EP2181447A2 - Radiation attenuating material and method for producing the same - Google Patents

Radiation attenuating material and method for producing the same

Info

Publication number
EP2181447A2
EP2181447A2 EP08826609A EP08826609A EP2181447A2 EP 2181447 A2 EP2181447 A2 EP 2181447A2 EP 08826609 A EP08826609 A EP 08826609A EP 08826609 A EP08826609 A EP 08826609A EP 2181447 A2 EP2181447 A2 EP 2181447A2
Authority
EP
European Patent Office
Prior art keywords
metal compounds
nanoparticulate
metals
material according
attenuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08826609A
Other languages
German (de)
French (fr)
Other versions
EP2181447B1 (en
Inventor
Gérard Froyer
Fady El Haber
François DU LAURENT DE LA BARRE
Pierre-Marie Lemer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Lemer Protection Anti X SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Lemer Protection Anti X SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Lemer Protection Anti X SAS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2181447A2 publication Critical patent/EP2181447A2/en
Application granted granted Critical
Publication of EP2181447B1 publication Critical patent/EP2181447B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • G21F1/103Dispersions in organic carriers
    • G21F1/106Dispersions in organic carriers metallic dispersions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F7/00Shielded cells or rooms
    • G21F7/02Observation devices permitting vision but shielding the observer
    • G21F7/03Windows, e.g. shielded

Definitions

  • the invention relates to the field of attenuating ionizing radiation materials (electromagnetic and / or particulate, directly or indirectly ionizing); it relates more specifically to new transparent ionizing radiation attenuating materials, which are particularly suitable for the manufacture of transparent plates used as radiation shields.
  • Certain sectors of activity may require the use of electrical equipment (such as X-ray generators or particle accelerators) or the handling of radioactive substances, which emit radiation. directly or indirectly ionizing such as electromagnetic radiation (X, gamma) or particulate matter (alpha, beta, neutron, etc.).
  • electrical equipment such as X-ray generators or particle accelerators
  • radioactive substances which emit radiation. directly or indirectly ionizing such as electromagnetic radiation (X, gamma) or particulate matter (alpha, beta, neutron, etc.).
  • At least some of the plates of these shields are usually made of transparent attenuator material, to give the operator direct visual access to the work area.
  • This type of transparent plate consists of organic glass (that is to say a matrix formed of an organic material of the polymer type) or inorganic glass (that is to say for example a metal silicate matrix) alkaline); a derivative of one or more metals is integrated in this matrix to achieve the attenuation of the different types of ionizing radiation emitted.
  • glasses containing a lead derivative at a level of 12% to 80% by weight, introduced into the matrix during the manufacturing process; this type of “leaded” glass has the advantage of transmitting visible light with little absorbance, while effectively reducing ionizing radiation.
  • the use of "leaded” glass, organic or inorganic matrix is not without some problems.
  • This kind of “leaded” material is indeed particularly brittle when the matrix is of inorganic type.
  • this type of leaded material is not recyclable and lead, because of its toxic nature, is brought to be eliminated to the maximum (especially for environmental issues).
  • radiation shielding screens equipped with such leaded glass plates still remain a standard today.
  • organic glasses attenuators of ultraviolet radiation of energy lower than that of the types of radiation considered by the present invention, are known as described in document DE-A-10 2005 01 8452.
  • the constituent material of this organic glass consists of a nanoparticulate zinc oxide powder dispersible in organic liquid monomers; this material typically comprises 0.065% to 0.2% zinc oxide.
  • the attenuating material according to the invention is composed of a matrix based on an organic glass, advantageously thermoplastic or thermosetting, in which is incorporated at least one type of metal compound attenuating ionizing radiation in the form of nanoparticles (preferably with the exception of lead), the metals of said compounds nanoparticles representing advantageous at least 25% by weight of said material (and can even reach the level of 80%).
  • This new attenuating material has the advantage of having good transmission of visible light, without diffusion phenomena (or at least very little), while having radioprotection characteristics always optimal and satisfactory mechanical strength.
  • This new material also has the advantage of being able to contain high proportions of attenuating metal compounds, advantageously other than the lead derivatives; it thus has radiation protection characteristics that are close to, equivalent to, or even better than, a material of the "leaded" glass type.
  • Radial protection means the protection of humans and their environment against the harmful effects of ionizing radiation.
  • Ionizing radiation means any radiation of directly or indirectly ionizing particles.
  • ionization produced by ionizing radiation, the action that removes electric charges, by expulsion of electrons, to an atom or a molecule.
  • the atom or the molecule is no longer electrically neutral.
  • Directly ionizing particles are electrically charged particles such as electrons (negatons, positrons), protons, alpha particles ... whose kinetic energy is large enough to ionise atoms or molecules by collision.
  • Indirectly ionizing particles are neutral particles, such as photons (X, y) and neutrons that create, through the material, directly ionizing particles (charged particles, backward nuclei, fission products, etc.).
  • a kinetic energy of a few electronvolts is sufficient to ionize matter (human body, environment material).
  • the electromagnetic radiations considered (X and / or gamma photons) have an energy equal to or greater than 10 KeV.
  • the organic matrix of the radio-attenuator material is advantageously made based on a polymer or copolymer of acrylic or styrenic type, advantageously thermoplastic.
  • the organic matrix can be made based on poly (methyl methacrylate), more commonly known as "PMMA", or a similar polymer (for example a poly-copolymer). (methyl methacrylate)).
  • the organic matrix may be made based on polystyrene, polycarbonate or unsaturated polyester (thermosetting).
  • nanoparticulate metal compounds are distributed and homogeneously incorporated, or at least substantially homogeneously, in this organic matrix.
  • These nanoparticulate compounds include a metal (or a mixture of metals, ie, so-called “mixed” nanoparticulate compounds) chosen according to the type of ionizing radiation to be attenuated.
  • the metal or at least one of the metals chosen advantageously has an atomic number z between 50 and 74, limits included, depending on the type and the energy range of the ionizing radiation to be attenuated.
  • this metal compound is more precisely chosen from the family of lanthanides (more commonly known as "rare earths"), whose atomic number z is between 57 and 71 inclusive.
  • This metal of the nanoparticulate compound (s) may also be selected from a group consisting of tin (atomic number z 50) and / or antimony (atomic number z 51).
  • the metal in question is still advantageously chosen from the following elements:
  • gadolinium (atomic number z 64), and / or
  • the metal of the nanoparticulate compound (s) is chosen from elements having an atomic number z of between 3 and 7 inclusive; preferably, this metal is chosen from boron (atomic number z 5) and lithium
  • the attenuator metal may also be gadolinium (atomic number z 64).
  • the nanoparticulate metal compounds in question consist of at least one inorganic, organometallic or hybrid organic / inorganic metal compound.
  • the compounds are, for example, in the form of acetate, propionate, versatate, butyrate or isobutyrate; they can also be in the form of complexes of metals with an organic ligand, for example complexes with di (ethylhexyl) phosphates, aminocarboxylates, hydroxycarboxylates and organophosphates.
  • these nanoparticulate compounds may consist of a metal salt of nitrate, borate, phosphate, fluoride, nitride or oxide type.
  • the hybrid organic / inorganic form consists of nanoparticles whose structure is of the "core-shell” type: the “core” is formed by the inorganic radio-attenuating part, and the “bark” constitutes the organic part improving the dispersion in the matrix organic.
  • the bark of these nanoparticles is formed of a multitude of grafts, connected to the inorganic part; these grafts are advantageously each formed of a spacer arm (for example of the alkyl type or the polyether type), terminated by an organic function chemically close to the destination matrix (in particular to optimize its affinity with the matrix).
  • This bark is advantageously of acrylic, methacrylic and / or styrenic type.
  • the nanoparticles may be in one of the forms shown schematically below (only one of the grafts of the nanoparticle is represented for the sake of simplification).
  • the nanoparticle is advantageously under the following general structure:
  • R1 corresponds to the "core”
  • R2 corresponds to the spacer arm
  • the nanoparticle is advantageously present in styrenic polymers under the following general structure:
  • R1 corresponds to the "heart”
  • R2 corresponds to the spacer arm
  • the organic function is of the styrene type
  • nanoparticulate metal compounds (and where appropriate the core portion of these nanoparticles) advantageously have a maximum dimension of less than 20 nanometers.
  • This maximum dimension of the nanoparticles has the advantage of reducing the phenomena of diffusion of the visible light passing through the attenuating material, while giving it always optimal radioprotection characteristics. It also has the advantage of allowing a high charge of the organic matrix in nanoparticles.
  • the matrix of the attenuator material can integrate a single type of nanoparticulate metal compound. Preferably, it may also contain a combination of such nanoparticulate compounds, as a function of the electromagnetic and / or particulate ionizing radiation to be attenuated.
  • the attenuating material may contain a combination of nanoparticulate compounds whose metal or metals are chosen from the following list: boron and / or lanthanum and / or gadolinium and / or ytterbium and / or tin and / or antimony and / or bismuth.
  • the bismuth is advantageously in the organometallic and / or inorganic form. Different possible forms of bismuth are described in the document
  • the corresponding metal (or, where appropriate, the combination of metals) is chosen in particular to cover the particular energy range of the radiations electromagnetic and / or particulate corresponding to certain application (s) of the medical field or scientific research.
  • the attenuator material advantageously contains a combination of at least three nanoparticulate compounds whose metal is chosen from each of the following three groups: (i) tin and / or antimony,
  • the nanoparticulate metal compounds and their respective mass composition are chosen according to the energy range covered by the types and energy spectra of the ionizing radiation to be attenuated.
