EP2188496A2 - Procédé de conversion d'énergie d'air comprimé en énergie mécanique et moteur à air comprimé pour ce procédé - Google Patents

Procédé de conversion d'énergie d'air comprimé en énergie mécanique et moteur à air comprimé pour ce procédé

Info

Publication number
EP2188496A2
EP2188496A2 EP08801157A EP08801157A EP2188496A2 EP 2188496 A2 EP2188496 A2 EP 2188496A2 EP 08801157 A EP08801157 A EP 08801157A EP 08801157 A EP08801157 A EP 08801157A EP 2188496 A2 EP2188496 A2 EP 2188496A2
Authority
EP
European Patent Office
Prior art keywords
rotor
compressed air
shaft
rotation
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08801157A
Other languages
German (de)
English (en)
Other versions
EP2188496B1 (fr
Inventor
Felix Arnold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Cor Pumps and Compressors AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cor Pumps and Compressors AG filed Critical Cor Pumps and Compressors AG
Publication of EP2188496A2 publication Critical patent/EP2188496A2/fr
Application granted granted Critical
Publication of EP2188496B1 publication Critical patent/EP2188496B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C3/00Rotary-piston machines or engines with non-parallel axes of movement of co-operating members
    • F01C3/06Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees
    • F01C3/08Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F01C3/085Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing the axes of cooperating members being on the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings

