EP2185124A2 - Agents de traitement capillaire cosmétiques naturels - Google Patents

Agents de traitement capillaire cosmétiques naturels

Info

Publication number
EP2185124A2
EP2185124A2 EP08717818A EP08717818A EP2185124A2 EP 2185124 A2 EP2185124 A2 EP 2185124A2 EP 08717818 A EP08717818 A EP 08717818A EP 08717818 A EP08717818 A EP 08717818A EP 2185124 A2 EP2185124 A2 EP 2185124A2
Authority
EP
European Patent Office
Prior art keywords
acid
oil
hair
amino
hair treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP08717818A
Other languages
German (de)
English (en)
Inventor
Thomas Döring
Claudia Brockmann
Georg SÜNGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP2185124A2 publication Critical patent/EP2185124A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/604Alkylpolyglycosides; Derivatives thereof, e.g. esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/68Sphingolipids, e.g. ceramides, cerebrosides, gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9755Gymnosperms [Coniferophyta]
    • A61K8/9761Cupressaceae [Cypress family], e.g. juniper or cypress
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • A61Q5/065Preparations for temporary colouring the hair, e.g. direct dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Definitions

  • the invention relates to a natural cosmetic hair treatment composition based on a specific combination of active substances, consisting of a vegetable dyeing and / or hair care substance, an acylamino acid salt and / or a glycolipid and a fatty acid and / or glyceryl ester of a long-chain alcohol.
  • the invention further relates to the use of the combination of active ingredients for the preparation of natural cosmetic hair treatment compositions having improved cosmetic properties and a method for hair treatment using the natural cosmetic hair treatment composition.
  • WO 02/30384 describes a cosmetic preparation based on certain plant extracts which have been stabilized in a gel.
  • EP 577 143 describes, inter alia. solid solutions of flavonoids with a hydrophilic peptide.
  • the resulting gels have a sticky consistency and they are also difficult to rinse out of the hair again.
  • hair feel is often compromised after use.
  • the object of the present invention was therefore to stabilize natural herbal hair dyes and conditioners in a suitable base such that an unproblematic incorporation into cosmetic hair treatment compositions is possible.
  • the use of herbal hair dye and conditioner based hair treatment agents should also be facilitated and the cosmetic properties of the hair improved.
  • the invention therefore hair treatment compositions containing a combination of active ingredients of a) a vegetable dyeing and / or Haar convenientlystoff b) an acylamino acid salt and / or a glycolipid and c) a fatty acid and / or glyceryl ester of a long-chain alcohol.
  • the hair treatment compositions of the invention have a significantly improved sensor and optics, as well as a lower tack than the known in the prior art, comparable means. Furthermore, they can be better rinsed out of the hair. Another particular advantage of the hair treatment compositions according to the invention is that they effect improved hair care and dyeing properties on the hair.
  • Vegetable dyes suitable according to the invention are usually selected from the stems, flowers, leaves, roots, barks, fruits and / or the seeds of chamomile, hibiscus, safflower, sunflower, walnut tree, henna, indigo plant, sumac, elderberry, rubiacee, turmeric, lotus, rhubarb , Sandalwood, campeche, brazil and pernambuco wood, alder, strawberry tree, oleander, saffron, bloodwort, blackthorn, broom, wattle, lichen and goldenrod.
  • the henna (Lawsonia inermis) dyes, the indigo plant (Idnigofera tinctora) and turmeric (Curcuma longa) are preferred. They are in the natural hair dye according to the invention - based on the
  • the quantities refer to the pulverulent ground plant parts.
  • aqueous and / or alcoholic, in particular ethanolic, plant extracts are used.
  • concentration of the extracts is chosen according to the colorant content so that a satisfactory color result is achieved.
  • Powdered henna contains about 0.3% of the dye Lawsson.
  • Aqueous henna extracts reach a concentration of 0.01-2.0% Lawsson.
  • the vegetable care substances according to the invention are vegetable oils and / or plant extracts.
  • the vegetable oils are usually selected from coconut oil, (sweet) almond oil, walnut oil, peach kernel oil, avocado oil, tea tree oil, soybean oil, sesame oil, sunflower oil, tsubaki oil, evening primrose oil, rice bran oil, palm kernel oil, mango seed oil, meadowfoam oil, thistle oil, macadamia nut oil, grapeseed oil , Apricot kernel oil, orange oil, babushu oil, olive oil, wheat germ oil, pumpkin seed oil, mallow oil, hazelnut oil, safflower oil, canola oil, sasanqua oil, amaranth oil, jojoba oil and shea butter, with peach kernel oil, avocado oil, sunflower oil, grapeseed oil, apricot kernel oil, orange oil and jojoba oil being particularly preferred.
  • the vegetable oils are in the hair care compositions according to the invention - based on the total weight of the compositions - in an amount of 0.001 to 10 wt%, preferably from 0.005 to 7 wt .-%, particularly preferably from 0.01 to 5 wt .-% and in particular from 0.05 to 3 wt .-% used.
  • Plant extracts of green tea, white tea, oak bark, stinging nettle, witch hazel, hops, henna, camellia, burdock root, horsetail, hawthorn, linden, almond, aloe vera, spruce needle, horse chestnut, sandalwood, juniper, coconut, mango, apricot are suitable plant extracts according to the invention , Lime, wheat, kiwi, melon, orange, grapefruit, sage, rosemary, birch, mallow, meadowfoam, quenelle, yarrow, thyme, lemon balm, toadstool, coltsfoot, vanilla, marshmallow, meristem, ginseng and ginger root.
  • Particularly preferred according to the invention are the extracts of green tea, white tea, almond, aloe vera, coconut, mango, apricot, lime, wheat, vanilla, kiwi and melon, and particularly preferably the extracts of aloe vera, vanilla and melon.
  • extracts are produced by extraction of the whole plant. However, in individual cases it may also be preferred to prepare the extracts exclusively from flowers and / or leaves of the plant.
  • extractants for the preparation of said plants extra kte water, alcohols and mixtures thereof can be used.
  • the alcohols are lower alcohols such as ethanol and isopropanol, but especially polyhydric alcohols such as ethylene glycol and propylene glycol, both as sole extractant and in admixture with water, are preferred.
  • Extra kte plants based on water / propylene glycol in a ratio of 1:10 to 10: 1 have proven to be particularly suitable.
  • the plant extracts can be used according to the invention both in pure and in diluted form. If they are used in diluted form, they usually contain about 2 to 80 wt .-% of active substance and as a solvent used in their extraction agent or extractant mixture.
  • the plant extracts are in the inventive compositions - based on the total weight of the agent - in an amount of 0.001 to 10 wt%, preferably from 0.005 to 7 wt .-%, particularly preferably from 0.01 to 5 wt .-% and in particular from 0.05 to 3 wt .-% used.
  • the components a) (vegetable dyeing and / or hair care substance (s)), b) (acylamino acid salt (s) and / or glycolipid (s)) and c) (fatty acid and / or or glyceryl esters of long-chain alcohols) in a weight ratio of (2-10): (0.1-1) :( 0.5-2).
  • Acylamino acid salts which are suitable according to the invention are customarily selected from condensation products of amino acids with saturated and unsaturated C 8 -C 30 -fatty acids, preferably with C 10 -C 24 -fatty acids and particularly preferably with C 12 -C 18 -fatty acids which are used in neutralized form as alkali metal salts. , Ammonium or alkyl amino salt.
  • Amino acids which are suitable according to the invention are lysine, phenylalanine, valine, arginine, histidine, alanine, aspartic acid, cysteine, glutamic acid, glycine, proline serine and tyrosine, with glutamic acid, aspartic acid, glycine, alanine, lysine and arginine being particularly preferred.
  • Particularly suitable Acylaminoklaresalze are the sodium, potassium, ammonium, monoethanolamine or triethanolamine salts of the condensation products of glutamic acid, aspartic acid, glycine, alanine, lysine and arginine with Ci 2 -C 18 fatty acids, especially those under the trade name Eumulgin ® SG ( Sodium stearoyl Glutamate) Aminsoft ® CT 12 (TEA-Cocoyl Glutamate) Plantapon ® ACG 35 (Disodium Cocoyl Glutamate) Protelan AGL ® 35 (Sodium Lauroyl Glutamate) marketed commercial products.
  • compositions - based on the total weight of the funds - usually in an amount of 0.01 to 15 wt .-%, preferably from 0.05 to 10 wt .-%, particularly preferably from 0.1 to 5 and in particular from 0.5 to 2 wt .-% used.
  • the glycolipids which are suitable according to the invention are usually
  • Sugar surfactants alkylpolyglycosides and / or glycosphingolipids. They are - based on the total weight of the funds - in an amount of 0.01 to 15 wt .-%, preferably from 0.05 to 10 wt .-%, particularly preferably from 0.1 to 5 and in particular from 0.2 used to 2 wt .-%.
  • Inventive sugar surfactants are ethoxylated or non-ethoxylated esters and / or ethers of glucose and / or sucrose with C 8 -C 30 -, preferably with C 10 -C 24 - and particularly preferably with C 2 -C 18 -fatty acids and / or - fatty alcohols.
  • Particularly preferred are the commercial products under the trade name Arlatone ®, Triton ® CG 1 10 and Glucamate ® marketed are.
  • Alkyl polyglycosides according to the invention correspond to the general formula RO - (Z) x , where R is alkyl, Z is sugar and x is the number of sugar units.
  • the alkylpolyglycosides according to the invention can only contain one particular alkyl radical R. Usually, however, these compounds are prepared starting from natural fats and oils or mineral oils. In this case, the alkyl radicals R are mixtures corresponding to the starting compounds or corresponding to the particular work-up of these compounds.
  • sugar building block Z it is possible to use any desired mono- or oligosaccharides.
  • sugars with 5 or 6 carbon atoms and the corresponding oligosaccharides are used.
  • Such sugars are, for example, glucose, fructose, galactose, arabinose, ribose, xylose, lyxose, allose, altrose, mannose, gulose, idose, talose and sucrose.
  • Preferred sugar building blocks are glucose, fructose, galactose, arabinose and sucrose; Glucose is particularly preferred.
  • alkylpolyglycosides according to the invention contain on average 1, 1 to 5 sugar units.
  • Alkyl polyglycosides having x values of 1.1 to 2.0 are preferred. Very particular preference is given to alkyl glycosides in which x is 1: 1 to 1, 8.
  • alkoxylated homologs of said alkyl polyglycosides can also be used according to the invention. These homologs may contain on average up to 10 ethylene oxide and / or propylene oxide units per alkyl glycoside unit.
  • Particularly preferred alkyl polyglycosides are the C 8 -C 24 -, preferably C 10 -C 22 - and in particular C 12 -C 2 o-glucosides, such as Coco glucosides, cetearyl glucosides and arachidyl glucosides, the (partially as a mixture) under the trade names Plantacare® ®, Plantaren® ®, Montanov® ® L, Montanov® ® 202 ® Montanov® 68 and lamesoft ® PO 65 sold commercially.
  • the hair treatment compositions according to the invention contain fatty acid and / or glyceryl esters of long-chain alcohols in an amount of 0.05 to 20 wt .-%, preferably from 0.1 to 15 wt .-%, particularly preferably from 0.5 to 10 Wt .-% and in particular from 1 to 5 wt .-% - based on the total weight of the composition.
  • C 6 -C 30 -fatty acids in particular C 8 -C 22 -fatty acids
  • saturated or unsaturated, substituted or unsubstituted C 6 -C 30 fatty alcohols in particular C 8 -C 22 - fatty alcohols
  • saturated or unsaturated, substituted or unsubstituted mono-, di- or triglycerol esters having C chain lengths of 6 to 30, in particular of 8 to 22 C atoms (per chain).
