26, which may be integrated into a controller of the refrigerator.

Die Kältemaschine wird hier in ihrer Funktion als Wärmepumpe beschrieben. Fig. 2 zeigt zu diesem Zweck ein Log p, H - Diagramm des in der Kältemaschine verwendeten Kältemittels, wobei der Druck p des Kältemittels logarithmisch als Funktion der Enthalpie H aufgetragen ist. Eingezeichnet sind außerdem die Grenzen gesättigter Flüssigkeit 20 und gesättigten Gases 22.The chiller is described here in its function as a heat pump. Fig. 2 shows for this purpose a Log p, H - diagram of the refrigerant used in the refrigerator, wherein the pressure p of the refrigerant is plotted logarithmically as a function of enthalpy H. Also marked are the limits of saturated liquid 20 and saturated gas 22.

Der Punkt E in Fig. 2 bezeichnet den Zustand des Kältemittels nach der Expansion durch das Expansionsventil 18. In dem Verdampfer 12 findet eine Verdampfung (E-A) und Überhitzung (A-B) des Kältemittels statt.The point E in Fig. 2 indicates the state of the refrigerant after expansion by the expansion valve 18. In the evaporator 12, evaporation (EA) and overheating (AB) of the refrigerant take place.

Der Verdichter 14 sorgt für eine Verdichtung (B-C) des Kältemittels, die mit einer entsprechenden Temperaturerhöhung einhergeht. Beispielsweise kann die Temperatur des Kältemittels von etwa +10°C am Ausgang des Verdampfers 12 durch den Verdichter 14 bis auf etwa +90°C erhöht werden.The compressor 14 provides a compression (B-C) of the refrigerant, which is accompanied by a corresponding increase in temperature. For example, the temperature of the refrigerant may be raised from about + 10 ° C at the exit of the evaporator 12 through the compressor 14 to about + 90 ° C.

Im Verflüssiger 16 erfolgt eine Verflüssigung (C-D) des Kältemittels, wobei die Verflüssigungstemperatur zum Beispiel +50°C betragen kann. Das nunmehr flüssige und nur noch 50°C warme Kältemittel wird anschließend durch das Expansionsventil 18 entspannt (D-E), wobei es beispielsweise bis auf etwa 0°C abkühlt.In the condenser 16 is a liquefaction (C-D) of the refrigerant, wherein the liquefaction temperature may be, for example + 50 ° C. The now liquid and only 50 ° C warm refrigerant is then expanded by the expansion valve 18 (D-E), where it cools, for example, to about 0 ° C.

Nachfolgend wird als T1 die Temperatur des gasförmigen Kältemittels am Eingang des Verdichters 14, als T2 die Temperatur des flüssigen Kältemittels am Ausgang des Verflüssigers 16, als T3 die Temperatur des expandierten Kältemittels am Ausgang des Expansionsventils 18 und als T4 die Temperatur des gasförmigen Kältemittels am Ausgang des Verdichters 14 bezeichnet.Hereinafter, as T1, the temperature of the gaseous refrigerant at the inlet of the compressor 14, as T2, the temperature of the liquid refrigerant at the outlet of the condenser 16, as T3, the temperature of the expanded refrigerant at the outlet of the expansion valve 18 and T4 the Temperature of the gaseous refrigerant at the outlet of the compressor 14 is designated.

Als P1 wird der Verdampfungsdruck, d.h. also der Druck des gasförmigen Kältemittels am Ausgang des Verdampfers 12, und als P2 der Verflüssigungsdruck, d.h. also der Druck des flüssigen Kältemittels am Ausgang des Verflüssigers 16 bezeichnet.As P1, the evaporation pressure, i. that is, the pressure of the gaseous refrigerant at the outlet of the evaporator 12 and, as P2, the condensing pressure, i. that is, the pressure of the liquid refrigerant at the outlet of the condenser 16.

Zur Bestimmung der Leistungszahl der Kältemaschine wird zunächst die Enthalpie H1 am Ausgang des Verflüssigers 16, die Enthalpie H2 am Eingang des Verdichters 14 und die Enthalpie H3 am Ausgang des Verdichters 14 ermittelt.To determine the coefficient of performance of the chiller, first the enthalpy H1 at the outlet of the condenser 16, the enthalpy H2 at the inlet of the compressor 14 and the enthalpy H3 at the outlet of the compressor 14 are determined.

