EP2187145A2 - Latent storage heater - Google Patents
Latent storage heater Download PDFInfo
- Publication number
- EP2187145A2 EP2187145A2 EP09012106A EP09012106A EP2187145A2 EP 2187145 A2 EP2187145 A2 EP 2187145A2 EP 09012106 A EP09012106 A EP 09012106A EP 09012106 A EP09012106 A EP 09012106A EP 2187145 A2 EP2187145 A2 EP 2187145A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- air
- heat storage
- combustion gas
- generator according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/02—Air heaters with forced circulation
- F24H3/06—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
- F24H3/08—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
- F24H3/088—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes using solid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H7/00—Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
- F24H7/02—Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
- F24H7/04—Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
- F24H7/0475—Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using solid fuel
- F24H7/0483—Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using solid fuel the transfer fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/06—Solid fuel fired boiler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/06—Solid fuel fired boiler
- F24D2200/065—Wood fired boilers
- F24D2200/067—Pellet fired boilers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2220/00—Components of central heating installations excluding heat sources
- F24D2220/10—Heat storage materials, e.g. phase change materials or static water enclosed in a space
Definitions
- the present invention relates generally to heat generators, and more particularly to a heat generator having a heat accumulator.
- Common heat generators are known in which a heat generator stores the generated heat for later use.
- heat generators such as wood stoves
- heat accumulators of stone material such as soapstone, fireclay bricks and / or tiles.
- stone materials usually have a high specific heat capacity and are usually arranged like a jacket around a combustion device of the heat generator, such as, for example, in the known tile or soapstone stoves.
- Such ovens usually give their heat uncontrollably to the environment by thermal radiation. A controlled heat dissipation, for example. Depending on the room temperature is not possible. Along with this, an energy-saving, long-term supply of heat to the room in which the heat generator is arranged, not satisfactorily resolved.
- the object of the present invention is to provide a heat generator or a heat accumulator whose heat output can be better controlled.
- the present invention provides a heat generator comprising: a combustion device; a latent heat storage; and a combustion gas guide, wherein the combustion gas guide is guided at least partially through the latent heat storage such that heat of the guided in the combustion gas combustion gas is at least partially released to heat storage material in the latent heat storage.
- the present invention provides a latent heat storage for a heat generator, wherein the latent heat storage comprises a heat storage material that is powdery and has a melting point in the range between 200 ° C and 400 ° C.
- Fig. 1 illustrates a first embodiment of a heat generator 1 of the present invention.
- a heat generator for example, a boiler or oven
- this includes a combustion device, a latent heat storage and a combustion gas guide.
- the combustion device is designed for the combustion of different fuels, such as, for example, liquid, gaseous or solid.
- Liquid fuels are, for example, heating oil or the like
- gaseous may be natural gas or the like
- solid fuels may be: briquettes made of wood / coal, logs, pellets, wood chips or another type of (solid) combustible biomass.
- the combustion device typically comprises a combustion chamber in which the fuel burns and, depending on the fuel type, for example, a collecting vessel for combustion residues.
- the combustion device includes combustion gas fans and / or air supply fans known to those skilled in the art, and the like. Since the combustion device is within the skill of the art, further description of known combustion devices will be omitted.
- the heat generator is a wood-burning stove, coal furnace, heating for fuel oil or natural gas, etc.
- Some embodiments relate to smaller wood stoves for firewood or pellet stoves, which are typically installed in a living space.
- the combustion device When combusting corresponding fuels, the combustion device generates a combustion gas which partially guides the combustion gas duct through the latent heat accumulator.
- the combustion gas contains a certain amount of heat that it can deliver at least partially to the latent heat storage at its flow.
- the combustion gas duct passes through a heat exchanger which delivers the heat of the combustion gas to the heat storage material of the latent heat storage.
- the combustion gas guide is quasi itself the heat exchanger, since, for example.
- the combustion gas is guided by means of a pipeline through the latent heat storage and the heat storage material has direct contact with the combustion gas guide through which the combustion gas flows.
- the heat The combustion gas then passes through the combustion gas guide, ie their lines in the heat storage material and heats it up.
- the combustion gas is split, so that it is guided in several ways by the latent heat storage, thereby enabling a uniform charging (heating) of the latent heat storage.
- the heat exchanger is designed such that it allows a uniform distribution of the heat in the latent heat storage or its heat storage material.
- the heat exchanger on a large surface of a material, such as, graphite foils, which has a good heat conducting property.
- This thermally conductive material is evenly distributed in the lathed primary storage and is in both thermally conductive contact with the combustion gas duct and the heat storage material.
- the heat generator on an air duct is guided through the air to be heated.
- the heat exchange is then configured so that it is in heat-conducting contact with the heat storage material, the air guide and the combustion gas guide.
- the heat storage material is in the latent heat storage, eg. In a container.
- the heat storage material is a latent heat storage material that stores corresponding latent heat, which is always free or must be supplied when a material performs a so-called phase transition.
- the phase transition is, for example, from solid to liquid and vice versa.
- the heat storage material is solid and, for example, powdered. Such a powdery material is in the ground state, ie at room temperature, powdery and liquefies, ie it changes from the solid to the liquid phase state when a certain temperature, namely the melting temperature is exceeded.
- the heat storage material has a melting point that is in the range between 200 ° C and 400 ° C - that is, the temperature range that also typically has the combustion gas.
- Some heat storage materials assume a smaller volume in the molten state, ie in the liquid phase, than in the solid (powdery) state. As a result, there is no danger of such materials "spilling out” of the container in which they are located if the occupied volume is too large, ie larger as the container volume becomes.
- Other heat storage materials increase their volume in the liquid phase. Therefore, in such heat storage materials of the container in which the heat storage material is not completely filled, but at least considered in the phase transition from solid to liquid volume change in the filling of the container.
- salt hydrates are used as heat storage materials in some embodiments.
- nitrate or nitrite salts with a matrix material such as graphite (expanded graphite or natural graphite) can be used.
- Expanded graphite which is powdery, can be pressed with these salts, whereby a powdered heat storage material is formed.
- salts used are LiNO 3 having a melting point of 254 ° C., NaNO 2 having a melting point of 270 ° C. or NaNO 3 having a melting point of 306 ° C.
- the corresponding latent heat of these materials is in the range of about 60 W / mK.
- the container in which the heat storage material is, in some embodiments of metal, for example.
- a corrosion-resistant or Pochfrrienbe residue residue metal such as stainless steel, for example. With a molybdenum content. If the container is almost airtight, normal steel is sufficient as a container material, since in this case no additional oxygen enters the container and thus corrosion is prevented.
- the latent heat storage is connected directly to the combustion device, both are located for example in a housing. In other embodiments, the latent heat storage, however, is separated from the combustion device and, for example, connected only via the combustion gas guide with the combustion device. That is, in some embodiments, the latent heat storage may reside in another room, e.g. in the basement, as the incinerator, which is arranged, for example, in the living room.
- the latent heat storage can release its heat stored in it in some embodiments in air flowing through a first heat exchanger, for example.
- the first heat exchanger for example.
- the Latent heat accumulator arranged so that it can absorb heat from the heat storage material and deliver to air flowing through the heat exchanger.
- an air guide is part of the first heat exchanger, which allows room air to flow through the latent heat storage and as a result also through the heat storage material.
- the heat exchanger has an extra device, which includes, for example, turbulators, which are arranged within the latent heat accumulator and throttle the air flow, so that an improved heat transfer to the air can take place.
- the heat generator for example, an air control means, which is mechanically or electrically operable.
- the air control means is adapted to control the amount of air by, for example, the flow cross-section through which the amount of air flows changed.
- the air is, for example, room air, which is taken from a room flows through the latent heat storage or the first heat exchanger and heated again is returned to the room. By controlling the amount of air is consequently also the heat emitted per time and thus, for example. Also controlled a room temperature.
- the heat generator includes a second heat exchanger configured to at least partially disperse heat from combustion gases to (room) air passing therethrough.
