EP2191192A2 - Elektrische leuchte mit einer leuchtdiode und einem leuchten-reflektor - Google Patents

Elektrische leuchte mit einer leuchtdiode und einem leuchten-reflektor

Info

Publication number
EP2191192A2
EP2191192A2 EP08807091A EP08807091A EP2191192A2 EP 2191192 A2 EP2191192 A2 EP 2191192A2 EP 08807091 A EP08807091 A EP 08807091A EP 08807091 A EP08807091 A EP 08807091A EP 2191192 A2 EP2191192 A2 EP 2191192A2
Authority
EP
European Patent Office
Prior art keywords
heat
conducting means
component
led
power led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08807091A
Other languages
English (en)
French (fr)
Inventor
Otto Flach
Georg Jenner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansorg GmbH
Original Assignee
Ansorg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ansorg GmbH filed Critical Ansorg GmbH
Publication of EP2191192A2 publication Critical patent/EP2191192A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to an electric lamp using a high-power LED (hereinafter abbreviated to LED for the most part) and the problem of dissipating the heat generated by the LED during operation.
  • a high-power LED hereinafter abbreviated to LED for the most part
  • LEDs have long been used mainly as indicator lights in seven-segment and dot matrix displays due to low light output and the lack of availability of white emitting LEDs. In the course of development, the light output has been increased considerably, so that high-performance LEDs are now available as lamps for electric lights.
  • Electric lights that have a high-power LED as a light source, which receive an operating current up to 1 A, are known.
  • a considerable amount of equipment is required so far to dissipate the heat generated during operation of the LED, otherwise the LED would fall sharply or be destroyed in the light output.
  • Heat dissipation from the LED has hitherto been via active elements, e.g. by means of a fan or a closed cooling circuit, or passive elements, e.g. the luminaire housing, heat sinks or power lines and is well known in lighting technology.
  • active elements e.g. by means of a fan or a closed cooling circuit
  • passive elements e.g. the luminaire housing, heat sinks or power lines and is well known in lighting technology.
  • Another object of the invention is also to make the power supply of the LED as simple as possible.
  • the measures for the efficiently realized cooling of the LED and its power supply are aimed at being able to produce the electric light as much as possible in a space-saving and cost-saving manner as well as not being restricted in the design-related design by otherwise mandatory components.
  • the electrical luminaire with at least one high-power LED and a luminaire reflector has heat-conducting means, which are arranged between the high-power LED and the luminaire reflector, for dissipating heat generated by the high-power LED toward the luminaire reflector ,
  • a heat sink Adjacent to the high-power LED, a heat sink is arranged as a first constituent of the heat-conducting means, and a second constituent of the heat-conducting means extends between the heat sink and the luminaire reflector.
  • the heat-conducting means comprise a number of bridging elements forming the second component.
  • the high power LED is mounted on a board and the bridging elements are electrically isolated from the board.
  • the heat-conducting means comprise an electrically insulating layer, which forms the second component and is present as a separate insulating layer or belongs to the luminous reflector and / or to the heat sink.
  • One pole of the power supply to the high-power LED is formed by the lamp reflector, while the other pole of the power supply to the high-power LED is formed by the heat-conducting means in the form of the first component as a heat sink.
  • a first electrical connection is provided between the first component of the heat-conducting means in the form of the heat sink and the high-power LED, and a second electrical connection exists between the luminaire reflector and the high-power LED.
  • the high-power LED has a pedestal, and between the pedestal and the first part of the heat-conducting means in the form of the heat sink, a third part of the heat-conducting means is inserted.
  • a thermal compound is particularly suitable.
  • Figure 1A the basic structure of the inventive lamp in the first
  • FIG. 1B the enlarged detail X1 from FIG. 1A;
  • Figure 2A the basic structure of the inventive lamp in the second
  • FIG. 2B the enlarged detail X2 from FIG. 2A;
  • Figure 3A the basic structure of the inventive lamp in the third embodiment.
  • FIG. 3B the enlarged detail X3 from FIG. 3A.
  • FIGS. 1A and 1B are identical to FIGS. 1A and 1B.
  • the luminaire in the first embodiment consists essentially of a luminaire reflector 1, a high-power LED 2, a circuit board 3 and heat-conducting means 6, which serve to dissipate the heat generated by the LED 2.
  • the luminaire reflector 1 has an outer side 10 and an inner side 11.
  • the LED 2 preferably sits centrally in a recess of the luminaire reflector 1 and is composed of a base 20, a first and second terminals 21, 22 present thereon and the LED Reflector 23 together.
  • the heat conductive means 6 are formed of a first component 64, a second component 61 and a third component 63.
  • the first component 64 has the shape of a heat sink 64
  • the second component 61 has the shape of bridging elements 61
  • the third component 63 is a thermal paste 63.
  • the base 20 of the LED 2 is arranged in a recess of an adjacent heat sink 64, wherein the free space between the base 20 and the heat sink 64 is filled by thermal paste 63.
  • the bridging elements 61 represent a heat-conducting, with respect to the board 3 electrically insulated connection between the heat sink 64 and luminaire reflector 1.
  • the heat generated during operation of the LED 2 is first supplied to the heat sink 64 via the thermal compound 63.
  • a portion of the heat absorbed by the heat sink 64 is dissipated by the oncoming air, while another portion of heat is conducted via the bridging elements 61 to the reflector 1 and from there further reaches the ambient air.
  • the heat sink 64 is supported in its heat dissipation from the reflector 1 and can be dimensioned correspondingly smaller.
  • the power supply to the LED 2 is effected by the running on the board 3 first and second conductor 31,32 different polarity.
  • the first conductor 31 forms the negative pole and is connected through the first terminal 21 to the base 20 of the LED 2.
  • the second conductive line 32 forming the plus pole has contact with the base 20 of the LED 2 via the second terminal 22.
  • the board 3 is arranged between the luminaire reflector 1 and the heat sink 3, wherein the board 3 projecting bridging elements 61 are electrically insulated from the board 3.
  • FIGS. 2A and 2B are identical to FIGS. 2A and 2B.
  • the second embodiment of the luminaire also has a luminaire reflector 1, a high-power LED 2 and the heat-conducting means 6.
  • the circuit board 3 is now replaced by a second component 62 of the heat-conducting means 6 in the form of an insulating layer 62, which between the reflector 1 and the cooling body 64 is arranged.
  • the power supply has changed to the base 20 of the LED 2, in which now the negative pole on the heat sink 64 is applied, from which a first terminal 21 to the base 20 extends.
  • the plus pole is applied to the reflector 1, from where the second terminal 22 leads to the base 20.
  • a separate insulating layer 62 it may also belong directly to the luminaire reflector 1 and / or to the heat sink 64.
  • thermal compound 63 is provided between the heat sink 64 and the base 20, in turn, as the third component 63 of the heat-conducting means 6, thermal compound 63 is provided.
  • the heat flow from the heat sink 64 to the luminaire reflector 1 is now via the electrically insulating layer 62, so that the heat sink 64 is again assisted in the dissipation of the heat generated by the LED 2.
  • FIGS. 3A and 3B The third embodiment represents a hybrid between the first and the second embodiment.
  • the bridging elements 61 are adopted for heat conduction between the heat sink 64 and the luminaire reflector 1, while from the second embodiment the power supply of the LED 2 is used.
  • neither a circuit board 3 nor an insulating layer 62 is required.
  • the minus pole applied to the heat sink 64 is led to the base 20 via the first connection 21 and the plus pole applied to the luminaire reflector 1 is represented by the second connection 22 connected to the base 20. Due to the extension of the bridging elements 61 between the cooling element 64 forming the negative pole and the luminaire reflector 1 forming the positive pole, it is impossible for the bridging elements 61 to be electrically conductive. As in both previous embodiments, the space between the heat sink 64 and the base 20 is now filled with heat conductive paste 63.