Dabei ist die Enthalpie H 1 eine Funktion der Kältemitteltemperatur T2 am Ausgang des Verflüssigers, die Enthalpie H2 eine Funktion der Kältemitteltemperatur T1 am Eingang des Verdichters 14 und des Kältemitteldrucks P1 am Ausgang des Verdampfers 12 und die Enthalpie H3 eine Funktion der Kältemitteltemperatur T4 am Ausgang des Verdichters 14 und des Kältemitteldrucks P2 am Ausgang des Verflüssigers 16: H 1 = f T 2

Figure imgb0001
H 2 = f P 1 , T 1
Figure imgb0002
H 3 = f P 2 , T 4
Figure imgb0003
The enthalpy H 1 is a function of the refrigerant temperature T 2 at the outlet of the condenser, the enthalpy H 2 a function of the refrigerant temperature T 1 at the inlet of the compressor 14 and the refrigerant pressure P 1 at the outlet of the evaporator 12 and the enthalpy H 3 a function of the refrigerant temperature T 4 at the outlet of the evaporator Compressor 14 and the refrigerant pressure P2 at the outlet of the condenser 16: H 1 = f T 2
Figure imgb0001
H 2 = f P 1 . T 1
Figure imgb0002
H 3 = f P 2 . T 4
Figure imgb0003

Bei der in Fig. 1 dargestellten Ausführungsform erfolgt die Ermittlung der der Temperaturen T1, T2, T3 durch Messung mit Hilfe der Temperatursensoren 28, 30 bzw. 32. Die von den Temperatursensoren 28, 30, 32 erfassten Temperaturwerte T1, T2, T3 werden an die Auswerteeinheit 26 übermittelt.At the in Fig. 1 In the embodiment shown, the determination of the temperatures T1, T2, T3 is carried out by measurement with the aid of the temperature sensors 28, 30 or 32. The temperature values T1, T2, T3 detected by the temperature sensors 28, 30, 32 are transmitted to the evaluation unit 26.

Die Auswerteeinheit 26 berechnet unter Verwendung der Druckgleichung des verwendeten Kältemittels aus dem empfangenen Wert für die Temperatur T2 am Ausgang des Verflüssigers 16 den Druck P2 und aus dem Temperaturwert T3 am Ausgang des Expansionsventils 18 den Druck P1. Als Druckgleichung kann beispielsweise die allgemein bekannte Clausius-Clapeyron-Gleichung verwendet werden.The evaluation unit 26 calculates the pressure P2 using the pressure equation of the refrigerant used from the received value for the temperature T2 at the outlet of the condenser 16 and the pressure P1 from the temperature value T3 at the outlet of the expansion valve 18. As a pressure equation, for example, the well-known Clausius-Clapeyron equation can be used.

In Kenntnis der Temperaturen T1 und T2 sowie des Druckes P1 lassen sich nun durch die Gleichungen (1) und (2) die Enthalpien H1 und H2 bestimmen.Knowing the temperatures T1 and T2 and the pressure P1, the enthalpies H1 and H2 can now be determined by equations (1) and (2).

Die Enthalpie H3 wird, da die Temperatur T4 nicht bekannt ist, aus dem Verdichtermodell berechnet.The enthalpy H3, since the temperature T4 is not known, is calculated from the compressor model.

Hierzu wird angenommen, dass etwa 95 % der von dem Verdichter 14 aufgenommenen elektrischen Leistung in den Kältekreislauf induziert werden. Die von dem Verdichter 14 aufgenommene elektrische Leistung Qel wird dabei nicht durch einen Stromzähler ermittelt, sondern durch ein die thermodynamischen Eigenschaften des Verdichters 14 beschreibendes Modell berechnet, z.B. ein 10-Koeffizienten-Modell.For this, it is assumed that about 95% of the electric power consumed by the compressor 14 is induced in the refrigeration cycle. The electric power Qel received by the compressor 14 is not determined by an electricity meter, but calculated by a model describing the thermodynamic characteristics of the compressor 14, e.g. a 10-coefficient model.