- the second heat exchanger is, for example, arranged within or above the combustion chamber of the combustion device.
- the second heat exchanger comprises areas or openings through which the combustion gas flows and areas or openings through which air or room air flows.
- the heat exchanger is designed so that it emits the heat of the combustion gases into the air, so that, for example, a room in which the heat generator is arranged can also be heated by the heated air in the second heat exchanger (and not only by the Heat generator emitted radiant heat).
- Some heat generators further include a mechanically and / or electrically operable switching means adapted to allow combustion gases in the combustion gas flow to flow through either or both of the latent heat storage or the second heat exchanger. That is, in such heat generators can, for example, before the latent heat storage is "charged” with heat, first the space in which the heat generator is located, quickly by the warming the air in the second heat exchanger to be warmed up.
- the heat generator further includes electrical control.
- the electrical control is, for example, designed to control the switching means as a function of an input variable.
- an input variable is, for example, the room temperature, so that at a low room temperature, which is below a desired value, the space is first heated quickly by the switching means is set so that the combustion gas flows through the second heat exchanger. If the desired room temperature, i. reaches the setpoint, the controller sets the switching means so that the combustion gas flows through the latent heat storage and charges him by appropriate heat dissipation.
- the controller may be further configured to control the air medium. That the controller may control whether heated air is to flow into the room or not, depending on an input quantity (e.g., the room temperature), by controlling the air control means so that the air flows through the latent heat storage and is heated.
- the controller is designed for additional control functions, as are common in the field of heat generators and known to those skilled in the art.
- Some embodiments relate to a latent heat storage for a heat generator (as described above), wherein the latent heat storage comprises a heat storage material which is powdery and has a melting point in the range between 200 ° C and 400 ° C.
- FIG. 1 is there a first embodiment of a heat generator 1 illustrated.
- the heat generator 1, here for example a log firing furnace, has a combustion device 2 and a latent heat accumulator 5.
- the combustion device 2 which has a combustion chamber, which can be opened and closed by an oven door 11, located in a combustion bowl 7, which has a grate 8, a firewood 9.
- This billet burns in the combustion device 2 and combustion residues fall through the Grate 8 in a so-called.
- Aschenlade 10 Combustion gases, which arise during the combustion of the billet wood 9 in the combustion device 2, flow into the combustion chamber of the combustion device 2 after above and pass through the opening 15 of a combustion gas guide 37 in a first portion 12 of the combustion gas guide 37th
- the combustion gas guide 37 in this exemplary embodiment represents a continuous ducting system which has a first section 12 which extends from the combustion chamber of the combustion device 2 into the space 3 of the latent heat accumulator 5.
- the tube section 12 bends at its end by 90 ° and merges into a vertical section 23, which is already in the latent heat accumulator 5, and passes through a heat storage material 6, which is located in the latent heat accumulator 5.
- the heat storage material 6 is shown here obliquely hatched.
- the combustion gas duct further has a lower portion 19, which then merges into a vertical portion 22 by a further 90 ° bend and at the end after another 90 degree bend in an end portion 18.
- the combustion gas which absorbs its heat the way through the latent heat storage 5 has given to the heat storage material 6, through the opening 16.
- At this opening 16 is, for example, a chimney connection, through which the combustion gas is discharged to the environment.
- the air control means 14 is configured as an electrically operable device, which can change the air cross-section of completely open, that is, the entire pipe cross-section of the tube 13 until completely closed.
- the air duct 38 further pipe sections on, which are similar to the pipe section 13.
- the air in this case the ambient air surrounding the heat generator 1, enters the pipe section 20 of the air duct 38 at an opening 21, the section 20 being arranged at a lower end of the heat generator.
- This lower tube section 20 extends almost through the entire latent heat accumulator 5, that is, it extends substantially to the upwardly extending tube, which is the uppermost circular cross-section with the reference numeral 27 in the Fig. 2 is shown.
- the tube 20 has connections to the vertically extending pipe sections of the air guide 38, which are indicated by reference numbers 24, 25, 26 and 27 Fig. 1 only a vertically extending pipe section 13 is shown, whereas the Fig. 2 all perpendicular pipe sections with the reference numerals 24, 25, 26 and 27 shows.
- the air which passes through the opening 21 in the lower tube section 20, thus flows through the respective vertical sections 24, 25, 26 and 27 of the air guide 38 through the latent heat accumulator 5 from bottom to top and is above by another pipe section, the here not shown, collected and directed to the opening 17, through the air control means 14 therethrough.
- the air flow is due solely to convection, which is caused by the different heating of the different pipe sections and thus the air contained therein.
- the arranged in the upper edge region of the heat generator 1 opening 17 then flows the heated air which has been heated by the heat output from the heat storage material 6, for example in the room in which the heat generator 1 is arranged.
- FIG. 2 a portion of the combustion gas guide 37 shown.
- Fig. 2 shows the pipe section 12 which extends from the combustion device 2 in the space 3 and the vertical tube 23, which is shown here only in its circular cross-section.
- the vertical section 22 of the combustion gas guide 37 On the left side of the Fig. 2 one sees the vertical section 22 of the combustion gas guide 37 and further the corresponding section 18, which extends out of the latent heat accumulator 5 out.
- the opening 16 enters the combustion gas, which has occurred on the right side at the opening 15, again.
- a heat storage material 6 is in this embodiment, a material with higher Heat storage capacity and provided with a melting point in the range of 270 ° C, in which case in the special case was used as a powdery material NaNO 2 with expanded graphite as a matrix material.
- the heat storage material 6 stores the excess heat from the combustion device by dissipating heat from the combustion gas as latent heat latent for melting the heat storage material 6.
- the air control means 14 can be operated so that the room air flows through the air guide 38 and at a later heating demand so the room can be heated with appropriately heated air.
- Fig. 3 shows a second embodiment of the heat generator 1, wherein the heat generator 1 of the after Fig. 1 essentially only differs in that it additionally has a heat exchanger 33 and corresponding room air inlet and outlet openings 31.
- the parts of the heat generator 1 after Fig. 3 following the parts of the heat generator Fig. 1 are provided with the same reference numerals for the sake of simplicity and they have the same characteristics as described above in connection with the first embodiment.
- the heat exchanger 33 serves to achieve a rapid heat transfer to the space surrounding the heat generator 1 after starting up the heat generator 1 even when the accumulator 5 is unloaded.
- the heat exchanger 33 can be warmed up directly with the combustion gases produced in the combustion chamber, and the heat emitted there is emitted directly to the room air flowing into the heat exchanger 33 through openings 31.
- the heat exchanger 33 has a piping system 32 through which the incoming through the opening 30 combustion gas is passed. In the remaining areas designated by 28 of the heat generator 33, room air which flows in through openings 31 can now be heated and also flow out there again.
- a switching means 29 is also arranged, which - as needed - the combustion gas flow either through the heat generator 33 or through the latent heat storage 5.
- the switching means 29 is formed here electrically, but can also mechanically, for example as a slide, be educated.
- a controller 34 is provided.
- the controller 34 is disposed in the heat generator 1 at any suitable location and is connected via lines 35 and 36 to the air control means 14 and the deflection means 29. In some embodiments, the controller is also outside the heat generator.
- the controller is here designed to control the corresponding means to be controlled, depending on the room temperature at which the heat generator is located, such as here the air control means 14 and the switching means 29.
- a control scheme is as follows: Assuming the room temperature is below a set value of, for example, 21 ° C and the heat generator is being put into operation, i. the latent memory 5 is not charged. The controller is then configured to close the air control means 14 and to set the switching means 29 to flow the combustion gas passing through the opening into the heat exchanger 33 through the serpentine guide 32. As a result, the air that passes through the openings 31 in the heat exchanger 33, heated quickly and it flows immediately as warm air back into the room. Once the setpoint of 21 ° C is reached, the controller controls the switching means 29 so that the combustion gas no longer passes through the heat exchanger 33, but flows through the latent heat accumulator 5 through the pipe sections 12, 23, 19, 22 and 18.