  • Preferred fatty acid esters contain as fatty acid portion caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, hydroxystearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and technical mixtures thereof, and as fatty alcohol components isopropyl alcohol, caproic alcohol, capryl alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, el
  • Preferred glyceryl esters according to the invention are the mono-, di- or triglycerol esters of caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, hydroxystearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid , Arachic acid, gadoleic acid, behenic acid and erucic acid.
  • the Glycexylester of lauric acid, myristic acid, palmitic acid, stearic acid and oleic acid are particularly preferred, such as ® under the trade names Monomuls ® 90 O 18, Lamesoft ® PO 65, Antil ® HS 60, Lamesoft ® LMG, Monomuls ® 90 L 12, Cutina GMS and Cutina ® MD.
  • the agents according to the invention for supporting the stabilization of vegetable colorants and pesticides furthermore comprise at least one natural hydrocolloid (d)) in an amount of 0.05 to 20% by weight, preferably of 0.1 to 15 Wt.%, Particularly preferably from 0.5 to 10 wt .-% and in particular from 1 to 5 wt .-%, based on the total weight of the composition.
  • d natural hydrocolloid
  • the natural hydrocolloids are usually selected from the group formed from agar-agar, alginates, carrageenates, carob gum, guar gum, xanthan gum, gum arabic, linseed mucilage, pectin, starch, tragacanth, modified cellulose such as cellulose ethers and / or cellulose esters , Proteins such as gelatin, bentonite and / or silica. Particularly preferred are agar-agar, alginates, xanthan gum, pectin, starch and modified cellulose, especially xanthan gum and alginates.
  • two or more natural hydrocolloids in particular xanthan gum and alginates.
  • Suitable commercial products are known for example under the trade names Keltrol ® CG and Texamid ® 558th
  • the hair treatment compositions according to the invention in addition to the compulsory components a) to c) and the optional, but preferred further component d) further contain at least one Ci 0 -C 30 fatty alcohol, preferably a C 12 -C 24 fatty alcohol an amount of 0.01 to 10.0 wt .-%, preferably from 0.1 to 5.0 wt .-% and in particular from 0.5 to 2.0 wt .-%.
  • Suitable fatty alcohols are, for example, decanol, octanol, octenol, dodecenol, decenol, octadienol, dodecadienol, decadienol, oleyl alcohol, eruca alcohol, ricinoleic alcohol, stearyl alcohol, isostearyl alcohol, cetyl alcohol, lauryl alcohol, myristyl alcohol, arachidyl alcohol, capryl alcohol, capric alcohol, linoleyl alcohol, linolenyl alcohol and behenyl alcohol, and the like Guerbet. Especially preferred are behenyl alcohol and / or arachidyl alcohol.
  • the hair treatment compositions according to the invention are not subject to any restrictions with regard to their formulation form and can be formulated as emulsion, cream, solution, gel or mousse.
  • compositions according to the invention are shampoos, hair rinses, conditioners, hair treatments, hair lotions, hair gels, hairsprays, hair foams, hair fixatives and hair colorants; hair dyeing and conditioning gels are particularly preferred.
  • the hair treatment compositions according to the invention are preferably based on at least 40% by weight, preferably> 50% by weight, more preferably> 60% by weight and in particular> 65% by weight of water.
  • the hair treatment agents further contain organic solvents.
  • Solvents that can be used in the compositions according to the invention originate, for example, from the group of monohydric or polyhydric alcohols, alkanolamines or glycol ethers, provided they are miscible with water in the concentration range indicated.
  • the solvents are selected from ethanol, n- or i-propanol, butanols, glycol, propane or butanediol, glycerol, diglycol, propyl- or butyldiglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, ethylene glycol mononobutyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, Propylene glycol methyl, - ethyl or - propyl ether, butoxy - propoxy - propanol (BPP), dipropylene glycol monomethyl, or - ethy
  • composition of the invention may contain one or more solvents in an amount of usually up to 50 wt .-%, preferably 0.1 to 40 wt .-% and in particular 1 to 30 wt .-%, each based on the total agent.
  • the agent according to the invention is formulated as a shampoo, it also contains at least one anionic, amphoteric, zwitterionic and / or nonionic surfactant.
  • the total surfactant content in the cleaning agents is 5 to 35%, preferably 7 to 25% and in particular 8 to 15% - based on the total weight of the cleaning agent.
  • Suitable anionic surfactants in preparations according to the invention are all anionic surfactants suitable for use on the human body. These are characterized by a water-solubilizing, anionic group such as. Example, a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group having about 8 to 30 carbon atoms. In addition, glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups may be present in the molecule.
  • anionic surfactants are, in each case in the form of the sodium, potassium and ammonium and the mono-, di- and trialkanol- ammonium salts having 2 to 4 carbon atoms in the alkanol group, linear and branched fatty acids having 8 to 30 C. Atoms (soaps),
  • Ethercarbon Acid the formula R-CKCh ⁇ -Ch ⁇ O ⁇ -CI - ⁇ - COOH, in which R is a linear
  • Alkyl group having 8 to 30 C atoms and x 0 or 1 to 16,
  • Sulfosuccinic acid mono-alkyl polyoxyethyl esters having 8 to 24 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups, linear alkanesulfonates having 8 to 24 carbon atoms, linear alpha-olefin sulfonates having 8 to 24 carbon atoms,
  • OX in the R 6 is preferably an aliphatic hydrocarbon radical having 8 to 30 carbon atoms
  • R 7 is hydrogen, a radical (CH 2 CH 2 O) n R 6 or X, n is from 1 to 10 and X is hydrogen, an alkali or alkaline earth metal or NR 8 R 9 R 10 R 11 , where R 8 to R 11 independently of one another represent a C 1 to C 4 hydrocarbon radical, is a sulfated fatty acid alkylene glycol ester of the formula (III),
  • Typical examples of monoglyceride (ether) sulfates suitable for the purposes of the invention are the reaction products of lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride, stearic acid monoglyceride, oleic acid monoglyceride and tallow fatty acid monoglyceride and their ethylene oxide adducts with sulfur trioxide or chlorosulfonic acid in the form of their sodium salts.
  • MMoonnooggllyycceerriiddssuullffaattee ddeerr FFoorrmmeell (('VIII) used, in which R 13 CO for a linear acyl radical with
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acid salts having 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule, sulfosuccinic acid mono- and dialkyl esters having 8 to 18 carbon atoms in the alkyl group, sulfosuccinic acid monoalkylpolyoxyethylester with 8 to 18 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups and the alkali metal and / or ammonium salts of Tridecethsulfats.
  • Particularly preferred anionic surfactants are the alkali metal or ammonium salts of lauryl ether sulfate having a degree of ethoxylation of 2 to 4 EO and the alkali metal and / or ammonium salts of trideceth sulfate.
  • Zwitterionic surfactants are those surface-active compounds which carry in the molecule at least one quaternary ammonium group and at least one -COO () or -SO 3 ⁇ group.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as N-alkyl-N, N-dimethylammonium glycinates, for example cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinates, for example cocoacylaminopropyl-dimethylammonium glycinate, and 2-alkyl 3-carboxymethyl-3-hydroxyethyl imidazolines having in each case 8 to 18 C atoms in the alkyl or acyl group, and also the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • a preferred zwitterionic surfactant is the fatty acid amide derivative known by the INC
  • Amphoteric surfactants are to be understood as meaning those surface-active compounds which, apart from a C 8 -C 24 -alkyl or -acyl group in the molecule, contain at least one free amino group and at least one -COOH or -SO 3 H group and are capable of forming internal salts
  • suitable ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 24 C atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and the
  • Nonionic surfactants contain as hydrophilic group z.
  • Such compounds are, for example
  • Fatty alcohols having 8 to 30 carbon atoms, to fatty acids having 8 to 30 carbon atoms and to alkylphenols having 8 to 15 carbon atoms in the alkyl group for example those among the
  • Cremophor CO 455 is commercially available from SHC.
  • Polyol fatty acid esters such as the commercial product Hydagen ® HSP (Cognis) or
  • Sovermol types (Cognis), alkoxylated triglycerides, alkoxylated fatty acid alkyl esters of the formula (V) in the R 14 CO is a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22 carbon atoms, R 15 is hydrogen or methyl, R 16 is linear or branched alkyl radicals having 1 to 4 carbon atoms and w is a number from 1 to 20 stands,
  • the preferred nonionic surfactants are the alkylene oxide addition products of saturated linear fatty alcohols and fatty acids having in each case 2 to 30 moles of ethylene oxide per mole of fatty alcohol or fatty acid. Preparations having excellent properties are also obtained if they contain fatty acid esters of ethoxylated glycerol as nonionic surfactants.
  • the alkyl radical R contains 6 to 22 carbon atoms and may be both linear and branched. Preference is given to primary linear and methyl-branched in the 2-position aliphatic radicals.
  • Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. Particularly preferred are 1-octyl, 1-decyl, 1-lauryl, 1-myristyl.
  • oxo-alcohols compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • the compounds used as surfactant with alkyl groups may each be uniform substances. However, it is usually preferred to start from the production of these substances from native plant or animal raw materials, so as to obtain substance mixtures with different, depending on the particular raw material alkyl chain lengths.
  • both products with a "normal” homolog distribution and those with a narrow homolog distribution can be used.
  • "normal” homolog distribution are meant mixtures of homologs obtained in the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates as catalysts. Narrowed homolog distributions are obtained when, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alkoxides are used as catalysts. The use of products with narrow homolog distribution may be preferred.
  • surfactant mixtures of crosslinked or uncrosslinked anionic surfactants such as sodium trideceth sulfate, amphoteric surfactants such as sodium lauroamphoacetate, and nonionic surfactants such as cocamide MEA, such as those commercially available under the tradename Miracare SLB 365 MP, have been found to be particularly suitable Surfactant base exposed.
  • compositions according to the invention further contain at least one preservative selected from the group consisting of benzoic acid, propionic acid, salicylic acid and / or sorbic acid, as well as from the cosmetically acceptable salts and esters of these acids, formaldehyde and / or Paraformaldehyde, from benzyl alcohol, Germall, Dowicil, Kathon, Baypival, methylisothiazolines, quaternary ammonium compounds, alcohols and / or from essential oils such as tea tree oil, cineole, eugenol, geraniol, limonene, menthol and / or thymol.
  • preservative selected from the group consisting of benzoic acid, propionic acid, salicylic acid and / or sorbic acid, as well as from the cosmetically acceptable salts and esters of these acids, formaldehyde and / or Paraformaldehyde, from benzyl alcohol, Germall, Dowicil, Kathon
  • composition according to the invention is formulated as a shampoo