Mit Hilfe dieses Modells kann nicht nur die von dem Verdichter 14 aufgenommene elektrische Leistung, sondern auch die Kälteleistung Q0 des Verdichters 14, der von dem Verdichter 14 aufgenommene elektrische Strom I und der Massenstrom m° des durch den Verdichter 14 strömenden Kältemittels berechnet werden.By means of this model, not only the electric power consumed by the compressor 14 but also the refrigerating capacity Q0 of the compressor 14, the electric current I received by the compressor 14 and the mass flow m ° of the refrigerant flowing through the compressor 14 can be calculated.

Dabei gelten die berechneten Werte nur für den dokumentierten Arbeitspunkt des Verdichters 14 bei entweder konstanter Überhitzung oder konstanter Sauggastemperatur, d.h. konstanter Temperatur T1 des Kältemittels am Verdichtereingang. Um die Werte des realen Betriebspunkts zu berechnen, müssen die Werte in Abhängigkeit von der realen Verdichtereingangstemperatur T1 korrigiert werden.The calculated values apply only to the documented operating point of the compressor 14 at either constant superheating or constant suction gas temperature, ie constant temperature T1 of the refrigerant at the compressor entrance. In order to calculate the values of the real operating point, the values must be corrected as a function of the real compressor input temperature T1.

Die von dem Verdichter 14 aufgenommene elektrische Leistung Qel wird durch den Massenstrom m0 geteilt, um die Enthalpiedifferenz H3-H2 zu bestimmen: Qel / = H 3 - H 2

Figure imgb0004
The electric power Qel received by the compressor 14 is divided by the mass flow m 0 to determine the enthalpy difference H3-H2: Qel / m ° = H 3 - H 2
Figure imgb0004

Da die Enthalpie H2 aus Gleichung (2) bekannt ist, lässt sich aus der Enthalpiedifferenz H3-H2 leicht die Enthalpie H3 berechnen.Since the enthalpy H2 from equation (2) is known, the enthalpy H3-H2 can be easily calculated from the enthalpy difference H3-H2.

Zur Kontrolle wird die Kältemitteltemperatur T4 am Verdichterausgang aus dem Schnittpunkt der Linie der Enthalpie H3 mit der Linie des Druckes P2 in dem Log p, H - Diagramm von Fig. 2 berechnet.As a check, the refrigerant temperature T4 at the compressor output is obtained from the intersection of the enthalpy line H3 with the line of the pressure P2 in the log p, H diagram of FIG Fig. 2 calculated.

Aus der Differenz der berechneten Enthalpien H3 und H 1 wird anschließend gemäß der Gleichung Qh = m ° * H 3 - H 1

Figure imgb0005

die Heizleistung Qh der Kältemaschine berechnet. Die von dem Verdichter 14 aufgenommene elektrische Leistung Qel wurde bereits mit Hilfe des Verdichtermodells ermittelt und ist gemäß Gleichung (4) proportional zu der Differenz der Enthalpien H3 und H2.From the difference of the calculated enthalpies H3 and H1 is then according to the equation Qh = m ° * H 3 - H 1
Figure imgb0005

calculates the heating capacity Qh of the chiller. The electrical power Qel received by the compressor 14 has already been determined with the aid of the compressor model and is proportional to the difference of the enthalpies H3 and H2 according to equation (4).

Zur Bestimmung der Leistungszahl COP bzw. des Wirkungsgrades der Kältemaschine braucht abschließend nur noch der Quotient aus der Heizleistung Qh und der elektrischen Leistung Qel gebildet zu werden: COP = Qh / Qel = H 3 - H 1 / H 3 - H 2

Figure imgb0006
To determine the coefficient of performance COP or the efficiency of the chiller, finally, only the quotient of the heating power Qh and the electric power Qel needs to be formed: COP = Qh / Qel = H 3 - H 1 / H 3 - H 2
Figure imgb0006

Durch eine Integration der Leistungszahl über die Zeit kann aus der Leistungszahl außerdem die Jahresarbeitszahl der Kältemaschine ermittelt werden. Entsprechend können die Heizleistung Qh und die elektrische Leistung Qel über die Zeit integriert werden, um die Heizenergie und die aufgenommene elektrische Energie anzuzeigen. Die Leistungsaufnahme von Zusatzgeräten, wie z.B. Pumpen, Elektronik, etc., kann dabei durch geeignete Parameter in die Berechnung einfließen.By integrating the coefficient of performance over time, it is also possible to determine from the coefficient of performance the annual working factor of the chiller. Accordingly, the heating power Qh and the electric power Qel can be integrated over time to indicate the heating energy and the absorbed electric power. The power consumption of ancillary equipment, such as Pumps, electronics, etc., can be incorporated into the calculation by suitable parameters.

