EP2183653A1 - Linear voltage regulator - Google Patents
Linear voltage regulatorInfo
- Publication number
- EP2183653A1 EP2183653A1 EP08787129A EP08787129A EP2183653A1 EP 2183653 A1 EP2183653 A1 EP 2183653A1 EP 08787129 A EP08787129 A EP 08787129A EP 08787129 A EP08787129 A EP 08787129A EP 2183653 A1 EP2183653 A1 EP 2183653A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- output
- terminal
- inverter
- electrically coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims description 12
- 239000003990 capacitor Substances 0.000 claims description 7
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
Definitions
- This application relates to a linear voltage regulator.
- Voltage regulators have been utilized to control voltages applied to devices.
- a problem with the voltage regulators is that the voltage regulators have not been able to effectively remove both high frequency noise and low frequency noise from a voltage source. Further, the voltage regulators utilize at least two relatively expensive comparator chips which utilize a relatively large amount of power.
- the inventor herein has recognized a need for an improved voltage regulator that minimizes and/or eliminates the above-mentioned problems.
- a linear voltage regulator in accordance with an exemplary embodiment includes a first circuit configured to receive the first voltage from a voltage source and to remove frequency components of the first voltage in a first frequency range to obtain an output voltage at a primary output node.
- the linear voltage regulator further includes a second circuit having first and second inverters electrically coupled to the primary output node of the first circuit.
- the second circuit is configured to receive the output voltage and to remove frequency components of the output voltage in a second frequency range.
- the second frequency range is greater than the first frequency range.
- a linear voltage regulator in accordance with another exemplary embodiment includes a first inverter having a first input terminal and a first output terminal.
- the first input terminal is electrically coupled to the first output terminal.
- the first input terminal is further electrically coupled to a capacitor which is further coupled to electrical ground.
- the first inverter is further electrically coupled to a primary output node such a first voltage on the first output terminal is less than the output voltage at the primary output node.
- the linear voltage regulator further includes a second inverter having a second input terminal and a second output terminal.
- the second input terminal is electrically coupled to the first output terminal of the first inverter.
- the second inverter is further electrically coupled to the primary output node and receiving the first voltage from the first inverter.
- the linear voltage regulator further includes a p-channel field effect transistor (P-FET transistor) having a gate terminal, a drain terminal and a source terminal.
- the source terminal is electrically coupled to a voltage source.
- the drain terminal is coupled to the primary output node.
- the gate terminal electrically communicates either directly or indirectly with the second output terminal of the second inverter, such that when the output voltage at the primary output node is increased, the first voltage on the first output terminal of the first inverter is less than the output voltage on the primary output node which induces the second inverter to output a high logic voltage on the second output terminal.
- the P-FET transistor reduces the output voltage on the primary output node in response to the high logic voltage.
- Figure 1 is an electrical schematic of an electrical system having a linear voltage regulator in accordance with an exemplary embodiment
- Figure 2 is an electrical schematic of a comparator circuit utilized in the linear voltage regulator of Figure 1;
- Figure 3 is an electrical schematic of a plurality of inverters utilized in the linear voltage regulator of Figure 1;
- Figure 4 is a schematic of a voltage signal output by a voltage source in the electrical system of Figure 1;
- Figure 5 is a schematic of a voltage signal output on a primary output node of the linear voltage regulator of Figure 1 ;
- Figure 6 is a schematic of a voltage signal output on a node in the comparator circuit of Figure 2
- Figure 7 is a schematic of a voltage signal output on a PFET transistor utilized in the linear voltage regulator of Figure 1;
- Figures 8-9 are flowcharts of a method for regulating a voltage using the linear voltage regulator of Figure 1 in accordance with another exemplary embodiment.
- an electrical system 10 having a linear voltage regulator 14 in accordance with an exemplary embodiment is illustrated.
- the electrical system further includes a voltage source 12 and a load 18.