Definitions

  • the invention relates to a method for the conversion of compressed air energy into mechanical rotary energy according to the preamble of the main claim and of a compressed air driven air motor according to the preamble of claim 2, in particular for carrying out the method according to claim 1.
  • compressed air motor compressed air motor
  • a rotating, an output shaft actuated rotor has radially in the manner of a vane cell assembly by springs or centrifugal force on the wall pressed vane, as is also known in air compressors in many ways (DE OS 31 17 412 Al).
  • the disadvantage of this type of drive is that the sealing wings in the direction of the rotating shaft rotor have a rectangular surface contact with the housing wall on which they slide along, with the disadvantage that it is extremely difficult here to achieve low friction and corresponding tightness quite apart from the disadvantages of extremely high production costs and problems with wear due to sealing and lubrication, which of course has a direct effect on the life, or the decreasing efficiency of the air motor with a corresponding duration of use.
  • the compressed air driven drive motor should also there for compressed air tools, eg. B. grinder, use, which is known to be less important to the actual drive quality, but on the life.
  • compressed air tools eg. B. grinder
  • housing wall and rotary piston coating should be elastic to compensate for this known disadvantage, but this is associated with a corresponding effort.
  • this unit can serve to implement the mechanical rotational energy in a high-speed generator, as used for example not only in dental technology and in which the rotor is rotationally coupled to the rotary shaft serving as a rotary shaft.
  • a spur gear is connected to the output shaft and a second spur gear at a certain angle of rotation to the first spur gear forming the working space with this combs, wherein one of the parts as Zykloidenteil has a cycloidal development of the tread and wherein the teeth of the other with this combing co-operating part as a control part has tooth combs, which on the flanks of the cycloidal part to walk along.
  • a rotary engine is known per se (DE OS 42 41 320 Al), but was never used for implementation in mechanical rotational energy due to the bias of the art.
  • at least one of the rotors is arranged on a rolling bearing.
  • the rolling bearings provided for supporting the shaft rotor and / or the counter rotor are supported in the housing of the engine. Smooth running is particularly important for pneumatically operated units, whereby the lubrication of the bearing is a not inconsiderable problem here, which may be one of the reasons for the bias of the experts.
  • the rolling bearing is supported in the housing by a screwed in the direction of the rotation axis support nut and axially adjustable with the rotor in the housing.
  • the inlet channel is distributed over a certain angle of rotation, narrower but in the direction of rotation extending widening, according to the pressure side formed between the rotors narrow opening to the working space.
  • the outlet channel is distributed over a certain angle of rotation for degradation relatively widely formed according to the this point to the outlet channel wide open working space.
  • the working space can be open to the outside, since the energy input to the compressed air has already been used up.
  • 1 shows a longitudinal section along the axes of rotation I and II of a pneumatic motor with spur gear teeth.
  • FIG. 2 shows a partial section through the variant of the pump housing with respect to FIG. 1 rotated by 90 ° position.
  • Fig. 3 is a section along the line III-III in Fig. 2 and in a somewhat reduced scale and
  • Fig. 4 is an insight into the housing according to the arrow IV in Fig. 2 in also slightly reduced scale.
  • two rotors serving as rotary pistons are mounted in a housing 1, namely a shaft rotor 2 and a rotor Counter rotor 3, which engage with frontally arranged teeth 4 and 5 corresponding to each other and thereby limit with the housing 1 engine working spaces 6.
  • the axis of rotation of the shaft rotor 2 is denoted by I, the axis of rotation of the counter rotor 3 with II.
  • the two axes of rotation I and II enclose an angle ⁇ ⁇ 180 °, so that upon rotation of the rotors 2 and 3, the engine working spaces 6 correspondingly increase, respectively zoom out.
  • the longitudinal section through the air motor shown in Fig. 1 passes through these two axes of rotation I and II.
  • the housing 1 has inside for receiving the rotors on a cylindrical portion 7 and a spherical portion 8, wherein the latter merges into a cylindrical portion 9 for receiving the bearing of the counter-rotor 3 and corresponding to its offset center axis II.
  • the counter-rotor 3 is mounted on a roller bearing 10th rotatably mounted, which is arranged clamped by a support plug 11 in the cylindrical portion 9 of the housing 1.
  • the support plug 11 is screwed into the housing 1 for fastening the roller bearing 10.
  • a spherical bearing surface 12 is provided, which at the same time also forms the engine working spaces 6 formed by the front teeth 4 and 5 of the rotors separates each other.
  • a cycloidal toothing is provided with the known advantages (DE PS 42 41 320 C2).
  • the actual power part forming wave rotor 2 is also rotatably mounted on a roller bearing 13, which is supported by a support nut 14, on the one hand in the cylindrical portion 7 of the housing 1 is guided, but on the other hand there is screwed via a thread 15 in the housing 1.
  • the shaft rotor 2 also has a coupling opening 16 for receiving a rotary coupling, not shown, to the rotational movement transfer.
  • a flange 17 is arranged to fasten a driven unit according to.
  • a flange 18 is provided for connection to the compressed air inlet in a still at this point engine working space.
  • the housing is shown rotated on the one hand relative to the section shown in Fig. 1 by 90 ° and also formed cylindrical over the entire length.
  • the axes of rotation I and II coincide with one another in the illustration, which can only be seen as a perspective but also in FIG. 4.
  • the corresponding to those in Fig. 1 things are provided with the same reference number as in Fig. 1 and distinguished by an index stroke.
  • only one housing is shown as a variant, wherein the gate shown in FIG. 2 is intended to serve the outlet opening 19 after utilizing the compressed air, d. H. after their relaxation, to clarify.
  • connection bore 20 is provided for the inlet of the compressed air in the not shown here but opposite at this point small pump working space 4.
  • a corresponding large outlet opening 19 is provided to achieve an actual relaxation of the compressed air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Rotary Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Exhaust Gas After Treatment (AREA)
EP08801157A 2007-08-31 2008-08-15 Moteur à air comprimé Active EP2188496B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007041461 2007-08-31
PCT/DE2008/001334 WO2009026883A2 (fr) 2007-08-31 2008-08-15 Procédé de conversion d'énergie d'air comprimé en énergie mécanique et moteur à air comprimé pour ce procédé

Publications (2)

Publication Number Publication Date
EP2188496A2 true EP2188496A2 (fr) 2010-05-26
EP2188496B1 EP2188496B1 (fr) 2011-03-16