In Fig. 3 ist eine Kältemaschine dargestellt, die nicht zur Erfindung gehört und sich von der voranstehend beschriebenen Ausführungsform darin unterscheidet, dass ein mit der Auswerteeinheit 26 verbundener vierter Temperatursensor 34 im Bereich des Ausgangs des Verdichters 14 angeordnet ist, um die Kältemitteltemperatur T4 am Verdichterausgang zu ermitteln. Bei dieser Kältemaschine braucht die Kältemitteltemperatur T4 am Verdichterausgang also nicht mit Hilfe eines Verdichtermodells abgeschätzt zu werden, sondern sie wird direkt gemessen.In Fig. 3 a chiller is shown, which does not belong to the invention and differs from the embodiment described above in that a connected to the evaluation unit 26 fourth temperature sensor 34 is disposed in the region of the output of the compressor 14 to determine the refrigerant temperature T4 at the compressor output. In this refrigerating machine, therefore, the refrigerant temperature T4 at the compressor outlet need not be estimated with the aid of a compressor model, but it is measured directly.

Entsprechend der voranstehenden Ausführungsform berechnet die Auswerteeinheit 26 unter Verwendung der Druckgleichung des verwendeten Kältemittels aus dem empfangenen Wert für die Temperatur T2 am Ausgang des Verflüssigers 16 den Druck P2 und aus der Temperatur T3 am Ausgang des Expansionsventils 18 den Druck P1. Anschließend werden gemäß den Gleichungen (1) bis (3) aus den gemessenen Temperaturen T1, T2, T4 und den berechneten Drücken P1, P2 die Enthalpien H1, H2 und H3 bestimmt und hieraus nach Gleichung (6) die Leistungszahl ermittelt. In Fig. 4 ist eine weitere Kältemaschine dargestellt, die nicht zur Erfindung gehört und sich von der unter Bezugnahme auf Fig. 1 beschriebenen Ausführungsform darin unterscheidet, dass anstelle des dritten Temperatursensors 32 ein Drucksensor 36 im Bereich des Ausgangs des Verdampfers 12 angeordnet ist, um dort den Druck P1 des Kältemittels zu messen. Der Drucksensor 36 ist mit der Auswerteeinheit 26 verbunden, um dieser den gemessenen Kältemitteldruck P1 zu übermitteln.According to the above embodiment, the evaluation unit 26 calculates the pressure P2 using the pressure equation of the refrigerant used from the received value for the temperature T2 at the outlet of the condenser 16 and the pressure P1 from the temperature T3 at the outlet of the expansion valve 18. Subsequently, according to equations (1) to (3), the enthalpies H1, H2 and H3 are determined from the measured temperatures T1, T2, T4 and the calculated pressures P1, P2, and the coefficient of performance is determined therefrom according to equation (6). In Fig. 4 is shown a further refrigerator, which does not belong to the invention and from the reference to Fig. 1 described embodiment in that instead of the third temperature sensor 32, a pressure sensor 36 is arranged in the region of the outlet of the evaporator 12, there to measure the pressure P1 of the refrigerant. The pressure sensor 36 is connected to the evaluation unit 26 in order to transmit the measured refrigerant pressure P1 to it.

Bei dieser Kältemaschine braucht der Druck P1also nicht aus der Kältemitteltemperatur T3 am Ausgang des Expansionsventils 18 berechnet zu werden, sondern er wird direkt gemessen. Lediglich der Druck P2 ist unter Verwendung der Druckgleichung des verwendeten Kältemittels aus der Temperatur T2 am Ausgang des Verflüssigers 16 zu berechnen, und die Kältemitteltemperatur T4 am Verdichterausgang ist wie anhand von Fig. 1 erläutert mit Hilfe eines Verdichtermodells zu berechnen, damit gemäß den Gleichungen (1) bis (3) die Enthalpien H 1, H2 und H3 und hieraus nach Gleichung (6) die Leistungszahl der Kältemaschine bestimmt werden können.In this refrigerator, the pressure P1 thus does not need to be calculated from the refrigerant temperature T3 at the outlet of the expansion valve 18, but it is measured directly. Only the pressure P2 is to be calculated using the pressure equation of the refrigerant used from the temperature T2 at the outlet of the condenser 16, and the refrigerant temperature T4 at the compressor output is as based on Fig. 1 explained using a compressor model, so that according to the equations (1) to (3) the enthalpies H 1, H 2 and H 3 and from this according to equation (6), the coefficient of performance of the chiller can be determined.