  • the radio-attenuator material according to the invention can be obtained by a method comprising the following steps:
  • nanoparticulate metal compounds advantageously of the "core-shell” type, from metal salts,
  • nanoparticulate compounds dispersion of said nanoparticulate compounds - either in one or more polymers in solution, or in one or more liquid monomers intended to be polymerized, in order to form the organic matrix, for example of the polymer type (poly (methyl methacrylate) type) or copolymers (kind poly (methyl methacrylate-methyl co-acrylate)).
  • the preparation of the nanoparticulate metal compounds consists, for example, of a method consisting in reacting a metal salt by heating it in a suitable synthetic solvent, in the presence of a complexing agent or an amine.
  • the synthetic solvent in question is chosen according to the composition of the matrix and also the presentation of the nanoparticulate metal compounds (mineral, organometallic or hybrid), mainly to optimize the dispersion of these particles.
  • the synthetic solvent used can be, for example, ethanol, methanol, tris (2-ethylhexyl) phosphate, dibutyl phosphate, tributyl phosphate, diethylene glycol, diphenyl ether, trimethyl phosphate, triphenyl phosphate, bis [2- (methacryloyloxy) ethyl] phosphate tris (2-butoxyethyl phosphate), tris (2-chloroethyl) phosphate, toluene.
  • the complexing agent is of the trioctylamine, acrylamide, ethylene diamine tetraacetic acid, acrylic acid, methacrylic acid, dimethyl aminoethyl methacrylate, diethylaminoethyl methacrylate, N, N-dimethylacrylamide, methacrylonitrile, acrylonitrile, pyridine or amine fluoride type.
  • the graft is in turn of the poly (propylene glycol), poly (propylene glycol monomethacrylate), phosphoric oxychloride, dodecanol, acrylic acid chloride, ethylene glycol methacrylate phosphate, bis (2-ethylhexyl) phosphate, hydroxyethyl methacrylate, hydroxyethyl acrylate .
  • the "graft” is advantageously reported on its nanoparticulate compounds, during or after the synthesis of the latter, to optimize their dispersion in the organic matrix.
  • the nanoparticles of the "core-shell” type are thus obtained containing, on the one hand, the core containing the radio-attenuating metal derivative, and on the other hand, the bark, of a chemically compatible nature with the matrix, optimizing its dispersion in the organic matrix.
  • the applicant has developed a technique for synthesizing in a single step rare earth phosphate nanoparticles in "core-bark” form, said bark being formed of ethylene glycol methacrylate phosphate.
  • the metal salt is added to a solution composed of the synthesis solvent (advantageously tris (2-ethylhexyl) phosphate) containing ethylene glycol methacrylate phosphate and / or phosphoric acid in a chosen proportion, and than an amine at an adequate concentration according to the size targeted for the nanoparticles.
  • the formation of the rare earth phosphate core will be done by having the ethylene glycol methacrylate phosphate as "graft", which will constitute the bark of the nanoparticle.
  • the attenuator material according to the invention can also be obtained by extrusion of a mixture of polymer granules (s) and nanoparticulate metal compounds.
  • this attenuating material can be used for the manufacture of transparent plates serving as radioprotection screens.
  • This type of screen may for example be an integral part of screens used by operators flying equipment emitting ionizing radiation or handling radioactive substances, particularly in the context of certain medical interventions (nuclear medicine, radiotherapy, etc.).
  • This type of plate advantageously has a thickness of at least 5 mm.
  • nanoparticulate metal compounds containing a mixture of lanthanum and ⁇ adolinium.
  • lanthanum and gadolinium in the form of nitrates or chlorides
  • This mixture is then added to a solution consisting of phosphoric acid and trioctylamine in a proportion of 1: 3, in moles, respectively.
  • the mixture is heated to 200 9 C under nitrogen with refluxing for 40 hours.
  • the nanoparticles of rare earth phosphates obtained (LaPO 4 and GdPO 4 ) are then precipitated and washed with alcohol and then recovered by centrifugation.
  • nanoparticles were observed using a transmission electron microscope type H9000NAR-30OkV (kilo volts) at high magnification.
  • the size of the isolated nanoparticles varies between 3 nm and 13 nm.
  • the physico-chemical characterization confirms the composition of the nanoparticles.
  • the nanoparticles of rare earth phosphates (mixed lanthanum and gadolinium) prepared are treated with phosphorus oxychloride in a proportion of 1: 2 by mass, respectively.
  • the whole is heated at 120 ° C. under an inert gas atmosphere for 2 hours.
  • the physico-chemical characterization confirms the composition of the "core-shell" nanoparticles of rare earth phosphates whose core is rare earth phosphate and whose "bark” consists of acrylic or methacrylic grafts.
  • the “core-shell” nanoparticles are easily dispersed in an acrylic-type monomer.
  • the solution thus obtained is polymerized in the presence of azobisisobutyronitrile (AIBN) as a primer at 0.2% by weight of the monomer at 60 ° C.
  • AIBN azobisisobutyronitrile
  • the material obtained is subjected to optical absorption and mass attenuation tests, the results of which are shown in FIGS. 1 and 2.
  • this material (curve 2) has a better mass attenuation than that of a lead-free attenuator inorganic glass (curve 3) over the entire energy range between 0.01 MeV and 1 MeV, and attenuation close to that inorganic lead attenuator glass (curve 1) between 0.05 MeV and 0.09 MeV (figure
  • nanoparticulate metal compounds containing a mixture of lanthanum, qadolinium and vtterbium.
  • This solution is then added to a solution of phosphoric acid and trioctylamine in stoichiometric proportions.
  • the mixture is heated at 200 ° C under nitrogen with reflux for 40 hours.
  • the mixed nanoparticles of rare earth phosphates were precipitated and washed with alcohol and then recovered by centrifugation at 7800 rpm.
  • nanoparticles were observed using a transmission electron microscope type H9000NAR-30OkV at high magnification.
  • the size of the isolated nanoparticles varies between 3 nm and 17 nm (the largest dimension depending on the geometrical shape).
  • the physico-chemical characterization confirms the composition of the nanoparticles.
  • the obtained material is subjected to optical absorption and mass attenuation tests, the results of which are shown in FIGS. 3 and 4.
  • curve 2 The material obtained (curve 2) still has a better mass attenuation than lead-free inorganic glass (curve 3) over the entire energy range between 0.01 MeV and 1 MeV and an attenuation identical to that of lead inorganic glass. (curve 1) between 0.06 MeV and 0.09 MeV ( Figure 4).
  • Example 3 One-step preparation of nanoparticulate metal compounds containing lanthanum
  • the mixture is heated at 200 ° C under nitrogen with reflux for 40 hours.
  • the product of the synthesis was precipitated and washed with alcohol and recovered by centrifugation at 7800 rpm.
  • nanoparticles of lanthanum phosphates constitute "hairy nanoparticles", whose core is lanthanum phosphate and whose bark is composed of grafts of ethylene glycol methacrylate. These nanoparticles are observed using a transmission electron microscope type H9000NAR-30OkV at high magnification.
  • the size of the isolated nanoparticles varies between 3 nm and 10 nm for an average of 5 nm.
  • the size distribution of the nanoparticles is observed by photon correlation spectroscopy, on a Beckman Coulter N4 plus apparatus.
  • the physico-chemical characterization confirms the composition of the nanoparticles.
  • AIBN azobisisobutyronitrile
  • the material obtained is subjected to optical absorption and mass attenuation tests, the results of which are shown in FIGS. 5 and 6.
  • the material obtained PMMA / LaPO 4 nanoparticles of average size 5 nm, PMMA / nanoparticle mass composition of 1, 5: 1 and thickness 5 mm transmits at least, according to simulations of the 4-flux method, 76% of incident light at 450 nm and 90% at 650 nm in the visible range between 450 and 650 nanometers (Figure 5).
  • This material has a better mass attenuation than lead-free inorganic glass (curve 3) over the entire energy range between 0.04 MeV and 1 MeV and an attenuation approximating that of inorganic lead glass ( curve 1) between 0.04 MeV and 0.09 MeV ( Figure 6).
  • Rare earth fluoride nanoparticles are prepared from a 1: 1 ethanol / water solution of sodium fluoride and an acrylic type graft (hydroxyethyl acrylate or hydroxyethyl methacrylate), each at a concentration of approximately 3.10 2 mol / liter, in which is poured with vigorous stirring a 1: 1 ethanol / water solution of rare earth salts (nitrates or chlorides) at a concentration of between 0.5 mol / l. liter and 1 mole / liter. The solution thus formed is heated at 75 ° C for 2 hours.
  • the nanoparticles are isolated by centrifugation at 7800 rpm and dispersed in dichloromethane and then precipitated with ethanol. This washing operation is repeated several times.
  • the physico-chemical characterization confirms the composition of the "core-shell" nanoparticles of rare earth fluorides whose core is rare earth fluoride and whose "bark” consists of acrylic or methacrylic grafts.
  • the LaF3-type nanoparticles manufactured are mixed in methyl methacrylate under ultrasound.
  • the solution is then polymerized in the presence of azobisisobutyronitrite (AIBN) as an initiator at 0.2% by weight of the monomer at 60 ° C.
  • AIBN azobisisobutyronitrite
  • the material obtained is subjected to optical absorption and mass attenuation tests, the results of which are shown in FIGS. 7 and 8.
  • This PMMA material / LaF3 nanoparticle of average size 5 nm, PMMA / nanoparticle mass composition of 1: 1 and 5 mm thickness transmits at least, according to simulations of the 4-flux method, 85% of the light incident at 450 nm and 92% at 650 nm in the visible range between 450 and 650 nanometers ( Figure 7).