  • this agent may be preferred for this agent to comprise at least one antidandruff agent in an amount of from 0.05 to 5% by weight, preferably from 0.1 to 3.0% by weight. % and in particular from 0.3 to 2.0 wt .-% (based on the total agent).
  • compositions according to the invention are not formulated as shampoos (and thus predominantly as cleansing agents), but as hair treatment compositions with predominantly nourishing properties, they furthermore preferably contain cationic surfactants. In order to increase the care properties, however, a shampoo according to the invention may also have a content of cationic surfactants.
  • Cationic surfactants suitable according to the invention are quaternary ammonium compounds or so-called ester quats.
  • Preferred quaternary ammonium compounds are ammonium halides, especially chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g.
  • alkyltrimethylammonium chlorides dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g.
  • cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride as well as the imidazolium compounds known under the INCI names Quaternium-27 and Quaternium-83.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are marketed under the trade names Stepantex® ®, ® and Dehyquart® Armocare® ®.
  • the alkylamidoamines are usually prepared by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group of substances under the name Tegoamid ® S 18 commercial stearamidopropyl dimethylamine is.
  • the cationic surfactants are contained in the agents according to the invention preferably in amounts of 0.05 to 10 wt .-%, based on the total agent. Amounts of 0.1 to 5 wt .-% are particularly preferred.
  • Hair rinses, hair treatments, hair lotions, hair gels, hair sprays, hair foams, hair fixatives, hair lotions and hair colorants according to the invention can contain further components customary in these compositions.
  • the agent according to the invention further contains at least one member of the group of cationic, nonionic, anionic and / or aphoteren polymers, the water-insoluble wax and oil components, vitamins, provitamins, protein hydrolysates, extra kte plants, UV filters, amino acids, water-insoluble silicones, water-soluble silicones and / or amodimethicones.
  • a shampoo according to the invention which, in addition to a good cleaning effect, also has nourishing properties, it may be advantageous to contain one or more of the abovementioned components.
  • Cationic polymers which are suitable according to the invention are polymers which have groups in the main and / or side chain which may be “temporary” or “permanent” cationic.
  • “permanently cationic” refers to those polymers which have a cationic group independently of the pH of the agent These are generally polymers which contain a quaternary nitrogen atom, for example in the form of an ammonium group Preferred cationic groups are quaternary ammonium groups .
  • R 17 -H or -CH 3
  • R 18, R 19 and R 20 are independently selected from C- ⁇ - 4 -alkyl, -alkenyl or -hydroxyalkyl groups
  • m 1, 2, 3 or 4
  • n is a natural number
  • X is a physiologically acceptable organic or inorganic anion
  • copolymers consisting essentially of the monomer units listed in formula (III) and nonionic monomer units are particularly preferred cationic polymers preferably, for which at least one of the following conditions applies:
  • R 17 is a methyl group
  • R 18 , R 19 and R 20 are methyl groups m has the value 2.
  • Suitable physiologically acceptable counterions X ' are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions. Preference is given to halide ions, in particular chloride.
  • a suitable homopolymer is the, if desired crosslinked, poly (methacryloyloxyethyltrimethylammonium chloride) with the INCI name Polyquaternium- 37.
  • crosslinking can be carried out with the aid of poly olefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylenebisacrylamide, diallyl ether, polyallylpolyglyceryl ethers, or allyl ethers of sugars or sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose.
  • Methylenebisacrylamide is a preferred crosslinking agent.
  • the homopolymer is preferably used in the form of a nonaqueous polymer dispersion which should not have a polymer content of less than 30% by weight.
  • Such polymer dispersions are (under the names Salcare ® SC 95 about 50% polymer content, additional components: mineral oil (INCI name: Mineral Oil) and tridecyl-polyoxypropylene-polyoxyethylene-ether (INCI name: PPG-1 trideceth-6) ) and Salcare ® SC 96 (about 50% polymer content, additional components: mixture of diesters of propylene glycol with a mixture of caprylic and capric acid (INCI name: propylene glycol Dicaprylate / Dicaprate) and tridecyl polyoxypropylene-polyoxyethylene-ether (INCI Designation: PPG-1-trideceth-6)) are commercially available.
  • Copolymers with monomer units of the formula (VI) contain, as nonionic monomer units, preferably acrylamide, methacrylamide, and methacrylic acid-C- ⁇ _ 4 -alkyl. Among these nonionic monomers, the acrylamide is particularly preferred. These copolymers can also be crosslinked, as described above in the case of the homopolymers.
  • a copolymer preferred according to the invention is the crosslinked acrylamide-methacryloyloxyethyltrimethylammonium chloride copolymer.
  • Such copolymers in which the monomers are present in a weight ratio of about 20:80 are commercially available as approximately 50% non-aqueous polymer dispersion 92 under the name Salcare ® SC.
  • quaternized cellulose derivatives such as are available under the names of Celquat ® and Polymer JR ® commercially.
  • the compounds Celquat ® H 100, Celquat ® L 200 and Polymer JR ® 400 are preferred quaternized cellulose derivatives, hydrophobically modified cellulose derivatives, for example those sold under the trade name SOFTCAT ® cationic polymers, cationic alkyl polyglycosides, cationized honey, for example the commercial product Honeyquat ® 50 , cationic guar derivatives, in particular those sold under the trade names cos media ® guar and Jaguar ® products,
  • Polysiloxanes Q2-7224 (manufacturer: Dow Corning; a stabilized trimethyl silylamodimethicon) with quaternary groups, such as the commercially available products, Dow Corning ® 929 Emulsion (containing a hydroxylamino- modified silicone, also referred to as amodimethicone), SM-2059
  • Copolymers of vinylpyrrolidone with quaternized derivatives of Dialkylaminoalkylacry- lats and methacrylate such as diethyl sulfate quaternized vinylpyrrolidone-dimethylaminoethyl methacrylate copolymers.
  • Such compounds are available under the names Gafquat ® 734 and Gafquat ® 755 commercially, vinylpyrrolidone-vinyl imidazolium copolymers, such as those offered under the names Luviquat ® FC 370, FC 550, FC 905 and HM 552, quaternized polyvinyl alcohol, as well as the under the names Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and
  • Polyquaternium 27 known polymers with quaternary nitrogen atoms in the polymer main chain.
  • Can be used as cationic polymers are sold under the names Polyquaternium-24 (commercial product z. B. Quatrisoft ® LM 200), known polymers.
  • Gaffix ® VC 713 manufactured by ISP:
  • the copolymers of vinylpyrrolidone such as the commercial products Copolymer 845 (ISP manufacturer) are Gafquat ® ASCP 1011, Gafquat ® HS 110, Luviquat ® 8155 and Luviquat ® MS 370 available are.
  • cationic polymers of the present invention are usually contain an amino group present at certain pH values as a quaternary ammonium group and hence cationic.
  • chitosan and its derivatives are preferred, such as for example, under the trade designations Hydagen ® CMF, Hydagen® ® HCMF, Kytamer ® PC and Chitolam ® NB / 101 are freely available commercially.
  • chitosans are deacetylated, in different degrees of deacetylation and varying degrees of degradation (molecular weights) are commercially available. Their preparation is, for example, in DE 44 40 625 A1 and described in DE 1 95 03 465 A1.
  • Particularly suitable chitosans have a degree of deacetylation of at least 80% and a molecular weight of 5 10 5 to 5 10 6 (g / mol).
  • the chitosan must be converted into the salt form. This can be done by dissolving in dilute aqueous acids.
  • Suitable acids are both mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid and organic acids, for example low molecular weight carboxylic acids, polycarboxylic acids and hydroxycarboxylic acids.
  • higher molecular weight alkyl sulfonic acids or alkyl sulfuric acids or organophosphoric acids can be used, provided that they have the required physiological compatibility.
  • Suitable acids for converting the chitosan into the salt form are, for example, acetic acid, glycolic acid, tartaric acid, malic acid, citric acid, lactic acid, 2-pyrrolidinone-5-carboxylic acid, benzoic acid or salicylic acid. Preference is given to using low molecular weight hydroxycarboxylic acids, for example glycolic acid or lactic acid.
  • a cationic polymer at least one polymer selected from the group of cationic guar derivatives and / or Polyquaternium-7 (Merquat 550), Polyquaternium-6, Polyquaternium-10 and / or Polyquaternium-67 (SOFTCAT ® - Polymers) in the hair treatment compositions.
  • the cationic polymer (s) is (are) in the inventive compositions - based on the total agent - in amounts of 0.1 to 5 wt .-%. Amounts of from 0.2 to 3, in particular from 0.5 to 2.5 wt .-%, are particularly preferred.
  • Suitable water-insoluble oil components according to the invention are mineral or synthetic oils, as well as mixtures of these components.
  • mineral oils are used in particular mineral oils, paraffin and Isoparaffinöle and synthetic hydrocarbons.
  • An inventively employable hydrocarbon is for example that available as a commercial product 1, 3-di- (2-ethylhexyl) - cyclohexane (Cetiol ® S).
  • Suitable synthetic oils are silicone compounds, in particular dialkyl and alkylaryl silicones, such as, for example, dimethylpolysiloxane and methylphenylpolysiloxane, as well as their hydroxy-terminated, alkoxylated and quaternized analogs.
  • silicones are those sold by Dow Corning under the names DC 190, DC 200, DC 344 and DC 345 (cyclomethicone).
  • oil component may further serve a dialkyl ether.
  • Dialkyl ethers which can be used according to the invention are, in particular, di-n-alkyl ethers having a total of from 12 to 36 carbon atoms, in particular 12 to 24 carbon atoms, such as, for example, di-n-octyl ether, di-n-decyl ether, di-n-nonyl ether, di-n-alkyl ether.
  • n-undecyl ether di-n-dodecyl ether, n-hexyl n-octyl ether, n-octyl n-decyl ether, n-decyl n-undecyl ether, n-undecyl n-dodecyl ether and n-hexyl N-undecyl ether and di-tert-butyl ether, di-iso-pentyl ether, di-3-ethyldecyl ether, tert-butyl n-octyl ether, iso-pentyl n-octyl ether and 2-methylpentyl-n-octyl ether.
  • di-n-octyl ether which is commercially available under the name Cetiol ® OE.
  • the agents according to the invention preferably contain the water-insoluble oil component in an amount range from 0.1 to 5% by weight, in particular from 0.5 to 3% by weight, based on the total weight of the composition.
  • the effect of the active compound combination according to the invention can be further optimized by further fatty substances.
  • Other fatty substances are to be understood fatty acids and natural and synthetic waxes, which may be present both in solid form and liquid in aqueous dispersion.
  • the fatty acids used can be linear and / or branched, saturated and / or unsaturated fatty acids having 6 to 30 carbon atoms. Preference is given to fatty acids having 10 to 22 carbon atoms. Among these could be mentioned, for example, isostearic as the commercial products Emersol ® 871 and Emersol ® 875, and isopalmitic acids such as the commercial product Edenor ® IP 95, and all other products sold under the trade names Edenor ® (Cognis) fatty acids.