- An advantage of the linear voltage regulator 14 is that the regulator is able to output a voltage that has minimal voltage deviation for voltage-sensitive load devices.
- the voltage source 12 is provided to output a voltage that may deviate from a desired voltage level.
- the voltage source 12 is electrically coupled to the linear voltage regulator 14.
- the linear voltage regulator 14 is provided to receive the voltage from the voltage source 12 and to output a voltage that minimal voltage deviation from a desired voltage level.
- the linear voltage regulator 14 includes a circuit 20 and a circuit 22.
- the circuit 20 is provided to remove frequency components of the voltage received from voltage source 12 in a first frequency range to obtain an output voltage at the primary voltage node 36 with reduced voltage deviation.
- the circuit 20 is configured to remove frequency components of the voltage received from the voltage source 12 in the frequency range of 0 to 10 Megahertz.
- the circuit 20 can remove frequency components in other frequency ranges.
- the circuit 20 includes a voltage reference device 30, an operational amplifier 32, and a P-FET transistor 34.
- the operational amplifier 32 has an inverting input terminal "-", a non-inverting input terminal "+”, and an output terminal.
- the P-FET transistor has a gate terminal (Gl), a source terminal (Sl), and a drain terminal (Dl).
- the voltage reference device 30 is electrically connected to the inverting input terminal "-" of the operational amplifier 32.
- the voltage reference device 30 is configured to output a desired reference voltage level.
- the output terminal of the operational amplifier 32 is electrically coupled to the gate terminal (Gl) of the P-FET transistor 34.
- the non-inverting terminal "+” of the operational amplifier 32 is electrically coupled to the drain terminal (Dl) of the P-FET transistor 34 and further coupled to the primary output node 36.
- the P-FET transistor 34 increases current flowing from the source terminal (Sl) to the drain terminal (Dl) which causes the output voltage on the primary output node 36 to increase.
- the voltage received by the non- inverting terminal "+” of the operational amplifier 32 has a high logic voltage relative to a low logic voltage on the inverting terminal "-", which induces the operational amplifier 32 to output a high logic voltage.
- the P-FET transistor 34 decreases current flowing from the source terminal (Sl) to the drain terminal (Dl) which causes the output voltage on the primary output node 36 to decrease.
- the circuit 22 is provided to remove frequency components of the voltage received from voltage source 12 in a second frequency range to obtain an output voltage at the primary voltage node 36 with reduced voltage deviation.
- the circuit 22 is configured to remove frequency components of the voltage received from the voltage source 12 in the frequency range of 10 Megahertz to 6 Gigahertz.
- the circuit 22 can remove frequency components in other frequency ranges.
- the circuit 22 includes a comparator circuit 62, 50, inverters 52, 54, 56, 58, 60, and a P-FET transistor 62.
- the comparator circuit 50 is provided to detect a voltage deviation on the primary output node 36.
- the comparator circuit 50 includes inverters 80, 82 and a capacitor 84.
- the inverter 80 includes a P-FET transistor 90, a FET transistor 92, an input terminal 94, and an output terminal 96.
- the P-FET transistor 90 includes a gate terminal (G3), a source terminal (S3), and a drain terminal (D3).
- the FET transistor 92 includes a gate terminal (G4), a source terminal (S4), and a drain terminal (D4).
- the P-FET transistor 90 is electrically coupled to the FET transistor 92.
- the gate terminals (G3), (G4) are electrically coupled together at the input terminal 94.
- the source terminal (S3) is electrically coupled to the primary output node 36.
- the drain terminal (D3) is electrically coupled to the source terminal (S4) at the output terminal 96.
- the output terminal 96 is electrically coupled to the input terminal 94.
- the terminal (D4) is electrically coupled to electrical ground.
- the capacitor 84 is electrically coupled between the input terminal 94 and electrical ground.
- the inverter 82 includes a P-FET transistor 100, a FET transistor 102, an input terminal 104, and an output terminal 106.
