EP2193858B1 - Foundry core with improved gutting properties II - Google Patents

Foundry core with improved gutting properties II Download PDF

Info

Publication number
EP2193858B1
EP2193858B1 EP09175205.5A EP09175205A EP2193858B1 EP 2193858 B1 EP2193858 B1 EP 2193858B1 EP 09175205 A EP09175205 A EP 09175205A EP 2193858 B1 EP2193858 B1 EP 2193858B1
Authority
EP
European Patent Office
Prior art keywords
sand
core
binder
core according
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09175205.5A
Other languages
German (de)
French (fr)
Other versions
EP2193858A1 (en
Inventor
Lorenz Prof. Dr. Ratke
Barbara Dr. Milow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP2193858A1 publication Critical patent/EP2193858A1/en
Application granted granted Critical
Publication of EP2193858B1 publication Critical patent/EP2193858B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/183Sols, colloids or hydroxide gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols

Definitions

  • the present invention relates to foundry cores with improved gutting properties, a process for their preparation and their use.
  • Shapes and cores are usually sand cast from quartz sand, for special applications but also from other sands (alumina, zirconia, olivine, chrome ore) produced in which the grains of sand are bonded together by polymeric binder and a dimensionally stable for the duration of mold filling with liquid metal Forming a composite.
  • sands alumina, zirconia, olivine, chrome ore
  • mechanical aids shaking, shaking, tapping
  • thermal aids or pressurized water can be used for coring or dissolution of the mold.
  • binders Today, phenolic resins, polyurethanes, ureas and furan resins, which are complexly chemically modified (chemical additives), are used as binders to meet the requirements of the foundries. Likewise aerogels are known. The binders are optimized for the applications in terms of their chemical composition to meet the conflicting requirements, such as high thermal stability with low outgassing and low binder use and yet easy gut removal and high surface quality.
  • binders of the prior art can not yet be regarded as optimal at the present time. So affect Adhesion of molten metal to the mold and core material as well as the mineralization of the casting surface, the casting quality, the demoulding and the coring as well as the subsequent use of the casting. Almost all binders are difficult to remove on filigree or complex shaped castings, leaving buildup and mineralization, and a coarse, rough casting surface.
  • WO 95/06617 A1 hydrophobic silica aerogels are known. These are obtainable by reacting a waterglass solution with an acid at a pH of 7.5 to 11, substantially freeing the formed silicic acid hydrogenation of ionic constituents by washing with water or dilute aqueous solutions of inorganic bases, wherein the pH of the hydrogel in the range from 7.5 to 11, displacement of the hydrogel-containing aqueous phase by an alcohol and subsequent supercritical drying of the resulting alkogel.
  • the problem underlying the present invention is solved by a foundry core containing sand, organic binder and hydrophobic oxidic airgel granules.
  • Organic binders include synthetic resins such as phenolic, urea and furan resins as well as ethyl silicate. Oils, carbohydrate binders, water-soluble liquid binders based on sulfite blue, molasses, dextrose, alkanolamines and pitch binders are still used ( KE Höner "Founding", Ullmann's Encyclopedia of Industrial Chemistry, pp. 271-287, Vol. 12, 4th edition, Verlag Chemie Weinheim, 1976 ).
  • Aerogels according to the invention include colloidal substances which are gelled and dried. They have a lower density and high, open porosity. They consist only to about 1 to 15 vol .-% of a solid, while the rest of their volume is filled by the surrounding gas or vacuum, that is they have a high surface area (up to 1000 m 2 / g). Inorganic aerogels but also, for example, resorcinol-formaldehyde airgel as an organic airgel are usually inherently hydrophilic. Aerogels are considered one of the lightest materials and the best heat insulators.
  • Airgel granules are obtained in particular by the milling of airgel monoliths.
  • Hydrophobic means water-repellent, that is, the airgel granules used shows a pronounced interaction with polar solvents like water.
  • the hydrophobic airgel granules used have a wetting angle with water ⁇ 160 °.
  • hydrophobic airgel granulates can be prepared starting from hydrophilic airgel granules by subjecting the latter to a hydrophobing treatment.
  • a hydrophobing treatment such as, for example, SiO 2 -based aerogels: a treatment with, for example, trimethylsilyl chloride leads to silylation of the free OH groups of the hydrophilic airgel granules and thus to etherification and thus hydrophobization.
  • hydrophobic airgel granulate Apart from the addition of hydrophobic airgel granulate (or the replacement of a certain proportion of the molding material by the hydrophobic airgel granules) remains the other process of molding, core or Kernpaksergna unchanged; So there are still all possible combinations of sands and binding materials used.
  • a possible reason for the improvements observed by the foundry core according to the invention could be related to the fact that the hydrophobic airgel granules used have macroscopic dimensions but are nanostructured (like all aerogels).
  • the use of a sufficient proportion of hydrophobic airgel granules could now lead to the melt, the mold can no longer adequately reactive wet the mold, since the nanostructure of the hydrophobic airgel granules allows only punctiform contacts. In this way, attachments and mineralization would be suppressed.
  • the castings obtained via the use of the foundry cores according to the invention prove to be very smooth (exact casting quality), adhesions and mineralization are significantly suppressed compared to castings of the prior art.
  • the sand preferably comprises quartz sand, an Al 2 O 3 -based and / or a mullite-based sand.
  • corundum sands of similar size (0.1 to 0.9 mm) can also be used.
  • the quartz sands shown above are new sands, in fact these are only added to the "old sands" in foundries to a limited extent.
  • Used sand is the sand that accumulates when the castings are emptied out of the molds, which, after appropriate cooling and reconditioning, is returned to the molding shop.
  • the reprocessing has two tasks to accomplish: cleaning the quartz grain from adhering binders and removing dusty constituents. In this process, any remaining agglomerates are mechanically comminuted and thus the binder coats partially removed from the quartz grains. In this process, the originally rather rounded surface of the grain of sand undergoes a change. From around she is too fragmented. This grain shape is important for the process of forming material, thus ensuring that only a comparatively small amount of binder is needed.
  • the mixture of which the foundry core is produced a sand content of 83 to 95 wt .-% wherein here 1 to 20 wt .-% virgin sand and 80 to 99 wt .-% regenerate (cycle molding material, that is purified recycled sand) preferred are.
  • the addition of regenerated sand can be dispensed with, especially in red, brass and bronze casting.
  • the proportion of binder is preferably 1 to 10 wt .-%.
  • Sand, binder and Airogelgranulatanteil (and optionally the proportions of other ingredients) add up to 100 wt .-% or vol .-%.
  • the oxidic airgel granules comprise SiO 2 , TiO 2 and / or ZrO 2 .
  • the above-mentioned trimethylsilylation by treatment with TMSCI is particularly suitable.
  • the airgel granules have a particle size distribution in the order of magnitude of the sand.
  • the airgel granules and / or the sand have / have a particle size distribution in a range from 0.1 to 0.9 mm.
  • the airgel granules preferably have a particle size / particle size distribution in a range of ⁇ 0.5 mm.
  • the advantage of the particle size distributions / grain sizes just described is that both the hydrophobic airgel granules and the sand are used as mold bases and optimum mixing of particles of the same size is easier to carry out.
  • the observed effects that is to say a reduced amount of adhesion and mineralization, as well as a more precise Casting surface, are larger than other grain size distributions / grain sizes.
  • the proportion of airgel granules is preferably in a range from 3 to 15, particularly preferably from 8 to 12,% by volume.
  • the proportion of airgel granules in the core is in a range from 0.05 to 0.24, in particular from 0.13 to 0.19 wt .-%.
  • the binder is an organic binder, in particular a binder or a binder mixture which comprises at least one member selected from phenolic resins, urea resins, furan resins, polyurethane resins and resorcinol-formaldehyde resins and RF airgel binders.
  • Organic binders have been found to be preferred as charring of the binder occurs during casting and this contributes to further ease of gutting.
  • the hydrophobic airgel granules are particularly preferably hydrophobized silica or waterglass airgels. Due to the high thermal loads during the casting, the organic groups introduced for the hydrophobization are destroyed and the hydrophobic air is converted into a hydrophilic airgel, which is very easy to react with, for example Remove water.
  • the compaction is done for example by core shooting, shaking, tapping and / or pounding.
  • temperatures of 20 to 300 ° C have been found to be particularly suitable, in particular 80 to 250 ° C.
  • the duration of the curing is preferably a few seconds to minutes. Drying of foundry cores is either completed after curing or by storage of the cores at room temperature or at temperatures above room temperature to 300 ° C from 1 to 24 hours or in the microwave.
  • the object underlying the invention is achieved by the use of the foundry core according to the invention in metal casting, in particular in non-ferrous metal, Leichmetall- or iron casting.
  • the core is removed by a thermal treatment at elevated temperature, in particular a temperature of ⁇ 300 ° C., or by a fluid which wets it, in particular water.
  • the removal with a wetting fluid is advantageous, since here the core decomposes without residue by the fluid which wets it.
  • these are well-wetting fluids such as water, since the hydrophobization (trimethylsilylation of the inner surfaces of the aerogels) is destroyed by the influence of heat during casting.
  • Wettability refers to the ability of liquids to spread on a surface; the better the wettability, the smaller is the contact angle that occurs during wetting.
  • Surfaces are also referred to as (incompletely) wettable when the contact angle with the Surface is up to 90 °.
  • Particular preference is therefore given to fluids having a temperature of from 30 to 100.degree.
  • hydrophilic silica aerogels can easily be destroyed by well-wetting liquids (for example boiling water).
  • the core may be destroyed by alcoholic fluids or short chain alcohols having a chain length of up to six carbon atoms.
  • non-flammable alcohol mixtures should be used, for example with water.
  • the castings were also pore and void-free, that is, the cores produced, even if they contained organic substances, no additional gas evolution, since the aerogels additive in the sand acts as a siccative or absorbent for casting gases. Errors of the dimensional stability which occur due to the core expansion during the quartz jump using quartz sand during casting can be compensated for by the elasticity of the granules used as a function of the granulate content and binder content.
  • sand quartz sand
  • binder hot-box resin HB587 (UF polymer, Borden Chemical UK LTD), hardener AT21 (Hüttenes Albertus), flow oil (Tego emulsion 35, Goldschmidt AG)
  • hydrophobic silica airgel granules (1.71 g, grain size ⁇ 0.5 mm) were added to the finished mixture and mixed homogeneously.
  • Bending bars were hand-formed, and then dried at 180 ° C.
  • the bending strength corresponded to the usual values.
  • the Entkernbarkeit could be significantly improved.
  • the castings had a smooth surface.