- the heat storage material 6 is heated in the latent heat storage 5.
- the air control means 14 remains closed. Should now, at a later time, for example, when the firewood 9 is already burned, the room temperature again fall below the setpoint of 21 ° C, the controller 34 controls the air control means 14 so that it is open and thus heated air passing through the latent heat storage 5 has been heated, in turn is delivered to the room.
- the Fig. 5 to 9 illustrate a further embodiment of a latent heat storage 5 ', for example, in a heat generator 1 after the Fig. 1 to 3 can be installed.
- the latent heat store 5 ' essentially has a combustion gas guide 37', an air guide 38 'and a heat exchanger 39.
- the combustion gas guide 37 ' has in the latent heat storage 5' five combustion gas pipes 46 to 50 (see Fig. 7 ), which are guided vertically, ie from bottom to top, through the latent heat accumulator 5 'and have a tubular cross-section.
- the combustion gas tubes 46-50 are in a plan view ( Fig. 7 ) as the number five arranged on a cube and heat through this distribution in the latent heat storage 5 'the heat storage material 6' therein as evenly as possible.
- Combustion gas passes, for example, through a connection pipe 60 (FIG. Fig. 8, 9 ) in a lower portion 62 of the latent heat storage 5 '.
- the combustion gas is divided and flows due to convection through the individual combustion gas pipes 46-50 through the latent heat storage 5 'upwards and reaches a region 61. From the area 61 then passes the combustion gas through an upper connecting pipe 59, to the outside.
- the air guide 38 ' has four air pipes 41 to 44, which are also vertically, ie guided from bottom to top by the latent heat storage 5'. These air pipes 41 have a rectangular cross-section, such as. In Fig. 7 is shown.
- the air pipes 41 to 44 are longer than the combustion gas pipes 46 to 50 so that they do not end in the areas 61 and 62, since otherwise combustion gas could get into the air duct 38 '.
- the combustion gas pipes 46 to 50 and the air pipes 41 to 44 are guided on their way from bottom to top through the heat exchanger 39.
- the heat exchanger 39 comprises a plurality of retaining plates 40 on each of which a graphite foil is attached.
- the holding plates 40 and the graphite foils thereon have the same hole pattern, such as.
- the upper end plate 45, the in Fig. 7 is shown. That is, both the combustion gas tubes 46 to 50 and the air tubes 41 to 44 extend through each individual retaining plate 40 and thus also through respective graphite foil.
- the graphite foils have very good heat-conducting properties, and conduct the heat that the combustion gas emits on its way through the heat exchanger 39, into the interior of the latent heat accumulator 5 'and thereby charge the heat storage material 6', which is located between the holding plates 40 on. Due to the "rib-like" arrangement of the holding plates 40 with the graphite foils thereon, the heat given off to them is distributed as evenly as possible in the latent heat store 5 'and in the heat storage material 6' located therein.
- the holding plates 40 are held by inclined portions 52 and 53 and the dimensions of the individual holding plates 40 are selected so that they are evenly spaced by the tapered portions 52 and 53 are held.
- the retaining plates 40 can be so easily inserted in a corresponding order in the limited space by areas 52 and 53 space.
- the areas 52 and 53 are shown here only for two sides of the latent heat storage 5 '. On the two sides not shown are similar beveled areas, so that the retaining plates 40 are held on their four sides.
- the complex of heat exchanger 39 is limited with the intermediate heat storage material 6 'above and below by an upper end plate 45 and below by a lower end plate 51, both of which each have a hole pattern, as it is for the upper end plate 45 in Fig. 7 is shown.
- the end plates 45 and 51 also serve to secure the pipes of the air duct 38 'and those of the combustion duct 37'.
- the latent heat storage 5 'top and bottom closed above and the upper and lower ends of the latent heat accumulator 5' form together with the upper and lower end plates 45 and 51, the upper portion 61 and the lower portion 62 through the combustion gas and split into the combustion gas pipes 46 to 50.
- the air pipes 41 to 44 pass through the complete latent heat accumulator 5 'in a vertical direction, so that, for example, room air can flow through the latent heat accumulator 5'.
- the heat exchanger 39 thus performs a dual function, since it not only conducts the heat from the combustion gas into the latent heat storage 5 'and the heat storage material 6' therein, but the heat exchanger also conducts heat from the latent heat storage 5 'to the air pipes 41 to 44 the air guide 38 ', which heats up through the air duct 38' and in particular through the air pipes 41 to 44 flowing air.
- an air slide 14 ' is arranged on the latent heat accumulator 5' ( 8 and 9 ).
- the air slide 14 ' has rectangular openings 57 and circular openings 58.
- the entire air slide 14' can be rotated, whereby, for example, the rectangular openings 57 above the air pipes 41 to 44 can be arranged accordingly.
- the latent heat storage 5 ' additionalally has a thermal insulation, in the sectional view Fig. 8 can be seen in the areas 54 and 55, so that the heat in the heat storage material 6 'of the latent heat storage 5' remains and a controlled heat transfer with the air valve 14 'is possible.
- the heat insulation 54, 55 surrounds the heat exchanger 39 and the heat storage material 6 'on the sides and partly also up and down, in order to achieve the best possible thermal insulation.
- the latent heat storage 5 ' is thus designed so that it gives little or no heat in the form of heat radiation, but gives off its stored heat in the form of warmed (room) air. As a result, a targeted heat indication is possible.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Solid-Fuel Combustion (AREA)
- Air Supply (AREA)
- Central Heating Systems (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
Abstract
Description
Die vorliegende Erfindung bezieht sich allgemein auf Wärmeerzeuger und insbesondere auf einen Wärmeerzeuger mit einem Wärmespeicher.The present invention relates generally to heat generators, and more particularly to a heat generator having a heat accumulator.
Es sind allgemeine Wärmeerzeuger bekannt, bei denen ein Wärmeerzeuger die erzeugte Wärme zur späteren Verwendung speichert. Insbesondere bei Wärmeerzeugern wie Holzöfen ist es bekannt, diese bspw. mit Wärmespeichern aus Steinmaterial zu versehen, wie beispielsweise Specksteine, Schamottsteine und/oder Kacheln. Diese Steinmaterialien haben üblicherweise eine hohe spezifische Wärmekapazität und sind üblicherweise mantelförmig um eine Verbrennungseinrichtung des Wärmeerzeugers angeordnet, so wie bspw. bei den bekannten Kachel- oder Specksteinöfen.Common heat generators are known in which a heat generator stores the generated heat for later use. In particular, in heat generators such as wood stoves, it is known to provide these, for example, with heat accumulators of stone material, such as soapstone, fireclay bricks and / or tiles. These stone materials usually have a high specific heat capacity and are usually arranged like a jacket around a combustion device of the heat generator, such as, for example, in the known tile or soapstone stoves.
Derartige Öfen geben ihre Wärme in der Regel unkontrolliert an die Umgebung durch Wärmestrahlung ab. Eine geregelte Wärmeabgabe, bspw. in Abhängigkeit der Raumtemperatur ist nicht möglich. Damit einhergehend ist eine energiesparende, über längere Zeit anhaltende Wärmezufuhr an den Raum, in dem der Wärmeerzeuger angeordnet ist, nicht zufriedenstellend gelöst.Such ovens usually give their heat uncontrollably to the environment by thermal radiation. A controlled heat dissipation, for example. Depending on the room temperature is not possible. Along with this, an energy-saving, long-term supply of heat to the room in which the heat generator is arranged, not satisfactorily resolved.
Aufgabe der vorliegenden Erfindung ist es, einen Wärmeerzeuger bzw. einen Wärmespeicher bereitzustellen, dessen Wärmeabgabe besser kontrollierbar ist.The object of the present invention is to provide a heat generator or a heat accumulator whose heat output can be better controlled.