  • fatty acids are caproic, caprylic, 2-ethylhexanoic, capric, lauric, isotridecanoic, myristic, palmitic, palmitoleic, stearic, isostearic, oleic, elaidic, petroselic, linoleic, linoleic and erucic acid and their technical mixtures, which are obtained, for example, in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from Roelen's oxo synthesis or the dimerization of unsaturated fatty acids.
  • Particularly preferred are usually the fatty acid cuttings obtainable from coconut oil or palm oil; In particular, the use of stearic acid is usually preferred.
  • the amount used is 0.1 - 15 wt.%, Based on the total mean. In a preferred embodiment, the amount is 0.5-10% by weight, very particularly preferably amounts of 1-5% by weight.
  • the natural or synthetic waxes used according to the invention are solid paraffins or isoparaffins, carnauba waxes, beeswaxes, candelilla waxes, ozokerites, ceresin, spermaceti, sunflower wax, fruit waxes such as apple wax or citrus wax, microwaxes of PE or PP.
  • Such waxes are available, for example, from Kahl & Co., Trittau.
  • fatty substances are, for example Dicarboxylic acid esters such as di-n-butyl adipate, di- (2-ethylhexyl) adipate, di- (2-ethylhexyl) succinate and di-isotridecyl acelate, and diol esters such as ethylene glycol dioleate, ethylene glycol diisotridecanoate, propylene glycol di (2- ethylhexanoate), propylene glycol diisostearate, propylene glycol di-pelargonat, butanediol di-isostearate, Neopentylglykoldicaprylat, symmetrical, asymmetric or cyclic esters of carbonic acid with fatty alcohols, for example described in DE-OS 197 56 454, glycerol carbonate or dicaprylyl carbonate (Cetiol ® CC).
  • Dicarboxylic acid esters such as di-n-buty
  • the amount of other fatty substances used is 0.1 to 20% by weight, based on the total agent. Preference is given to 0.1-10% by weight and more preferably 0.1-5% by weight, based on the total agent.
  • the total amount of oil and fat components in the compositions according to the invention is usually from 0.01 to 15% by weight, based on the total agent. Amounts of 0.05-5 wt .-% are inventively preferred.
  • vitamins, provitamins and vitamin precursors and derivatives thereof are those representatives which are usually assigned to the groups A, B, C, E, F and H.
  • vitamin A includes retinol (vitamin A 1 ) and 3,4-didehydroretinol (vitamin A 2 ).
  • the ß-carotene is the provitamin of retinol.
  • vitamin A component according to the invention for example, vitamin A acid and its esters, vitamin A aldehyde and vitamin A alcohol and its esters such as the palmitate and the acetate into consideration.
  • the agents according to the invention preferably contain the vitamin A component in amounts of 0.01-1% by weight, based on the total preparation.
  • the vitamin B group or the vitamin B complex include u. a.
  • Vitamin B 1 (thiamine)
  • Vitamin B 2 (riboflavin)
  • Vitamin B 3 Under this designation are often the compounds nicotinic acid and
  • Nicotinic acid amide (niacinamide).
  • Preferred according to the invention is the nicotinic acid amide, which is preferably present in the agents according to the invention in amounts of from 0.05 to 1% by weight, based on the total agent.
  • Vitamin B 5 pantothenic acid, panthenol and pantolactone. Panthenol and / or pantolactone are preferably used in the context of this group. Usable according to the invention
  • panthenol Derivatives of panthenol are in particular the esters and ethers of panthenol as well as cationically derivatized panthenols. Individual representatives are, for example, panthenol triacetate, the
  • Vitamin B 6 (pyridoxine and pyridoxamine and pyridoxal).
  • the said compounds of the vitamin B group are preferably contained in the agents according to the invention in amounts of 0.01-2% by weight, based on the total agent. Amounts of 0.03 - 1 wt .-% are particularly preferred.
  • Vitamin C (ascorbic acid). Vitamin C is used in the inventive compositions preferably in amounts of 0.01 to 3 wt .-%, based on the total agent. Use in the form of palmitic acid ester, glucosides or phosphates may be preferred. The use in combination with tocopherols may also be preferred.
  • Vitamin E tocopherols, especially ⁇ -tocopherol.
  • Tocopherol and its derivatives which include in particular the esters such as the acetate, the nicotinate, the phosphate and the succinate, are preferably present in the agents according to the invention in amounts of 0.01-1% by weight, based on the total agent.
  • Vitamin F is usually understood as meaning essential fatty acids, in particular linoleic acid, linolenic acid and arachidonic acid.
  • Vitamin H is the compound (3aS, 4S, 6aR) -2-oxohexahydrothienol [3,4-cf] - imidazole-4-valeric acid, for which, however, the trivial name biotin has meanwhile prevailed.
  • Biotin is preferably present in the compositions according to the invention in amounts of from 0.0001 to 1.0% by weight, in particular in amounts of from 0.001 to 0.01% by weight.
  • the preparations according to the invention preferably contain vitamins, provitamins and vitamin precursors from groups A, E, F and H. Of course, several vitamins and vitamin precursors may also be present at the same time.
  • the total amount used of the vitamins, provitamins, vitamin precursors and derivatives thereof in the compositions according to the invention is 0.01 to 5% by weight, preferably 0.02 to 4% by weight, and in particular 0, based on the total weight of the composition. From 05 to 3% by weight.
  • Protein hydrolyzates in the context of the invention are understood as meaning protein hydrolysates and / or amino acids and their derivatives (H). Protein hydrolysates are product mixtures obtained by acid, alkaline or enzymatically catalyzed degradation of proteins (proteins). According to the invention, the term protein hydrolyzates also means total hydrolyzates as well as individual amino acids and their derivatives as well as mixtures of different amino acids. Furthermore, according to the invention, polymers made up of amino acids and amino acid derivatives are understood by the term protein hydrolyzates. The latter include, for example, polyalanine, polyasparagine, polyserine, etc.
  • L-alanyl-L-proline polyglycine, glycyl-L-glutamine or D / L-methionine-S-methylsulfonium chloride.
  • ⁇ -amino acids and their derivatives such as .beta.-alanine, anthranilic acid or hippuric acid can also be used according to the invention become.
  • the molecular weight of the protein hydrolysates which can be used according to the invention lies between
  • protein hydrolysates of both vegetable and animal or marine or synthetic origin can be used.
  • Animal protein hydrolysates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolysates, which may also be present in the form of salts.
  • Such products are, for example, under the trademarks Dehylan ® (Cognis), Promois® ® (Interorgana) Collapuron ® (Cognis), Nutrilan® ® (Cognis), Gelita-Sol ® (German Gelatinefabriken Stoess & Co), Lexein ® (Inolex) and kerasol tm ® (Croda) sold.
  • Preferred according to the invention is the use of protein hydrolysates of plant origin, eg. Soybean, almond, pea, potato and wheat protein hydrolysates.
  • Such products are, for example, under the trademarks Gluadin ® (Cognis), diamine ® (Diamalt) ® (Inolex), Hydrosoy ® (Croda), hydro Lupine ® (Croda), hydro Sesame ® (Croda), Hydro tritium ® (Croda) and Crotein ® (Croda) available.
  • protein hydrolysates Although the use of the protein hydrolysates is preferred as such, amino acid mixtures otherwise obtained may be used in their place, if appropriate. Also possible is the use of derivatives of protein hydrolysates, for example in the form of their fatty acid condensation products. Such products are sold, for example, under the names Lamepon® ® (Cognis), Lexein ® (Inolex), Crolastin ® (Croda) or crotein ® (Croda).
  • the protein hydrolysates or their derivatives are preferably present in the preparations according to the invention in amounts of from 0.1 to 10% by weight, based on the total agent. Amounts of 0.1 to 5 wt .-% are particularly preferred.
  • the effect of the preparations can be increased by UV filters.
  • the UV filters to be used according to the invention are not subject to any general restrictions with regard to their structure and their physical properties. On the contrary, all UV filters which can be used in the cosmetics sector and whose absorption maximum is in the UVA (315-400 nm), in the UVB (280-315 nm) or in the UVC ( ⁇ 280 nm) range are suitable. UV filters with an absorption maximum in the UVB range, in particular in the range from about 280 to about 300 nm, are particularly preferred.
  • the UV filters used according to the invention can be selected, for example, from substituted benzophenones, p-aminobenzoic acid esters, diphenylacrylic acid esters, cinnamic acid esters, salicylic acid esters, benzimidazoles and o-aminobenzoic acid esters.
  • UV filters which can be used according to the invention are 4-aminobenzoic acid, N, N, N-trimethyl-4- (2-oxoborn-3-ylidenemethyl) aniline methylsulfate, 3,3,5-trimethylcyclohexyl salicylate (homosalates), 2-hydroxy-4-methoxy-benzophenone (benzophenone-3; Uvinul ® M 40, Uvasorb MET ®, ® Neo Heliopan BB, Eusolex ® 4360), 2-phenylbenzimidazole-5-sulfonic acid and potassium, sodium and triethanolamine salts ( Phenylbenzimidazole Sulfonic Acid; Parsol ® HS; Neo Heliopan Hydro ®), 3,3 '- (1, 4-phenylenedimethylene) bis (7,7-dimethyl-2-oxo-bicyclo [2.2.1] hept-1- yl-methane sulfonic acid) and salts thereof, 1- (4-tert-butyl
  • water-insoluble UV filters are those which dissolve in water at not more than 1% by weight, in particular not more than 0.1% by weight, at 20 ° C. Furthermore, these compounds should be soluble in the usual cosmetic oil components at room temperature to at least 0.1, in particular at least 1 wt .-%). The use of water-insoluble UV filters may therefore be preferred according to the invention.
  • UV filters which have a cationic group, in particular a quaternary ammonium group.
  • UV filters have the general structure U - Q.
  • the structural part U stands for a UV-absorbing group.
  • This group can in principle be derived from the known UV filters which can be used in the cosmetics sector, in which a group, generally a hydrogen atom, of the UV filter is replaced by a cationic group Q, in particular having a quaternary amino function ,
  • Compounds from which the structural part U can be derived are, for example, substituted benzophenones, p-aminobenzoic acid esters,
  • Structural parts U which are derived from cinnamic acid amide or from N, N-dimethylaminobenzoic acid amide are preferred according to the invention.
  • the structural parts U can in principle be selected such that the absorption maximum of the UV filters can be in both the UVA (315-400 nm) and in the UVB (280-315 nm) or in the UVC ( ⁇ 280 nm) range. UV filters with an absorption maximum in the UVB range, in particular in the range from about 280 to about 300 nm, are particularly preferred.
  • the structural part U also as a function of structural part Q, is preferably selected so that the molar extinction coefficient of the UV filter at the absorption maximum is above 15,000, in particular above 20,000.
  • the structural part Q preferably contains, as a cationic group, a quaternary ammonium group.
  • This quaternary ammonium group can in principle be connected directly to the structural part U, so that the structural part U represents one of the four substituents of the positively charged nitrogen atom.
  • one of the four substituents on the positively charged nitrogen atom is a group, especially an alkylene group of 2 to 6 carbon atoms, which functions as a compound between the structural portion U and the positively charged nitrogen atom.
  • the group Q has the general structure - (CH 2 ) X -N + R 1 R 2 R 3 X ' , in which x is an integer from 1 to 4, R 1 and R 2 independently of one another are d 1 Alkyl groups, R 3 is a Ci_ 22 alkyl group or a benzyl group and X 'is a physiologically acceptable anion.
  • x preferably represents the number 3