Abstract

Die elektrische Leuchte hat zumindest eine Hochleistungs-LED (2) und einen Leuchten-Reflektor (1). Zur Ableitung von durch die LED (2) im Betriebzustand erzeugter Wärme sind zwischen letzterer und dem Leuchten-Reflektor (1) wärmeleitende Mittel (6) vorgesehen. Vorzugsweise ist als ein erster Bestandteil (64) der wärmeleitenden Mittel (6) ein Kühlkörper (64) benachbart zur LED (2) angeordnet und ein zweiter Bestandteil (61, 62) der wärmeleitenden Mittel (6) erstreckt sich zwischen dem Kühlkörper (64) und dem Leuchten-Reflektor (1). In einer Konstruktionsalternative umfasst der zweite Bestandteil (61) der wärmeleitenden Mittel (6) eine Anzahl von Überbrückungselementen (61). In einer anderen Konstruktionsalternative umfasst der zweite Bestandteil (62) der wärmeleitenden Mittel (6) eine elektrisch isolierende Schicht (62), welche separat vorhanden ist oder zum Leuchten-Reflektor (1) und/oder zum Kühlkörper (64) gehört. Die Stromversorgung der LED (2) geschieht über eine Platine (3) oder es lassen sich der Kühlkörper (64) und der Leuchten-Reflektor (1) als die beiden Pole zur Stromversorgung der LED (2) nutzen.