Family

ID=40292461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08801157A Active EP2188496B1 (fr) 2007-08-31 2008-08-15 Moteur à air comprimé

Country Status (7)

Country Link
US (1) US8517707B2 (fr)
EP (1) EP2188496B1 (fr)
CN (1) CN101970801B (fr)
AT (1) ATE502185T1 (fr)
DE (2) DE502008002903D1 (fr)
ES (1) ES2360270T3 (fr)
WO (1) WO2009026883A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517707B2 (en) * 2007-08-31 2013-08-27 Robert Bosch Gmbh Method for converting energy from compressed air into mechanical energy and compressed air motor therefor
CA2859772C (fr) 2011-12-19 2019-08-06 Exponential Technologies, Inc. Ecarteur a deplacement positif
DE102014209140A1 (de) * 2013-05-23 2014-11-27 Robert Bosch Gmbh Förderaggregat
JP2021507163A (ja) 2017-12-13 2021-02-22 エクスポネンシャル テクノロジーズ, インコーポレイテッドExponential Technologies, Inc. 回転式流体流動装置
US11168683B2 (en) 2019-03-14 2021-11-09 Exponential Technologies, Inc. Pressure balancing system for a fluid pump
DE102020124825A1 (de) 2020-09-23 2022-03-24 Kolektor Group D.O.O. Motor-Pumpe-Einheit

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1623596A (en) * 1925-09-17 1927-04-05 Bloomfield Holmes Corp Compressor
US2049775A (en) * 1934-10-13 1936-08-04 Frank E Holmes Fluid control device
US3236186A (en) * 1963-04-29 1966-02-22 Wildhaber Ernest Positive-displacement unit
US3273341A (en) 1963-04-29 1966-09-20 Wildhaber Ernest Positive-displacement thermal unit
CH458608A (fr) * 1966-06-14 1968-06-30 Voser Otto Machine volumétrique
US3492974A (en) * 1968-01-30 1970-02-03 Heinrich Kreimeyer Rotary nutating power device
FR2148677A5 (fr) * 1971-07-30 1973-03-23 Zimmern Bernard
US3817666A (en) 1973-02-12 1974-06-18 E Wildhaber Rotary positive displacement unit
US3856440A (en) 1974-03-19 1974-12-24 E Wildhaber Rotor pair for positive fluid displacement
US4285644A (en) * 1979-02-15 1981-08-25 Takalo Kauko A Expansion or compression machine with interengaging members rotating on perpendicular axes
DE3117412A1 (de) 1981-05-02 1982-11-18 Festo-Maschinenfabrik Gottlieb Stoll, 7300 Esslingen Druckluftbetriebener antriebsmotor fuer druckluftwerkzeuge, z.b. schleifer
US4540343A (en) * 1982-11-17 1985-09-10 International Hydraulic Systems, Inc. Spherical gear pump
US4981424A (en) * 1988-12-21 1991-01-01 The United States Of America As Represented By The Secretary Of The Navy High pressure single screw compressors
DE4241320C2 (de) * 1991-12-09 2002-01-17 Arnold Felix Drehkolbenmaschine
DE9320601U1 (de) 1993-06-05 1994-10-13 Festo Kg Fluidisch betätigbarer Drehantrieb
DE19613262A1 (de) 1996-04-02 1997-10-09 Festo Kg Drehkolbenrundlaufmotor
WO2002061274A1 (fr) * 2001-01-30 2002-08-08 Outland Technologies, (Usa) Inc. Dispositif, procede et appareil de deplacement positif avec joint a contact minimal
US6494678B1 (en) * 2001-05-31 2002-12-17 General Electric Company Film cooled blade tip
JP4473122B2 (ja) * 2002-08-02 2010-06-02 コア・ポンプス・プルス・コンプレッサーズ・アクチエンゲゼルシャフト 変位可能な内部ケーシングから成る回転ピストン機械
ES2381002T3 (es) * 2003-09-11 2012-05-22 Robert Bosch Gmbh Máquina de pistón rotatorio
BRPI0414235A (pt) * 2003-09-11 2006-10-31 Cor Pumps & Compressors Ag máquina de êmbolo rotativo
DE102004026048A1 (de) 2004-05-25 2005-12-29 Cor Pumps + Compressors Ag Spaltverluststromsteuerung
JP5085528B2 (ja) * 2005-03-16 2012-11-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 回転ピストン機械
CN100412319C (zh) * 2005-04-05 2008-08-20 山东嘉豪集团有限公司 空气发动机
US8517707B2 (en) * 2007-08-31 2013-08-27 Robert Bosch Gmbh Method for converting energy from compressed air into mechanical energy and compressed air motor therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009026883A2 *