- the P-FET transistor 100 includes a gate terminal (G5), a source terminal (S5), and a drain terminal (D5).
- the FET transistor 102 includes a gate terminal (G6), a source terminal (S6), and a drain terminal (D6).
- the P-FET transistor 100 includes a gate terminal (G5), a source terminal (S5), and a drain terminal (D5).
- the FET transistor 102 includes a gate terminal (G6), a source terminal (S6), and a drain terminal (D6).
- the 100 is electrically coupled to the FET transistor 102.
- the gate terminals (G5), (G6) are electrically coupled together at the input terminal 104.
- the input terminal 104 is electrically coupled to the output terminal 96.
- the source terminal (S5) is electrically coupled to the primary output node 36.
- the drain terminal (D5) is electrically coupled to the source terminal (S6) at the output terminal 106.
- the output terminal 106 is electrically coupled to an input terminal 114.
- the terminal (D6) is electrically coupled to electrical ground.
- the comparator circuit 50 when an output voltage at the primary output node 36 is increased, the voltage on the output terminal 96 of the inverter 80 is less than the output voltage on the primary output node 36 which induces the inverter 82 to output a high logic voltage on the output terminal 106.
- the high logic voltage is utilized to subsequently induce the P-FET transistor 62 to reduce the output voltage on the primary output node 36 in response to the high logic voltage.
- the output voltage at the primary output node 36 is decreased, the voltage on the output terminal 96 of the inverter 80 is greater than the output voltage on the primary output node 36 which induces the inverter 82 to output a low logic voltage on the output terminal 106.
- the low logic voltage is subsequently utilized to induce the P-FET transistor 62 to increase the output voltage on the primary output node 36 in response to the low logic voltage.
- the chain of inverters 52, 54, 56, 58, 60 are provided to amplify the output voltage from the comparator circuit 50 which is received by the gate terminal (G2) of the P-FET transistor 62.
- the inverter 52 includes a P-FET transistor 110, a FET transistor 112, an input terminal 114, and an output terminal 116.
- the P-FET transistor 110 includes a gate terminal (G7), a source terminal (S7), and a drain terminal (D7).
- the FET transistor 112 includes a gate terminal (G8), a source terminal (S8), and a drain terminal (D8).
- the P-FET transistor 110 is electrically coupled to the FET transistor 112. In particular, the gate terminals (G7),
- the source terminal (S7) is electrically coupled to the primary output node 36.
- the drain terminal (D7) is electrically coupled to the source terminal (S8) at the output terminal 116.
- the output terminal 116 is electrically coupled to an input terminal 124.
- the terminal (D8) is electrically coupled to electrical ground.
- the inverter 52 receives an output voltage at the input terminal 114 from the comparator circuit 50 and outputs an inverted amplified output voltage at the output terminal 116.
- the inverter 54 includes a P-FET transistor 120, a FET transistor 122, an input terminal 124, and an output terminal 126.
- the P-FET transistor 120 includes a gate terminal (G9), a source terminal (S9), and a drain terminal (D9).
- the FET transistor 122 includes a gate terminal (GlO), a source terminal (SlO), and a drain terminal (DlO).
- the P-FET transistor 120 is electrically coupled to the FET transistor 122.
- the gate terminals (G9), (GlO) are electrically coupled together at the input terminal 124.
- the source terminal (S9) is electrically coupled to the primary output node 36.
- the drain terminal (D9) is electrically coupled to the source terminal (SlO) at the output terminal 126.
- the output terminal 126 is electrically coupled to an input terminal 134.
- the terminal (DlO) is electrically coupled to electrical ground.
- the inverter 54 receives an output voltage at the input terminal 124 from the inverter 52 and outputs an inverted amplified output voltage at the output terminal 126.
- the inverter 56 includes a P-FET transistor 130, a FET transistor 132, an input terminal 134, and an output terminal 136.