  • This material (curve 2) still has a mass attenuation equal to or greater than that of the lead-free inorganic glass (curve 3) between 0.01 MeV and 1 MeV and an attenuation approximating that of the lead inorganic glass (curve 1) in the range 0.04 MeV and 0.09 MeV ( Figure 8).
  • nanoparticles of tin fluoride and bismuth can be synthesized according to the protocol described in Example 4.
  • this material has an attenuation equal to or even greater than that of lead organic glass in the 0.01 MeV and 1 MeV energy range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The invention relates to a transparent material which attenuates electromagnetic radiation and/or directly or indirectly ionising particles, of particular use for the production of transparent sheets which serve as protective screens for an operator against said electromagnetic radiation and/or particles. Said transparent attenuating material is made of a matrix of an organic glass in which at least one metal radiation-attenuating compound is dispersed (advantageously other than lead) in the form of nanoparticles, advantageously in the "core-shell" form. The metals of the nanoparticle metal compounds form at least 25 % of the mass of the material.

Description

MATERIAU RADIOATTENUATEUR, ET PROCEDE POUR L'OBTENTION D'UN TEL MATERIAU RADIOATTENUATOR MATERIAL, AND PROCESS FOR OBTAINING SUCH MATERIAL
L'invention concerne le domaine des matériaux atténuateurs de rayonnements ionisants (électromagnétiques et/ou particulaires, directement ou indirectement ionisants) ; elle porte plus précisément sur de nouveaux matériaux transparents atténuateurs de rayonnements ionisants, qui sont en particulier adaptés pour la fabrication de plaques transparentes servant d'écrans de radioprotection.The invention relates to the field of attenuating ionizing radiation materials (electromagnetic and / or particulate, directly or indirectly ionizing); it relates more specifically to new transparent ionizing radiation attenuating materials, which are particularly suitable for the manufacture of transparent plates used as radiation shields.
Certains secteurs d'activité (médicale, industrielle, recherche scientifique, etc.) peuvent nécessiter l'utilisation d'équipements électriques (tels que les générateurs de rayons X ou les accélérateurs de particules) ou la manipulation de substances radioactives, qui émettent des rayonnements directement ou indirectement ionisants tels que les rayonnements de nature électromagnétique (X, gamma) ou de nature particulaire (alpha, beta, neutron, etc.).Certain sectors of activity (medical, industrial, scientific research, etc.) may require the use of electrical equipment (such as X-ray generators or particle accelerators) or the handling of radioactive substances, which emit radiation. directly or indirectly ionizing such as electromagnetic radiation (X, gamma) or particulate matter (alpha, beta, neutron, etc.).
Les opérateurs utilisant de tels équipements ou de telles substances radioactives, ou se trouvant à proximité, se protègent classiquement derrière une structure de type écran de radioprotection, formée d'une plaque réalisée en un matériau atténuateur ou d'un assemblage de telles plaques.Operators using such equipment or radioactive substances, or being nearby, classically protect themselves behind a radiation shield type structure, formed of a plate made of an attenuator material or an assembly of such plates.
Certaines au moins des plaques de ces écrans de protection sont habituellement fabriquées en matériau atténuateur transparent, pour conférer à l'opérateur un accès visuel direct à la zone de travail.At least some of the plates of these shields are usually made of transparent attenuator material, to give the operator direct visual access to the work area.
Ce type de plaques transparentes est constitué de verre organique (c'est-à-dire une matrice formée d'une matière organique de type polymère) ou de verre inorganique (c'est-à-dire par exemple une matrice en silicate de métal alcalin) ; un dérivé d'un ou de plusieurs métaux est intégré dans cette matrice pour réaliser l'atténuation des différents types de rayonnements ionisants émis.This type of transparent plate consists of organic glass (that is to say a matrix formed of an organic material of the polymer type) or inorganic glass (that is to say for example a metal silicate matrix) alkaline); a derivative of one or more metals is integrated in this matrix to achieve the attenuation of the different types of ionizing radiation emitted.
A titre d'exemple, nous citons les verres contenant un dérivé de plomb, à hauteur de 12 % à 80 % en masse, introduit dans la matrice lors du processus de fabrication ; ce type de verre « plombé » a l'intérêt de transmettre la lumière visible avec peu d'absorbance, tout en atténuant efficacement les rayonnements ionisants. Cependant, l'utilisation de verre « plombé », à matrice organique ou inorganique, n'est pas sans poser quelques problèmes. Ce genre de matériau « plombé » est en effet particulièrement cassant lorsque la matrice est de type inorganique. D'autre part, ce type de matériau plombé n'est pas recyclable et le plomb, en raison de son caractère toxique, est amené à être supprimé au maximum (notamment pour des questions environnementales). Malgré ces considérations, les écrans de radioprotection équipés de telles plaques de verre plombé restent encore aujourd'hui un standard. Cela s'explique par le fait que la plupart des matériaux radioatténuateurs « sans plomb » développés à ce jour (contenant au moins un métal destiné à se substituer au plomb), ne parviennent pas à reproduire la combinaison des caractéristiques intrinsèques des verres atténuateurs « plombés » (combinaison d'une bonne transmission de la lumière visible et d'une atténuation efficace des rayonnements ionisants), tout en maintenant des coûts de revient raisonnables.By way of example, we mention glasses containing a lead derivative, at a level of 12% to 80% by weight, introduced into the matrix during the manufacturing process; this type of "leaded" glass has the advantage of transmitting visible light with little absorbance, while effectively reducing ionizing radiation. However, the use of "leaded" glass, organic or inorganic matrix, is not without some problems. This kind of "leaded" material is indeed particularly brittle when the matrix is of inorganic type. On the other hand, this type of leaded material is not recyclable and lead, because of its toxic nature, is brought to be eliminated to the maximum (especially for environmental issues). Despite these considerations, radiation shielding screens equipped with such leaded glass plates still remain a standard today. This is because most of the "lead-free" radio-attenuator materials developed to date (containing at least one metal to replace lead) fail to replicate the combination of the intrinsic characteristics of lead-sealed attenuators. "(Combination of good transmission of visible light and effective attenuation of ionizing radiation), while maintaining reasonable costs.
Dans un autre domaine technique, on connaît des verres organiques atténuateurs de rayonnements ultraviolets, d'énergie inférieure à celle des types de rayonnements considérés par la présente invention, comme décrits dans le document DE-A-10 2005 01 8452.In another technical field, organic glasses attenuators of ultraviolet radiation, of energy lower than that of the types of radiation considered by the present invention, are known as described in document DE-A-10 2005 01 8452.
Le matériau constitutif de ce verre organique se compose d'une poudre d'oxyde de zinc nanoparticulaire dispersable dans des monomères liquides organiques ; ce matériau comprend typiquement de 0,065% à 0,2% d'oxyde de zinc.The constituent material of this organic glass consists of a nanoparticulate zinc oxide powder dispersible in organic liquid monomers; this material typically comprises 0.065% to 0.2% zinc oxide.
Ce matériau s'avère particulièrement inadapté pour assurer une radioprotection suffisante et efficace contre les rayonnements ionisants (notamment contre les rayonnements électromagnétiques dont la longueur d'onde est inférieure à 10"7m, c'est-à-dire en particulier les rayonnements X ou gamma). La demanderesse est ainsi parvenue, malgré de nombreux obstacles techniques, à développer un nouveau matériau remplissant les critères nécessaires à une utilisation comme élément constitutif de plaques transparentes de radioprotection contre les rayonnements ionisants. Le matériau atténuateur selon l'invention se compose d'une matrice à base d'un verre organique, avantageusement thermoplastique ou thermodurcissable, dans lequel est incorporé au moins un type de composé métallique atténuateur de rayonnements ionisants sous forme de nanoparticules (avantageusement à l'exception du plomb), les métaux desdits composés métalliques nanoparticulaires représentant avantageusement au minimum 25% en masse dudit matériau (et peut même atteindre le niveau de 80%).This material proves particularly unsuitable for ensuring sufficient and effective radiation protection against ionizing radiation (in particular against electromagnetic radiation whose wavelength is less than 10 -7 m, that is to say in particular X-rays The Applicant has thus succeeded, despite numerous technical obstacles, in developing a novel material fulfilling the criteria necessary for use as a constituent element of transparent radiological protection plates against ionizing radiation The attenuating material according to the invention is composed of a matrix based on an organic glass, advantageously thermoplastic or thermosetting, in which is incorporated at least one type of metal compound attenuating ionizing radiation in the form of nanoparticles (preferably with the exception of lead), the metals of said compounds nanoparticles representing advantageous at least 25% by weight of said material (and can even reach the level of 80%).
Ce nouveau matériau atténuateur a l'intérêt de présenter une bonne transmission de la lumière visible, sans phénomènes de diffusion (ou au moins très peu), tout en ayant des caractéristiques de radioprotection toujours optimales et de résistance mécanique satisfaisante. Ce nouveau matériau a en plus l'intérêt de pouvoir contenir des proportions élevées en composés métalliques atténuateurs, avantageusement autres que les dérivés de plomb ; il présente ainsi des caractéristiques de radioprotection proches, équivalentes, voire meilleures, par rapport à un matériau du type verre « plombé ». On entend par « radioprotection », l'action de protection de l'homme et de son environnement contre les effets néfastes des rayonnements ionisants.This new attenuating material has the advantage of having good transmission of visible light, without diffusion phenomena (or at least very little), while having radioprotection characteristics always optimal and satisfactory mechanical strength. This new material also has the advantage of being able to contain high proportions of attenuating metal compounds, advantageously other than the lead derivatives; it thus has radiation protection characteristics that are close to, equivalent to, or even better than, a material of the "leaded" glass type. "Radiation protection" means the protection of humans and their environment against the harmful effects of ionizing radiation.