Description

Elektrische Leuchte mit einer Leuchtdiode und einem Leuchten-Reflektor
Anwendungsgebiet der Erfindung
Die vorliegende Erfindung befasst sich mit einer elektrischen Leuchte unter Ver- wendung einer Hochleistungs-LED (im weiteren Verlauf zumeist verkürzt LED genannt) und dem Problem der Abführung der im Betrieb von der LED erzeugten Wärme.
LED's wurden lange Zeit aufgrund geringer Lichtleistung und fehlender Verfügbar- keit weiss strahlender LED's hauptsächlich als Indikationsleuchten in Siebensegment- und Punktmatrixanzeigen eingesetzt. Im Zuge der Entwicklung konnte die Lichtleistung erheblich gesteigert werden, so dass nun Hochleistungs-LED's als Leuchtmittel für elektrische Leuchten zur Verfügung stehen.
Stand der Technik
Elektrische Leuchten, die als Leuchtmittel eine Hochleistungs-LED aufweisen, welche einen Betriebsstrom bis zu 1 A aufnehmen, sind bekannt. Hierbei ist bisher ein erheblicher apparativer Aufwand erforderlich, um die beim Betrieb der LED erzeugte Wärme abzuführen, ansonsten würde die LED in der Lichtleistung stark abfallen bzw. zerstört werden. Je grösser die für eine derart bestückte Leuchte konzipierte Lichtleistung ist, desto höher ist der konstruktive Aufwand zur Wärmeabfuhr, um eine weitgehend konstante hohe Lichtleistung zuverlässig zu gewährleisten.
Die Wärmeabführung von der LED erfolgt bisher über aktive Elemente, z.B. mittels Lüfter bzw. einen geschlossenen Kühlkreislauf, oder passive Elemente, z.B. dem Leuchtengehäuse, Kühlkörpern bzw. Stromleitungen und ist in der Beleuchtungstechnik hinlänglich bekannt. Diese Massnahmen verteuern die elektrischen Leuchten erheblich infolge des zusätzlichen Aufwands an Bauelementen und überdies vergrössert sich dadurch der erforderliche Raumbedarf, was sich auf an sich gewünschte ästhetische Formgestaltungen negativ auswirken kann.
BESTATIGUNGSKOPIE Aufqabe der Erfindung
Es gilt, eine elektrische Leuchte zu schaffen, in welcher als Leuchtmittel eine Höchleistungs-LED eingesetzt ist, und dabei die notwendige Wärmeabfuhr zur Kühlung der sich im Betrieb erhitzenden LED mit möglichst geringem apparativen Aufwand zu erreichen.
Eine weitere Aufgabe der Erfindung besteht darin, die Stromversorgung der LED ebenfalls möglichst einfach zu gestalten. Die Massnahmen zur effizient realisierten Kühlung der LED und deren Stromversorgung zielen darauf ab, die elektrische Leuchte möglichst räum- und kostensparend herstellen zu können sowie in der designmässigen Gestaltung nicht durch ansonsten zwingend vorzusehende Bauteile eingeschränkt zu werden.
Übersicht über die Erfindung Die elektrische Leuchte mit zumindest einer Hochleistungs-LED und einem Leuchten-Reflektor hat zur Ableitung von durch die Hochleistungs-LED erzeugter Wärme hin zum Leuchten-Reflektor wärmeleitende Mittel, welche zwischen der Hochleistungs-LED und dem Leuchten-Reflektor angeordnet sind.
Die nachfolgenden Merkmale beziehen sich auf spezielle Ausführungen der Erfindung: Benachbart zur Hochleistungs-LED ist als ein erster Bestandteil der wärmeleitenden Mittel ein Kühlkörper angeordnet und ein zweiter Bestandteil der wärmeleitenden Mittel erstreckt sich zwischen dem Kühlkörper und dem Leuchten-Reflektor. Die wärmeleitenden Mittel umfassen eine Anzahl von Überbrückungsele- menten, welche den zweiten Bestandteil bilden. Die Hochleistungs-LED ist auf einer Platine angeordnet, und die Überbrückungselemente sind gegenüber der Platine elektrisch isoliert.