Description

Die vorliegende Erfindung betrifft Gießereikerne mit verbesserten Entkernungseigenschaften, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung.The present invention relates to foundry cores with improved gutting properties, a process for their preparation and their use.

Formen und Kerne werden im Sandguss zumeist aus Quarzsand, für spezielle Anwendungen aber auch aus anderen Sanden (Aluminiumoxid, Zirkonoxid, Olivin, Chromerz) hergestellt, in dem die Sandkörner durch polymere Binder miteinander verklebt werden und für die Dauer der Formfüllung mit flüssigem Metall einen formstabilen Verbund bilden. Dieser soll nach dem Erstarren der Schmelze möglichst einfach wieder aufgelöst werden können, was insbesondere für Kerne gilt, die komplex geformte Hohlräume im Gussstück negativ abbilden. Zur Entkernung oder Auflösung der Form können mechanische Hilfsmittel (rütteln, schütteln, klopfen), thermische Hilfsmittel oder druckbeaufschlagtes Wasser verwendet werden. Als Binder werden heute vor allem Phenolharze verwendet, sowie Polyurethane, Harnstoffe und Furanharze, die komplex chemisch modifiziert werden (chemische Additive), um den Anforderungen der Gießereien gerecht zu werden. Ebenso sind aerogele Binder bekannt. Die Binder werden auf die Anwendungen hin in ihrer chemischen Zusammensetzung optimiert, um den widersprüchlichen Anforderungen gerecht zu werden, wie zum Beispiel hohe thermische Stabilität bei geringer Ausgasung und geringem Bindereinsatz und dennoch leichter Entkernung und hohe Oberflächengüte.Shapes and cores are usually sand cast from quartz sand, for special applications but also from other sands (alumina, zirconia, olivine, chrome ore) produced in which the grains of sand are bonded together by polymeric binder and a dimensionally stable for the duration of mold filling with liquid metal Forming a composite. This should as simple as possible be dissolved again after the solidification of the melt, which is especially true for cores, the complex shaped cavities in the casting negative image. For coring or dissolution of the mold, mechanical aids (shaking, shaking, tapping), thermal aids or pressurized water can be used. Today, phenolic resins, polyurethanes, ureas and furan resins, which are complexly chemically modified (chemical additives), are used as binders to meet the requirements of the foundries. Likewise aerogels are known. The binders are optimized for the applications in terms of their chemical composition to meet the conflicting requirements, such as high thermal stability with low outgassing and low binder use and yet easy gut removal and high surface quality.