On entend par « rayonnement ionisant » tout rayonnement de particules directement ou indirectement ionisantes."Ionizing radiation" means any radiation of directly or indirectly ionizing particles.
On entend par « ionisation », produite par un rayonnement ionisant, l'action qui enlève des charges électriques, par expulsion d'électrons, à un atome ou une molécule. L'atome ou la molécule n'est plus électriquement neutre. Les particules directement ionisantes sont des particules chargées électriquement telles les électrons (négatons, positons), protons, particules alpha ..., dont l'énergie cinétique est suffisamment grande pour ioniser les atomes ou molécules par collision. Les particules indirectement ionisantes sont des particules neutres, telles les photons (X, y) et les neutrons qui créent, en traversant la matière, des particules directement ionisantes (particules chargées, noyaux de recul, produits de fission, etc.). Une énergie cinétique de quelques électronvolts est suffisante pour ioniser la matière (corps humain, matériau d'environnement). Dans les applications concernées par la présente invention, les rayonnements électromagnétiques considérés (photons X et/ou gamma) ont une énergie égale ou supérieure à 10 KeV.The term "ionization", produced by ionizing radiation, the action that removes electric charges, by expulsion of electrons, to an atom or a molecule. The atom or the molecule is no longer electrically neutral. Directly ionizing particles are electrically charged particles such as electrons (negatons, positrons), protons, alpha particles ... whose kinetic energy is large enough to ionise atoms or molecules by collision. Indirectly ionizing particles are neutral particles, such as photons (X, y) and neutrons that create, through the material, directly ionizing particles (charged particles, backward nuclei, fission products, etc.). A kinetic energy of a few electronvolts is sufficient to ionize matter (human body, environment material). In the applications concerned by the present invention, the electromagnetic radiations considered (X and / or gamma photons) have an energy equal to or greater than 10 KeV.
Plus précisément, la matrice organique du matériau radioatténuateur est avantageusement réalisée à base d'un polymère ou d'un copolymère de type acrylique ou styrénique, avantageusement thermoplastique. A titre d'exemple, lorsqu'elle est du type acrylique, la matrice organique peut être réalisée à base de poly(méthacrylate de méthyle), plus communément dénommé « PMMA », ou d'un polymère similaire (par exemple un copolymère de poly(méthacrylate de méthyle)). Encore à titre d'exemple, la matrice organique peut être réalisée à base de polystyrène, de polycarbonate ou de polyester insaturé (thermodurcissable).More specifically, the organic matrix of the radio-attenuator material is advantageously made based on a polymer or copolymer of acrylic or styrenic type, advantageously thermoplastic. By way of example, when it is of the acrylic type, the organic matrix can be made based on poly (methyl methacrylate), more commonly known as "PMMA", or a similar polymer (for example a poly-copolymer). (methyl methacrylate)). By way of example, the organic matrix may be made based on polystyrene, polycarbonate or unsaturated polyester (thermosetting).
Les composés métalliques nanoparticulaires sont répartis et incorporés de manière homogène, ou au moins sensiblement de manière homogène, dans cette matrice organique. Ces composés nanoparticulaires intègrent un métal (ou un mélange de métaux, c'est-à-dire des composés nanoparticulaires dits « mixtes ») choisi(s) en fonction du type de rayonnements ionisants à atténuer.The nanoparticulate metal compounds are distributed and homogeneously incorporated, or at least substantially homogeneously, in this organic matrix. These nanoparticulate compounds include a metal (or a mixture of metals, ie, so-called "mixed" nanoparticulate compounds) chosen according to the type of ionizing radiation to be attenuated.
En l'occurrence, pour l'atténuation de rayonnements ionisants électromagnétiques (X ou gamma) d'énergie comprise entre 10 KeV et 120 KeV, le métal ou au moins l'un des métaux choisi a avantageusement un numéro atomique z compris entre 50 et 74, bornes incluses, en fonction du type et de la gamme d'énergie des rayonnements ionisants à atténuer.In this case, for the attenuation of electromagnetic ionizing radiation (X or gamma) energy between 10 KeV and 120 KeV, the metal or at least one of the metals chosen advantageously has an atomic number z between 50 and 74, limits included, depending on the type and the energy range of the ionizing radiation to be attenuated.
Dans ce cas, de préférence, ce composé métallique est plus précisément choisi dans la famille des lanthanides (plus communément appelés « terres-rares »), dont le numéro atomique z est compris entre 57 et 71 , bornes incluses. Ce métal du ou des composés nanoparticulaires peut aussi être choisi dans un groupe formé de l'étain (numéro atomique z 50) et/ou l'antimoine (numéro atomique z 51 ). Dans la famille des lanthanides, le métal en question est encore avantageusement choisi parmi les éléments suivants :In this case, preferably, this metal compound is more precisely chosen from the family of lanthanides (more commonly known as "rare earths"), whose atomic number z is between 57 and 71 inclusive. This metal of the nanoparticulate compound (s) may also be selected from a group consisting of tin (atomic number z 50) and / or antimony (atomic number z 51). In the family of lanthanides, the metal in question is still advantageously chosen from the following elements:
- le lanthane (numéro atomique z 57), et/oulanthanum (atomic number z 57), and / or
- le gadolinium (numéro atomique z 64), et/ougadolinium (atomic number z 64), and / or
- l'ytterbium (numéro atomique z 70).- ytterbium (atomic number z 70).
D'autre part, pour l'atténuation de rayonnements d'origine particulaire neutronique, le métal du ou des composés nanoparticulaires est choisi parmi les éléments ayant un numéro atomique z compris entre 3 et 7, bornes incluses ; de préférence, ce métal est choisi parmi le bore (numéro atomique z 5) et le lithiumOn the other hand, for the attenuation of neutron particulate radiation, the metal of the nanoparticulate compound (s) is chosen from elements having an atomic number z of between 3 and 7 inclusive; preferably, this metal is chosen from boron (atomic number z 5) and lithium
(numéro atomique z 3).(atomic number z 3).
Dans ce cas, le métal atténuateur peut également être le gadolinium (numéro atomique z 64).In this case, the attenuator metal may also be gadolinium (atomic number z 64).
Les composés métalliques nanoparticulaires en question sont constitués au moins d'un composé minéral, organométallique ou hybride organique/inorganique de métal.The nanoparticulate metal compounds in question consist of at least one inorganic, organometallic or hybrid organic / inorganic metal compound.
Sous forme organométallique, les composés se présentent par exemple sous forme d'acétate, de propionate, de versatate, de butyrate ou d'isobutyrate ; ils peuvent aussi se présenter sous forme de complexes de métaux avec un ligand organique, par exemple complexes avec les di(éthylhexyl)phosphates, les aminocarboxylates, les hydroxycarboxylates et les organophosphates. Pour la forme inorganique, ces composés nanoparticulaires peuvent être constitués d'un sel de métal de type nitrate, borate, phosphate, fluorure, nitrure ou oxyde.In organometallic form, the compounds are, for example, in the form of acetate, propionate, versatate, butyrate or isobutyrate; they can also be in the form of complexes of metals with an organic ligand, for example complexes with di (ethylhexyl) phosphates, aminocarboxylates, hydroxycarboxylates and organophosphates. For the inorganic form, these nanoparticulate compounds may consist of a metal salt of nitrate, borate, phosphate, fluoride, nitride or oxide type.
La forme hybride organique/inorganique consiste en des nanoparticules dont la structure est du type « cœur-écorce » : le « cœur » est formé par la partie inorganique radioatténuatrice, et l'« écorce » constitue la partie organique améliorant la dispersion dans la matrice organique.The hybrid organic / inorganic form consists of nanoparticles whose structure is of the "core-shell" type: the "core" is formed by the inorganic radio-attenuating part, and the "bark" constitutes the organic part improving the dispersion in the matrix organic.
De préférence, l'écorce de ces nanoparticules est formée d'une multitude de greffons, reliés à la partie inorganique ; ces greffons sont avantageusement chacun formés d'un bras espaceur (par exemple du type alkyl ou du type polyéther), terminé par une fonction organique proche chimiquement de la matrice de destination (en particulier pour optimiser son affinité avec la matrice). Cette écorce est avantageusement de type acrylique, méthacrylique et/ou styrénique.Preferably, the bark of these nanoparticles is formed of a multitude of grafts, connected to the inorganic part; these grafts are advantageously each formed of a spacer arm (for example of the alkyl type or the polyether type), terminated by an organic function chemically close to the destination matrix (in particular to optimize its affinity with the matrix). This bark is advantageously of acrylic, methacrylic and / or styrenic type.
A titre d'exemple, dans les polymères acryliques, les nanoparticules peuvent se présenter sous l'une des formes représentées schématiquement ci-dessous (seul l'un des greffons de la nanoparticule étant représentée par soucis de simplification). Dans une première forme de réalisation, la nanoparticule se présente avantageusement sous la structure générale suivante :By way of example, in acrylic polymers, the nanoparticles may be in one of the forms shown schematically below (only one of the grafts of the nanoparticle is represented for the sake of simplification). In a first embodiment, the nanoparticle is advantageously under the following general structure:
où R1 correspond au « cœur », R2 correspond au bras espaceur, et la fonction organique est du type ester acrylique (R3 = hydrogène) ou du type ester méthacrylique (R3 = méthyle). where R1 corresponds to the "core", R2 corresponds to the spacer arm, and the organic function is of the acrylic ester type (R3 = hydrogen) or of the methacrylic ester type (R3 = methyl).