  • R 1 and R 2 each represent a methyl group and R 3 represents either a methyl group or a saturated or unsaturated, linear or branched hydrocarbon chain having 8 to 22, in particular 10 to 18, carbon atoms.
  • Physiologically acceptable anions are, for example, inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions and organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions and organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • UV filters with cationic groups are the commercially available compounds cinnamic acid-trimethylammonium chloride (lncroquat ® UV-283) and dodecyl tosylate (Escalol ® HP 610).
  • the teaching of the invention also includes the use of a combination of several UV filters.
  • the combination of at least one water-insoluble UV filter with at least one UV filter with a cationic group is preferred.
  • the UV filters (I) are contained in the compositions according to the invention usually in amounts of 0.1-5 wt .-%, based on the total agent. Levels of 0.4-2.5 wt .-% are preferred.
  • the compositions also contain at least one volatile or non-volatile, water-insoluble silicone, water-soluble and / or amino-functionalized silicone.
  • suitable silicones cause a variety of effects. For example, at the same time they influence the dry and wet combability, the grip of dry and wet hair and the shine.
  • silicones the skilled person understands several structures of organosilicon compounds.
  • Dimethiconols (S1) form the first group of silicones which are particularly preferred according to the invention.
  • the dimethiconols according to the invention can be both linear and branched as well as cyclic or cyclic and branched.
  • Linear dimethiconols can be represented by the following structural formula (S1-I):
  • Branched dimethiconols can be represented by the structural formula (S1-II):
  • the radicals R 1 and R 2 are each independently hydrogen, a methyl radical, a C 2 to C 30 linear, saturated or unsaturated hydrocarbon radical, a phenyl radical and / or an aryl radical.
  • the groups represented by R 1 and R 2 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, neopentyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals such as vinyl, halovinyl, alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl radicals such as cyclobutyl, cyclopentyl, cyclohexyl and the like; Phenyl radicals, benzyl radicals, halohydrocarbon radicals such as 3-chloropropyl, 4-
  • R 1 examples include methylene, ethylene, propylene, hexamethylene, decamethylene, -CH 2 CH (CH 3 ) CH 2 -, phenylene, naphthylene, -CH 2 CH 2 SCH 2 CH 2 -, -CH 2 CH 2 OCH 2 - , -OCH 2 CH 2 -, -OCH 2 CH 2 CH 2 -, -CH 2 CH (CH 3 ) C (O) OCH 2 -, - (CHz) 3 CC (O) OCH 2 CH 2 -, -C 6 H 4 C 6 H 4 -, -C 6 H 4 CH 2 C 6 H 4 -; and - (CH 2 ) 3 C (O) SCH 2 CH 2 -.
  • R 1 and R 2 are methyl, phenyl and C 2 to C 22 alkyl radicals. Of the C2 to C22 alkyl radicals, lauryl, stearyl and behenyl radicals are particularly preferred.
  • the numbers x, y and z are integers and each run independently from 0 to 50,000.
  • the molecular weights of Dimethicone lie between 1,000 D and 10000000 D.
  • the viscosities are between 100 and 10,000,000 cPs measured at 25 0 C by means of a glass capillary viscometer according to Dow Corning Corporate Test Method CTM 0004 dated 20 July 1970.
  • Preferred viscosities are 1000-5000000 CPs, especially preferred viscosities are between 10,000 and 3,000,000 cps. The most preferred range is between 50,000 and 2,000,000 cps.
  • the teaching of the invention also includes that the dimethiconols may already be present as an emulsion.
  • the corresponding emulsion of the dimethiconols can be prepared both after the preparation of the corresponding dimethiconols from these and the usual methods of emulsification known to the person skilled in the art.
  • both cationic, anionic, nonionic or zwitterionic surfactants and emulsifiers can be used as auxiliaries for the preparation of the corresponding emulsions.
  • the emulsions of the dimethiconols can also be prepared directly by an emulsion polymerization process. Such methods are also well known to the person skilled in the art. For example, reference may be made to the Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, pages 204 to 308, John Wiley & Sons, Inc. 1989. This reference is expressly incorporated herein by reference.
  • the droplet size of the emulsified particles according to the invention is 0.01 ⁇ m to 10,000 ⁇ m, preferably 0.01 to 100 ⁇ m, very particularly preferably 0.01 to 20 ⁇ m, and most preferably 0.01 to 10 microns.
  • the particle size is determined by the method of light scattering. If branched dimethiconols are used, it is to be understood that the branching is greater than a random branching, which occurs by impurities of the respective monomers randomly. For the purposes of the present invention, branched dimethiconols are therefore to be understood as meaning that the degree of branching is greater than 0.01%.
  • a degree of branching is greater than 0.1%, and most preferably greater than 0.5%.
  • the degree of branching is determined from the ratio of unbranched monomers, that is, the amount of monofunctional siloxane, to the branching monomers, that is, the amount of tri- and tetrafunctional siloxanes. According to the invention, both low-branched and highly branched dimethiconols can be very particularly preferred.
  • Examples of such products include the following commercial products: Botanisil NU-150M (Botanigenics), Dow Coming 1-1254 Fluid, Dow Corning 2-9023 Fluid, Dow Corning 2-9026 Fluid, Ultrapure Dimethiconol (Ultra Chemical), Unisil SF- R (Universal Preserve), X-21-5619 (Shin-Etsu Chemical Co.), Abil OSW 5 (Degussa Care Specialties), ACC DL-9430 Emulsion (Taylor Chemical Company), AEC Dimethiconol & Sodium Dodecylbenzenesulfonate (A & E Connock (Perfumery & Cosmetics) Ltd.), BC Dimethiconol Emulsion 95 (Basildon Chemical Company, Ltd.), Cosmetic Fluid 1401, Cosmetic Fluid 1403, Cosmetic Fluid 1501, Cosmetic Fluid 1401 DC (all aforementioned Chemsil Silicones, Inc.), Dow Corning 1401 Fluid, Dow Corning 1403 Fluid, Dow Corning 1501 Fluid, Dow Corning 1784 HVF
  • these compositions contain from 0.01 to 10% by weight, preferably 0.1 to 8% by weight, more preferably 0.25 to 7.5% by weight and especially 0 , 5 to 5 wt.% Dimethiconol based on the composition.
  • dimethicones S2
  • S2 Linear dimethicones
  • Branched dimethicones can be represented by the structural formula (S2 - II):
  • the radicals R 1 and R 2 are each independently hydrogen, a methyl radical, a C 2 to C 30 linear, saturated or unsaturated hydrocarbon radical, a phenyl radical and / or an aryl radical.
  • the groups represented by R 1 and R 2 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, neopentyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals such as vinyl, halovinyl, alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl radicals such as cyclobutyl, cyclopentyl, cyclohexyl and the like; Phenyl radicals, benzyl radicals, halohydrocarbon radicals such as 3-chloropropyl, 4-
  • R 1 examples include methylene, ethylene, propylene, hexamethylene, decamethylene, -CH 2 CH (CH 3 ) CH 2 -, phenylene, naphthylene, -CH 2 CH 2 SCH 2 CH 2 -, -CH 2 CH 2 OCH 2 - , -OCH 2 CH 2 -, -OCH 2 CH 2 CH 2 -, -CH 2 CH (CH 3 ) C (O) OCH 2 -, - (CH 2 ) 3 CC (O) OCH 2 CH 2 -, C 6 H 4 C 6 H 4 -, -C 6 H 4 CH 2 C 6 H 4 -; and - (CH 2 ) 3 C (O) SCH 2 CH 2 -.
  • R 1 and R 2 are methyl, phenyl and C 2 to C 22 alkyl radicals. Of the C2 to C22 alkyl radicals, lauryl, stearyl and behenyl radicals are particularly preferred.
  • the numbers x, y and z are integers and each run independently from 0 to 50,000.
  • linear polydialkylsiloxanes particularly preference is given in accordance with the invention to the linear polydialkylsiloxanes, the polyalkylaryl siloxanes, the polydiarylsiloxanes and / or the dihydroxypolydimethylsiloxanes.
  • the molecular weights of the dimethicones suitable according to the invention are between 1000 D and 10,000,000 D.
  • suitable dimethicones are usually between 0.01 and 10,000,000 cPs measured at 25 0 C using a glass capillary viscometer according to the Dow Corning Corporate Test Method CTM 0004 of 20 July 1970.
  • Preferred viscosities are between 0.1 and 5,000,000 cPs, completely particularly preferred viscosities are between 0.1 and 3,000,000 cps.
  • the most preferred viscosity range of dimethicones is between 0.6 and 600,000 cps.
  • the teaching of the invention also includes that the dimethicones may already be present as an emulsion.
  • the corresponding emulsion of the dimethicones can be prepared both after the preparation of the corresponding dimethicones from these and the usual methods of emulsification known to the person skilled in the art.
  • both cationic, anionic, nonionic or zwitterionic surfactants and emulsifiers can be used as auxiliaries for the preparation of the corresponding emulsions.
  • the emulsions of dimethicones can also be prepared directly by an emulsion polymerization process. Such methods are also well known to the person skilled in the art. For example, reference may be made to the Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, pages 204 to 308, John Wiley & Sons, Inc. 1989. This reference is expressly incorporated herein by reference.
  • the droplet size of the emulsified particles according to the invention is 0.01 ⁇ m to 10000 ⁇ m, preferably 0.01 to 100 ⁇ m, very particularly preferably 0.01 to 20 ⁇ m and most preferably 0.01 to 10 microns.
  • the particle size is determined by the method of light scattering.
  • branched dimethicones are used, it is to be understood that the branching is greater than a random branching, which occurs by impurities of the respective monomers randomly.
  • branched dimethicones are therefore to be understood as meaning that the degree of branching is greater than 0.01%.
  • a degree of branching is greater than 0.1%, and most preferably greater than 0.5%.
  • the degree of branching is from the ratio of unbranched monomers, that is, the amount of monofunctional siloxane, to the branching monomers, that is the Amount of tri- and tetrafunctional siloxanes, determined. According to the invention, both low-branched and highly branched dimethicones can be very particularly preferred.
  • these compositions contain from 0.01 to 10% by weight, preferably 0.1 to 8% by weight, more preferably 0.25 to 7.5% by weight and especially 0 , 5 to 5% by weight of dimethicone, based on the composition.
  • Dimethicone copolyols (S3) form another group of preferred silicones.
  • Dimethiconols can be represented by the following structural formulas:
  • Branched dimethicone copolyols can be represented by the structural formula (S3-III):
  • the radicals R 1 and R 2 are each independently hydrogen, a methyl radical, a C 2 to C 30 linear, saturated or unsaturated hydrocarbon radical, a phenyl radical and / or an aryl radical.
  • the groups represented by R 1 and R 2 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, neopentyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals such as vinyl, halovinyl, alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl radicals such as cyclobutyl, cyclopentyl, cyclohexyl and the like; Phenyl radicals, benzyl radicals, halohydrocarbon radicals, such as 3-chloropropyl,
  • R 1 examples include methylene, ethylene, propylene, hexamethylene, decamethylene, -CH 2 CH (CH 3 ) CH 2 -, phenylene, naphthylene, -CH 2 CH 2 SCH 2 CH 2 -, -CH 2 CH 2 OCH 2 - , -OCH 2 CH 2 -, -OCH 2 CH 2 CH 2 -, -CH 2 CH (CH 3 ) C (O) OCH 2 -, - (CHz) 3 CC (O) OCH 2 CH 2 -, -C 6 H 4 C 6 H 4 -, -C 6 H 4 CH 2 C 6 H 4 -; and - (CH 2 ) 3 C (O) SCH 2 CH 2 -.
  • R 1 and R 2 are methyl, phenyl and C 2 to C 22 alkyl radicals. Of the C2 to C22 alkyl radicals, lauryl, stearyl and behenyl radicals are particularly preferred.
  • PE stands for a polyoxyalkylene radical.
  • Preferred polyoxyalkylene radicals are derived from ethylene oxide, propylene oxide and glycerol.
  • the numbers x, y and z are integers and each run independently from 0 to 50,000.
  • the molecular weights of Dimethicone lie between 1,000 D and 10000000 D.