Nach einem ersten Aspekt stellt die vorliegende Erfindung einen Wärmeerzeuger bereit, umfassend: eine Verbrennungseinrichtung; einen Latentwärmespeicher; und eine Verbrennungsgasführung, wobei die Verbrennungsgasführung wenigstens teilweise derart durch den Latentwärmespeicher geführt ist, dass Wärme des in der Verbrennungsgasführung geführten Verbrennungsgases wenigstens teilweise an Wärmespeichermaterial in dem Latentwärmespeicher abgegeben wird.In a first aspect, the present invention provides a heat generator comprising: a combustion device; a latent heat storage; and a combustion gas guide, wherein the combustion gas guide is guided at least partially through the latent heat storage such that heat of the guided in the combustion gas combustion gas is at least partially released to heat storage material in the latent heat storage.
Nach einem zweiten Aspekt stellt die vorliegende Erfindung einen Latentwärmespeicher für einen Wärmeerzeuger bereit, wobei der Latentwärmespeicher ein Wärmespeichermaterial umfasst, das pulverförmig ist und einen Schmelzpunkt im Bereich zwischen 200 °C und 400° C besitzt.In a second aspect, the present invention provides a latent heat storage for a heat generator, wherein the latent heat storage comprises a heat storage material that is powdery and has a melting point in the range between 200 ° C and 400 ° C.
Weitere Aspekte und Merkmale der Erfindung ergeben sich aus den abhängigen Ansprüchen, der beigefügten Zeichnung und der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele.Further aspects and features of the invention will become apparent from the dependent claims, the accompanying drawings and the following description of preferred embodiments.
Ausführungsbeispiele der Erfindung werden nun beispielhaft und unter Bezugnahme auf die beigefügte Zeichnung beschrieben, in der:
-
Fig. 1 ein erstes Ausführungsbeispiel eines Wärmeerzeugers in Übereinstimmung mit der vorliegenden Erfindung veranschaulicht; -
Fig. 2 den Latentwärmespeicher des Wärmeerzeugers des ersten Ausführungsbeispieles veranschaulicht; -
Fig. 3 ein zweites Ausführungsbeispiel eines Wärmeerzeugers in Übereinstimmung mit der vorliegenden Erfindung veranschaulicht; und -
Fig. 4 ein Schaltschema für eine Steuerung für den Wärmeerzeuger nachFig. 3 . zeigt; -
Fig. 5 ein Ausführungsbeispiel eines Latentwärmespeichers in einer ersten Schnittansicht veranschaulicht; -
Fig. 6 den Latentwärmespeicher nachFig. 5 in einer perspektivischen Schnittansicht veranschaulicht; -
Fig. 7 den Latentwärmespeicher nachFig. 5 in einer Draufsicht veranschaulicht; -
Fig. 8 den Latentwärmespeicher nachFig. 5 in einer weiteren Schnittansicht zeigt; -
Fig. 9 den Latentwärmespeicher nachFig. 5 in einer perspektivischen Teilschnittansicht veranschaulicht.
-
Fig. 1 a first embodiment of a heat generator according to the present invention is illustrated; -
Fig. 2 illustrates the latent heat storage of the heat generator of the first embodiment; -
Fig. 3 a second embodiment of a heat generator according to the present invention is illustrated; and -
Fig. 4 a schematic diagram of a controller for the heat generator afterFig. 3 , shows; -
Fig. 5 an embodiment of a latent heat storage in a first sectional view illustrated; -
Fig. 6 the latent heat storage afterFig. 5 illustrated in a perspective sectional view; -
Fig. 7 the latent heat storage afterFig. 5 illustrated in a plan view; -
Fig. 8 the latent heat storage afterFig. 5 in a further sectional view shows; -
Fig. 9 the latent heat storage afterFig. 5 illustrated in a perspective partial sectional view.
Bei manchen Ausführungsbeispielen eines Wärmeerzeugers, bspw. eines Heizkessels oder Ofens, umfasst dieser eine Verbrennungseinrichtung, einen Latentwärmespeicher und eine Verbrennungsgasführung.In some embodiments of a heat generator, for example, a boiler or oven, this includes a combustion device, a latent heat storage and a combustion gas guide.
Die Verbrennungseinrichtung ist je nach Ausführungsbeispiel für die Verbrennung unterschiedlicher Brennstoffe ausgelegt, wie bspw. flüssige, gasförmige oder feste. Flüssige Brennstoffe sind bspw. Heizöl oder dergleichen, gasförmige können Erdgas oder dergleichen sein und feste Brennstoffe können sein: Briketts aus Holz/Kohle, Scheitholz, Pellets, Hackschnitzelgut oder eine andere Art (fester) brennbarer Biomasse. Die Verbrennungseinrichtung umfasst dazu typischerweise einen Brennraum, in dem der Brennstoff verbrennt und - je nach Brennstoffart - bspw. einen Auffangbehälter für Verbrennungsrückstände. Außerdem umfasst die Verbrennungseinrichtung bei manchen Ausführungsbespielen dem Fachmann bekannte Verbrennungsgasgebläse und/oder Luftzuführungsgebläse und dergleichen. Da die Verbrennungseinrichtung im Fachwissen des Fachmanns liegt, wird auf eine weitere Beschreibung bekannter Verbrennungseinrichtungen verzichtet.Depending on the exemplary embodiment, the combustion device is designed for the combustion of different fuels, such as, for example, liquid, gaseous or solid. Liquid fuels are, for example, heating oil or the like, gaseous may be natural gas or the like, and solid fuels may be: briquettes made of wood / coal, logs, pellets, wood chips or another type of (solid) combustible biomass. To this end, the combustion device typically comprises a combustion chamber in which the fuel burns and, depending on the fuel type, for example, a collecting vessel for combustion residues. In addition, in some embodiments, the combustion device includes combustion gas fans and / or air supply fans known to those skilled in the art, and the like. Since the combustion device is within the skill of the art, further description of known combustion devices will be omitted.
Dementsprechend handelt es sich bei manchen Ausführungsbeispielen bei dem Wärmeerzeuger um einen Holzofen, Kohleofen, eine Heizung für Heizöl oder Erdgas, usw. Manche Ausführungsbeispiele beziehen sich auf kleinere Holzöfen für Brennholz (Scheitholz) oder Pelletöfen, die typischerweise in einem Wohnraum aufgestellt sind.Accordingly, in some embodiments, the heat generator is a wood-burning stove, coal furnace, heating for fuel oil or natural gas, etc. Some embodiments relate to smaller wood stoves for firewood or pellet stoves, which are typically installed in a living space.
Die Verbrennungseinrichtung erzeugt bei der Verbrennung entsprechender Brennstoffe ein Verbrennungsgas, welches die Verbrennungsgasführung teilweise durch den Latentwärmespeicher führt. Das Verbrennungsgas enthält eine gewisser Wärmemenge, die es an den Latentwärmespeicher bei dessen Durchströmung wenigstens teilweise abgeben kann. Bei manchen Ausführungsbeispielen geht die Verbrennungsgasführung durch einen Wärmetauscher, der die Wärme des Verbrennungsgases an Wärmespeichermaterial des Latentwärmespeichers abgibt. Bei manchen Ausführungsbeispielen ist die Verbrennungsgasführung quasi selbst der Wärmetauscher, da bspw. die Verbrennungsgasführung mittels einer Rohrleitung durch den Latentwärmespeicher geführt ist und das Wärmespeichermaterial direkten Kontakt mit der Verbrennungsgasführung hat, durch welches das Verbrennungsgas strömt. Die Wärme des Verbrennungsgases geht dann über die Verbrennungsgasführung, d.h. deren Leitungen, in das Wärmespeichermaterial und heizt dieses auf. Bei manchen Verbrennungsgasführungen wird das Verbrennungsgas aufgeteilt, sodass es auf mehreren Wegen durch den Latentwärmespeicher geführt wird und dadurch ein gleichmäßiges Aufladen (Aufheizen) des Latentwärmespeichers ermöglicht.When combusting corresponding fuels, the combustion device generates a combustion gas which partially guides the combustion gas duct through the latent heat accumulator. The combustion gas contains a certain amount of heat that it can deliver at least partially to the latent heat storage at its flow. In some embodiments, the combustion gas duct passes through a heat exchanger which delivers the heat of the combustion gas to the heat storage material of the latent heat storage. In some embodiments, the combustion gas guide is quasi itself the heat exchanger, since, for example. The combustion gas is guided by means of a pipeline through the latent heat storage and the heat storage material has direct contact with the combustion gas guide through which the combustion gas flows. The heat The combustion gas then passes through the combustion gas guide, ie their lines in the heat storage material and heats it up. In some combustion gas ducts, the combustion gas is split, so that it is guided in several ways by the latent heat storage, thereby enabling a uniform charging (heating) of the latent heat storage.