Dans une seconde forme de réalisation, la nanoparticule se présente avantageusement dans les polymères styréniques sous la structure générale suivante : In a second embodiment, the nanoparticle is advantageously present in styrenic polymers under the following general structure:
où R1 correspond au « cœur », R2 correspond au bras espaceur, et la fonction organique est du type styrène.where R1 corresponds to the "heart", R2 corresponds to the spacer arm, and the organic function is of the styrene type.
Les composés métalliques nanoparticulaires (et le cas échéant la partie cœur de ces nanoparticules) ont avantageusement une dimension maximale inférieure à 20 nanomètres.The nanoparticulate metal compounds (and where appropriate the core portion of these nanoparticles) advantageously have a maximum dimension of less than 20 nanometers.
Cette dimension maximale des nanoparticules a l'intérêt de réduire les phénomènes de diffusion de la lumière visible traversant le matériau atténuateur, tout en lui conférant des caractéristiques de radioprotection toujours optimales. Elle a aussi l'intérêt de permettre une charge élevée de la matrice organique en nanoparticules.This maximum dimension of the nanoparticles has the advantage of reducing the phenomena of diffusion of the visible light passing through the attenuating material, while giving it always optimal radioprotection characteristics. It also has the advantage of allowing a high charge of the organic matrix in nanoparticles.
La matrice du matériau atténuateur peut intégrer un seul type de composé métallique nanoparticulaire. De préférence, elle peut également contenir une combinaison de tels composés nanoparticulaires, cela en fonction des rayonnements ionisants électromagnétiques et/ou particulaires à atténuer.The matrix of the attenuator material can integrate a single type of nanoparticulate metal compound. Preferably, it may also contain a combination of such nanoparticulate compounds, as a function of the electromagnetic and / or particulate ionizing radiation to be attenuated.
A titre d'exemple, le matériau atténuateur peut contenir une combinaison de composés nanoparticulaires dont le métal ou les métaux sont choisis parmi la liste suivante : bore et/ou lanthane et/ou gadolinium et/ou ytterbium et/ou étain et/ou antimoine et/ou bismuth.By way of example, the attenuating material may contain a combination of nanoparticulate compounds whose metal or metals are chosen from the following list: boron and / or lanthanum and / or gadolinium and / or ytterbium and / or tin and / or antimony and / or bismuth.
Le bismuth se présente avantageusement sous la forme organométallique et/ou inorganique. Différentes formes possibles du bismuth sont décrites dans le documentThe bismuth is advantageously in the organometallic and / or inorganic form. Different possible forms of bismuth are described in the document
Suzuki et al, « Organobismuth Chemistry » (Elservier, 2001 ) ou Deb et al,Suzuki et al, "Organobismuth Chemistry" (Elservier, 2001) or Deb et al,
« Radiopacity in bone céments unsing an organo-bismuth compound » (Biomaterials, 2002, Aug ; 23(16):3387-93)."Radiopacity in bone elements unsing an organo-bismuth compound" (Biomaterials, 2002, Aug; 23 (16): 3387-93).
Le métal correspondant (ou le cas échéant, la combinaison de métaux) est choisi en particulier pour couvrir la gamme d'énergie particulière des rayonnements électromagnétiques et/ou particulaires correspondant à certaine(s) application(s) du domaine médical ou de la recherche scientifique.The corresponding metal (or, where appropriate, the combination of metals) is chosen in particular to cover the particular energy range of the radiations electromagnetic and / or particulate corresponding to certain application (s) of the medical field or scientific research.
Selon un mode de réalisation intéressant, pour obtenir une atténuation efficace sur une gamme d'énergie déterminée (en particulier comprise entre 10 KeV et 120 KeV, le matériau atténuateur contient avantageusement une combinaison d'au moins trois composés nanoparticulaires dont le métal est choisi dans chacun des trois groupes suivants : (i) l'étain et/ou l'antimoine,According to an interesting embodiment, in order to obtain an effective attenuation over a given energy range (in particular between 10 KeV and 120 KeV, the attenuator material advantageously contains a combination of at least three nanoparticulate compounds whose metal is chosen from each of the following three groups: (i) tin and / or antimony,
(ii) le lanthane et/ou le gadolinium et/ou l'ytterbium, et (iii) le bismuth.(ii) lanthanum and / or gadolinium and / or ytterbium, and (iii) bismuth.
Les composés métalliques nanoparticulaires et leur composition massique respective sont choisis en fonction de la gamme d'énergie couverte par les types et spectres d'énergie des rayonnements ionisants à atténuer.The nanoparticulate metal compounds and their respective mass composition are chosen according to the energy range covered by the types and energy spectra of the ionizing radiation to be attenuated.
Le matériau radio-atténuateur conforme à l'invention peut être obtenu par un procédé consistant à mettre en œuvre les étapes suivantes :The radio-attenuator material according to the invention can be obtained by a method comprising the following steps:
- préparation des composés métalliques nanoparticulaires, avantageusement du type « cœur-écorce », à partir de sels de métaux,preparation of the nanoparticulate metal compounds, advantageously of the "core-shell" type, from metal salts,
- dispersion desdits composés nanoparticulaires - soit dans un ou plusieurs polymères en solution, - soit dans un ou plusieurs monomères liquides destinés à être polymérisés, en vue de former la matrice organique, par exemple du type polymère (genre poly(méthacrylate de méthyle)) ou des copolymères (genre poly(méthacrylate de méthyle-co-acrylate de méthyle)).dispersion of said nanoparticulate compounds - either in one or more polymers in solution, or in one or more liquid monomers intended to be polymerized, in order to form the organic matrix, for example of the polymer type (poly (methyl methacrylate) type) or copolymers (kind poly (methyl methacrylate-methyl co-acrylate)).
La préparation des composés métalliques nanoparticulaires consiste par exemple en une méthode consistant à faire réagir un sel de métal en le chauffant dans un solvant de synthèse approprié, cela en présence d'un complexant ou d'une aminé.The preparation of the nanoparticulate metal compounds consists, for example, of a method consisting in reacting a metal salt by heating it in a suitable synthetic solvent, in the presence of a complexing agent or an amine.
Le solvant de synthèse en question est choisi en fonction de la composition de la matrice et aussi de la présentation des composés métalliques nanoparticulaires (minérale, organométallique ou hybride), principalement pour optimiser la dispersion de ces particules. Le solvant de synthèse employé peut être par exemple de type éthanol, méthanol, tris(2-éthylhexyle) phosphate, dibutyle phosphate, tributyle phosphate, diéthylène glycol, diphényléther, triméthyle phosphate, triphényle phosphate, bis[2- (méthacryloyloxy)éthyl] phosphate, tris(2-butoxyéthyle phosphate), tris(2-chloroéthyle) phosphate, toluène. Le complexant est de type trioctylamine, acrylamide, acide d'éthylène diamine tetraacétique, acide acrylique, acide méthacrylique, diméthyle amino éthyle méthacrylate, diéthylamino éthyle méthacrylate, N,N-diméthylacrylamide, méthacrylonitrile, acrylonitrile, pyridine ou fluorure d'aminé. Le greffon est quant à lui de type poly(propylène glycol), poly(propylène glycole monométhacrylate), oxychlorure phosphorique, dodécanol, chlorure d'acide acrylique, éhylène glycol méthacrylate phosphate, bis(2-éthylhexyle) phosphate, hydroxyéthyle méthacrylate, hydroxyéthyle acrylate.The synthetic solvent in question is chosen according to the composition of the matrix and also the presentation of the nanoparticulate metal compounds (mineral, organometallic or hybrid), mainly to optimize the dispersion of these particles. The synthetic solvent used can be, for example, ethanol, methanol, tris (2-ethylhexyl) phosphate, dibutyl phosphate, tributyl phosphate, diethylene glycol, diphenyl ether, trimethyl phosphate, triphenyl phosphate, bis [2- (methacryloyloxy) ethyl] phosphate tris (2-butoxyethyl phosphate), tris (2-chloroethyl) phosphate, toluene. The complexing agent is of the trioctylamine, acrylamide, ethylene diamine tetraacetic acid, acrylic acid, methacrylic acid, dimethyl aminoethyl methacrylate, diethylaminoethyl methacrylate, N, N-dimethylacrylamide, methacrylonitrile, acrylonitrile, pyridine or amine fluoride type. The graft is in turn of the poly (propylene glycol), poly (propylene glycol monomethacrylate), phosphoric oxychloride, dodecanol, acrylic acid chloride, ethylene glycol methacrylate phosphate, bis (2-ethylhexyl) phosphate, hydroxyethyl methacrylate, hydroxyethyl acrylate .
Au cours du procédé de fabrication, le « greffon » est avantageusement rapporté sur ses composés nanoparticulaires, pendant ou après la synthèse de ces dernières, pour optimiser leur dispersion dans la matrice organique. On obtient ainsi les composés nanoparticulaires du type « cœur-écorce » contenant, d'une part, le cœur contenant le dérivé de métal radioatténuateur, et d'autre part, l'écorce, d'une nature chimiquement compatible avec la matrice, optimisant sa dispersion dans la matrice organique.During the manufacturing process, the "graft" is advantageously reported on its nanoparticulate compounds, during or after the synthesis of the latter, to optimize their dispersion in the organic matrix. The nanoparticles of the "core-shell" type are thus obtained containing, on the one hand, the core containing the radio-attenuating metal derivative, and on the other hand, the bark, of a chemically compatible nature with the matrix, optimizing its dispersion in the organic matrix.