  • the viscosities are between 100 and 10,000,000 cPs measured at 25 0 C by means of a glass capillary viscometer according to Dow Corning Corporate Test Method CTM 0004 dated 20 July 1970.
  • Preferred viscosities are 1000-5000000 cps, particularly preferred viscosities are between 10,000 and 3,000,000 cps. The most preferred range is between 50,000 and 2,000,000 cps.
  • the teaching of the invention also includes that the Dimethiconcopolymere can already be present as an emulsion.
  • the corresponding emulsion of the dimethicone copolyols can be prepared both after the preparation of the corresponding dimethicone copolyols from these and the usual methods of emulsification known to the person skilled in the art.
  • both cationic, anionic, nonionic or zwitterionic surfactants and emulsifiers can be used as auxiliaries for the preparation of the corresponding emulsions.
  • the emulsions of dimethicone copolyols can also be prepared directly by an emulsion polymerization process.
  • the droplet size of the emulsified particles according to the invention is 0.01 ⁇ m to 10000 ⁇ m, preferably 0.01 to 100 ⁇ m, very particularly preferably 0.01 to 20 ⁇ m and most preferably 0.01 to 10 microns.
  • the particle size is determined by the method of light scattering.
  • branched dimethicone copolyols are used, it is to be understood that the branching is greater than a random branching, which occurs by impurities of the respective monomers randomly.
  • branched dimethicone copolyols are therefore to be understood as meaning that the degree of branching is greater than 0.01%.
  • a degree of branching is greater than 0.1%, and most preferably from greater than 0.5%. The degree of branching is determined by the ratio of unbranched
  • Monomers that is, the amount of monofunctional siloxane
  • branching monomers that is, the amount of tri- and tetrafunctional siloxanes determined.
  • both low-branched and highly branched dimethicone copolyols can be very particularly preferred.
  • these compositions contain from 0.01 to 10% by weight, preferably 0.1 to 8% by weight, more preferably 0.25 to 7.5% by weight and especially 0 , 5 to 5 wt.% Dimethiconecopolyol based on the composition.
  • Aminofunctional silicones or also called amodimethicones (S4), are silicones which have at least one (optionally substituted) amino group.
  • Such silicones may e.g. by the formula (S4-I)
  • R is a hydrocarbon or a hydrocarbon radical having from 1 to about 6 carbon atoms
  • Q is a polar radical of the general formula -R 1 HZ, wherein R 1 is a divalent connecting group attached to hydrogen and the Z is an organic, amino-functional radical containing at least one amino-functional group, carbon and hydrogen atoms, carbon, hydrogen and oxygen atoms or carbon, hydrogen and nitrogen atoms;
  • "a” assumes values in the range of about 0 to about 2
  • "b” assumes values in the range of about 1 to about 3
  • "a” + “b” is less than or equal to 3
  • "c” is a number in the range from about 1 to about 3
  • x is a number ranging from 1 to about 2,000, preferably from about 3 to about 50, and most preferably from about 3 to about 25
  • y is a number ranging from about 20 to about 10,000 , preferably from about 125 to about 10,000, and most preferably from about 150 to about 1,000
  • M is a suitable silicone end
  • Non-limiting examples of the groups represented by R include alkyl groups such as methyl, ethyl, propyl, isopropyl, isopropyl, butyl, isobutyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals such as vinyl, halovinyl, alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl radicals such as cyclobutyl, cyclopentyl, cyclohexyl and the like; Phenyl radicals, benzyl radicals, halohydrocarbon radicals such as 3-chloropropyl, A-bromobutyl, 3,3,3-trifluoropropyl, chlorocyclohexyl, bromophenyl, chlorophenyl and the like, and sulfur-containing radicals such as mercaptoethyl, mercaptopropyl,
  • R 1 examples include methylene, ethylene, propylene, hexamethylene, decamethylene, -CH 2 CH (CH 3 ) CH 2 -, phenylene, naphthylene, -CH 2 CH 2 SCH 2 CH 2 -, - CH 2 CH 2 OCH 2 -, -OCH 2 CH 2 -, -OCH 2 CH 2 CH 2 -, -CH 2 CH (CH 3 ) C (O) OCH 2 -, - (CH 2 ) 3 CC (O) OCH 2 CH 2 -
  • Z is an organic, amino-functional radical containing at least one functional amino group.
  • a possible formula for Z is NH (CH 2 ) Z NH 2 , wherein z is 1 or more.
  • Another possible formula for Z is -NH (CH 2 ) Z (CH 2 ) ZZ NH, wherein both z and zz are independently 1 or more, which structure includes diamino ring structures, such as piperazinyl.
  • Z is most preferably a -NHCH 2 CH 2 NH 2 radical.
  • Z is - N (CH 2 ) Z (CH 2 ) ZZ NX 2 or -NX 2 , wherein each X of X 2 is independently selected from the group consisting of hydrogen and alkyl groups of 1 to 12 carbon atoms, and z is O
  • Q is most preferably a polar, amine functional group of the formula CH 2 CH 2 CH 2 NHCH 2 CH 2 NH 2 .
  • "a” assumes values in the range of about 0 to about 2
  • "b” assumes values in the range of about 2 to about 3
  • "a” + “b” is less than or equal to 3
  • the molar ratio of the R a Q b SiO (4 a . b) / 2 units to the R 0 SiO (4. c) / 2 units is in the range from about 1: 2 to 1:65, preferably from about 1: 5 to about 1:65, and most preferably from about 1:15 to about 1:20.
  • Preferred agents according to the invention are characterized in that they contain an amino-functional silicone of the formula (S4-II)
  • G is -H, a phenyl group, -OH, -O-CH 3 , -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -
  • R ' is a monovalent radical selected from o -N (R ") - CH 2 -CH 2 - N (R") 2 o -N (R ") 2 o -N + (R") 3 A- -N o + H (R ") 2 A- o -N + H 2 (R") A- o -N (R ”) - CH 2 -CH 2 -N + R" H 2 A " , where each R" is identical or different radicals from the group -H, -phenyl, -benzyl, the C- ⁇ _ 2 o -alkyl, preferably -CH 3, -CH 2 CH 3, - CH 2 CH 2 CH 3, -CH (CH 3) 2, -CH 2 CH 2 CH 2 H 3, -CH 2 CH (CH 3) 2, -CH (CH 3 ) CH 2 CH 3 , -C (CH 3 ) 3 , and A represents an anion, which is preferably selected from chloride, bromide, iodide
  • agents according to the invention are characterized in that they contain an amino-functional silicone of the formula (S4-IM)
  • n and n are numbers whose sum (m + n) is between 1 and 2000, preferably between 50 and 150, where n preferably values of 0 to 1999 and in particular of 49 to 149 and m preferably values of 1 to 2000 , in particular from 1 to 10 assumes.
  • silicones are referred to as trimethylsilylamodimethicones according to the INCI declaration.
  • compositions according to the invention which are characterized in that they contain an amino-functional silicone of the formula (S4-IV) are also particularly preferred.
  • n1 and n2 are numbers whose sum (m + n1 + n2) is between 1 and 2,000, preferably between 50 and 150 , where the sum (n1 + n2) preferably assumes values from 0 to 1999 and in particular from 49 to 149 and m preferably values from 1 to 2000, in particular from 1 to 10.
  • silicones are referred to as amodimethicones according to the INCI declaration.
  • agents according to the invention are preferred in which the amino-functional silicone has an amine number above 0.25 meq / g, preferably above 0.3 meq / g and in particular above 0.4 meq / g ,
  • the amine number stands for the milliequivalents of amine per gram of amino-functional silicone. It can be determined by titration and also expressed in mg KOH / g.
  • compositions 0.01 to 10 wt.%, Preferably 0.1 to 8 wt.%, Particularly preferably 0.25 to 7.5 wt.% And in particular 0.5 to 5 wt.% Of amodimethicone based on the composition.
  • the mixing ratio is largely variable.
  • all silicones used for mixing are used in a ratio of 5: 1 to 1: 5 in the case of a binary mixture.
  • a ratio of 3: 1 to 1: 3 is particularly preferred.
  • Very particularly preferred mixtures contain all the silicones contained in the mixture largely in a ratio of about 1: 1, in each case based on the amounts used in wt.%.
  • these compositions contain 0.01 to 10% by weight, preferably 0.1 to 8% by weight, more preferably 0.25 to 7.5% by weight, and especially 0.5 to 5% by weight of silicone mixture based on the composition.
  • the effect of the active ingredient combination according to the invention can be increased by emulsifiers.
  • emulsifiers are, for example
  • Alkylphenols having 8 to 15 C atoms in the alkyl group having 8 to 15 C atoms in the alkyl group
  • Glucosides mixtures of alkyl (oligo) and fatty alcohols for example, the commercially available product ® Montanov 68,
  • Sterols are understood to mean a group of steroids which bind to C-atom 3 of the
  • Steroid scaffolds carry a hydroxyl group and both from animal tissue
  • Zoosterins are cholesterol and lanosterol.
  • suitable phytosterols are Ergosterol, stigmasterol and sitosterol. Mushrooms and yeasts are also used to isolate sterols, the so-called mycosterols.
  • glucose phospholipids e.g. as lecithins or phosphatidylcholines from e.g. Egg yolk or plant seeds (e.g., soybeans) are understood.
  • Fatty acid esters of sugars and sugar alcohols such as sorbitol
  • Polyglycerols and polyglycerol such as polyglycerol poly-12-hydroxystearate (commercial product Dehymuls® ® PGPH)
  • Linear and branched fatty acids with 8 to 30 carbon atoms and their Na, K, ammonium,
  • the agents according to the invention preferably contain the emulsifiers in amounts of 0.1-25% by weight, in particular 0.5-15% by weight, based on the total agent.
  • polymers can further support the action of the preparations according to the invention.
  • polymers are therefore added to the compositions according to the invention, both anionic, amphoteric and nonionic polymers having proven effective.
  • anionic polymers which can support the action of the preparations according to the invention are anionic polymers which have carboxylate and / or sulfonate groups.
  • anionic monomers from which such polymers may consist are acrylic acid, methacrylic acid, crotonic acid, maleic anhydride and 2-acrylamido-2-methylpropanesulfonic acid.
  • the acidic groups may be wholly or partly present as sodium, potassium, ammonium, mono- or triethanolammonium salt.
  • Preferred monomers are 2-acrylamido-2-methylpropanesulfonic acid and acrylic acid.
  • Anionic polymers which contain 2-acrylamido-2-methylpropanesulfonic acid as the sole or co-monomer can be found to be particularly effective, it being possible for the sulfonic acid group to be wholly or partly present as sodium, potassium, ammonium, mono- or triethanolammonium salt ,
  • the homopolymer of 2-acrylamido-2-methyl propane sulfonic acid which is available for example under the name Rheothik ® 11-80 is commercially.
  • copolymers of at least one anionic monomer and at least one nonionic monomer may be preferable to use copolymers of at least one anionic monomer and at least one nonionic monomer.
  • anionic monomers reference is made to the substances listed above.
  • Preferred nonionic monomers are acrylamide, methacrylamide, acrylic esters, methacrylic esters, vinylpyrrolidone, vinyl ethers and vinyl esters.
  • Preferred anionic copolymers are acrylic acid-acrylamide copolymers and in particular
  • Polyacrylamidcopolymere with sulfonic acid-containing monomers A particularly preferred anionic copolymer consists of 70 to 55 mol% of acrylamide and 30 to 45 mol% of 2-acrylamido-2-methylpropanesulfonic acid, wherein the sulfonic acid group is wholly or partly in the form of sodium, potassium, ammonium, mono- or triethanolammonium Salt is present.
  • This copolymer may also be crosslinked, with crosslinking agents preferably polyolefinically unsaturated compounds such as tetraallyloxyethane, allylsucrose, allylpentaerythritol and methylenebisacrylamide are used.
  • Such a polymer is contained in the commercial product Sepigel ® 305 from SEPPIC.
  • the use of this compound, which in addition to the polymer component contains a hydrocarbon mixture (C 13 -C 4 -lsoparaffin) and a non-ionic emulsifier (laureth-7), has proved to be particularly advantageous within the scope of the teaching according to the invention.