Die Binder des Standes der Technik können zum gegenwärtigen Zeitpunkt jedoch noch nicht als optimal angesehen werden. So beeinträchtigen Anhaftungen von Metallschmelzen am Form- und Kernwerkstoff sowie die Vererzung der Gussteiloberfläche die Gussteilqualität, die Entformung und die Entkernung sowie den späteren Gebrauch des Gussteils. Fast alle Binder sind bei filigranen oder komplex geformten Gussteilen schwer entfernbar, hinterlassen Anhaftungen und Vererzungen und eine grobe, raue Gussteiloberfläche.The binders of the prior art, however, can not yet be regarded as optimal at the present time. So affect Adhesion of molten metal to the mold and core material as well as the mineralization of the casting surface, the casting quality, the demoulding and the coring as well as the subsequent use of the casting. Almost all binders are difficult to remove on filigree or complex shaped castings, leaving buildup and mineralization, and a coarse, rough casting surface.

Aus WO 95/06617 A1 sind hydrophobe Kieselsäureaerogele bekannt. Diese sind erhältlich durch Umsetzung einer Wasserglaslösung mit einer Säure bei einem pH-Wert von 7,5 bis 11, weitgehende Befreiung des gebildeten Kieselsäurehydrogels von ionischen Bestandteilen durch Waschen mit Wasser oder verdünnten wässrigen Lösungen anorganischer Basen, wobei der pH-Wert des Hydrogels im Bereich von 7,5 bis 11 gehalten wird, Verdrängung der in dem Hydrogel enthaltenden wässrigen Phase durch einen Alkohol und anschließende überkritische Trocknung des erhaltenen Alkogels.Out WO 95/06617 A1 hydrophobic silica aerogels are known. These are obtainable by reacting a waterglass solution with an acid at a pH of 7.5 to 11, substantially freeing the formed silicic acid hydrogenation of ionic constituents by washing with water or dilute aqueous solutions of inorganic bases, wherein the pH of the hydrogel in the range from 7.5 to 11, displacement of the hydrogel-containing aqueous phase by an alcohol and subsequent supercritical drying of the resulting alkogel.

DE 10 2006 003 198 A1 beschreibt einen wasserlöslichen Kern, der im Bereich des Leichtmetallgusses und/oder des Feingusses eingesetzt werden kann. Das anorganische Gemisch aus Sand und hydrophilem Aerogelgranulat wird mit verschiedenen Bindemitteln gebunden. Einsatzgebiet dieser anorganischen Kerne ist die Gießereiindustrie. DE 10 2006 003 198 A1 describes a water-soluble core that can be used in the field of light metal casting and / or precision casting. The inorganic mixture of sand and hydrophilic airgel granules is bound with various binders. Field of application of these inorganic cores is the foundry industry.

Es ist somit eine Aufgabe der vorliegenden Erfindung, Gießereikerne bereitzustellen, die die spezifischen Gießerei-technischen Probleme des Standes der Technik, das heißt Anhaftung, Vererzung und Oberflächengüte, vermindern bzw. sogar lösen.It is thus an object of the present invention to provide foundry cores which alleviate or even solve the specific foundry technical problems of the prior art, i.e., adhesion, mineralization and surface finish.

Mit der vorliegenden Erfindung wird nun ein neuer Weg beschritten: Anstatt wie bisher den oder die Binder chemisch oder physikalisch zu modifizieren, werden dem Sand Zusatzstoffe zugesetzt, die mit ihren speziellen Eigenschaften diese spezifischen Probleme lösen.With the present invention, a new route is now taken: Instead of chemically or physically modifying the binder or binders as before, additives are added to the sand which, with their special properties, solve these specific problems.

In einer ersten Ausführungsform wird das der vorliegenden Erfindung zugrunde liegende Problem gelöst durch einen Gießereikern, der Sand, oragnisches Bindemittel und hydrophobes oxidisches Aerogelgranulat enthält.In a first embodiment, the problem underlying the present invention is solved by a foundry core containing sand, organic binder and hydrophobic oxidic airgel granules.

Organische Bindemittel umfassen Kunstharze wie Phenol-, Harnstoff- und Furanharze sowie Ethylsilicat. Öle, Kohlehydratbinder, wasserlösliche Flüssigkeitsbinder auf Basis von SulfitAblaugen, Melasse, Dextrose-Abläufen, Alkanolaminen und Pechbindern werden auch noch eingesetzt ( K. E. Höner "Gießereiwesen", Ullmanns Encyklopädie der technischen Chemie, S. 271-287, Bd. 12, 4. Auflage, Verlag Chemie Weinheim, 1976 ).Organic binders include synthetic resins such as phenolic, urea and furan resins as well as ethyl silicate. Oils, carbohydrate binders, water-soluble liquid binders based on sulfite blue, molasses, dextrose, alkanolamines and pitch binders are still used ( KE Höner "Founding", Ullmann's Encyclopedia of Industrial Chemistry, pp. 271-287, Vol. 12, 4th edition, Verlag Chemie Weinheim, 1976 ).

Aerogele im Sinne der Erfindung umfassen kolloidale Substanzen, die geliert und getrocknet werden. Sie haben eine geringere Dichte und hohe, offene Porosität. Sie bestehen nur zu circa 1 bis 15 Vol.-% aus einem Feststoff, während der Rest ihres Volumens durch das sie umgebende Gas bzw. auch Vakuum ausgefüllt wird, das heißt sie besitzen eine hohe Oberfläche (bis zu 1000 m2/g). Anorganische Aerogele aber auch zum Beispiel Resorcin-Formaldehyd-Aerogel als ein organisches Aerogel sind üblicherweise von sich aus hydrophil. Aerogele gelten als eines der leichtesten Materialien und der besten Wärmeisolatoren.Aerogels according to the invention include colloidal substances which are gelled and dried. They have a lower density and high, open porosity. They consist only to about 1 to 15 vol .-% of a solid, while the rest of their volume is filled by the surrounding gas or vacuum, that is they have a high surface area (up to 1000 m 2 / g). Inorganic aerogels but also, for example, resorcinol-formaldehyde airgel as an organic airgel are usually inherently hydrophilic. Aerogels are considered one of the lightest materials and the best heat insulators.

Aerogelgranulate werden insbesondere durch das Mahlen von Aerogelmonolithen gewonnen. Hydrophob bedeutet wasserabstoßend, das heißt, das eingesetzte Aerogelgranulat zeigt eine ausgeprägte Wechselwirkung mit polaren Lösemitteln wie Wasser. So haben die eingesetzten hydrophoben Aerogelgranulate einen Benetzungswinkel mit Wasser ≥ 160°.Airgel granules are obtained in particular by the milling of airgel monoliths. Hydrophobic means water-repellent, that is, the airgel granules used shows a pronounced interaction with polar solvents like water. Thus, the hydrophobic airgel granules used have a wetting angle with water ≥ 160 °.