De manière générale, les techniques de synthèse des nanoparticules, et les techniques de greffage, sont connues de l'homme du métier. Ainsi, on peut citer à titre d'exemple le document Stoundam et al (Langmuir, 20 (26), 1 1763-1 1771 , 2004) ; Bop Yeop Ahn et al (Optical Materials 28 (2006) 374) ; Hebbink et al (Adv. Mater. 14 (2002) 1 147) ; Lehmann et al (J. Phys. Chem. B 107 (2003) 7449) ; Heer et al (Angew. Chem. Int. Ed, 42(2003) 3179).In general, techniques for synthesizing nanoparticles, and grafting techniques, are known to those skilled in the art. Thus, for example, Stoundam et al (Langmuir, 20 (26), 1763-11771, 2004); Bop Yeop Ahn et al (Optical Materials 28 (2006) 374); Hebbink et al (Adv, Mater 14 (2002) 1147); Lehmann et al (J. Phys Chem B 107 (2003) 7449); Heer et al (Angew Chem Int Ed, 42 (2003) 3179).
D'une manière particulière, on peut encore faire croître des greffons à partir de la surface de la nanoparticule du composé atténuateur pour optimiser l'épaisseur de son écorce, selon une technique de type polymérisation radicalaire contrôlée (voir par exemple Jian Qiu et al, Prog. Polym. Sci 36 (2001 ) 2083-2134).In a particular way, it is still possible to grow grafts from the surface of the nanoparticle of the attenuator compound to optimize the thickness of its bark, according to a controlled radical polymerization technique (see, for example, Jian Qiu et al. Polymer Prog Sci 36 (2001) 2083-2134).
De manière intéressante, la demanderesse a mis au point une technique pour synthétiser en une seule étape des nanoparticules de phosphate de terres rares sous forme « cœur-écorce », ladite écorce étant formée d'éthylène glycol méthacrylate phosphate. Lors de la synthèse, le sel métallique est ajouté à une solution composée du solvant de synthèse (avantageusement du tris(2-éthylhexyle) phosphate) contenant de l'éthylène glycol méthacrylate phosphate et/ou de l'acide phosphorique en proportion choisie, ainsi que d'une aminé à une concentration adéquate suivant la taille visée pour les nanoparticules. La formation du cœur de phosphate de terres rares s'effectuera en ayant l'éthylène glycol méthacrylate phosphate comme « greffon », qui constituera l'écorce de la nanoparticule.Interestingly, the applicant has developed a technique for synthesizing in a single step rare earth phosphate nanoparticles in "core-bark" form, said bark being formed of ethylene glycol methacrylate phosphate. During the synthesis, the metal salt is added to a solution composed of the synthesis solvent (advantageously tris (2-ethylhexyl) phosphate) containing ethylene glycol methacrylate phosphate and / or phosphoric acid in a chosen proportion, and than an amine at an adequate concentration according to the size targeted for the nanoparticles. The formation of the rare earth phosphate core will be done by having the ethylene glycol methacrylate phosphate as "graft", which will constitute the bark of the nanoparticle.
De manière alternative, le matériau atténuateur selon l'invention peut être également obtenu par extrusion d'un mélange composé de granulés de polymère(s) et de composés métalliques nanoparticulaires.Alternatively, the attenuator material according to the invention can also be obtained by extrusion of a mixture of polymer granules (s) and nanoparticulate metal compounds.
De manière générale, ce matériau atténuateur peut être employé pour la fabrication de plaques transparentes servant d'écrans de radioprotection. Ce type d'écran peut par exemple faire partie intégrante de paravents utilisés par les opérateurs pilotant des équipements émetteurs de rayonnements ionisants ou manipulant des substances radioactives, en particulier dans le cadre de certaines interventions médicales (médecine nucléaire, radiothérapie, etc.). Ce type de plaque a avantageusement une épaisseur d'au moins 5 mm.In general, this attenuating material can be used for the manufacture of transparent plates serving as radioprotection screens. This type of screen may for example be an integral part of screens used by operators flying equipment emitting ionizing radiation or handling radioactive substances, particularly in the context of certain medical interventions (nuclear medicine, radiotherapy, etc.). This type of plate advantageously has a thickness of at least 5 mm.
Pour illustrer l'efficacité et l'intérêt du matériau radioatténuateur selon l'invention, des exemples de différents matériaux sont détaillés ci-après.To illustrate the efficiency and the interest of the radio-attenuator material according to the invention, examples of different materials are detailed below.
Exemple 1Example 1
Préparation de composés métalliques nanoparticulaires, contenant un mélange de lanthane et de αadolinium. Nous avons préparé une solution d'un mélange de deux sels de terres rares : lanthane et gadolinium (sous forme de nitrates ou de chlorures) dans une proportion 1 :Preparation of nanoparticulate metal compounds, containing a mixture of lanthanum and αadolinium. We prepared a solution of a mixture of two rare earth salts: lanthanum and gadolinium (in the form of nitrates or chlorides) in a proportion 1:
1 dans du tris(2-éthylhexyle phosphate) à une concentration totale de 1 ,67 moles/litre.1 in tris (2-ethylhexyl phosphate) at a total concentration of 1.67 moles / liter.
Ce mélange est ensuite ajouté à une solution constituée d'acide phosphorique et de trioctylamine dans une proportion respectivement de 1 : 3, en moles. Le mélange est chauffé à 2009C sous azote avec un reflux pendant 40 heures.This mixture is then added to a solution consisting of phosphoric acid and trioctylamine in a proportion of 1: 3, in moles, respectively. The mixture is heated to 200 9 C under nitrogen with refluxing for 40 hours.
Les nanoparticules de phosphates de terres rares obtenues (LaPO4 et GdPO4) sont ensuite précipitées et lavées avec de l'alcool, puis récupérées par centrifugation àThe nanoparticles of rare earth phosphates obtained (LaPO 4 and GdPO 4 ) are then precipitated and washed with alcohol and then recovered by centrifugation.
7800 tours/minute.7800 rpm.
Ces nanoparticules ont été observées à l'aide d'un microscope électronique à transmission de type H9000NAR- 30OkV (kilo Volts) à fort grossissement. La taille des nanoparticules isolées varie entre 3 nm et 13 nm. La caractérisation physico-chimique confirme la composition des nanoparticules.These nanoparticles were observed using a transmission electron microscope type H9000NAR-30OkV (kilo volts) at high magnification. The size of the isolated nanoparticles varies between 3 nm and 13 nm. The physico-chemical characterization confirms the composition of the nanoparticles.
Les coefficients d'atténuation massiques sont obtenus à partir du logiciel XCOMMass attenuation coefficients are obtained from the XCOM software
(L.Gerward et al. ; Radiation Physics and Chemistry Volume 60, Issues 1 -2, January 2001 , Pages 23-24). Préparation des nanoparticules sous forme « cœur-écorce »(L.Gerward et al., Radiation Physics and Chemistry Volume 60, Issues 1-2, January 2001, Pages 23-24). Preparation of nanoparticles in heart-bark form
Les nanoparticules de phosphates de terres rares (mixte lanthane et gadolinium) préparées sont traitées avec de l'oxychlorure de phosphore dans une proportion de 1 : 2 en masse, respectivement. L'ensemble est chauffé à 120°C sous une atmosphère de gaz inerte pendant 2 heures.The nanoparticles of rare earth phosphates (mixed lanthanum and gadolinium) prepared are treated with phosphorus oxychloride in a proportion of 1: 2 by mass, respectively. The whole is heated at 120 ° C. under an inert gas atmosphere for 2 hours.
Après reflux, l'oxychlorure de phosphore est éliminé sous vide en chauffant à 80 °C pendant 1 heure. On ajoute alors une solution de toluène contenant un greffon type hydroxyde : hydroxyéthyle acrylate, hydroxyéthyle méthacrylate ou polypropylène glycol monométhacrylate ; et ce mélange est mis au reflux à 1409C pendant 2 heures.After reflux, the phosphorus oxychloride is removed under vacuum by heating at 80 ° C for 1 hour. A solution of toluene containing a hydroxide type graft: hydroxyethyl acrylate, hydroxyethyl methacrylate or polypropylene glycol monomethacrylate is then added; and this mixture is refluxed at 140 9 C for 2 hours.
La caractérisation physico-chimique confirme la composition des nanoparticules « cœur-écorce » de phosphates de terres rares dont le cœur est le phosphate de terres rares et dont « l'écorce » est constituée des greffons acryliques ou méthacryliques.The physico-chemical characterization confirms the composition of the "core-shell" nanoparticles of rare earth phosphates whose core is rare earth phosphate and whose "bark" consists of acrylic or methacrylic grafts.
Dispersion des nanoparticules « cœur-écorce » dans la matrice organique, puis étude des caractéristiques d'absorption optique et d'atténuation massiqueDispersion of core-shell nanoparticles in the organic matrix, then study of optical absorption and mass attenuation characteristics
Les nanoparticules « cœur-écorce » sont dispersées facilement dans un monomère de type acrylique.The "core-shell" nanoparticles are easily dispersed in an acrylic-type monomer.
La solution ainsi obtenue est polymérisée en présence de l'azobisisobutyronitrile (AIBN) comme amorceur à 0,2 % en masse du monomère à 60 °C.The solution thus obtained is polymerized in the presence of azobisisobutyronitrile (AIBN) as a primer at 0.2% by weight of the monomer at 60 ° C.
Le matériau obtenu est soumis à des tests d'absorption optique et d'atténuation massique, dont les résultats sont présentés figures 1 et 2.The material obtained is subjected to optical absorption and mass attenuation tests, the results of which are shown in FIGS. 1 and 2.