Der Wärmetauscher ist bei manchen Ausführungsbeispielen so ausgestaltet, dass er eine gleichmäßige Verteilung der Wärme in dem Latentwärmespeicher bzw. dessen Wärmespeichermaterial ermöglicht. Dazu weist der Wärmetauscher eine große Oberfläche eines Materials, wie bspw. Graphitfolien auf, das eine gute wärmeleitende Eigenschaft hat. Dieses wärmeleitende Material ist gleichmäßig in dem Latenfinrärmespeicher verteilt und steht sowohl in wärmeleitenden Kontakt mit der Verbrennungsgasführung als auch dem Wärmespeichermaterial.In some embodiments, the heat exchanger is designed such that it allows a uniform distribution of the heat in the latent heat storage or its heat storage material. For this purpose, the heat exchanger on a large surface of a material, such as, graphite foils, which has a good heat conducting property. This thermally conductive material is evenly distributed in the lathed primary storage and is in both thermally conductive contact with the combustion gas duct and the heat storage material.
Weiterhin weist der Wärmeerzeuger bei manchen Ausführungsbeispielen eine Luftführung auf, durch die zu erwärmende Luft geführt wird. Bei manchen Ausführungsbeispielen ist der Wärmetausch dann so ausgestaltet, dass er in wärmeleitenden Kontakt mit dem Wärmespeichermaterial, der Luftführung und der Verbrennungsgasführung steht.Furthermore, in some embodiments, the heat generator on an air duct, is guided through the air to be heated. In some embodiments, the heat exchange is then configured so that it is in heat-conducting contact with the heat storage material, the air guide and the combustion gas guide.
Das Wärmespeichermaterial befindet sich in dem Latentwärmespeicher, bspw. in einem Behälter. Das Wärmespeichermaterial ist ein Latentwärmespeichermaterial, das entsprechende Latentwärme speichert, die immer dann frei wird bzw. zugeführt werden muss, wenn ein Material einen sogenannten Phasenübergang vollzieht. Der Phasenübergang ist bspw. von fest nach flüssig und umgekehrt. Bei manchen Ausführungsbeispielen ist das Wärmespeichermaterial fest und bspw. pulverförmig. Ein derartiges pulverförmiges Material ist im Grundzustand, d.h. bei Zimmertemperatur, pulverförmig und verflüssigt sich, d.h. es wechselt von dem festen in den flüssigen Phasenzustand, wenn eine bestimmte Temperatur, nämlich die Schmelztemperatur, überschritten ist. Bei manchen Ausführungsbeispielen hat das Wärmespeichermaterial einen Schmelzpunkt, der im Bereich zwischen 200 °C und 400 °C liegt - also der Temperaturbereich, den auch das Verbrennungsgas typischerweise aufweist. Manche Wärmespeichermaterialien nehmen im geschmolzenen Zustand, d.h. in der flüssigen Phase, ein kleineres Volumen ein als im festen (pulverförmigen) Zustand. Dadurch besteht bei solchen Materialien nicht die Gefahr, dass sie aus dem Behälter "überlaufen" in dem sie sich befinden, wenn das eingenommene Volumen zu groß, d.h. größer als das Behältervolumen wird. Andere Wärmespeichermaterialien vergrößern ihr Volumen in der flüssigen Phase. Daher wird bei solchen Wärmespeichermaterialien der Behälter, in dem sich das Wärmespeichermaterial befindet, nicht vollständig befüllt, sondern wenigstens die beim Phasenübergang von fest zu flüssig stattfindende Volumenänderung bei der Befüllung des Behälters berücksichtigt.The heat storage material is in the latent heat storage, eg. In a container. The heat storage material is a latent heat storage material that stores corresponding latent heat, which is always free or must be supplied when a material performs a so-called phase transition. The phase transition is, for example, from solid to liquid and vice versa. In some embodiments, the heat storage material is solid and, for example, powdered. Such a powdery material is in the ground state, ie at room temperature, powdery and liquefies, ie it changes from the solid to the liquid phase state when a certain temperature, namely the melting temperature is exceeded. In some embodiments, the heat storage material has a melting point that is in the range between 200 ° C and 400 ° C - that is, the temperature range that also typically has the combustion gas. Some heat storage materials assume a smaller volume in the molten state, ie in the liquid phase, than in the solid (powdery) state. As a result, there is no danger of such materials "spilling out" of the container in which they are located if the occupied volume is too large, ie larger as the container volume becomes. Other heat storage materials increase their volume in the liquid phase. Therefore, in such heat storage materials of the container in which the heat storage material is not completely filled, but at least considered in the phase transition from solid to liquid volume change in the filling of the container.
Als Wärmespeichermaterialien kommen bei manchen Ausführungsbeispielen bspw. Salzhydrate zum Einsatz. So können bspw. Nitrat- oder Nitritsalze mit einem Matrixmaterial, wie Graphit (expandierter Graphit oder Naturgraphit), verwendet werden. Expandierter Graphit, der pulverförmig ist, kann dabei mit diesen Salzen verpresst werden, wodurch ein pulverförmiges Wärmespeichermaterial entsteht.For example, salt hydrates are used as heat storage materials in some embodiments. Thus, for example, nitrate or nitrite salts with a matrix material, such as graphite (expanded graphite or natural graphite) can be used. Expanded graphite, which is powdery, can be pressed with these salts, whereby a powdered heat storage material is formed.
Als Salze kommen zum Beispiel LiNO3 mit einer Schmelztemperatur von 254 °C, Na-NO2 mit einer Schmelztemperatur von 270 °C oder NaNO3 mit einer Schmelztemperatur von 306 °C zum Einsatz. Die entsprechende Latentwärme dieser Materialien liegt im Bereich von ca. 60 W/mK.Examples of salts used are LiNO 3 having a melting point of 254 ° C., NaNO 2 having a melting point of 270 ° C. or NaNO 3 having a melting point of 306 ° C. The corresponding latent heat of these materials is in the range of about 60 W / mK.
Der Behälter in dem sich das Wärmespeichermaterial befindet, ist bei manchen Ausführungsbeispielen aus Metall, bspw. einem korrosionsfreien bzw. lochfraßbeständigem Metall wie Edelstahl, bspw. mit einem Molybdänanteil. Wenn der Behälter nahezu luftdicht ist, reicht auch normaler Stahl als Behältermaterial aus, da in diesem Falle kein zusätzlicher Sauerstoff in den Behälter gelangt und somit eine Korrosion verhindert wird.The container in which the heat storage material is, in some embodiments of metal, for example. A corrosion-resistant or Pochfraßbeständigem metal such as stainless steel, for example. With a molybdenum content. If the container is almost airtight, normal steel is sufficient as a container material, since in this case no additional oxygen enters the container and thus corrosion is prevented.