Vielfach lassen sich hydrophobe Aerogelgranulate ausgehend von hydrophilen Aerogelgranulaten dadurch herstellen, dass man Letztere einer hydrophobierenden Behandlung unterwirft. Oft ist dies bei anorganischen Aerogelen wie zum Beispiel SiO2-basierten Aerogelen der Fall: Eine Behandlung mit zum Beispiel Trimethylsilylchlorid führt hier zu einer Silylierung der freien OH-Gruppen des hydrophilen Aerogelgranulats und somit zu einer Veretherung und damit Hydrophobierung.In many cases, hydrophobic airgel granulates can be prepared starting from hydrophilic airgel granules by subjecting the latter to a hydrophobing treatment. This is often the case with inorganic aerogels such as, for example, SiO 2 -based aerogels: a treatment with, for example, trimethylsilyl chloride leads to silylation of the free OH groups of the hydrophilic airgel granules and thus to etherification and thus hydrophobization.

Abgesehen vom Zusatz hydrophoben Aerogelgranulats (bzw. vom Ersatz eines gewissen Anteils des Formgrundstoffes durch das hydrophobe Aerogelgranulat) bleibt der sonstige Prozess der Formteil-, Kern- oder Kernpaketherstellung unverändert; es sind also nach wie vor alle möglichen Kombinationen an Sanden und Bindematerialien einsetzbar.Apart from the addition of hydrophobic airgel granulate (or the replacement of a certain proportion of the molding material by the hydrophobic airgel granules) remains the other process of molding, core or Kernpakserstellung unchanged; So there are still all possible combinations of sands and binding materials used.

Eine mögliche Begründung für die durch den erfindungsgemäßen Gießereikern beobachteten Verbesserungen könnte damit zusammenhängen, dass die eingesetzten hydrophoben Aerogelgranulate zwar makroskopische Dimensionen besitzen aber nanostrukturiert sind (wie alle Aerogele). Der Einsatz eines ausreichenden Anteils an hydrophobem Aerogelgranulat könnte nun dazu führen, dass die Schmelze die Gussform nicht mehr in ausreichender Weise reaktiv benetzen kann, da die Nanostruktur der hydrophoben Aerogelgranulate nur punktförmige Kontakte zulässt. Auf diese Weise würden dann Anhaftungen und Vererzungen unterdrückt.A possible reason for the improvements observed by the foundry core according to the invention could be related to the fact that the hydrophobic airgel granules used have macroscopic dimensions but are nanostructured (like all aerogels). The use of a sufficient proportion of hydrophobic airgel granules could now lead to the melt, the mold can no longer adequately reactive wet the mold, since the nanostructure of the hydrophobic airgel granules allows only punctiform contacts. In this way, attachments and mineralization would be suppressed.

Insgesamt erweisen sich die über den Einsatz der erfindungsgemäßen Gießereikerne erhaltenen Gussteile als sehr glatt (genaue Gussqualität), Anhaftungen und Vererzungen sind im Vergleich zu Gussteilen des Standes der Technik deutlich unterdrückt.Overall, the castings obtained via the use of the foundry cores according to the invention prove to be very smooth (exact casting quality), adhesions and mineralization are significantly suppressed compared to castings of the prior art.

Bevorzugt umfasst der Sand Quarzsand, einen auf Al2O3 basierenden und/oder einen auf Mullit basierenden Sand.The sand preferably comprises quartz sand, an Al 2 O 3 -based and / or a mullite-based sand.

Als Sande können unter anderem die in Deutschland handelsüblichen Quarz-Neusande folgender Herkunft mit folgender mittlerer Korngröße in mm verwendet werden:

  • Dorsten 0,84 mm (Sorte D020), 0,56 mm (D030), 0,39 mm (D040), 0,13 mm (D0110);
  • Frechen 0,32 mm (Sorte F31), 0,23 mm (F32), 0,22 mm (F33), 0,20 mm (F34), 0,18 mm (F35), 0,16 mm (F36);
  • Gambach 0,37 mm (Sorte G30), 0,29 mm (G31), 0,23 mm (G32), 0,21 mm (G33), 0,19 mm (G34);
  • Haltern 0,36 mm (Sorte H31), 0,32 mm (H32), 0,26 mm (H33), 0,21 mm (H34) und 0,19 mm (H35).
The sands which may be used include, inter alia, commercially available quartz new sands of the following origin in Germany with the following average grain size in mm:
  • Dorsten 0.84 mm (grade D020), 0.56 mm (D030), 0.39 mm (D040), 0.13 mm (D0110);
  • Frechen 0.32 mm (grade F31), 0.23 mm (F32), 0.22 mm (F33), 0.20 mm (F34), 0.18 mm (F35), 0.16 mm (F36);
  • Gambach 0.37 mm (grade G30), 0.29 mm (G31), 0.23 mm (G32), 0.21 mm (G33), 0.19 mm (G34);
  • Holders 0.36 mm (grade H31), 0.32 mm (H32), 0.26 mm (H33), 0.21 mm (H34) and 0.19 mm (H35).

Alternativ zu den eingesetzten Quarzsanden können auch Korundsande ähnlicher Größenordnung (0,1 bis 0,9 mm) eingesetzt werden.As an alternative to the quartz sands used, corundum sands of similar size (0.1 to 0.9 mm) can also be used.

Die oben gezeigten Quarzsande sind Neusande, tatsächlich werden diese in Gießereien nur in geringem Maße den "Altsanden" zugesetzt. Altsand ist der beim Ausleeren der Gussstücke aus den Formen anfallende Sand, welcher nach entsprechender Kühlung und Neuaufbereitung der Formerei wieder zugeführt wird. Die Neuaufbereitung hat zwei Aufgaben zu erfüllen: Die Reinigung des Quarzkornes von anhaftenden Bindemitteln und die Entfernung staubförmiger Bestandteile. Bei diesem Prozess werden noch vorhandene Agglomerate mechanisch zerkleinert und so die Bindemittelhüllen teilweise von den Quarzkörnern entfernt. Bei diesem Prozess erfährt die ursprünglich eher abgerundete Oberfläche des Sandkornes eine Veränderung. Von rund wird sie zu splitterig. Diese Kornform ist wichtig für den Prozess der Formstoffbindung, auf diese Weise wird gewährleistet, dass nur ein vergleichsweise geringer Bindemittelanteil gebraucht wird.The quartz sands shown above are new sands, in fact these are only added to the "old sands" in foundries to a limited extent. Used sand is the sand that accumulates when the castings are emptied out of the molds, which, after appropriate cooling and reconditioning, is returned to the molding shop. The reprocessing has two tasks to accomplish: cleaning the quartz grain from adhering binders and removing dusty constituents. In this process, any remaining agglomerates are mechanically comminuted and thus the binder coats partially removed from the quartz grains. In this process, the originally rather rounded surface of the grain of sand undergoes a change. From around she is too fragmented. This grain shape is important for the process of forming material, thus ensuring that only a comparatively small amount of binder is needed.