Le matériau PMMA/nanoparticules LaPO4 / GdPO4 de taille moyenne 5 nm, de composition massique 1 :1 et d'épaisseur 5 mm transmet au moins, d'après des simulations de la méthode des 4-flux, 65 % de la lumière incidente à 450 nm et 87 % à 650 nm dans le domaine du visible entre 450 et 650 nanomètres (figure 1 ). Par ailleurs, ce matériau (courbe 2) présente une atténuation massique meilleure que celle d'un verre inorganique atténuateur sans plomb (courbe 3) sur toute la gamme d'énergie entre 0,01 MeV et 1 MeV, et une atténuation proche de celle du verre inorganique atténuateur au plomb (courbe 1 ) entre 0,05 MeV et 0,09 MeV (figure The PMMA material / LaPO 4 / GdPO 4 nanoparticles of average size 5 nm, with a 1: 1 mass composition and with a thickness of 5 mm, transmits at least, according to simulations of the 4-flux method, 65% of the light. incident at 450 nm and 87% at 650 nm in the visible range between 450 and 650 nanometers (Figure 1). Moreover, this material (curve 2) has a better mass attenuation than that of a lead-free attenuator inorganic glass (curve 3) over the entire energy range between 0.01 MeV and 1 MeV, and attenuation close to that inorganic lead attenuator glass (curve 1) between 0.05 MeV and 0.09 MeV (figure
2).2).
Exemple 2Example 2
Préparation de composés métalliques nanoparticulaire, contenant un mélange de lanthane, de qadolinium et d'vtterbium.Preparation of nanoparticulate metal compounds, containing a mixture of lanthanum, qadolinium and vtterbium.
Nous avons préparé une solution d'un mélange de trois sels de terres rares (sous forme de nitrate ou de chlorure) : lanthane, gadolinium et ytterbium, à une proportion 1 ,2 : 1 : 1 ,8 dans du tris (2-éthylhexyle phosphate) à une concentration totale de 3 moles/litre.We prepared a solution of a mixture of three rare earth salts (in the form of nitrate or chloride): lanthanum, gadolinium and ytterbium, at a ratio of 1, 2: 1: 1, 8 in tris (2-ethylhexyl) phosphate) at a total concentration of 3 moles / liter.
Cette solution est ensuite ajoutée à une solution d'acide phosphorique et de trioctylamine dans des proportions stœchiométriques. Le mélange est chauffé à 200 °C sous azote avec un reflux pendant 40 heures.This solution is then added to a solution of phosphoric acid and trioctylamine in stoichiometric proportions. The mixture is heated at 200 ° C under nitrogen with reflux for 40 hours.
Les nanoparticules mixtes de phosphates de terres rares ont été précipitées et lavées avec de l'alcool, puis récupérées par centrifugation à 7800 tours/minute.The mixed nanoparticles of rare earth phosphates were precipitated and washed with alcohol and then recovered by centrifugation at 7800 rpm.
Ces nanoparticules ont été observées à l'aide d'un microscope électronique à transmission de type H9000NAR- 30OkV à fort grossissement. La taille des nanoparticules isolées varie entre 3 nm et 17 nm (dimension la plus grande dépendant de la forme géométrique).These nanoparticles were observed using a transmission electron microscope type H9000NAR-30OkV at high magnification. The size of the isolated nanoparticles varies between 3 nm and 17 nm (the largest dimension depending on the geometrical shape).
La caractérisation physico-chimique confirme la composition des nanoparticules.The physico-chemical characterization confirms the composition of the nanoparticles.
Préparation des nanoparticules sous forme « cœur-écorce » La préparation des nanoparticules sous forme « cœur-écorce » s'effectue selon une méthode identique à celle décrite ci-dessus dans l'exemple 1.Preparation of Nanoparticles in "Heart-Bark" Form The preparation of nanoparticles in "core-shell" form is carried out according to a method identical to that described above in Example 1.
Dispersion des nanoparticules « cœur-écorce » dans la matrice organique, puis étude des caractéristiques d'absorption optique et d'atténuation massique Ces nanoparticules sous forme « cœur-écorce » sont dispersées facilement dans un monomère de type acrylique. La solution ainsi obtenue est polymérisée en présence de l'azobisisobutyronitrile (AIBN) comme amorceur à 0,2 % en masse du monomère à 609C.Dispersion of core-shell nanoparticles in the organic matrix, then study of optical absorption and mass attenuation characteristics These nanoparticles in "core-shell" form are easily dispersed in a monomer of acrylic type. The solution thus obtained is polymerized in the presence of azobisisobutyronitrile (AIBN) as initiator 0.2% by weight of the monomer to 60 9 C.
Le matériau obtenu est soumis à des tests d'absorption optique et d'atténuation massique, dont les résultats sont présentés figures 3 et 4.The obtained material is subjected to optical absorption and mass attenuation tests, the results of which are shown in FIGS. 3 and 4.
Le matériau PMMA/nanoparticules LaPO4/GdPO4/YbPO4 de taille moyenne 5 nm, de composition massique 1 ,2 :1 :1 ,8 et d'épaisseur 5 mm, transmet au moins, d'après des simulations de la méthode des 4-flux, 65 % de la lumière incidente à 450 nm et 87 % à 650 nm, dans le domaine du visible entre 450 et 650 nanomètres (figureThe PMMA material / nanoparticles LaPO 4 / GdPO 4 / YbPO 4 of average size 5 nm, with a mass composition 1, 2: 1: 1, 8 and with a thickness of 5 mm, transmits at least, according to simulations of the method 4-flux, 65% incident light at 450 nm and 87% at 650 nm, in the visible range between 450 and 650 nanometers (Figure
3).3).
Le matériau obtenu (courbe 2) présente encore une atténuation massique meilleure que celle du verre inorganique sans plomb (courbe 3) sur toute la gamme d'énergie entre 0,01 MeV et 1 MeV et une atténuation identique à celle du verre inorganique au plomb (courbe 1 ) entre 0,06 MeV et 0,09 MeV (figure 4).The material obtained (curve 2) still has a better mass attenuation than lead-free inorganic glass (curve 3) over the entire energy range between 0.01 MeV and 1 MeV and an attenuation identical to that of lead inorganic glass. (curve 1) between 0.06 MeV and 0.09 MeV (Figure 4).
Exemple 3 Préparation en une seule étape de composés métalliques nanoparticulaires, contenant du lanthaneExample 3 One-step preparation of nanoparticulate metal compounds containing lanthanum
Nous avons préparé une solution du sel de lanthane (nitrate ou chlorure) dans du tris(2-éthylhexyle phosphate) à une concentration totale de 1 ,67 moles/litre. Cette solution de sel de lanthane est ensuite ajoutée à une solution d'éthylène glycol méthacrylate phosphate et de trioctylamine dans une proportion 1 : 3 en moles, respectivement.We prepared a solution of the lanthanum salt (nitrate or chloride) in tris (2-ethylhexyl phosphate) at a total concentration of 1.67 moles / liter. This lanthanum salt solution is then added to a solution of ethylene glycol methacrylate phosphate and trioctylamine in a proportion of 1: 3 mol, respectively.
Le mélange est chauffé à 200 °C sous azote avec un reflux pendant 40 heures. Le produit de la synthèse a été précipité et lavé avec de l'alcool, puis récupéré par centrifugation à 7800 tours/minute.The mixture is heated at 200 ° C under nitrogen with reflux for 40 hours. The product of the synthesis was precipitated and washed with alcohol and recovered by centrifugation at 7800 rpm.
Ces nanoparticules de phosphates de lanthane constituent des « nanoparticules chevelues », dont le cœur est le phosphate de lanthane et dont l'écorce est constituée de greffons d'éthylène glycol méthacrylate. Ces nanoparticules sont observées à l'aide d'un microscope électronique à transmission de type H9000NAR- 30OkV à fort grossissement.These nanoparticles of lanthanum phosphates constitute "hairy nanoparticles", whose core is lanthanum phosphate and whose bark is composed of grafts of ethylene glycol methacrylate. These nanoparticles are observed using a transmission electron microscope type H9000NAR-30OkV at high magnification.
La taille des nanoparticules isolées varie entre 3 nm et 10 nm pour une moyenne de 5 nm.The size of the isolated nanoparticles varies between 3 nm and 10 nm for an average of 5 nm.
La répartition de la taille des nanoparticules est observée par spectroscopie de corrélation de photons, sur un appareil de type Beckman Coulter N4 plus.The size distribution of the nanoparticles is observed by photon correlation spectroscopy, on a Beckman Coulter N4 plus apparatus.
La caractérisation physico-chimique confirme la composition des nanoparticules.The physico-chemical characterization confirms the composition of the nanoparticles.
Dispersion des nanoparticules « cœur-écorce » dans la matrice organique, puis étude des caractéristiques d'absorption optique et d'atténuation massique Les nanoparticules « cœur-écorce » obtenues sont dispersées dans le méthacrylate de méthyle, sous ultra-sons.Dispersion of the "core-shell" nanoparticles in the organic matrix, then study of the optical absorption and mass attenuation characteristics The "core-shell" nanoparticles obtained are dispersed in methyl methacrylate, under ultrasound.
La solution est ensuite polymérisée en présence de l'azobisisobutyronitrile (AIBN) comme amorceur à 0.2 % en masse du monomère à 60° C.The solution is then polymerized in the presence of azobisisobutyronitrile (AIBN) as an initiator at 0.2% by weight of the monomer at 60 ° C.
Le matériau obtenu est soumis à des tests d'absorption optique et d'atténuation massique, dont les résultats sont présentés figures 5 et 6. The material obtained is subjected to optical absorption and mass attenuation tests, the results of which are shown in FIGS. 5 and 6.