In Fig. 5 ist eine weitere Kältemaschine dargestellt, die nicht zur Erfindung gehört und sich von der in Fig. 4 gezeigten Kältemaschine darin unterscheidet, dass ein mit der Auswerteeinheit 26 verbundener vierter Temperatursensor 34 im Bereich des Ausgangs des Verdichters 14 angeordnet ist, um die Kältemitteltemperatur T4 am Verdichterausgang zu ermitteln. Anders als bei der Kältemaschine der Fig. 4 braucht die Kältemitteltemperatur T4 am Verdichterausgang bei dieser Kältemaschine also nicht mit Hilfe eines Verdichtermodells berechnet zu werden, sondern sie wird ähnlich wie bei der in Fig. 3 gezeigten Kältemaschine direkt gemessen. Wie bei den voranstehend beschriebenen Kältemaschinen wird auch hier der Druck P2 aus der Kältemitteltemperatur T2 am Ausgang des Verflüssigers 16 berechnet.In Fig. 5 is another refrigeration machine shown, which does not belong to the invention and from the in Fig. 4 different in that a connected to the evaluation unit 26 fourth temperature sensor 34 is disposed in the region of the output of the compressor 14 to determine the refrigerant temperature T4 at the compressor output. Unlike the chiller of the Fig. 4 Thus, the refrigerant temperature T4 at the compressor output in this chiller need not be calculated with the aid of a compressor model, but it is similar to the in Fig. 3 shown directly measured chiller. As with the refrigerators described above Here, too, the pressure P2 calculated from the refrigerant temperature T2 at the outlet of the condenser 16.

Aus den gemessenen Temperaturen T1, T2, T4 und dem gemessenen Druck P1 sowie dem berechneten Druck P2 werden anschließend die Enthalpien H1, H2 und H3 gemäß den Gleichungen (1) bis (3) berechnet und daraus nach Gleichung (6) die Leistungszahl bestimmt.From the measured temperatures T1, T2, T4 and the measured pressure P1 and the calculated pressure P2, the enthalpies H1, H2 and H3 are then calculated according to equations (1) to (3) and the coefficient of performance determined therefrom according to equation (6).

In Fig. 6 ist eine weitere Kältemaschine dargestellt, die nicht zur Erfindung gehört und sich von der in Fig. 4 gezeigten Kältemaschine darin unterscheidet, dass ein mit der Auswerteeinheit 26 verbundener zweiter Drucksensor 38 im Bereich des Ausgangs des Verflüssigers 16 angeordnet ist, um den Kältemitteldruck P2 am Verflüssigerausgang zu ermitteln.In Fig. 6 is another refrigeration machine shown, which does not belong to the invention and from the in Fig. 4 different in that a connected to the evaluation unit 26 second pressure sensor 38 is disposed in the region of the output of the condenser 16 to determine the refrigerant pressure P2 at the condenser output.

Anders als bei der Kältemaschine der Fig. 4 braucht der Druck P2 bei dieser Kältemaschine also nicht unter Verwendung der Druckgleichung des verwendeten Kältemittels aus der Temperatur T2 am Ausgang des Verflüssigers 16 berechnet zu werden, sondern er wird direkt gemessen. Lediglich die Kältemitteltemperatur T4 am Verdichterausgang wird bei dieser Kältemaschine wie anhand von Fig. 1 beschrieben mit Hilfe eines Verdichtermodells berechnet.Unlike the chiller of the Fig. 4 Thus, the pressure P2 in this chiller need not be calculated using the pressure equation of the refrigerant used from the temperature T2 at the outlet of the condenser 16, but it is measured directly. Only the refrigerant temperature T4 at the compressor output is in this chiller as based on Fig. 1 calculated using a compressor model.