Bevorzugt enthält die Mischung aus der der Gießereikern hergestellt wird, einen Sandanteil von 83 bis 95 Gew.-% wobei hier 1 bis 20 Gew.-% Neusand und 80 bis 99 Gew.-% Regenerat (Kreislaufformstoff, das heißt gereinigter wiederverwendeter Sand) bevorzugt sind. Auf die Zumischung von regeneriertem Sand kann verzichtet werden, insbesondere Bei Rot-, Messing- und Bronzeguss. Der Anteil an Bindemittel beträgt bevorzugt 1 bis 10 Gew.-%. Sand-, Bindemittel- und Aerogelgranulatanteil (und gegebenenfalls die Anteile weiterer Inhaltsstoffe) addieren sich entsprechend auf 100 Gew.-% bzw. Vol.-%.Preferably, the mixture of which the foundry core is produced, a sand content of 83 to 95 wt .-% wherein here 1 to 20 wt .-% virgin sand and 80 to 99 wt .-% regenerate (cycle molding material, that is purified recycled sand) preferred are. The addition of regenerated sand can be dispensed with, especially in red, brass and bronze casting. The proportion of binder is preferably 1 to 10 wt .-%. Sand, binder and Airogelgranulatanteil (and optionally the proportions of other ingredients) add up to 100 wt .-% or vol .-%.

Bevorzugt ist, dass das oxidische Aerogelgranulat SiO2, TiO2 und/oder ZrO2 umfasst. Zur Hydrophobierung entsprechend hergestellter Aerogele bietet sich insbesondere die oben schon erwähnte Trimethylsilylierung durch Behandlung mit TMSCI an.It is preferred that the oxidic airgel granules comprise SiO 2 , TiO 2 and / or ZrO 2 . For the hydrophobization of correspondingly prepared aerogels, the above-mentioned trimethylsilylation by treatment with TMSCI is particularly suitable.

Weiterhin ist es bevorzugt, dass das Aerogelgranulat eine Korngrößenverteilung in der Größenordnung des Sandes aufweist.Furthermore, it is preferred that the airgel granules have a particle size distribution in the order of magnitude of the sand.

Bevorzugt weist/weisen das Aerogelgranulat und/oder der Sand eine Korngrößenverteilung in einem Bereich von 0,1 bis 0,9 mm auf.Preferably, the airgel granules and / or the sand have / have a particle size distribution in a range from 0.1 to 0.9 mm.

Bevorzugt weist das Aerogelgranulat eine Korngröße/Korngrößenverteilung in einem Bereich von ≤ 0,5 mm auf.The airgel granules preferably have a particle size / particle size distribution in a range of ≦ 0.5 mm.

Der Vorteil der soeben beschriebenen Korngrößenverteilungen/Korngrößen ist darin zu sehen, dass sowohl das hydrophobe Aerogelgranulat als auch der Sand als Formgrundstoffe verwendet werden und eine optimale Durchmischung gleichgroßer Partikel einfacher durchzuführen ist. Darüber hinaus hat sich gezeigt, dass bei den erfindungsgemäßen Korngrößenverteilungen/Korngrößen die beobachteten Effekte, das heißt ein vermindertes Ausmaß an Anhaftungen und Vererzungen sowie eine genauere Gussteiloberfläche, größer sind als bei anderen Korngrößenverteilungen/Korngrößen.The advantage of the particle size distributions / grain sizes just described is that both the hydrophobic airgel granules and the sand are used as mold bases and optimum mixing of particles of the same size is easier to carry out. In addition, it has been found that in the grain size distributions / grain sizes according to the invention, the observed effects, that is to say a reduced amount of adhesion and mineralization, as well as a more precise Casting surface, are larger than other grain size distributions / grain sizes.

Der Anteil des Aerogelgranulats liegt bevorzugt in einem Bereich von 3 bis 15, besonders bevorzugt von 8 bis 12 Vol.-%. Alternativ oder kumulativ liegt der Anteil des Aerogelgranulats im Kern in einem Bereich von 0,05 bis 0,24, insbesondere von 0,13 bis 0,19 Gew.-%.The proportion of airgel granules is preferably in a range from 3 to 15, particularly preferably from 8 to 12,% by volume. Alternatively or cumulatively, the proportion of airgel granules in the core is in a range from 0.05 to 0.24, in particular from 0.13 to 0.19 wt .-%.

Erfindungsgemäß handelt es sich bei dem Bindemittel um ein organisches Bindemittel, insbesondere ein Bindemittel oder ein Bindemittelgemisch, welches mindestens einen Vertreter ausgewählt aus Phenolharzen, Harnstoffharzen, Furanharzen, Polyurethanharzen und Resorcin-Formaldehydharzen und RF-Aerogelbinder umfasst.According to the invention , the binder is an organic binder, in particular a binder or a binder mixture which comprises at least one member selected from phenolic resins, urea resins, furan resins, polyurethane resins and resorcinol-formaldehyde resins and RF airgel binders.

Organische Bindemittel haben sich als bevorzugt herausgestellt, da beim Abguss eine Verkohlung des Bindemittels erfolgt und diese zu einer weiteren Erleichterung bei der Entkernung beiträgt.Organic binders have been found to be preferred as charring of the binder occurs during casting and this contributes to further ease of gutting.

Besonders bevorzugt handelt es sich bei dem hydrophoben Aerogelgranulat um hydrophobiertes Silica- oder Wasserglas-Aerogel: Durch die hohen thermischen Belastungen während des Abgusses werden die zur Hydrophobierung eingeführten organischen Gruppen zerstört und das hydrophobe in ein hydrophiles Aerogel umgewandelt, welches sich sehr leicht mit zum Beispiel Wasser entfernen lässt.The hydrophobic airgel granules are particularly preferably hydrophobized silica or waterglass airgels. Due to the high thermal loads during the casting, the organic groups introduced for the hydrophobization are destroyed and the hydrophobic air is converted into a hydrophilic airgel, which is very easy to react with, for example Remove water.

In einer zweiten Ausführungsform wird die der Erfindung zugrundeliegende Aufgabe gelöst durch ein Verfahren zur Herstellung eines erfindungsgemäßen Gießereikerns, welches dadurch gekennzeichnet ist, dass man die folgenden Schritte durchführt:

  1. a. Mischung eines Aerogelgranulats mit Sand und Bindemittel,
  2. b. Einbringung der Mischung in eine Negativform des Kerns, gegebenenfalls gefolgt von einer Verdichtung der Mischung,
  3. c. Härtung des Bindemittels und
  4. d. Kernentnahme aus der Negativform.
In a second embodiment, the object underlying the invention is achieved by a method for producing a foundry core according to the invention, which is characterized in that the following steps are carried out:
  1. a. Mixture of an airgel granulate with sand and binder,
  2. b. Introducing the mixture into a negative mold of the core, optionally followed by a compression of the mixture,
  3. c. Hardening of the binder and
  4. d. Core removal from the negative mold.