  • Simulgel ® 600 as a compound with isohexadecane and polysorbate 80 Natriumacryloyldimethyltaurat copolymers have proven to be particularly effective according to the invention.
  • anionic homopolymers are uncrosslinked and crosslinked polyacrylic acids. Allyl ethers of pentaerythritol, sucrose and propylene may be preferred crosslinking agents. Such compounds are for example available under the trademark Carbopol ® commercially.
  • Copolymers of maleic anhydride and methyl vinyl ether, especially those with crosslinks, are also color-retaining polymers.
  • a 1, 9-decadiene crosslinked maleic acid-methyl vinyl ether copolymer is available under the name Stabileze® QM ® commercially available.
  • amphoteric polymers can be used as polymers to increase the activity of the preparations according to the invention.
  • amphoteric polymers includes both those polymers which contain both free amino groups and free COOH or SO 3 H groups in the molecule and are capable of forming internal salts, as well as zwitterionic polymers which contain quaternary ammonium groups and COO in the molecule - or -SO 3 - groups, and those polymers comprising those -COOH or SO 3 H groups and quaternary ammonium groups.
  • amphopolymer suitable is the acrylic resin commercially available as Amphomer ®, which is a copolymer of tert-butylaminoethyl methacrylate, N- (1, 1, 3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group of acrylic acid, Represents methacrylic acid and its simple esters.
  • Amphomer ® is a copolymer of tert-butylaminoethyl methacrylate, N- (1, 1, 3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group of acrylic acid, Represents methacrylic acid and its simple esters.
  • Further inventively usable amphoteric polymers are those in the British
  • amphoteric polymers are those polymers which are composed essentially
  • R 4 and R 5 independently of one another are alkyl groups having 1 to 4 carbon atoms, Z is an NH 4
  • n is an integer from 2 to 5 and A is the anion of an organic or inorganic acid
  • the agents according to the invention may contain nonionogenic polymers.
  • Suitable nonionic polymers are, for example:
  • Vinylpyrrolidone / vinyl ester copolymers as sold, for example, under the trademark Luviskol ® (BASF).
  • Luviskol ® VA 64 and Luviskol ® VA 73, each vinylpyrrolidone / vinyl acetate copolymers are also preferred nonionic polymers.
  • Cellulose ethers such as hydroxypropyl cellulose, hydroxyethyl cellulose and hydroxypropylcellulose Methylhy-, as sold for example under the trademark Culminal® ® and Benecel ® (AQUALON).
  • Siloxanes Polyvinylpyrrolidones, as sold for example under the name Luviskol ® (BASF). Siloxanes. These siloxanes can be both water-soluble and water-insoluble.
  • Nonvolatile siloxanes are suitable, nonvolatile siloxanes being understood as meaning those compounds whose boiling point is above 200 ° C. under normal pressure.
  • Preferred siloxanes are polydialkylsiloxanes, such as, for example, polydimethylsiloxane, polyalkylarylsiloxanes, such as, for example, polyphenylmethylsiloxane, ethoxylated polydialkylsiloxanes and polydialkylsiloxanes which contain amine and / or hydroxyl groups.
  • Glycosidically substituted silicones according to EP 0612759 B1.
  • the preparations comprise a plurality of, in particular two, different polymers of the same charge and / or in each case an ionic and an amphoteric and / or nonionic polymer.
  • the polymers are contained in the agents according to the invention preferably in amounts of 0.05 to 10 wt .-%, based on the total agent. Amounts of 0.1 to 5, in particular from 0.1 to 3 wt .-%, are particularly preferred.
  • the hair colorants according to the invention contain at least one dye from the group of so-called substantive dyes in order to support the dyeing performance.
  • Direct dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones or indophenols.
  • the substantive dyes are each preferably used in an amount of 0.001 to 20% by weight, based on the total application preparation.
  • the total amount of substantive dyes is preferably at most 20% by weight.
  • Direct dyes can be subdivided into anionic, cationic and nonionic substantive dyes.
  • Particularly suitable anionic direct dyes are 6-hydroxy-5 - [(4-sulfophenyl) azo] -2-naphthalenesulfonic acid disodium salt (CI 15.985, Food Yellow No. 3, FD & C Yellow No. 6), 2,4-dinitro-1 -naphthol-7-sulfonic acid disodium salt (Cl.10.316; Acid Yellow 1, Food Yellow No. 1), 2- (indan-1, 3-dion-2-yl) quinoline-x, x-sulfonic acid (mixture of mono and disulfonic acid) (CI 47,005, D & C Yellow No. 10, Food Yellow No.
  • Phenylamino) -phenyl] -azobenzenesulfonic acid sodium salt (CI 13,065; Ki406; Acid Yellow 36), 9- (2-carboxyphenyl) -6-hydroxy-3H-xanthen-3-one (CI 45,350; Acid Yellow 73; D & C Yellow No 8), 5 - [(2,4-dinitrophenyl) amino] -2-phenylaminobenzenesulfonic acid, sodium salt (Cl.10, 385; Acid Orange 3), 4 - [(2,4-dihydroxyphenyl) azo] -benzenesulfonic acid, sodium salt (Cl Acid Orange 6), 4 - [(2-hydroxynaphth-1-yl) azo] -benzenesulfonic acid, sodium salt (Cl 15.510, Acid Orange 7), 4 - [(2,4-dihydroxy-3 - [( 2,4-dimethylphenyl) azo] -phenyl) azo] -benz
  • Acid Red 4 4-hydroxy-3 - [(4-sulfonaphth-1-yl) azo] -1-naphthalenesulfonic acid disodium salt (Cl 14.720; Acid Red No.14), 6-hydroxy-5 - [(4-sulfonaphth-1-yl) azo] -2,4-naphthalenedisulfonic acid trisodium salt (Cl 16,255, Ponceau 4R, Acid Red 18), 3-hydroxy-4 - [(4-sulfonaphth-1) yl) azo] -2,7-naphthalene-disulfonic acid trinatriu Msalz (Cl.
  • Acid Red 27 8-amino-1-hydroxy-2- (phenylazo) -3,6-naphthalenedisulfonic acid disodium salt (Cl 17,200, Acid Red 33, Red 33), 5- (acetylamino) -4-hydroxy 3 - [(2-methylphenyl) azo] -2,7-naphthalenedisulfonic acid disodium salt (Cl 18.065, Acid Red 35), 2- (3-hydroxy-2,4,5,7-tetraiododibenzopyran- 6-on-9-yl) benzoic acid disodium salt (Cl.45,430; Acid Red 51), N- [6- (diethylamino) -9- (2,4-disulfophenyl) -3H-xanthen-3-ylidene] - N-ethyleneamine ammonium hydroxide, inner salt, sodium salt (CI 45, 100, Acid Red 52), 8 - [(4- (phenylazo) phenyl) azo] -7-
  • Acid Red 95 2-hydroxy-3 - ((2-hydroxynaphth-1-yl) azo) -5-nitrobenzenesulfonic acid, sodium salt
  • Acid Red 184 3-hydroxy-4- (3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-ylazo) -naphthalene-1-sulfonic acid sodium salt, chromium complex
  • Acid Red 195 3-hydroxy-4 - [(4-methyl-2-sulfonophenyl) -azo-naphthalenecarboxylic acid calcium salt (Cl 15.850: 1; Pigment Red 57: 1), 3- [ (2,4-Dimethyl-5-sulfophenyl) azo] -4-hydroxy-1-naphthalenesulfonic acid disodium salt (Cl 14.700, Food Red No.
  • Acid Blue 1 bis [4- (diethylamino) phenyl] (5-hydroxy-2,4-disulfophenyl) carbenium inner salt, calcium salt (2: 1) (CI 42,051, Acid Blue 3), N- [ 4 - [(2,4-Disulfophenyl) [4- [ethyl (phenylmethyl) amino) phenyl] methylene] -2,5-cyclohexadiene-1-ylidene] -N-ethylbenzene methanaminium hydroxide, inner salt, sodium salt (CI 42,080 Acid Blue 7), (2-sulfophenyl) di [4- (ethyl ((4-sulfophenyl) methyl) amino) phenyl] -carbenium disodium salt
  • Betaine (CI 42,090, Acid Blue 9, FD & C Blue No. 1), 1-amino-4- (phenylamino) -9,10-anthraquinone-2-sulfonic acid (CI 62,055, Acid Blue 25), 1-amino 4- (cyclohexylamino) -9,10-anthraquinone-2-sulfonic acid, sodium salt (CI 62045, Acid Blue 62), 2- (1,3-dihydro-3-oxo-5-sulfo-2H-indole-2-one ylidene) -2,3-dihydro-3-oxo-1H-indole-5-sulfonic acid disodium salt (CI 73,015; Acid Blue 74), 9- (2-yl) Carboxyphenyl) -3 - [(2-methylphenyl) amino] -6 - [(2-methyl-4-sulfophenyl) amino] xanthylium inner-
  • Preferred anionic substantive dyes are those under the international designations or trade names Acid Yellow 1, Yellow 10, Acid Yellow 23, Acid Yellow 36, Acid Orange 7, Acid Red 33, Acid Red 52, Pigment Red 57: 1, Acid Blue 7, Acid Green 50, Acid Violet 43, Acid Black 1 and Acid Black 52 known compounds.
  • Particularly suitable cationic direct dyes are 9- (dimethylamino) benzo [a] phenoxazine-7-ium chloride (Cl 51, 175, Basic Blue 6), di [4- (diethylamino) phenyl] [4- (ethylamino ) naphthyl] carbenium chloride (Cl 42,595, Basic Blue 7), di- (4- (dimethylamino) phenyl) - (4- (methylphenylamino) naphthalen-1-yl) carbenium chloride (CI 42,563; Basic Blue 8), 3,7-di (dimethylamino) -phenothiazine-5-ium chloride (CI 52.015 Basic Blue 9), di [4- (dimethylamino) phenyl] [4- (phenylamino) naphthyl] carbenium chloride ( Cl.44,045; Basic Blue 26), 2 - [(4- (ethyl (2-hydroxy
  • aromatic systems substituted with a quaternary nitrogen group such as Basic Yellow 57, Basic Red 76, Basic Blue 99, Basic Brown 16 and Basic Brown 17, as well as
  • Preferred cationic substantive dyes of group (c) are in particular the following compounds:
  • the compounds of the formulas (DZ1), (DZ3) and (DZ5) which are also known by the names Basic Yellow 87, Basic Orange 31 and Basic Red 51, are very particularly preferred cationic substantive dyes of group (c).
  • the cationic direct dyes which are sold under the trademark Arianor ®, according to the invention are also very particularly preferred cationic direct dyes.
  • Nonionic substantive dyes are:
  • Suitable nonionic substantive dyes are in particular nonionic nitro and quinone dyes and neutral azo dyes.
  • Suitable blue nitro dyes are in particular:
  • Suitable red nitro dyes are in particular:
  • Suitable yellow nitro dyes are in particular:
  • 1,2-diamino-4-nitrobenzene (CI 76,020), 1 - [(2-hydroxyethyl) amino] -2-nitrobenzene (HC Yellow 2), 1- (2-hydroxyethoxy) -2 - [(2-hydroxyethyl ) amino] -5-nitrobenzene (HC Yellow 4), 1-amino-2 - [(2-hydroxyethyl) amino] -5-nitrobenzene (HC Yellow 5), 4 - [(2,3-dihydroxypropyl) amino] 3-nitro-1-trifluoromethylbenzene (HC Yellow 6), 2- [di (2-hydroxyethyl) amino] -5-nitrophenol, 2 - [(2-hydroxyethyl) amino] -1-methoxy-5-nitrobenzene , 2-amino-3-nitrophenol, 2-amino-4-nitrophenol, 1-amino-2-methyl-6-nitrobenzene, 1- (2-hydroxyethoxy) -3-methylamino-4-nitrobenzene, 2,3- ( Di
  • Suitable quinone dyes are in particular:
  • Suitable neutral azo dyes are in particular:
  • Preferred nonionic substantive dyes are those under the international designations or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, HC Orange 1, Disperse Orange 3, HC Red 1, HC Red 3, HC HC Red 11, HC Red 11, HC Red 11, HC Blue 11, HC Blue 2, HC Blue 11, HC Blue 12, Disperse Blue 3, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9 well-known compounds, as well 1, 4-diamino-2-nitrobenzene, 2-amino-4-nitrophenol, 1,4-bis (2-hydroxyethyl) amino-2-nitrobenzene, 3-nitro-4- (2-hydroxyethyl) aminophenol, 2- (2-hydroxyethyl) amino-4,6-dinitrophenol, 4 - [(2-hydroxyethyl) amino] -3-nitro-1-methylbenzene, 1-amino-4- (2-hydroxyethyl) amino-5- chloro-2-nitrobenzene, 4-amino-3-nitrophenol, 1-
  • the substantive dyes each represent uniform compounds. Rather, due to the production process for the individual dyes, minor amounts of other components may be included, as far as these do not adversely affect the dyeing result or for other reasons, e.g. toxicological, must be excluded.
  • Naturally occurring dyes can also be used as substantive dyes, such as, for example, henna red, henna neutral, henna black, chamomile blood, sandalwood, black tea, buckthorn bark, sage, bluewood, madder root, catechu,
  • Sedre and alkano root are included.
  • a second aspect of the invention is the use of an active ingredient combination of a) a vegetable dyeing and / or hair care substance b) an acylamino acid salt and / or a glycolipid and c) a fatty acid and / or glyceryl ester of a long-chain alcohol for the preparation of a natural cosmetic hair treatment composition with improved cosmetic properties Properties.
  • a third aspect of the invention is a method for hair treatment, in which the hair treatment composition according to the invention is applied to the hair, and optionally rinsed with water after a contact time of 30 seconds to 2 hours.
  • Glycerol monostearate / dipalmitate INCI name: glyceryl stearate; Cognis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Cosmetics (AREA)