Aus den gemessenen Temperaturen T1, T2 und den gemessenen Drücken P1, P2 sowie der berechneten Temperatur T4 werden anschließend gemäß den Gleichungen (1) bis (3) die Enthalpien H1, H2 und H3 berechnet und daraus nach Gleichung (6) die Leistungszahl bestimmt.The enthalpies H1, H2 and H3 are then calculated from the measured temperatures T1, T2 and the measured pressures P1, P2 and the calculated temperature T4 according to equations (1) to (3), and the coefficient of performance is determined therefrom according to equation (6).

In Fig. 7 ist eine weitere Kältemaschine dargestellt, die nicht zur Erfindung gehört und sich von der in Fig. 6 gezeigten Kältenaschine darin unterscheidet, dass ein mit der Auswerteeinheit 26 verbundener dritter Temperatursensor 34 im Bereich des Ausgangs des Verdichters 14 angeordnet ist, um die Kältemitteltemperatur T4 am Verdichterausgang zu ermitteln. Anders als bei der Kältemaschine der Fig. 6 braucht die Kältemitteltemperatur T4 am Verdichterausgang bei dieser Kältemaschine also nicht mit Hilfe eines Verdichtermodells abgeschätzt zu werden, sondern sie wird direkt gemessen.In Fig. 7 is another refrigeration machine shown, which does not belong to the invention and from the in Fig. 6 differs in that a connected to the evaluation unit 26 third temperature sensor 34 is arranged in the region of the output of the compressor 14 in order to determine the refrigerant temperature T4 at the compressor outlet. Unlike the chiller of the Fig. 6 Thus, the refrigerant temperature T4 at the compressor output in this chiller need not be estimated with the aid of a compressor model, but it is measured directly.

Aus den gemessenen Temperaturen T1, T2, T4 und den gemessenen Drücken P1, P2 werden anschließend die Enthalpien H1, H2 und H3 gemäß den Gleichungen (1) bis (3) berechnet und daraus nach Gleichung (6) die Leistungszahl bestimmt.From the measured temperatures T1, T2, T4 and the measured pressures P1, P2, the enthalpies H1, H2 and H3 are then calculated according to equations (1) to (3), and the coefficient of performance is determined from equation (6).

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Kreislaufcirculation
1212
VerdampferEvaporator
1414
Verdichtercompressor
1616
Verflüssigercondenser
1818
Expansionsventilexpansion valve
2020
Grenzen gesättigter FlüssigkeitLimits of saturated liquid
2222
Grenzen gesättigten GasesLimits of saturated gas
2626
Auswerteeinrichtungevaluation
2828
Temperatursensortemperature sensor
3030
Temperatursensortemperature sensor
3232
Temperatursensortemperature sensor
3434
Temperatursensortemperature sensor
3636
Drucksensorpressure sensor
3838
Drucksensorpressure sensor
H 1H 1
Enthalpieenthalpy
H2H2
Enthalpieenthalpy
H3H3
Enthalpieenthalpy
T1T1
Temperaturtemperature
T2T2
Temperaturtemperature
T3T3
Temperaturtemperature
T4T4
Temperaturtemperature
P1P1
Druckprint
P2P2
Druckprint

Claims (2)