Die Verdichtung wird beispielsweise durch Kernschießen, Rütteln, Klopfen und/oder Stampfen vorgenommen. Für die Härtung des Bindemittels haben sich Temperaturen von 20 bis 300 °C als besonders geeignet herausgestellt, insbesondere 80 bis 250°C. Die Dauer der Härtung beträgt vorzugsweise wenige Sekunden bis Minuten.
Die Trocknung der Gießereikerne ist entweder nach der Härtung abgeschlossen oder erfolgt durch Lagerung der Kerne bei Raumtemperatur oder bei Temperaturen oberhalb von Raumtemperatur bis 300°C von 1 - 24 Stunden oder in der Mikrowelle.
The compaction is done for example by core shooting, shaking, tapping and / or pounding. For the curing of the binder, temperatures of 20 to 300 ° C have been found to be particularly suitable, in particular 80 to 250 ° C. The duration of the curing is preferably a few seconds to minutes.
Drying of foundry cores is either completed after curing or by storage of the cores at room temperature or at temperatures above room temperature to 300 ° C from 1 to 24 hours or in the microwave.

In einer dritten Ausführungsform wird die der Erfindung zugrundeliegende Aufgabe gelöst durch die Verwendung des erfindungsgemäßen Gießereikerns im Metallguss, insbesondere im Buntmetall-, Leichmetall- oder Eisenguss.In a third embodiment, the object underlying the invention is achieved by the use of the foundry core according to the invention in metal casting, in particular in non-ferrous metal, Leichmetall- or iron casting.

Insbesondere wird der Kern nach dem Erstarren der Schmelze durch eine thermische Behandlung bei erhöhter Temperatur, insbesondere einer Temperatur von ≥ 300 °C, oder durch ein ihn benetzendes Fluid, insbesondere Wasser, entfernt.In particular, after the solidification of the melt, the core is removed by a thermal treatment at elevated temperature, in particular a temperature of ≥ 300 ° C., or by a fluid which wets it, in particular water.

Die Entfernung mit einem benetzenden Fluid ist von Vorteil, da hier sich der Kern durch das ihn benetzende Fluid rückstandsfrei zersetzt.The removal with a wetting fluid is advantageous, since here the core decomposes without residue by the fluid which wets it.

Insbesondere eignen sich hierbei gut benetzende Fluide wie Wasser, da die Hydrophobierung (Trimethylsilylierung der inneren Oberflächen der Aerogele) durch den Wärmeeinfluss beim Abguss zerstört wird. Die Benetzbarkeit bezeichnet die Fähigkeit von Flüssigkeiten, sich auf einer Oberfläche auszubreiten; je besser die Benetzbarkeit, umso kleiner ist der bei der Benetzung auftretende Kontaktwinkel. Oberflächen werden auch als (unvollständig) benetzbar bezeichnet, wenn der Kontaktwinkel mit der Oberfläche bis zu 90° beträgt. Je höher die Temperatur des benetzenden Fluids ist, desto besser lassen sich die Kerne entfernen. Besonders bevorzugt sind daher Fluide mit einer Temperatur von 30 bis 100 °C. Hier wird ausgenutzt, dass hydrophile Silica-Aerogele durch gut benetzende Flüssigkeiten (beispielsweise kochendes Wasser) leicht zerstört werden können.In particular, these are well-wetting fluids such as water, since the hydrophobization (trimethylsilylation of the inner surfaces of the aerogels) is destroyed by the influence of heat during casting. Wettability refers to the ability of liquids to spread on a surface; the better the wettability, the smaller is the contact angle that occurs during wetting. Surfaces are also referred to as (incompletely) wettable when the contact angle with the Surface is up to 90 °. The higher the temperature of the wetting fluid, the better the cores can be removed. Particular preference is therefore given to fluids having a temperature of from 30 to 100.degree. Here it is exploited that hydrophilic silica aerogels can easily be destroyed by well-wetting liquids (for example boiling water).

In einer weiteren Ausführungsform kann der Kern durch alkoholische Fluide oder kurzkettigen Alkohole mit einer Kettenlänge mit bis zu sechs C-Atomen zerstört werden. Um die Brandgefahr zu vermeiden, sollten nicht brennbare Alkoholmischungen beispielsweise mit Wasser eingesetzt werden.In another embodiment, the core may be destroyed by alcoholic fluids or short chain alcohols having a chain length of up to six carbon atoms. To avoid the risk of fire, non-flammable alcohol mixtures should be used, for example with water.

Ausführungsbeispiele:EXAMPLES

Es waren alle Arten hydrophobierter oxidischer Aerogelgranulate einsetzbar. Untersucht wurden insbesondere die folgenden Aerogelgranulate, die nach Herstellung der Aerogele durch Mahlen auf die richtige Korngröße (sandangepasst) gebracht wurden:

  • hydrophobes Silica-Aerogelgranulat
  • hydrophobes Titanoxid-Aerogel
  • hydrophobes Zirkonoxid-Aerogel
All types of hydrophobized oxidic airgel granules could be used. In particular, the following airgel granules were investigated, which after preparation of the aerogels were brought to the correct particle size (sand-adapted) by grinding:
  • hydrophobic silica airgel granules
  • hydrophobic titanium oxide airgel
  • hydrophobic zirconia airgel

Als Binder wurden eingesetzt (in allen Kombinationen mit den oben genannten Aerogelen) :

  • Phenolharzbinder mit gasförmigem Amin-Katalysator
  • Harnstoffbinder
  • Polyurethanbinder
  • RF-Aerogelbinder
As binders were used (in all combinations with the above aerogels):
  • Phenol resin binder with gaseous amine catalyst
  • urea binder
  • polyurethane binder
  • RF Aero Yellow Indians