- the P-FET transistor 130 includes a gate terminal (Gl 1), a source terminal (Sl 1), and a drain terminal (Dl 1).
- the FET transistor 132 includes a gate terminal (G 12), a source terminal (S 12), and a drain terminal (D 12).
- the P-FET transistor 130 is electrically coupled to the FET transistor 132.
- the gate terminals (Gl 1), (G12) are electrically coupled together at the input terminal 134.
- the source terminal (Sl 1) is electrically coupled to the primary output node 36.
- the drain terminal (Dl 1) is electrically coupled to the source terminal (S 12) at the output terminal 136.
- the output terminal 136 is electrically coupled to an input terminal 144.
- the terminal (D 12) is electrically coupled to electrical ground.
- the inverter 56 receives an output voltage at the input terminal 134 from the inverter 54 and outputs an inverted amplified output voltage at the output terminal 136.
- the inverter 58 includes a P-FET transistor 140, a FET transistor 142, an input terminal 144, and an output terminal 146.
- the P-FET transistor 140 includes a gate terminal (G13), a source terminal (S13), and a drain terminal (D13).
- the FET transistor 142 includes a gate terminal (G14), a source terminal (S14), and a drain terminal (D14).
- the P-FET transistor 140 is electrically coupled to the FET transistor 142.
- the gate terminals (G13), (G14) are electrically coupled together at the input terminal 144.
- the source terminal (S 13) is electrically coupled to the primary output node 36.
- the drain terminal (D13) is electrically coupled to the source terminal (S14) at the output terminal 146.
- the output terminal 146 is electrically coupled to an input terminal 154.
- the terminal (D14) is electrically coupled to electrical ground.
- the inverter 58 receives an output voltage at the input terminal 144 from the inverter 56 and outputs an inverted amplified output voltage at the output terminal 146.
- the inverter 60 includes a P-FET transistor 150, a FET transistor 152, an input terminal 154, and an output terminal 156.
- the P-FET transistor 150 includes a gate terminal (G15), a source terminal (S15), and a drain terminal (D15).
- the FET transistor 152 includes a gate terminal (G16), a source terminal (S16), and a drain terminal (D16).
- the P-FET transistor 150 is electrically coupled to the FET transistor 152.
- the gate terminals (G15), (G16) are electrically coupled together at the input terminal 154.
- the source terminal (S 15) is electrically coupled to the primary output node 36.
- the drain terminal (D15) is electrically coupled to the source terminal (S16) at the output terminal 156.
- the output terminal 156 is electrically coupled to a gate terminal (G2) of the P-FET transistor 62.
- the terminal (D 16) is electrically coupled to electrical ground.
- the inverter 60 receives an output voltage at the input terminal 154 from the inverter 58 and outputs an inverted amplified output voltage at the output terminal 156.
- the linear voltage regulator 14 could be constructed by removing inverters 52, 54, 56, 58, 60 where inverter 82 would be directly electrically coupled to the P-FET transistor 62.
- the number of inverters in the chain of inverters to amplify the voltage from the comparator circuit 50 can be greater than or less than the number of inverters shown in the chain of inverters of Figure 1.
- the P-FET transistor 62 is provided to remove voltage deviations at the primary output node 36.
- the P-FET transistor 62 is provided to remove frequency components of the output voltage in a second frequency range.
- the P- FET transistor 62 includes a gate terminal (G2), a source terminal (S2), and a drain terminal
- the gate terminal (G2) is electrically coupled to the output terminal 156 of the inverter 60.
- the source terminal (S2) is electrically coupled to the voltage source 12.
- the drain terminal (D2) is electrically coupled to the primary node 36.
- the resistor 18 is electrically between the primary output node 36 and electrical ground. The resistor 18 corresponds to a load receiving the output voltage from the linear voltage regulator 14.