Bei manchen Ausführungsbeispielen ist der Latentwärmespeicher direkt mit der Verbrennungseinrichtung verbunden, beide befinden sich zum Beispiel in einem Gehäuse. Bei anderen Ausführungsbeispielen ist der Latentwärmespeicher hingegen von der Verbrennungseinrichtung getrennt und bspw. nur über die Verbrennungsgasführung mit der Verbrennungseinrichtung verbunden. Das heißt, bei manchen Ausführungsbeispielen kann sich der Latentwärmespeicher in einem anderen Raum befinden, z.B. im Keller, als die Verbrennungseinrichtung, die bspw. im Wohnzimmer angeordnet ist.In some embodiments, the latent heat storage is connected directly to the combustion device, both are located for example in a housing. In other embodiments, the latent heat storage, however, is separated from the combustion device and, for example, connected only via the combustion gas guide with the combustion device. That is, in some embodiments, the latent heat storage may reside in another room, e.g. in the basement, as the incinerator, which is arranged, for example, in the living room.
Der Latentwärmespeicher kann seine in ihm gespeicherte Wärme bei manchen Ausführungsbeispielen an Luft abgeben, die durch einen ersten Wärmetauscher, bspw. wie oben beschrieben, strömt. Dazu ist der erste Wärmetauscher bspw. innerhalb des Latentwärmespeichers so angeordnet, dass er Wärme aus dem Wärmespeichermaterial aufnehmen und an Luft, die durch den Wärmetauscher strömt abgeben kann. Bei manchen Ausführungsbeispielen ist eine Luftführung Teil des ersten Wärmetauschers, die Raumluft durch den Latentwärmespeicher und infolge dessen auch durch das Wärmespeichermaterial strömen lässt. Bei anderen hingegen weist der Wärmetauscher eine extra Einrichtung auf, die bspw. Turbolatoren umfasst, die innerhalb des Latentwärmespeichers angeordnet sind und die Luftströmung drosseln, sodass eine verbesserte Wärmeabgabe an die Luft erfolgen kann.The latent heat storage can release its heat stored in it in some embodiments in air flowing through a first heat exchanger, for example. As described above. For this purpose, the first heat exchanger, for example. Within the Latent heat accumulator arranged so that it can absorb heat from the heat storage material and deliver to air flowing through the heat exchanger. In some embodiments, an air guide is part of the first heat exchanger, which allows room air to flow through the latent heat storage and as a result also through the heat storage material. In others, however, the heat exchanger has an extra device, which includes, for example, turbulators, which are arranged within the latent heat accumulator and throttle the air flow, so that an improved heat transfer to the air can take place.
Zum Steuern der Luftmenge, die durch den Latentwärmespeicher strömt, weist der Wärmeerzeuger bspw. ein Luftsteuermittel auf, das mechanisch oder elektrisch betreibbar ist. Das Luftsteuermittel ist dazu ausgelegt, die Luftmenge zu steuern, indem es bspw. den Durchströmungsquerschnitt, durch den die Luftmenge strömt, verändert. Die Luft ist bspw. Raumluft, die einem Raum entnommen wird, durch den Latentwärmespeicher bzw. den ersten Wärmetauscher strömt und erwärmt wieder an den Raum zurückgeführt wird. Durch die Steuerung der Luftmenge wird folglich auch die pro Zeit abgegeben Wärme und damit bspw. auch eine Raumtemperatur gesteuert.For controlling the amount of air that flows through the latent heat accumulator, the heat generator, for example, an air control means, which is mechanically or electrically operable. The air control means is adapted to control the amount of air by, for example, the flow cross-section through which the amount of air flows changed. The air is, for example, room air, which is taken from a room flows through the latent heat storage or the first heat exchanger and heated again is returned to the room. By controlling the amount of air is consequently also the heat emitted per time and thus, for example. Also controlled a room temperature.
Bei manchen Ausführungsbeispielen weist der Wärmeerzeuger einen zweiten Wärmetauscher auf, der dazu ausgelegt ist, Wärme aus Verbrennungsgasen wenigstens teilsweise an durch ihn durchströmende (Raum-)Luft abzugeben. Dazu ist der zweite Wärmetauscher bspw. innerhalb oder oberhalb des Brennraumes der Verbrennungseinrichtung angeordnet. Der zweite Wärmetauscher umfasst Bereiche bzw. Öffnungen durch die das Verbrennungsgas strömt und Bereiche bzw. Öffnungen, durch die Luft bzw. Raumluft strömt. Der Wärmetauscher ist so gestaltet, dass er die Wärme des Verbrennungsgase an die Luft abgibt, sodass bspw. ein Raum, in dem der Wärmeerzeuger angeordnet ist, auch zusätzlich über die in dem zweiten Wärmetauscher erwärmte Luft erwärmt werden kann (und nicht nur durch von dem Wärmeerzeuger abgegebene Strahlungswärme).In some embodiments, the heat generator includes a second heat exchanger configured to at least partially disperse heat from combustion gases to (room) air passing therethrough. For this purpose, the second heat exchanger is, for example, arranged within or above the combustion chamber of the combustion device. The second heat exchanger comprises areas or openings through which the combustion gas flows and areas or openings through which air or room air flows. The heat exchanger is designed so that it emits the heat of the combustion gases into the air, so that, for example, a room in which the heat generator is arranged can also be heated by the heated air in the second heat exchanger (and not only by the Heat generator emitted radiant heat).
Manche Wärmeerzeuger weisen ferner ein mechanisch und/oder elektrisch betreibbares Umschaltmittel auf, das dazu ausgelegt ist, Verbrennungsgase in der Verbrennungsgasführung entweder durch den Latentwärmespeicher oder den zweiten Wärmetauscher oder teilweise durch beide strömen zu lassen. D.h. bei solchen Wärmeerzeugern kann, bspw. bevor der Latentwärmespeicher mit Wärme "aufgeladen" wird, zuerst der Raum, in dem sich der Wärmeerzeuger befindet, schnell durch die Aufwärmung der Luft in dem zweiten Wärmetauscher aufgewärmt werden.Some heat generators further include a mechanically and / or electrically operable switching means adapted to allow combustion gases in the combustion gas flow to flow through either or both of the latent heat storage or the second heat exchanger. That is, in such heat generators can, for example, before the latent heat storage is "charged" with heat, first the space in which the heat generator is located, quickly by the warming the air in the second heat exchanger to be warmed up.
Bei manchen Ausführungsbeispielen weist der Wärmeerzeuger ferner eine elektrische Steuerung auf. Die elektrische Steuerung ist bspw. dazu ausgelegt, das Umschaltmittel in Abhängigkeit einer Eingangsgröße zu steuern. Eine solche Eingangsgröße ist bspw. die Raumtemperatur, so dass bei einer niedrigen Raumtemperatur, die unterhalb eines Sollwertes liegt, zuerst der Raum schnell aufgeheizt wird, indem das Umschaltmittel so gestellt ist, dass das Verbrennungsgas durch den zweiten Wärmetauscher strömt. Ist die gewünschte Raumtemperatur, d.h. der Sollwert erreicht, stellt die Steuerung das Umschaltmittel so, dass das Verbrennungsgas durch den Latentwärmespeicher strömt und ihn durch entsprechende Wärmeabgabe auflädt.In some embodiments, the heat generator further includes electrical control. The electrical control is, for example, designed to control the switching means as a function of an input variable. Such an input variable is, for example, the room temperature, so that at a low room temperature, which is below a desired value, the space is first heated quickly by the switching means is set so that the combustion gas flows through the second heat exchanger. If the desired room temperature, i. reaches the setpoint, the controller sets the switching means so that the combustion gas flows through the latent heat storage and charges him by appropriate heat dissipation.