In allen Fällen wurden feste Formstoffe oder Kerne erzeugt. Abgüsse mit Messing, Bronze und Aluminiumlegierungen zeigten Gussstücke frei von Anhaftungen oder Vererzungen und saubere, teils glatte Oberflächen. Kerne, hergestellt aus dem Verbund Sand mit Aerogelgranulat und polymerem Binder, ließen sich bei Probeabgüssen (Modellplatte für Biegeriegel, aber auch technische Gussteile) leicht und problemlos entfernen, entweder mechanisch, thermisch (Oxidation bei ca. 350°C) oder auch mit Wasser, da die Hydrophobierung (Trimethylsilylierung der inneren Oberflächen der Aerogele) durch den Wärmeeinfluss beim Abguss zerstört wird. Die Gussstücke waren zudem poren- und lunkerfrei, das heißt die Kerne erzeugten, auch wenn sie organische Substanzen enthielten, keine zusätzliche Gasentwicklung, da der aerogele Zusatzstoff im Sand als Sikkativ oder absorbierend für Gießgase wirkt. Fehler der Maßhaltigkeit die aufgrund der Kernausdehnung beim Quarzsprung unter Verwendung von Quarzsand während des Abgusses entstehen können durch die Elastizität der eingesetzten Granulate in Abhängigkeit von Granulatanteil und Bindergehalt kompensiert werden.In all cases solid molded materials or cores were produced. Castings with brass, bronze and aluminum alloys showed castings free from buildup or mineralization and clean, sometimes smooth surfaces. Cores made from the composite sand with airgel granulate and polymer binder could easily and easily be removed from sample casts (model plate for bending bars, but also technical castings), either mechanically, thermally (oxidation at approx. 350 ° C) or even with water. since the hydrophobization (trimethylsilylation of the inner surfaces of the aerogels) is destroyed by the heat influence during casting. The castings were also pore and void-free, that is, the cores produced, even if they contained organic substances, no additional gas evolution, since the aerogels additive in the sand acts as a siccative or absorbent for casting gases. Errors of the dimensional stability which occur due to the core expansion during the quartz jump using quartz sand during casting can be compensated for by the elasticity of the granules used as a function of the granulate content and binder content.

Beispiel 1: Hot-Box-Verfahren (Harnstoff-Formaldehydbinder) (s. Gießereilexikon, Schiele &Schön, Berlin) Example 1 Hot-Box Process (Urea-Formaldehyde Binder) (see foundry dictionary, Schiele & Schön, Berlin)

Zur Herstellung von Kernen wurden 500 g Sand (H32) und 10 g Bindersystem (Resin, Härter AT, Konserver der Firma Hüttenes Albertus) gemischt. 30 ml hydrophobes Silica-Aerogelgranulat (Cabot Nanogel GmbH, Frankfurt, Nanogel®, transluzentes Aerogel, Silica, [(trimethylsilyl)oxy]-modified, 1,8 g, Korngröße < 0,5 mm) wurde homogen mit dem Sand/Binder-Gemisch gemischt. Die Kerne ließen sich problemlos herstellen (230 - 275 °C, Backzeit: 35-28 s). Die getrockneten Kerne wurden abgegossen. Das Gussteil hatte auch ohne Schlichten eine glatte Oberfläche und war frei von Vererzungen. Der Kern konnte ohne Mühen aus dem Gussteil entfernt werden.For the production of cores, 500 g sand (H32) and 10 g binder system (Resin, Hardener AT, Konserver from Hüttenes Albertus) were mixed. 30 ml hydrophobic silica airgel (Cabot Nanogel GmbH, Frankfurt, Nanogel ®, translucent airgel, silica, -Modified [(trimethylsilyl) oxy], 1.8 g, particle size <0.5 mm) was homogeneously mixed with the sand / binder Mixed mixture. The cores were easy to produce (230 - 275 ° C, baking time: 35-28 s). The dried kernels were poured off. The casting had a smooth surface even without sizing and was free of mineralization. The core could be removed from the casting without effort.

Beispiel 2: Hot-Box-Verfahren (UF Polymer) Example 2: Hot Box Method (UF Polymer)

Zur Herstellung von Biegeriegeln wurden 500 g Sand (Quarzsand) 8,27 g Binder (Hot-Box Harz HB587 (UF Polymer, Borden Chemical UK LTD), Härter AT21 (Hüttenes Albertus), Fließöl (Tego Emulsion 35, Goldschmidt AG)) gemischt. Der fertigen Mischung wurden 10 Vol.-% hydrophobes Silica-Aerogelgranulat (1,71 g, Korngröße < 0,5 mm) zugesetzt und homogen gemischt. Biegeriegel wurden handgeformt, und anschließend bei 180 °C getrocknet. Die Biegefestigkeit entsprach den üblichen Werten. Die Entkernbarkeit konnte deutlich verbessert werden. Die Gussteile hatten eine glatte Oberfläche.For the production of bending bars, 500 g of sand (quartz sand) 8.27 g of binder (hot-box resin HB587 (UF polymer, Borden Chemical UK LTD), hardener AT21 (Hüttenes Albertus), flow oil (Tego emulsion 35, Goldschmidt AG)) were mixed , 10% by volume of hydrophobic silica airgel granules (1.71 g, grain size <0.5 mm) were added to the finished mixture and mixed homogeneously. Bending bars were hand-formed, and then dried at 180 ° C. The bending strength corresponded to the usual values. The Entkernbarkeit could be significantly improved. The castings had a smooth surface.

Beispiel 3: Cold-Box-Verfahren (Phenolharz/Isocyanat mit Aminhärtung) Example 3 Cold Box Process (Phenolic Resin / Isocyanate with Amine Cure)

Zur Herstellung von Biegeriegeln wurden 500 g Sand (Quarzsand, rezykliert) mit 2,23 Gew. % Binder (Ecocure 200 EP, Ecocure 100 EP (beide: ASK Chemicals)) gemischt. Der fertigen Mischung wurden 10 Vol.-% hydrophobes Silica-Aerogelgranulat (3,36 g, Korngröße < 0,5 mm) zugesetzt und homogen gemischt. Biegeriegel wurden handgeformt und durch die Begasung mit Ethyldimethylamin (Katalysator 702, ASK Chemicals) ausgehärtet. Die Kerne waren stabil und konnten problemlos abgegossen werden. Die Entkernung war vereinfacht, die Qualität der Gussoberfläche verbessert.For the production of bends 500 g sand (quartz sand, recycled) with 2.23 wt.% Binder (Ecocure 200 EP, Ecocure 100 EP (both: ASK Chemicals)) were mixed. 10% by volume of hydrophobic silica airgel granules (3.36 g, grain size <0.5 mm) were added to the finished mixture and mixed homogeneously. Benders were hand-molded and cured by gassing with ethyldimethylamine (Catalyst 702, ASK Chemicals). The cores were stable and could be poured easily. The gutting was simplified, the quality of the casting surface improved.