Also Published As

Publication number Publication date
WO2009026883A2 (fr) 2009-03-05
ES2360270T3 (es) 2011-06-02
DE102008037903A1 (de) 2009-03-05
ATE502185T1 (de) 2011-04-15
EP2188496B1 (fr) 2011-03-16
DE502008002903D1 (de) 2011-04-28
US20100215531A1 (en) 2010-08-26
WO2009026883A3 (fr) 2009-05-07
CN101970801A (zh) 2011-02-09
CN101970801B (zh) 2013-04-10
US8517707B2 (en) 2013-08-27

Similar Documents

Publication Publication Date Title
EP2188496B1 (fr) Moteur à air comprimé
WO1993012325A1 (fr) Machine a piston rotatif
WO2014067988A2 (fr) Pompe a pistons rotatifs a entrainement direct
DE1503544B2 (de) Drehkolbenvakuumpumpe
DE102004026048A1 (de) Spaltverluststromsteuerung
WO2005024237A1 (fr) Machine a piston rotatif
EP0063240A2 (fr) Machine à pistons rotatifs
EP2607691A1 (fr) Eolienne avec une pompe hydraulique
EP3077135B1 (fr) Machine-outil pouvant être entraînée en oscillation
EP0846861A1 (fr) Pompe annulaire à engrenages continuellement variable
EP2119869A2 (fr) Hydromachine
DE4131847C1 (en) Control and conversion engine etc. drive - has several rotors, each with oval gearwheels, eccentric, parallel, and symmetrical w.r.t. rotor axis
WO2009026882A1 (fr) Procédé de conversion d'énergie d'air comprimé en énergie électrique et mise en oeuvre de ce procédé au moyen d'un moteur à air comprimé
DE202014006761U1 (de) Hydrostatische Kreiskolbenmaschine nach dem Orbitprinzip
DE102012206797A1 (de) Drehkolbenmaschine, die als Pumpe, Verdichter oder Motor für ein Fluid wirkt
DE19837729A1 (de) Drehkolbenmaschine
DE102015006353A1 (de) Dämpfungseinheit zum Dämpfen von Drehmomentspitzen
DE102015114827B3 (de) Druckluft-Flügelzellenmotor
DE202013011687U1 (de) Oszillierend antreibbare Werkzeugmaschine
DE2808769A1 (de) Schwenkkolben-maschine
WO2015010780A2 (fr) Machine à piston rotatif
EP1493926B1 (fr) Procédé de fabrication d'une pompe à engrenage interne
DE856035C (de) Drehkolbenmaschine mit Schraubenraedern
DE1476672A1 (de) Druckluftmotor
DE1179762B (de) Mehrzylindrige Kolbenmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100331

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: COMPRESSED AIR MOTOR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008002903

Country of ref document: DE

Date of ref document: 20110428

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008002903

Country of ref document: DE

Effective date: 20110428

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2360270

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110602

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110616

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110616

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110718

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110716

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111219

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008002903

Country of ref document: DE

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 502185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130815

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190919

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200831

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231025

Year of fee payment: 16