Die Steuerung kann ferner dazu ausgelegt sein, das Luftmittel zu steuern. D.h. die Steuerung kann in Abhängigkeit einer Eingangsgröße (z.B. die Raumtemperatur) steuern, ob erwärmte Luft in den Raum strömen soll oder nicht, indem sie das Luftsteuermittel so steuert, dass die Luft durch den Latentwärmespeicher strömt und erwärmt wird. Bei manchen Ausführungsbeispielen ist die Steuerung für zusätzliche Steuerfunktionen ausgelegt, wie sie im Bereich von Wärmeerzeugern üblich und dem Fachmann bekannt sind.The controller may be further configured to control the air medium. That the controller may control whether heated air is to flow into the room or not, depending on an input quantity (e.g., the room temperature), by controlling the air control means so that the air flows through the latent heat storage and is heated. In some embodiments, the controller is designed for additional control functions, as are common in the field of heat generators and known to those skilled in the art.
Manche Ausführungsbeispiele beziehen sich auf einen Latentwärmespeicher für einen Wärmeerzeuger (wie oben beschrieben), wobei der Latentwärmespeicher ein Wärmespeichermaterial umfasst, das pulverförmig ist und einen Schmelzpunkt im Bereich zwischen 200 °C und 400° C besitzt.Some embodiments relate to a latent heat storage for a heat generator (as described above), wherein the latent heat storage comprises a heat storage material which is powdery and has a melting point in the range between 200 ° C and 400 ° C.
Zurückkehrend zu
Der Wärmeerzeuger 1, hier z.B. ein Scheitholzbrennofen, weist eine Verbrennungseinrichtung 2 und einen Latentwärmespeicher 5 auf. In der Verbrennungseinrichtung 2, die einen Brennraum aufweist, der durch eine Ofentür 11 geöffnet und geschlossen werden kann, befindet sich in einer Brennschale 7, die einen Rost 8 aufweist, ein Scheitholz 9. Dieses Scheitholz verbrennt in der Verbrennungseinrichtung 2 und Verbrennungsrückstände fallen durch den Rost 8 in eine sog. Aschenlade 10. Verbrennungsgase, die bei der Verbrennung des Scheitholzes 9 in der Verbrennungseinrichtung 2 entstehen, strömen in den Brennraum der Verbrennungseinrichtung 2 nach oben und gelangen durch die Öffnung 15 einer Verbrennungsgasführung 37 in einen ersten Abschnitt 12 der Verbrennungsgasführung 37.The heat generator 1, here for example a log firing furnace, has a
Die Verbrennungsgasführung 37 stellt in diesem Ausführungsbeispiel ein durchgehendes Rohrleitsystem dar, das einen ersten Abschnitt 12 aufweist, der sich von dem Brennraum der Verbrennungseinrichtung 2 in den Raum 3 des Latentwärmespeichers 5 erstreckt. Der Rohrabschnitt 12 biegt sich an seinem Ende um 90° und geht in einen vertikalen Abschnitt 23 über, der bereits in dem Latentwärmespeicher 5 liegt, und verläuft durch ein Wärmespeichermaterial 6, das sich in dem Latentwärmespeicher 5 befindet. Das Wärmespeichermaterial 6 ist hier schräg schraffiert dargestellt. Die Verbrennungsgasführung weist ferner einen unteren Abschnitt 19 auf, der dann durch eine weitere 90° Biegung in einen vertikalen Abschnitt 22 übergeht und am Ende nach einer weiteren 90 Grad Biegung in einen Endabschnitt 18. Durch den Endabschnitt 18 strömt das Verbrennungsgas, das seine Wärme auf dem Weg durch den Latentwärmespeicher 5 an das Wärmespeichermaterial 6 abgegeben hat, durch die Öffnung 16 aus. An dieser Öffnung 16 befindet sich beispielsweise ein Kaminanschluss, durch welchen das Verbrennungsgas an die Umwelt abgeführt wird.The
In diesem ersten Ausführungsbeispiel stellt folglich der U-förmige Verlauf der Verbrennungsgasführung 37 mit seinen Abschnitten 23, 19 und 22 gleichzeitig ein Wärmetauscher dar. Das Verbrennungsgas strömt in diesem Falle allein aufgrund seiner Konvektionsströmung, die es aufgrund unterschiedlicher Temperaturgradienten erfährt, durch die entsprechenden Rohrabschnitte 12, 23, 19, 22 und 18. Bei manchen Ausführungsbeispielen hingegen befindet sich ein zusätzliches Rauchgasgebläse in der Verbrennungsgasführung 37, um das Durchströmungsverhalten des Verbrennungsgases gezielt steuern zu können.In this first embodiment, consequently, the U-shaped course of the
Weiter befindet sich im Latentwärmespeicher ein Teil einer Luftführung 38, von welcher lediglich ein Rohrabschnitt 13 in der
Wie aus der
Ferner ist in
Als Wärmespeichermaterial 6 ist in diesem Ausführungsbeispiel ein Material mit höher Wärmespeicherkapazität und mit einem Schmelzpunkt im Bereich von 270 °C vorgesehen, wobei hier im speziellen Fall als pulverförmiges Material NaNO2 mit expandiertem Graphit als Matrixmaterial verwendet wurde. Das Wärmespeichermaterial 6 speichert die überschüssige Wärme aus der Verbrennungseinrichtung durch Wärmeabgabe aus dem Verbrennungsgas als u.a. Latentwärme zum Schmelzen des Wärmespeichermaterials 6. Wie bereits ausgeführt, kann bei einem späteren Heizbedarf einfach das Luftsteuermittel 14 so betätigt werden, dass die Raumluft durch die Luftführung 38 strömt und so der Raum mit entsprechend erwärmter Luft geheizt werden kann.As a
Der Wärmetauscher 33 dient dazu, nach Inbetriebnahme des Wärmeerzeugers 1 auch bei unaufgeladenem Latentspeicher 5 eine rasche Wärmeabgabe an den Raum, der den Wärmeerzeuger 1 umgibt, zu erreichen. Der Wärmetauscher 33 kann dazu direkt mit den im Verbrennungsraum entstehenden Verbrennungsgasen aufgewärmt werden und die dort abgegebene Wärme wird direkt an die durch Öffnungen 31 in den Wärmetauscher 33 einströmende Raumluft abgegeben.The
Wie in
Innerhalb des Wärmeerzeugers 33 ist ferner ein Umschaltmittel 29 angeordnet, das - je nach Bedarf - das Verbrennungsgas entweder durch den Wärmeerzeuger 33 strömen lässt oder durch den Latentwärmespeicher 5. Das Umschaltmittel 29 ist hier elektrisch ausgebildet, kann aber auch mechanisch, beispielsweise als Schieber, ausgebildet sein.Within the
Zur Steuerung des Umlenkmittels 29 und auch des Luftleitmittels 14, ist, wie aus
Ein Steuerungsschema nach einem Ausführungsbeispiel ist dabei wie folgt: Angenommen die Raumtemperatur liegt unterhalb eines Sollwertes von beispielsweise 21 °C und der Wärmeerzeuger wird gerade in Betrieb genommen, d.h. der Latentspeicher 5 ist nicht aufgeladen. Die Steuerung ist dann so ausgelegt, dass sie das Luftsteuermittel 14 schließt und das Umschaltmittel 29 so einstellt, das das Verbrennungsgas, welches durch die Öffnung in den Wärmetauscher 33 gelangt, durch die schlangenförmige Führung 32 strömt. Dadurch wird die Luft, die durch die Öffnungen 31 in den Wärmetauscher 33 gelangt, schnell erwärmt und sie strömt sofort als warme Luft zurück in den Raum. Sobald der Sollwert von 21 °C erreicht ist, steuert die Steuerung das Umschaltmittel 29 so, dass das Verbrennungsgas nicht mehr durch den Wärmetauscher 33 gelangt, sondern durch den Latentwärmespeicher 5 über die Rohrabschnitte 12, 23, 19, 22 und 18 strömt. Dadurch erwärmt sich das Wärmespeichermaterial 6 im Latentwärmespeicher 5. Das Luftsteuermittel 14 bleibt dabei weiter geschlossen. Sollte nun zu einem späteren Zeitpunkt, zu dem beispielsweise das Scheitholz 9 bereits verbrannt ist, die Raumtemperatur wieder unterhalb des Sollwerts von 21 °C fallen, so steuert die Steuerung 34 das Luftsteuermittel 14 so, dass es geöffnet ist und folglich erwärmte Luft, die durch den Latentwärmespeicher 5 erwärmt wurde, wiederum an den Raum abgegeben wird.A control scheme according to an embodiment is as follows: Assuming the room temperature is below a set value of, for example, 21 ° C and the heat generator is being put into operation, i. the
Die
Die Verbrennungsgasführung 37' weist in dem Latentwärmespeicher 5' fünf Verbrennungsgasohre 46 bis 50 (siehe