  1. A method for the determination of the coefficient of performance of a refrigeration machine, in particular of a heat pump, which includes a closed circuit (10) which has a refrigerant and in which an evaporator (12), a compressor (14), a condenser (16) and an expansion valve (18) are arranged, in which method
    three temperatures (T1, T2, T3) of the refrigerant are determined using only three temperature sensors (28, 30, 32) arranged in the circuit (10);
    enthalpies (H1, H2, H3) of the circuit (10) are calculated from the determined refrigerant temperatures;
    the heat output (Qh) and the taken up electrical power (Qel) of the refrigeration machine are calculated from differences of the calculated enthalpies; and
    the coefficient of performance (COP) of the refrigeration machine is determined from the quotient of the calculated heat output (Qh) and the calculated taken up electrical power (Qel), wherein a first temperature (T1) is determined in the region of the inlet of the compressor (14); a second temperature (T2) is determined in the region of the outlet of the condenser (16); and a third temperature (T3) is determined in the region of the outlet of the expansion valve (18).
  2. A refrigeration machine, in particular for the carrying out of a method in accordance with claim 1, which includes a closed circuit (10) which has a refrigerant and in which an evaporator (12), a compressor (14), a condenser (16), an expansion valve (18) and only three temperature sensors (28, 30, 32) are arranged for the determination of three temperatures of the refrigerant, wherein the three temperature sensors (28,30, 32) for the determination of the coefficient of performance (COP) of the refrigeration machine are connected to an evaluation device (26) which is designed to determine the coefficient of performance (COP) of the circuit (10) from the three determined temperatures of the refrigerant (T1, T2, T3),
    wherein a first temperature sensor (28) is arranged in the region of the inlet of the compressor (14), a second temperature sensor (30) is arranged in the region of the outlet of the condenser (16) and a third temperature sensor (32) is arranged in the region of the outlet of the expansion valve (18).
EP09014744.8A 2008-12-11 2009-11-26 Method for determining the performance of a cooling machine Active EP2196740B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008061631A DE102008061631A1 (en) 2008-12-11 2008-12-11 Method for determining the coefficient of performance of a refrigerating machine

Publications (3)

Publication Number Publication Date
EP2196740A2 EP2196740A2 (en) 2010-06-16
EP2196740A3 EP2196740A3 (en) 2010-09-15
EP2196740B1 true EP2196740B1 (en) 2014-10-29

Family

ID=42027702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09014744.8A Active EP2196740B1 (en) 2008-12-11 2009-11-26 Method for determining the performance of a cooling machine

Country Status (3)

Country Link
US (1) US8775123B2 (en)
EP (1) EP2196740B1 (en)
DE (1) DE102008061631A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019135437A1 (en) * 2019-12-20 2021-06-24 Hochschule Merseburg Method for indirect pressure determination in refrigeration circuits

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958190B2 (en) 2013-01-24 2018-05-01 Advantek Consulting Engineering, Inc. Optimizing energy efficiency ratio feedback control for direct expansion air-conditioners and heat pumps
US9261542B1 (en) 2013-01-24 2016-02-16 Advantek Consulting Engineering, Inc. Energy efficiency ratio meter for direct expansion air-conditioners and heat pumps
FR3001527B1 (en) * 2013-01-28 2017-08-11 Schneider Electric Ind Sas METHOD FOR DIAGNOSING A HEATING, VENTILATION AND AIR CONDITIONING MACHINE
IL235224B2 (en) * 2014-10-20 2023-08-01 Assaf Haliva Method and device for measuring coefficient of performance
ES2834548T3 (en) 2015-06-24 2021-06-17 Emerson Climate Tech Gmbh Cross-mapping of components in a refrigeration system
US9915570B1 (en) 2016-08-18 2018-03-13 DCIM Solutions, LLC Method and system for managing cooling distribution
US10345038B2 (en) * 2017-04-25 2019-07-09 Emerson Climate Technologies Retail Solutions, Inc. Dynamic coefficient of performance calculation for refrigeration systems
CN107328048A (en) * 2017-08-31 2017-11-07 广东美的制冷设备有限公司 Air conditioner and its efficiency computational methods
CA3049596A1 (en) * 2018-07-27 2020-01-27 Hill Phoenix, Inc. Co2 refrigeration system with high pressure valve control based on coefficient of performance
CN109140678B (en) * 2018-08-28 2020-11-10 四川长虹空调有限公司 Regression analysis method for air conditioning data and refrigerant parameters of variable frequency air conditioning system
CN113175734B (en) * 2021-04-21 2022-07-22 海信空调有限公司 Method for calculating capacity energy efficiency of air conditioner, computer storage medium and air conditioner
WO2023043363A1 (en) * 2021-09-20 2023-03-23 Qvantum Industries Ab A heat pump for heating or cooling, a method, and a computer program product therefor
CN115183508B (en) * 2022-07-07 2023-11-17 百尔制冷(无锡)有限公司 Novel transcritical carbon dioxide exhaust pressure control method and control system thereof
DE102022132680A1 (en) 2022-12-08 2024-06-13 Bayerische Motoren Werke Aktiengesellschaft Method for determining a mass of a coolant of a vehicle, temperature control device for a vehicle and vehicle, in particular motor vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510576A (en) * 1982-07-26 1985-04-09 Honeywell Inc. Specific coefficient of performance measuring device
US5735134A (en) * 1996-05-30 1998-04-07 Massachusetts Institute Of Technology Set point optimization in vapor compression cycles
US6701725B2 (en) * 2001-05-11 2004-03-09 Field Diagnostic Services, Inc. Estimating operating parameters of vapor compression cycle equipment
JP4261881B2 (en) * 2002-11-25 2009-04-30 株式会社テージーケー Control method of refrigeration cycle
US7051542B2 (en) * 2003-12-17 2006-05-30 Carrier Corporation Transcritical vapor compression optimization through maximization of heating capacity
EP1914483A3 (en) * 2004-08-11 2008-07-09 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
JP2007278618A (en) * 2006-04-07 2007-10-25 Daikin Ind Ltd Refrigeration unit
EP1950511A1 (en) * 2007-01-26 2008-07-30 Viessmann Werke GmbH & Co. KG Heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019135437A1 (en) * 2019-12-20 2021-06-24 Hochschule Merseburg Method for indirect pressure determination in refrigeration circuits
DE102019135437B4 (en) 2019-12-20 2022-02-03 Hochschule Merseburg Process for indirectly determining pressure in refrigeration circuits