Alternativ umfassen die wärmeleitenden Mittel eine elektrisch isolierende Schicht, welche den zweiten Bestandteil bildet und als separate isolierende Schicht vorhanden ist oder zum Leuchten-Reflektor und/oder zum Kühlkörper gehört. Ein Pol der Stromzuführung zur Hochleistungs-LED wird vom Leuchten-Reflektor gebildet, während der andere Pol der Stromzuführung zur Hochleistungs-LED von den wärmeleitenden Mitteln in Gestalt des ersten Bestandteils als Kühlkörper gebildet wird. Hierbei ist zwischen dem ersten Bestandteil der wärmeleitenden Mittel in Gestalt des Kühlkörpers und der Hochleistungs-LED ein erster elektrischer An- schluss vorgesehen, und ein zweiter elektrischer Anschluss besteht zwischen dem Leuchten-Reflektor und der Hochleistungs-LED.
Die Hochleistungs-LED besitzt einen Sockel, und zwischen dem Sockel und dem ersten Bestandteil der wärmeleitenden Mittel in Gestalt des Kühlkörpers ist ein dritter Bestandteil der wärmeleitenden Mittel eingefügt. Als dritter Bestandteil der wärmeleitenden Mittel eignet sich eine Wärmeleitpaste besonders.
Kurzbeschreibung der beigefügten Zeichnungen Es zeigen:
Figur 1A: den prinzipiellen Aufbau der erfindungsgemässen Leuchte in erster
Ausführungsform; Figur 1B: das vergrösserte Detail X1 aus Figur 1A;
Figur 2A: den prinzipiellen Aufbau der erfindungsgemässen Leuchte in zweiter
Ausführungsform; Figur 2B: das vergrösserte Detail X2 aus Figur 2A;
Figur 3A: den prinzipiellen Aufbau der erfindungsgemässen Leuchte in dritter Ausführungsform; und
Figur 3B: das vergrösserte Detail X3 aus Figur 3A.
Ausführungsbeispiel
Mit Bezug auf die beiliegenden Zeichnungen erfolgt nachstehend die detaillierte Beschreibung mehrerer Ausführungsbeispiele zur erfindungsgemässen Leuchte.
Für die gesamte weitere Beschreibung gilt folgende Festlegung. Sind in einer Figur zum Zweck zeichnerischer Eindeutigkeit Bezugsziffern enthalten, aber im unmittelbar zugehörigen Beschreibungstext nicht erläutert, so wird auf deren Erwäh- nung in vorangehenden oder nachfolgenden Figurenbeschreibungen Bezug genommen. Im Interesse der Übersichtlichkeit wird auf die wiederholte Bezeichnung von Bauteilen in weiteren Figuren zumeist verzichtet, sofern zeichnerisch eindeutig erkennbar ist, dass es sich um "wiederkehrende" Bauteile handelt.
Figuren 1A und 1 B
Die Leuchte in der ersten Ausführungsform besteht im wesentlichen aus einem Leuchten-Reflektor 1, einer Hochleistungs-LED 2, einer Platine 3 und wärmeleitenden Mitteln 6, welche zur Ableitung der durch die LED 2 erzeugten Wärme dienen. Der Leuchten-Reflektor 1 hat eine Aussenseite 10 sowie eine Innenseite 11. Die LED 2 sitzt vorzugsweise zentrisch in einer Aussparung des Leuchten-Reflektors 1 und setzt sich aus einem Sockel 20, einem daran vorhandenen ersten und zweiten Anschluss 21,22 sowie dem LED-Reflektor 23 zusammen. Bei der hiesigen ersten Ausführungsform werden die wärmeleitenden Mittel 6 aus einem ersten Bestandteil 64, einem zweiten Bestandteil 61 und einem dritten Bestandteil 63 gebildet. Der erste Bestandteil 64 hat die Gestalt eines Kühlkörpers 64, der zweite Bestandteil 61 besitzt die Form von Überbrückungselementen 61 , während der dritte Bestandteil 63 eine Wärmeleitpaste 63 ist. Der Sockel 20 der LED 2 ist in einer Ausnehmung eines benachbarten Kühlkörpers 64 angeordnet, wobei der Freiraum zwischen Sockel 20 und Kühlkörper 64 durch Wärmeleitpaste 63 ausgefüllt ist. Die Überbrückungselemente 61 stellen eine wärmeleitende, gegenüber der Platine 3 elektrisch isolierte Verbindung zwischen Kühlkörper 64 und Leuchten-Reflektor 1 dar.