- the P-FET transistor 62 When the P-FET transistor 62 receives a high logic voltage from the inverter 60 at the gate terminal (G2), the P-FET transistor 62 decreases current flowing therethrough to reduce the output voltage on the primary output node 36 in response to the high logic voltage. Alternately, when the P-FET transistor 62 receives a low logic voltage from the inverter 60 at the gate terminal (G2), the P-FET transistor 62 increases current flowing therethrough to increase the output voltage on the primary output node 36 in response to the low logic voltage.
- a voltage curve 170 corresponds to an exemplary output voltage generated by the voltage source 12. As shown, the voltage curve 170 has oscillatory shape over time.
- a voltage curve 180 corresponds to an output voltage generated by the linear voltage regulator 14 at the primary output node 36. As shown, the voltage curve 180 is relatively constant over time as desired.
- a voltage curve 190 corresponds to an output voltage at the output terminal 96 of the comparator 50.
- a voltage curve 200 corresponds to a voltage received at the gate terminal (G2) of the P-FET transistor 62 for controlling operation of the P-FET transistor 62.
- the circuit 20 of the linear voltage regulator 14 receives a first voltage from the voltage source 12.
- the circuit 20 has the primary output node 36.
- the circuit 20 removes frequency components of the first voltage in a first frequency range to obtain an output voltage at the primary output node 36.
- the circuit 22 of the linear voltage regulator 14 has inverters 80, 82 electrically coupled either directly or indirectly to the primary output node 36 to remove frequency components of the output voltage in a second frequency range.
- the second frequency range is greater than the first frequency range.
- the step 224 is implemented utilizing steps 230-240.
- the inverter 80 outputs a second voltage on the output terminal 96 that is less than the output voltage on the primary output node 36, when the output voltage at the primary output node 36 is increased.
- the inverter 82 outputs a high logic voltage on the output terminal 106 in response to the second voltage being less than the output voltage.
- the P-FET transistor 62 reduces the output voltage on the primary output node 36 in response to the high logic voltage.
- the inverter 80 outputs the second voltage on the output terminal 96 that is greater than the output voltage on the primary output node 36, when the output voltage at the primary output node 36 is decreased.
- the inverter 82 outputs a low logic voltage on the output terminal 106 in response to the second voltage being greater than the output voltage.
- step 240 the P-FET transistor 62 increases the output voltage on the primary output node 36 in response to the low logic voltage. After step 240, the method returns to step 220.
- the linear voltage regulator provides a substantial advantage over other regulators.
- the linear voltage regulator provides a technical effect of removing high- frequency components of a voltage utilizing a plurality of inverters.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/847,461 US7855534B2 (en) | 2007-08-30 | 2007-08-30 | Method for regulating a voltage using a dual loop linear voltage regulator with high frequency noise reduction |
US11/847,416 US7847529B2 (en) | 2007-08-30 | 2007-08-30 | Dual loop linear voltage regulator with high frequency noise reduction |
PCT/EP2008/060565 WO2009027220A1 (en) | 2007-08-30 | 2008-08-12 | Linear voltage regulator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2183653A1 true EP2183653A1 (en) | 2010-05-12 |
EP2183653B1 EP2183653B1 (en) | 2013-01-02 |
Family
ID=39938407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08787129A Active EP2183653B1 (en) | 2007-08-30 | 2008-08-12 | Linear voltage regulator |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2183653B1 (en) |
JP (1) | JP5295240B2 (en) |
KR (1) | KR20100053560A (en) |
CN (1) | CN101784975B (en) |
WO (1) | WO2009027220A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4952863A (en) * | 1989-12-20 | 1990-08-28 | International Business Machines Corporation | Voltage regulator with power boost system |
JP2006053829A (en) * | 2004-08-13 | 2006-02-23 | Mitsunori Katsu | Semiconductor integrated circuit incorporating voltage regulator |
US7301320B2 (en) * | 2005-01-21 | 2007-11-27 | International Business Machines Corporation | On-chip high frequency power supply noise sensor |
TW200731046A (en) * | 2006-02-14 | 2007-08-16 | Richtek Techohnology Corp | Linear voltage regulator and control method thereof |