Die Luftführung 38' weist vier Luftrohre 41 bis 44 auf, die ebenfalls senkrecht, d.h. von unten nach oben durch den Latentwärmespeicher 5' geführt sind. Diese Luftrohre 41 haben einen rechteckförmigen Querschnitt, wie bspw. in
Die Verbrennungsgasrohre 46 bis 50 und die Luftrohre 41 bis 44 sind auf ihrem Weg von unten nach oben durch den Wärmetauscher 39 geführt. Der Wärmetauscher 39 umfasst mehrere Haltebleche 40 auf denen jeweils eine Graphitfolie angebracht ist. Die Haltebleche 40 und die darauf befindlichen Graphitfolien haben das gleiche Lochbild, wie bspw. die obere Abschlussplatte 45, die in
Wie bspw. in
Wie in den
Die Luftrohre 41 bis 44 gehen durch den kompletten Latentwärmespeicher 5' in einer senkrechten Richtung hindurch, sodass bspw. Raumluft durch den Latentwärmespeicher 5' strömen kann. Der Wärmetauscher 39 übt somit eine Doppelfunktion aus, da er nicht nur die Wärme von dem Verbrennungsgas in den Latentwärmespeicher 5' leitet und das darin befindliche Wärmespeichermaterial 6' auflädt, sondern der Wärmetauscher leitet auch Wärme aus den Latentwärmespeicher 5' an die Luftrohre 41 bis 44 der Luftführung 38', wodurch sich durch die Luftführung 38' und insbesondere durch die Luftohre 41 bis 44 strömende Raumluft erwärmt.The
Zur Steuerung der Raumluftmenge, die durch die Rohre 41 bis 44 strömen soll, ist auf dem Latentwärmespeicher 5' ein Luftschieber 14' angeordnet (
Der Latentwärmespeicher 5' weist zusätzlich eine Wärmeisolierung auf, die in der Schnittdarstellung
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200810057911 DE102008057911B4 (en) | 2008-11-18 | 2008-11-18 | Latent heat storage stove |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2187145A2 true EP2187145A2 (en) | 2010-05-19 |
EP2187145A3 EP2187145A3 (en) | 2015-04-29 |
EP2187145B1 EP2187145B1 (en) | 2017-03-15 |
Family
ID=41319690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09012106.2A Not-in-force EP2187145B1 (en) | 2008-11-18 | 2009-09-23 | Latent storage heater |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2187145B1 (en) |
DE (1) | DE102008057911B4 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102261741A (en) * | 2011-08-03 | 2011-11-30 | 无锡锡能锅炉有限公司 | Organic heat carrier boiler with modular structure |
EP2500658A3 (en) * | 2011-03-14 | 2017-05-17 | Karl Stefan Riener | Heating device with a combustion chamber for burning biomass material |
CN106931642A (en) * | 2015-12-30 | 2017-07-07 | 沈阳兰昊新能源科技有限公司 | Biomass fuel heat accumulating type hot air boiler |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013019954A1 (en) | 2013-11-27 | 2015-05-28 | Karl Stefan Riener | Oven for heat generation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4250866A (en) * | 1979-09-10 | 1981-02-17 | Research Institute For Advanced Technology | Thermal energy storage to increase furnace efficiency |
JPS5838708B2 (en) * | 1981-03-06 | 1983-08-24 | 工業技術院長 | solar heat collector |
DE102007046133B4 (en) * | 2007-05-04 | 2011-05-05 | Jess Gmbh | Heat storage for storing energy |
-
2008
- 2008-11-18 DE DE200810057911 patent/DE102008057911B4/en not_active Expired - Fee Related
-
2009
- 2009-09-23 EP EP09012106.2A patent/EP2187145B1/en not_active Not-in-force
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2500658A3 (en) * | 2011-03-14 | 2017-05-17 | Karl Stefan Riener | Heating device with a combustion chamber for burning biomass material |
CN102261741A (en) * | 2011-08-03 | 2011-11-30 | 无锡锡能锅炉有限公司 | Organic heat carrier boiler with modular structure |
CN102261741B (en) * | 2011-08-03 | 2013-04-03 | 无锡锡能锅炉有限公司 | Organic heat carrier boiler with modular structure |
CN106931642A (en) * | 2015-12-30 | 2017-07-07 | 沈阳兰昊新能源科技有限公司 | Biomass fuel heat accumulating type hot air boiler |
Also Published As
Publication number | Publication date |
---|---|
EP2187145B1 (en) | 2017-03-15 |
DE102008057911A1 (en) | 2010-05-20 |
DE102008057911B4 (en) | 2013-08-29 |
EP2187145A3 (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016050851A1 (en) | Heat reservoir, and method for operating a heat reservoir | |
EP2187145B1 (en) | Latent storage heater | |
DE29824684U1 (en) | Heating furnace, especially with gas and / or oil firing | |
EP2339246A2 (en) | Assembly for a bakery with heat recovery | |
DE19806257A1 (en) | Furnace for combustion of fuel pellets | |
EP2045528B1 (en) | Heat storage system | |
DE20220234U1 (en) | wood oven | |
EP2878895A1 (en) | Furnace for heat generation | |
WO1997041395A1 (en) | Low temperature heating system | |
EP0082306B1 (en) | Local heating installation | |
AT411390B (en) | HEATING INSERT FOR BIOGENIC FUELS WITH INTEGRATED SOLID STORAGE AND HEATING HEAT EXCHANGER | |
DE3049994A1 (en) | Heating stove | |
DE2653973A1 (en) | Furnace for hot water central heating system - has helical heat exchanger coil for utilising flue gas heat | |
DE202012101501U1 (en) | Saunaaufguss oven | |
DE3004601A1 (en) | Solid fuel continuous combustion stove - has vertical shaft containing heat exchanger supplying central-heating and hot water systems | |
DE202009004942U1 (en) | Basic furnace arrangement with a heat exchanger | |
DE202018100732U1 (en) | column oven | |
DE2934721A1 (en) | Solid, liquid or gas fired water boiler - has fuel grate and adjacent refractory insert with secondary air supply below combustion chamber | |
DE10055053C1 (en) | Wood pellet-fired heater for domestic use has heat-exchanger downstream of combustion chamber, with coiled tube on vertical axis | |
DE102013005970A1 (en) | Heat system for heating building with e.g. domestic hot water, has hot gas channel conveying hot gas heated from hot gas generator to heat exchanger, and hot water channel conveying liquid secondary medium from heat exchanger | |
DE4302673C2 (en) | Tiled or stone stove | |
DE908185C (en) | Heating stove with filling chute | |
AT411793B (en) | heater | |
DE9419506U1 (en) | Heat storage furnace | |
DE102017111614A1 (en) | Heating device and method of operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24H 7/04 20060101ALI20141211BHEP Ipc: F24H 3/08 20060101AFI20141211BHEP |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24H 7/04 20060101ALI20150325BHEP Ipc: F24H 3/08 20060101AFI20150325BHEP |
|
17P | Request for examination filed |
Effective date: 20151026 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20160407 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160921 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 875992 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009013739 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170315 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170616 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170615 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170715 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170717 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20170928 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009013739 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 |
|
26N | No opposition filed |
Effective date: 20171218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170923 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170923 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170923 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170930 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 875992 Country of ref document: AT Kind code of ref document: T Effective date: 20180923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170315 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170315 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220314 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009013739 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230401 |