Die bei im Betrieb befindliche LED 2 von dieser erzeugten Wärme wird zunächst über die Wärmeleitpaste 63 dem Kühlkörper 64 zugeleitet. Ein Teil der vom Kühlkörper 64 aufgenommenen Wärme wird von der heranströmenden Luft abgeführt, während ein weiterer Wärmeanteil via den Überbrückungselementen 61 zum Reflektor 1 geleitet wird und von dort weiter an die Umgebungsluft gelangt. Damit wird der Kühlkörper 64 in seiner Wärmeabfuhr vom Reflektor 1 unterstützt und kann entsprechend kleiner dimensioniert werden. Die Stromzuführung an die LED 2 erfolgt durch die auf der Platine 3 verlaufenden ersten und zweiten Leiterbahn 31,32 unterschiedlicher Polarität. Die erste Leiterbahn 31 bildet dabei den Minus-Pol und ist durch den ersten Anschluss 21 mit dem Sockel 20 der LED 2 verbunden. Andererseits hat die den Plus-Pol bildende zweite Leiterbahn 32 über den zweiten Anschluss 22 mit dem Sockel 20 der LED 2 Kontakt. Die Platine 3 ist zwischen dem Leuchten-Reflektor 1 und dem Kühlkörper 3 angeordnet, wobei die die Platine 3 durchragenden Überbrückungselemente 61 gegenüber der Platine 3 elektrisch isoliert sind.
Figuren 2A und 2B
Die zweite Ausführungsform der Leuchte besitzt ebenfalls einen Leuchten-Reflektor 1, eine Hochleistungs-LED 2 und die wärmeleitenden Mittel 6. Die Platine 3 ist nun durch einen zweiten Bestandteil 62 der wärmeleitenden Mittel 6 in Form einer isolierenden Schicht 62 ersetzt, welche zwischen dem Reflektor 1 und dem Kühl- körper 64 angeordnet ist. Ferner hat sich die Stromzuführung an den Sockel 20 der LED 2 geändert, in dem nun der Minus-Pol am Kühlkörper 64 anliegt, von dem sich ein erster Anschluss 21 zum Sockel 20 erstreckt. Der Plus-Pol liegt am Reflektor 1 an, wobei von dort der zweite Anschluss 22 zum Sockel 20 führt. Alternativ zu einer separaten isolierenden Schicht 62 kann diese auch direkt zum Leuchten-Reflektor 1 und/oder zum Kühlkörper 64 gehören. Zwischen dem Kühlkörper 64 und dem Sockel 20 ist wiederum, als dritter Bestandteil 63 der wärmeleitenden Mittel 6, Wärmeleitpaste 63 vorgesehen.
Anstelle der Überbrückungselemente 61 aus der ersten Ausführungsform erfolgt der Wärmefluss vom Kühlkörper 64 zum Leuchtenreflektor 1 nun über die elektrisch isolierende Schicht 62, so dass der Kühlkörper 64 erneut in der Abführung der von der LED 2 erzeugten Wärme unterstützt wird.
Figuren 3A und 3B Die dritte Ausführungsform stellt eine Mischform zwischen der ersten und der zweiten Ausführungsform dar. Aus der ersten Ausführungsform sind die Überbrückungselemente 61 zur Wärmeleitung zwischen dem Kühlkörper 64 und dem Leuchten-Reflektor 1 übernommen, während aus der zweiten Ausführungsform die Stromversorgung der LED 2 genutzt wird. Somit bedarf es weder einer Platine 3 noch einer isolierenden Schicht 62. Der am Kühlkörper 64 anliegende Minus-Pol wird über den ersten Anschluss 21 an den Sockel 20 herangeführt und der am Leuchten-Reflektor 1 anliegende Plus-Pol ist durch den zweiten Anschluss 22 mit dem Sockel 20 verbunden. Aufgrund der Erstreckung der Überbrückungselemen- te 61 zwischen dem den Minus-Pol bildenden Kühlkörper 64 und dem den Plus- Pol bildenden Leuchten-Reflektor 1 verbietet sich, dass die Überbrückungsele- mente 61 elektrisch leitend sind. Wie in beiden vorherigen Ausführungsformen ist auch nun der Raum zwischen dem Kühlkörper 64 und dem Sockel 20 mit Wärme- leitpaste 63 ausgefüllt.