US7508177B2 (en) * | 2007-06-08 | 2009-03-24 | Freescale Semiconductor, Inc. | Method and circuit for reducing regulator output noise |
JP4642830B2 (en) * | 2007-11-06 | 2011-03-02 | 株式会社リコー | Power supply apparatus and power supply method thereof |
-
2008
- 2008-08-12 KR KR1020107003465A patent/KR20100053560A/en not_active Application Discontinuation
- 2008-08-12 EP EP08787129A patent/EP2183653B1/en active Active
- 2008-08-12 WO PCT/EP2008/060565 patent/WO2009027220A1/en active Application Filing
- 2008-08-12 JP JP2010522300A patent/JP5295240B2/en not_active Expired - Fee Related
- 2008-08-12 CN CN200880103775.4A patent/CN101784975B/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2009027220A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP5295240B2 (en) | 2013-09-18 |
CN101784975B (en) | 2012-12-26 |
EP2183653B1 (en) | 2013-01-02 |
JP2010537335A (en) | 2010-12-02 |
KR20100053560A (en) | 2010-05-20 |
WO2009027220A1 (en) | 2009-03-05 |
CN101784975A (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8242760B2 (en) | Constant-voltage circuit device | |
US8106711B2 (en) | Stacked pre-driver amplifier | |
JP5558964B2 (en) | Voltage regulator | |
JP4805699B2 (en) | Semiconductor device | |
EP2850727B1 (en) | Integrated start-up bias boost for dynamic error vector magnitude enhancement | |
US9236796B2 (en) | Charge pump and method of having negative output voltage tracking positive output voltage thereof | |
US20100213913A1 (en) | Voltage regulator | |
US9785164B2 (en) | Power supply rejection for voltage regulators using a passive feed-forward network | |
US20090001949A1 (en) | Switching regulator and method of converting dc voltage | |
JP2004516458A (en) | Systems and methods for current sensing | |
US10175708B2 (en) | Power supply device | |
US20050280464A1 (en) | Constant voltage outputting circuit | |
US10756725B2 (en) | Load switch having a controlled slew rate | |
JP4542972B2 (en) | Overcurrent detection circuit and power supply device using the same | |
JP4075823B2 (en) | Comparator circuit device | |
CN113359930A (en) | Linear regulator, soft start method, and electronic device | |
US7855534B2 (en) | Method for regulating a voltage using a dual loop linear voltage regulator with high frequency noise reduction | |
US9748842B1 (en) | Sense circuit for voltage converter | |
US20160187900A1 (en) | Voltage regulator circuit and method for limiting inrush current | |
US7847529B2 (en) | Dual loop linear voltage regulator with high frequency noise reduction | |
US7292088B2 (en) | Gate driver output stage with bias circuit for high and wide operating voltage range | |
EP2183653B1 (en) | Linear voltage regulator | |
US6975100B2 (en) | Circuit arrangement for regulating the duty cycle of electrical signal | |
US8742853B2 (en) | Low-stress cascode structure | |
US20180138883A1 (en) | Wide bandwidth variable gain amplifier and exponential function generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100217 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 591928 Country of ref document: AT Kind code of ref document: T Effective date: 20130115 Ref country code: CH Ref legal event code: NV Representative=s name: IBM RESEARCH GMBH ZURICH RESEARCH LABORATORY I, CH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20130128 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008021408 Country of ref document: DE Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 602008021408 Country of ref document: DE Effective date: 20130208 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 591928 Country of ref document: AT Kind code of ref document: T Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130402 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130413 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130502 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130502 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130403 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
26N | No opposition filed |
Effective date: 20131003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008021408 Country of ref document: DE Effective date: 20131003 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130812 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080812 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602008021408 Country of ref document: DE Representative=s name: KUISMA, SIRPA, FI |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230423 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240808 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240828 Year of fee payment: 17 |