Claims (12)

  1. A casting core containing sand, organic binder and hydrophobic oxidic aerogel granules.
  2. The core according to claim 1, characterized in that said sand comprises silica sand, a sand based on Al2O3, and/or a sand based on mullite.
  3. The core according to either of claims 1 or 2, characterized in that said oxidic aerogel granules includes SiO2, TiO2 and/or ZrO2.
  4. The core according to any of claims 1 to 3, characterized in that said aerogel granules have a grain size distribution on the order of that of the sand.
  5. The core according to any of claims 1 to 4, characterized in that said aerogel granules and/or said sand have a grain size distribution within a range of from 0.1 to 0.9 mm.
  6. The core according to any of claims 1 to 5, characterized in that said aerogel granules have a grain size within a range of ≤ 0.5 mm.
  7. The core according to any of claims 1 to 6, characterized in that the proportion of the aerogel granules is within a range of from 3 to 15%, preferably 8 to 12%, by volume.
  8. The core according to any of claims 1 to 7, characterized in that the proportion of the aerogel granules in the core is within a range of from 0.05 to 0.24%, preferably 0.13 to 0.19%, by weight.
  9. The core according to any of claims 1 to 8, characterized in that said binder is a binder or mixture of binders comprising at least one member selected from phenol resins, urea resins, furan resins, polyurethane resins, resorcinol formaldehyde resins, and RF aerogel binders.
  10. A process for producing a casting core according to any of claims 1 to 9, characterized in that the following steps are performed:
    a. mixing said aerogel granules with sand and binder;
    b. introducing the mixture into a negative mold of the core, optionally followed by compaction of the mixture;
    c. curing the binder; and
    d. removing the core from the negative mold.
  11. Use of a casting core according to any of claims 1 to 9 in metal casting, especially in non-ferrous metal, light metal or iron casting.
  12. The use according to claim 11, characterized in that said core is removed by thermal treatment at an elevated temperature, especially a temperature of ≥ 300 °C, or by a fluid wetting the core, especially water.
EP09175205.5A 2008-11-12 2009-11-06 Foundry core with improved gutting properties II Active EP2193858B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810056842 DE102008056842A1 (en) 2008-11-12 2008-11-12 Foundry cores with improved gutting properties II

Publications (2)

Publication Number Publication Date
EP2193858A1 EP2193858A1 (en) 2010-06-09
EP2193858B1 true EP2193858B1 (en) 2016-01-13

Family

ID=41649207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09175205.5A Active EP2193858B1 (en) 2008-11-12 2009-11-06 Foundry core with improved gutting properties II

Country Status (2)

Country Link
EP (1) EP2193858B1 (en)
DE (1) DE102008056842A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105215281A (en) * 2015-09-21 2016-01-06 济南大学 A kind of preparation method printing quartzy precoated sand for 3D
EP3389893B1 (en) * 2015-12-15 2020-09-02 Robert Bosch GmbH Method for producing a foundry sand mold, in particular a foundry sand core, including a three-dimensional printing method
DE102016223619A1 (en) * 2015-12-15 2017-06-22 Robert Bosch Gmbh Sizing for application to the porous surface of molds and / or cores for metal casting
CN106077497A (en) * 2016-07-30 2016-11-09 安徽全柴天和机械有限公司 A kind of core of good permeability and preparation method thereof
DE102017104692A1 (en) 2017-03-07 2018-09-13 Sandhelden Verwaltungs GmbH sanitary body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236525A2 (en) * 2001-02-15 2002-09-04 Alcan Technology & Management AG Casting mould

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692479A (en) * 1985-07-19 1987-09-08 Ashland Oil, Inc. Self-setting urethane adhesive paste system
DE3814968A1 (en) * 1988-05-03 1989-11-16 Basf Ag DENSITY DENSITY 0.1 TO 0.4 G / CM (UP ARROW) 3 (UP ARROW)
CN1042822C (en) 1993-08-31 1999-04-07 Basf公司 Hydrophobic silicic aerogels
DE19939062A1 (en) * 1999-08-18 2001-02-22 Deutsch Zentr Luft & Raumfahrt Use of plastic / carbon aerogels as the core material
US6806299B2 (en) * 2001-05-18 2004-10-19 The Regents Of The University Of California Preparation of hydrophobic organic aeorgels
DE10357539A1 (en) * 2003-12-10 2005-07-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Production of filler-containing aerogels
DE102006003198A1 (en) 2006-01-24 2007-07-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Mechanically and thermally stable core, used for light metal- and/or investment casting, comprises hydrophilic aerogel granulates, sand and binding agent
DE102006021151A1 (en) * 2006-05-06 2007-11-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Core material of clay-containing sand containing aerogelsand
DE102006056093B4 (en) * 2006-11-17 2012-09-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aerogelsand core material containing additive sand and its use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236525A2 (en) * 2001-02-15 2002-09-04 Alcan Technology & Management AG Casting mould

Also Published As

Publication number Publication date
EP2193858A1 (en) 2010-06-09
DE102008056842A1 (en) 2010-05-20

Similar Documents

Publication Publication Date Title
EP2209572B1 (en) Mould material mixture having improved flowability
EP2097192B1 (en) Moulding material mixture containing phosphorus for producing casting moulds for machining metal
DE102007045649B4 (en) A method of making a mold and / or a core using comminuted natural particulate amorphous silicic materials in the foundry area and binder composition
EP3606690B1 (en) Method for producing casting molds, cores and basic mold materials regenerated therefrom
EP2193858B1 (en) Foundry core with improved gutting properties II
EP1934001B8 (en) Borosilicate glass-containing molding material mixtures
DE102006056093B4 (en) Aerogelsand core material containing additive sand and its use
WO2013152851A2 (en) Salt-based cores, method for the production thereof and use thereof
EP1697273B1 (en) Production of aerogels containing fillers
EP1820582B1 (en) Aerogel containing core for light alloy and/or lost wax casting
WO2018002027A1 (en) Core-shell particles for use as a filler for feeder compositions
EP3137245A1 (en) Mould material mixture containing resols and amorpous silicon dioxide, moulds and cores produced therefrom and method for the production thereof
EP3389893B1 (en) Method for producing a foundry sand mold, in particular a foundry sand core, including a three-dimensional printing method
EP2308614B1 (en) Green aerosand
DE102007008104A1 (en) Process to regenerate sand pre-used in a metal casting process by burning and washing out organic and inorganic residues
EP3006136A1 (en) Use of a basic composition as infiltration agent for the moulding material of a mould for preventing white coverings (pitted surfaces) on castings, related methods, casting moulds and kits
EP2204246B1 (en) Foundry core with improved gutting properties I
DE10216464B4 (en) Silica-bonded core materials, processes for their production and their use
EP2941327B1 (en) Method for the production of core sand and or molding sand for casting purposes
DE10216403B4 (en) Airgel-bound molded materials with high thermal conductivity
EP1682291B1 (en) Filler-containing aerogels
DE102018215957A1 (en) Casting core for casting molds and process for its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100918

17Q First examination report despatched

Effective date: 20101013

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150731

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 770166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009012031

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160414

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009012031

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

26N No opposition filed

Effective date: 20161014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231013

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231010

Year of fee payment: 15

Ref country code: DE

Payment date: 20231010

Year of fee payment: 15

Ref country code: AT

Payment date: 20231027

Year of fee payment: 15