Claims

P a t e n t a n s p r ü c h e
1. Elektrische Leuchte mit zumindest einer Hochleistungs-LED (2) und einem Leuchten-Reflektor (1), dadurch gekennzeichnet, dass zur Ableitung von durch die Hochleistungs-LED (2) erzeugter Wärme hin zum Leuchten-Reflektor (1) wärmeleitende Mittel (6) zwischen der Hochleistungs-LED (2) und dem Leuchten-Reflektor (1) angeordnet sind.
2. Elektrische Leuchte nach Anspruch 1 , dadurch gekennzeichnet, dass benachbart zur Hochleistungs-LED (2) als ein erster Bestandteil (64) der wärmeleitenden Mittel (6) ein Kühlkörper (64) angeordnet ist und sich ein zweiter Bestandteil (61,62) der wärmeleitenden Mittel (6) zwischen dem Kühlkörper (64) und dem Leuchten-Reflektor (1) erstreckt.
3. Elektrische Leuchte nach zumindest einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die wärmeleitenden Mittel (6) eine Anzahl von
Überbrückungselementen (61) umfassen, welche den zweiten Bestandteil (61) bilden.
4. Elektrische Leuchte nach zumindest einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die wärmeleitenden Mittel (6) eine elektrisch isolierende Schicht (62) umfassen, welche den zweiten Bestandteil (62) bildet und als separate isolierende Schicht (62) vorhanden ist oder zum Leuchten-Reflektor (1) und/oder zum Kühlkörper (64) gehört.
5. Elektrische Leuchte nach zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Hochleistungs-LED (2) auf einer Platine (3) angeordnet ist und die Überbrückungselemente (61) gegenüber der Platine (3) elektrisch isoliert sind.
6. Elektrische Leuchte nach zumindest einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Pol der Stromzuführung zur Hochleistungs- LED (2) vom Leuchten-Reflektor (1) gebildet wird, während der andere Pol der Stromzuführung zur Hochleistungs-LED (2) von den wärmeleitenden Mitteln (6) in Gestalt des ersten Bestandteils (64) als Kühlkörper (64) gebildet wird.
7. Elektrische Leuchte nach Anspruch 6, dadurch gekennzeichnet. dass zwischen dem ersten Bestandteil (64) der wärmeleitenden Mittel (6) in Gestalt des Kühlkörpers (64) und der Hochleistungs-LED (2) ein erster elektrischer Anschluss (21) vorgesehen ist und ein zweiter elektrischer Anschluss (22) zwischen dem Leuchten-Reflektor (1) und der Hochleistungs-LED (2) besteht.
8. Elektrische Leuchte nach zumindest einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Hochleistungs-LED (2) einen Sockel (20) besitzt und zwischen dem Sockel (20) und dem ersten Bestandteil (64) der wärmeleitenden Mittel (6) in Gestalt des Kühlkörpers (64) ein dritter Bestandteil (63) der wärmeleitenden Mittel (6) eingefügt ist.
9. Elektrische Leuchte nach zumindest einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der dritte Bestandteil (63) der wärmeleitenden Mittel (6) vorzugsweise eine Wärmeleitpaste ist.
EP08807091A 2007-09-19 2008-09-16 Elektrische leuchte mit einer leuchtdiode und einem leuchten-reflektor Withdrawn EP2191192A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH14602007 2007-09-19
PCT/IB2008/002409 WO2009037544A2 (de) 2007-09-19 2008-09-16 Elektrische leuchte mit einer leuchtdiode und einem leuchten-reflektor