Abstract

L'invention concerne des agents de traitement capillaire, à base d'un combinaison de principes actifs comprenant a) un colorant capillaire et/ou un agent de soins capillaires d'origine végétale, b) un sel d'acylaminoacide et/ou un glycolipide et c) un ester d'acide gras et/ou glycéryle d'alcool à chaîne longue. L'adjonction des composants b) et c) permet de stabiliser des colorants et des agents de soins capillaires dans un produit de soins capillaires prêt à l'emploi, ainsi que de renforcer considérablement les propriétés cosmétiques et le rendement de produits de soins capillaires à base de colorants et d'agents de soins capillaires d'origine végétale.
EP08717818A 2007-08-01 2008-03-14 Agents de traitement capillaire cosmétiques naturels Ceased EP2185124A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007036499A DE102007036499A1 (de) 2007-08-01 2007-08-01 Naturkosmetisches Haarbehandlungsmittel
PCT/EP2008/053076 WO2009015913A2 (fr) 2007-08-01 2008-03-14 Agents de traitement capillaire cosmétiques naturels

Publications (1)

Publication Number Publication Date
EP2185124A2 true EP2185124A2 (fr) 2010-05-19

Family

ID=40175889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08717818A Ceased EP2185124A2 (fr) 2007-08-01 2008-03-14 Agents de traitement capillaire cosmétiques naturels

Country Status (3)

Country Link
EP (1) EP2185124A2 (fr)
DE (1) DE102007036499A1 (fr)
WO (1) WO2009015913A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2574343E (pt) * 2011-09-30 2014-05-02 Alnapharm Gmbh & Co Kg Formulação para aplicação cutânea e a sua utilização
WO2013093332A2 (fr) 2011-12-20 2013-06-27 L'oreal Composition cosmétique comprenant un tensioactif anionique, un alcool gras solide et un ester gras solide, et procédé de traitement cosmétique
FR3004943B1 (fr) * 2013-04-26 2015-05-15 Oreal Composition comprenant du henne et/ou de l'indigo, une huile et un saccharide, et procede de coloration capillaire la mettant en œuvre
ITRM20130633A1 (it) * 2013-11-17 2015-05-18 Naples Hair Di Costantino Antonino Procedimento per ottenere uno shampoo per capelli a base di erbe, e shampoo cosi ottenuto
CN104013565B (zh) * 2014-06-28 2016-09-14 管天球 一种洗发护发液
US10660838B2 (en) 2017-06-23 2020-05-26 The Procter & Gamble Company Composition and method for improving the appearance of skin
CN108042448A (zh) * 2017-12-19 2018-05-18 广州市芙缇化妆品有限公司 一种发热防脱发洗发水及其制备方法
US11622963B2 (en) 2018-07-03 2023-04-11 The Procter & Gamble Company Method of treating a skin condition
CN109394597B (zh) * 2018-10-09 2021-11-16 四川桧元素生物科技有限公司 一种从桧木提取的抑菌宠物专用天然除味剂及其制备方法
RU2723485C1 (ru) * 2019-07-11 2020-06-11 Светлана Николаевна Бутова Шампунь для мытья волос
US11583488B2 (en) 2020-06-01 2023-02-21 The Procter & Gamble Company Method of improving penetration of a vitamin B3 compound into skin
US10959933B1 (en) 2020-06-01 2021-03-30 The Procter & Gamble Company Low pH skin care composition and methods of using the same

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237253A (en) 1977-04-21 1980-12-02 L'oreal Copolymers, their process of preparation, and cosmetic compounds containing them
US4393886A (en) 1980-09-05 1983-07-19 Ciba-Geigy Corporation Mixtures of quaternary, polymeric, high molecular weight ammonium salts, which are based on acrylic compounds, and surfactants, their preparation, and their use in cosmetics
JPS5813700A (ja) 1981-07-17 1983-01-26 花王株式会社 食器用洗浄剤組成物
US4438096A (en) * 1982-05-27 1984-03-20 Helene Curtis Industries, Inc. Pearlescent shampoo
EP0217274A3 (fr) 1985-09-30 1988-06-29 Kao Corporation Composition cosmétique pour les cheveux
DE3708451A1 (de) 1987-03-16 1988-10-06 Henkel Kgaa Zwitterionische polymere und deren verwendung in haarbehandlungsmitteln
DE3723354A1 (de) 1987-07-15 1989-01-26 Henkel Kgaa Sulfatierte hydroxy-mischether, verfahren zu ihrer herstellung und ihre verwendung
DE3926344A1 (de) 1989-08-09 1991-02-28 Henkel Kgaa Verfahren zur herstellung von hellfarbigen oelsaeuresulfonaten
DE3929973A1 (de) 1989-09-08 1991-03-14 Henkel Kgaa Haarpflegemittel
US5136093A (en) 1991-02-06 1992-08-04 Smith Ronald J Quaternized panthenol compounds and their use
DE59309337D1 (de) 1992-07-03 1999-03-11 Alfatec Pharma Gmbh Feste und flüssige Lösungen von Flavonoiden
DE4306041A1 (de) 1993-02-26 1994-09-01 Wacker Chemie Gmbh Glycosidreste aufweisende Organosiliciumverbindungen und Verfahren zu deren Herstellung
DE4440625A1 (de) 1994-11-14 1996-05-15 Henkel Kgaa Verfahren zur Herstellung hellfarbiger Chitosane
DE19503465A1 (de) 1995-02-03 1996-08-08 Henkel Kgaa Verfahren zur Herstellung von niedrigviskosen kationischen Biopolymeren
DE19736906A1 (de) 1997-08-25 1999-03-04 Henkel Kgaa Verfahren zur Herstellung von sulfatierten Fettsäurealkylenglykolestern
DE19756454C1 (de) 1997-12-18 1999-06-17 Henkel Kgaa Verwendung von Glycerincarbonat
FR2785183B1 (fr) 1998-11-04 2002-04-05 Oreal COMPOSITION TINCTORIALE CONTENANT UN COLORANT DIRECT CATIONIQUE ET UNE PYRAZOLO-[1,5-a]- PYRIMIDINE A TITRE DE BASE D'OXYDATION, ET PROCEDES DE TEINTURE
FR2785797B1 (fr) * 1998-11-12 2002-10-18 Oreal Compositions cosmetiques contenant un tensioactif ester d'alkylpolyglycoside anionique et un agent conditionneur liquide insoluble dans l'eau et leurs utilisations
DE19903716A1 (de) * 1999-01-30 2000-08-03 Henkel Kgaa Antioxidative Hautpflegemittel
DE10053051C2 (de) 2000-10-13 2002-10-31 Coty Bv Kosmetische Zubereitung mit Pflanzenextrakten
US7166136B2 (en) * 2001-01-09 2007-01-23 Shiseido Company, Ltd. Hairdye preparation
DE10126449A1 (de) * 2001-05-31 2002-12-05 Cognis Deutschland Gmbh Haarpflegemittel mit natürlichen Ölen
DE10207919A1 (de) * 2002-02-23 2003-09-18 Cognis Deutschland Gmbh Anti-Ageingmittel
FR2873573B1 (fr) * 2004-08-02 2006-11-17 Oreal Emulsion eau-dans-huile comprenant une huile non-volatile non-siliconee, un tensioactif cationique, une polyolefine a partie's) polaire(s), et un alkylmonoglycoside ou alkylpolyglycoside
DE102005061727A1 (de) * 2005-12-21 2007-06-28 Henkel Kgaa Tönungsmittel auf Basis von Pflanzenfarbstoffen
DE102006002767A1 (de) * 2006-01-20 2007-07-26 Henkel Kgaa Kosmetische Mittel enthaltend ein Polysiloxan und ein Esteröl und weitere Wirkstoffe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009015913A2 *

Also Published As

Publication number Publication date
DE102007036499A1 (de) 2009-02-05
WO2009015913A2 (fr) 2009-02-05
WO2009015913A3 (fr) 2009-10-08

Similar Documents

Publication Publication Date Title
EP2037877B1 (fr) Shampoing antipelliculaire
WO2009015913A2 (fr) Agents de traitement capillaire cosmétiques naturels
EP2059228B1 (fr) Agents cosmétiques
WO2008017540A1 (fr) Agent de lutte contre les produits de desquamation de la tête
EP1812118A1 (fr) Revitalisants capillaires comprenant des imidazolines et des dimethiconols ou des silicones a fonction amino
DE102009028206A1 (de) Haarbehandlungsmittel mit speziellen Polyethern und haarfestigenden Polymeren
EP1827369A1 (fr) Melange de substances actives pour restructurer des fibres de keratine
WO2008043588A2 (fr) Mousse de nuançage
EP1977728A2 (fr) Stabilisation de produits comprenant des tensioactifs
DE102006055436A1 (de) Färbeschaum
EP2054022B1 (fr) Produit coiffant assurant une tenue forte
DE102008036073A1 (de) Reinigungsmittel mit Terpolymer
DE102009028207A1 (de) Haarbehandlungsmittel mit Polyether-modifizierten Feststoffpartikeln und haarfestigenden Polymeren
WO2007087860A1 (fr) Agents cosmétiques contenant un polysiloxane et une huile ester ainsi que d'autres principes actifs
DE102008038110A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer und mindestens ein spezielles, zusätzliches filmbildendes nichtionisches und/oder festigendes nichtionisches Polymer
DE102008038107A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer und mindestens ein zusätzliches filmbildendes und/oder festigendes Polymer ausgewählt aus Chitosan und dessen Derivaten
EP2054024A1 (fr) Produit coiffant assurant une tenue forte
DE102006020620A1 (de) Mittel zur Behandlung keratinischer Fasern mit Farbindikation der optimalen Behandlungszeit
WO2007042085A1 (fr) Stabilisation de silicones insolubles dans l'eau
DE102008038106A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer und mindestens ein spezielles, zusätzliches filmbildendes anionisches und/oder festigendes anionisches Polymer
WO2008025679A1 (fr) Composition de principes actifs cosmétique contenant de l'extrait de bois de santal
EP2214624A2 (fr) Produit de coiffage
DE102008059480A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer, mindestens ein davon verschiedenes kationisches Stylingpolymer und mindestens ein filmbildendes nichtionisches und/oder festigendes nichtionisches Polymer
EP1791602A1 (fr) Methode de soin pour fibres keratiniques
DE102008038109A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer und mindestens ein weiteres zusätzliches filmbildendes kationisches und/oder festigendes Polymer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091207

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20140425