Also Published As

Publication number Publication date
EP2196740A2 (en) 2010-06-16
US8775123B2 (en) 2014-07-08
EP2196740A3 (en) 2010-09-15
DE102008061631A1 (en) 2010-06-17
US20100153057A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
EP2196740B1 (en) Method for determining the performance of a cooling machine
DE60320060T2 (en) Method for operating a transcritical cooling system
DE69532003T2 (en) Cooling air conditioner with non-azeotropic refrigerant and a control information acquisition device
DE102004044990A1 (en) System and method for detecting coolant leaks
EP2256438B1 (en) Improved cooler, in particular for airplanes
DE4213011A1 (en) CONTROL OF A SAVING DEVICE WITH VARIABLE PERFORMANCE
WO2014063902A1 (en) Method for controlling the refrigerant pressure in an ambient heat exchanger of a refrigerant circuit
EP3396350B1 (en) Method for determining the tightness of the air circulation process of a cold air air conditioning system
EP1775533B1 (en) Method for operating a compression type refrigeration system
DE102019121519A1 (en) Efficiency-optimized cooling circuit for electric vehicles
EP4012314A1 (en) Device and method for detecting a deposit on a heat exchanger surface
DE112016005264T5 (en) COOLING CIRCUIT OF AN AIR-CONDITIONING SYSTEM FOR VEHICLES AND VEHICLE EQUIPPED THEREFOR
DE10342989A1 (en) Vehicle air conditioning system with a compressor with variable displacement
DE202006014246U1 (en) Cold vapor refrigerating machine
DE102019135437B4 (en) Process for indirectly determining pressure in refrigeration circuits
DE102019119754B3 (en) Method for operating a refrigeration cycle of a motor vehicle and refrigeration cycle
EP2998667B1 (en) A method, an apparatus and a computer programm product for evaluating the energy efficiency of a refrigeration machine and/or heat pump
DE102013004786A1 (en) Compression heat pump or compression refrigeration machine and method for Regelug the same
EP1950511A1 (en) Heat pump
DE19854060B4 (en) Method for determining a refrigerant charge in an air conditioning system of a motor vehicle
DE102008050164B4 (en) Method and air conditioning control unit for refrigerant charge quantity monitoring
DE102023106862B4 (en) Method for monitoring working fluid loss from a heat pump and correspondingly monitored heat pump
DE102016112100B4 (en) Method for determining the torque of a compressor
EP2266822B1 (en) Air conditioner for a motor vehicle and method for operating same
DE102018201946A1 (en) Method and device for checking the plausibility of the measured values of a humidity sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110215

17Q First examination report despatched

Effective date: 20120730

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EMERSON CLIMATE TECHNOLOGIES GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140516

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 693791

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010145

Country of ref document: DE

Effective date: 20141211

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141029

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150302

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010145

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150129

26N No opposition filed

Effective date: 20150730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150129

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 693791

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141126

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141126

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231019

Year of fee payment: 15

Ref country code: FR

Payment date: 20231020

Year of fee payment: 15

Ref country code: DE

Payment date: 20231019

Year of fee payment: 15