Publications (1)

Publication Number Publication Date
EP2191192A2 true EP2191192A2 (de) 2010-06-02

Family

ID=40468493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08807091A Withdrawn EP2191192A2 (de) 2007-09-19 2008-09-16 Elektrische leuchte mit einer leuchtdiode und einem leuchten-reflektor

Country Status (2)

Country Link
EP (1) EP2191192A2 (de)
WO (1) WO2009037544A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091033A (ja) * 2009-09-25 2011-05-06 Toshiba Lighting & Technology Corp 発光モジュール、電球形ランプおよび照明器具
RU2645147C2 (ru) * 2012-03-08 2018-02-15 Филипс Лайтинг Холдинг Б.В. Светоизлучающее устройство и способ изготовления светоизлучающего устройства
CN103375701A (zh) * 2012-04-20 2013-10-30 立达信绿色照明股份有限公司 耐高压led灯

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139019A1 (de) * 2000-03-31 2001-10-04 Relume Corporation Thermische Kontrolle einer LED
US20070127252A1 (en) * 2005-12-07 2007-06-07 Visteon Global Technologies, Inc. Headlamp assembly with integrated reflector and heat sink

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8297801B2 (en) * 2004-07-16 2012-10-30 Osram Sylvania Inc. Light emitting diode disc optic with heat sink housing
DE102004042186B4 (de) * 2004-08-31 2010-07-01 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
CN100483024C (zh) * 2004-11-09 2009-04-29 李学霖 发光二极管灯散热结构

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139019A1 (de) * 2000-03-31 2001-10-04 Relume Corporation Thermische Kontrolle einer LED
US20070127252A1 (en) * 2005-12-07 2007-06-07 Visteon Global Technologies, Inc. Headlamp assembly with integrated reflector and heat sink

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2009037544A2 *

Also Published As

Publication number Publication date
WO2009037544A3 (de) 2009-06-11
WO2009037544A2 (de) 2009-03-26

Similar Documents

Publication Publication Date Title
EP2198196B1 (de) Lampe
EP2183794B1 (de) Led-gehäuse
DE102014109647B4 (de) Lichtemittierendes Modul und Beleuchtungsvorrichtung
DE102010030702A1 (de) Halbleiterlampe
WO2012049283A1 (de) Led-treiberschaltung
DE112006000920T5 (de) LED-Einheit und LED-Beleuchtungslampe, die die LED-Einheit verwendet
DE202007008258U1 (de) LED-Leuchtmittel
DE102008016458A1 (de) Leiterplatte
EP1783421A1 (de) Leuchte
DE112011106000T5 (de) Thermomanagement für Leuchtdioden
EP2734012A1 (de) LED-Leuchte mit integriertem Treiber
EP2443390B1 (de) Kühlkörper für halbleiterleuchtelemente
EP2541139B1 (de) LED-Beleuchtungsmodul
WO2011051310A1 (de) Array aus skalierbaren keramischen diodenträgern mit led´s
EP2191192A2 (de) Elektrische leuchte mit einer leuchtdiode und einem leuchten-reflektor
EP2171352B1 (de) Leuchtmittel
DE102011006749A1 (de) Lampenvorrichtung
DE102010017460A1 (de) Explosionsgeschütztes Leuchtmittel
EP2294902B1 (de) Kühlsystem für led-chip-anordnung
EP2483593B1 (de) Lampe mit variablem substrat als untergrund für lichtquelle
AT513328B1 (de) Beleuchtungsvorrichtung
DE102012211143A1 (de) Träger für elektrisches bauelement mit wärmeleitkörper
WO2011064180A1 (de) Led-lampe mit stiftsockel für halogenlampen ('bipin')
DE202009017433U1 (de) LED-Leuchte mit Kühlkörper
AT508802A1 (de) Led glühlampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100305

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F21K 99/00 20100101AFI20100506BHEP

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130715

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20130831