Le matériau obtenu PMMA/nanoparticules de LaPO4 de taille moyenne 5 nm, de composition massique PMMA/nanoparticules de 1 ,5 :1 et d'épaisseur 5 mm transmet au moins, d'après des simulations de la méthode des 4-flux, 76 % de la lumière incidente à 450 nm et 90 % à 650 nm dans le domaine du visible entre 450 et 650 nanomètres (figure 5).The material obtained PMMA / LaPO 4 nanoparticles of average size 5 nm, PMMA / nanoparticle mass composition of 1, 5: 1 and thickness 5 mm transmits at least, according to simulations of the 4-flux method, 76% of incident light at 450 nm and 90% at 650 nm in the visible range between 450 and 650 nanometers (Figure 5).
Ce matériau (courbe 2) présente une atténuation massique meilleure que celle du verre inorganique sans plomb (courbe 3) sur toute la gamme d'énergie entre 0,04 MeV et 1 MeV et une atténuation se rapprochant de celle du verre inorganique au plomb (courbe 1 ) entre 0,04 MeV et 0,09 Mev (figure 6).This material (curve 2) has a better mass attenuation than lead-free inorganic glass (curve 3) over the entire energy range between 0.04 MeV and 1 MeV and an attenuation approximating that of inorganic lead glass ( curve 1) between 0.04 MeV and 0.09 MeV (Figure 6).
Exemple 4Example 4
Préparation de nanoparticules de fluorures de terres rares Les nanoparticules de fluorures de terres rares sont préparées à partir d'une solution 1 : 1 éthanol/eau de fluorure de sodium et d'un greffon de type acrylique (hydroxyéthyle acrylate ou hydroxyéthyle méthacrylate), chacun a une concentration d'environ 3,10'2 mole/litre, dans laquelle est versée sous agitation vigoureuse une solution 1 : 1 éthanol/eau de sels de terres rares (nitrates ou chlorures) à une concentration comprise entre 0,5 mole/litre et 1 mole/litre. La solution ainsi formée est chauffée à 75 °C pendant 2 heures.Preparation of Rare Earth Fluoride Nanoparticles Rare earth fluoride nanoparticles are prepared from a 1: 1 ethanol / water solution of sodium fluoride and an acrylic type graft (hydroxyethyl acrylate or hydroxyethyl methacrylate), each at a concentration of approximately 3.10 2 mol / liter, in which is poured with vigorous stirring a 1: 1 ethanol / water solution of rare earth salts (nitrates or chlorides) at a concentration of between 0.5 mol / l. liter and 1 mole / liter. The solution thus formed is heated at 75 ° C for 2 hours.
Les nanoparticules sont isolées par centrifugation à 7800 tours/minute et dispersées dans du dichlorométhane puis précipitées avec de l'éthanol. Cette opération de lavage est répétée plusieurs fois. La caractérisation physico-chimique confirme la composition des nanoparticules « cœur-écorce » de fluorures de terres rares dont le cœur est le fluorure de terres rares et dont « l'écorce » est constituée des greffons acryliques ou méthacryliques.The nanoparticles are isolated by centrifugation at 7800 rpm and dispersed in dichloromethane and then precipitated with ethanol. This washing operation is repeated several times. The physico-chemical characterization confirms the composition of the "core-shell" nanoparticles of rare earth fluorides whose core is rare earth fluoride and whose "bark" consists of acrylic or methacrylic grafts.
Dispersion des nanoparticules « cœur-écorce » dans la matrice organique, puis étude des caractéristiques d'absorption optique et d'atténuation massiqueDispersion of core-shell nanoparticles in the organic matrix, then study of optical absorption and mass attenuation characteristics
Les nanoparticules de type LaF3 fabriquées sont mélangées dans le méthacrylate de méthyle sous ultra-sons. La solution est ensuite polymérisée en présence de l'azobisisobutyronitrite (AIBN) comme amorceur à 0.2 % en masse du monomère à 60° C.The LaF3-type nanoparticles manufactured are mixed in methyl methacrylate under ultrasound. The solution is then polymerized in the presence of azobisisobutyronitrite (AIBN) as an initiator at 0.2% by weight of the monomer at 60 ° C.
Le matériau obtenu est soumis à des tests d'absorption optique et d'atténuation massique, dont les résultats sont présentés figures 7 et 8.The material obtained is subjected to optical absorption and mass attenuation tests, the results of which are shown in FIGS. 7 and 8.
Ce matériau PMMA/nanoparticules LaF3 de taille moyenne 5 nm, de composition massique PMMA/nanoparticules de 1 :1 et d'épaisseur 5 mm transmet au moins, d'après des simulations de la méthode des 4-flux, 85 % de la lumière incidente à 450 nm et 92 % à 650 nm dans le domaine du visible entre 450 et 650 nanomètres (figure 7). Ce matériau (courbe 2) présente encore une atténuation massique identique ou supérieure à celle du verre inorganique sans plomb (courbe 3) entre 0,01 MeV et 1 MeV et une atténuation se rapprochant de celle du verre inorganique au plomb (courbe 1 ) dans la gamme 0,04 MeV et 0,09 MeV (figure 8). Exemple 5 This PMMA material / LaF3 nanoparticle of average size 5 nm, PMMA / nanoparticle mass composition of 1: 1 and 5 mm thickness transmits at least, according to simulations of the 4-flux method, 85% of the light incident at 450 nm and 92% at 650 nm in the visible range between 450 and 650 nanometers (Figure 7). This material (curve 2) still has a mass attenuation equal to or greater than that of the lead-free inorganic glass (curve 3) between 0.01 MeV and 1 MeV and an attenuation approximating that of the lead inorganic glass (curve 1) in the range 0.04 MeV and 0.09 MeV (Figure 8). Example 5
Simulation d'atténuation massique de trois matériaux compositesMass attenuation simulation of three composite materials
Protocole : les nanoparticules de fluorure d'étain et de bismuth peuvent être synthétisées suivant le protocole décrit dans l'exemple 4.Protocol: nanoparticles of tin fluoride and bismuth can be synthesized according to the protocol described in Example 4.
Logiciel : décrit dans l'exemple 1.Software: described in Example 1.
D'après les simulations, ce matériau présente une atténuation égale voire supérieure à celle du verre organique au plomb dans la gamme d'énergie 0,01 MeV et 1 MeV. According to the simulations, this material has an attenuation equal to or even greater than that of lead organic glass in the 0.01 MeV and 1 MeV energy range.

Claims

- REVENDICATIONS - - CLAIMS -
1.- Matériau transparent, atténuateur de rayonnements directement ou indirectement ionisants, utilisé en particulier pour la fabrication de plaques transparentes servant d'écrans de protection d'un opérateur contre lesdits rayonnements ionisants, caractérisé en ce que ledit matériau transparent atténuateur se compose d'une matrice à base d'un verre organique dans lequel est dispersé au moins un composé métallique atténuateur de rayonnements ionisants sous forme de nanoparticules, les métaux desdits composés métalliques nanoparticulaires représentant au minimum 25 % de la masse dudit matériau. 1. Transparent material, attenuator of directly or indirectly ionizing radiation, used in particular for the manufacture of transparent plates serving as shields of an operator against said ionizing radiation, characterized in that said transparent attenuator material consists of a matrix based on an organic glass in which is dispersed at least one metal compound attenuating ionizing radiation in the form of nanoparticles, the metals of said nanoparticulate metal compounds representing at least 25% of the mass of said material.
2.- Matériau atténuateur de rayonnements selon la revendication 1 , caractérisé en ce que les composés métalliques nanoparticulaires ou au moins l'un des composés métalliques nanoparticulaires se composent au moins d'un composé minéral, organométallique ou hybride organique/inorganique de métal.2. A radiation attenuator material according to claim 1, characterized in that the nanoparticulate metal compounds or at least one of the nanoparticulate metal compounds consist of at least one inorganic compound, organometallic or hybrid organic / inorganic metal.
3.- Matériau atténuateur de rayonnements selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que les composés métalliques nanoparticulaires ou au moins l'un des composés métalliques nanoparticulaires consistent en un sel de métal de type phosphate, ou du type fluorure, ou du type nitrure, ou en un oxyde de métal.3. A radiation attenuator material according to any one of claims 1 or 2, characterized in that the nanoparticulate metal compounds or at least one of the nanoparticulate metal compounds consist of a phosphate-type metal salt, or fluoride type , or of the nitride type, or of a metal oxide.
4.- Matériau atténuateur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les composés métalliques nanoparticulaires présentent une structure du type « cœur-écorce », ledit cœur consistant en une partie inorganique radio-atténuatrice contenant le composé métallique atténuateur et ladite écorce étant formée de greffons destinés à optimiser la dispersion desdites nanoparticules dans la matrice. 4. attenuator material according to any one of claims 1 to 3, characterized in that the nanoparticulate metal compounds have a core-shell type structure, said core consisting of a radio-attenuating inorganic part containing the attenuator metal compound and said bark being formed of grafts for optimizing the dispersion of said nanoparticles in the matrix.
5.- Matériau atténuateur selon l'une quelconque des revendications 1 à 4, pour la protection contre les rayonnements électromagnétiques, caractérisé en ce que les métaux ou au moins l'un des métaux constitutifs des composés métalliques nanoparticulaires ont un numéro atomique z compris entre 50 et 74, bornes incluses.5. attenuator material according to any one of claims 1 to 4 for the protection against electromagnetic radiation, characterized in that the metals or at least one of the constituent metals of the nanoparticulate metal compounds have an atomic number z between 50 and 74, terminals included.
6.- Matériau atténuateur selon la revendication 5, caractérisé en ce que les métaux ou au moins l'un des métaux constitutifs des composés métalliques nanoparticulaires ont un numéro atomique z compris entre 57 et 71 , bornes incluses.6. attenuator material according to claim 5, characterized in that the metals or at least one of the constituent metals of the nanoparticulate metal compounds have an atomic number z between 57 and 71 inclusive.
7.- Matériau atténuateur selon la revendication 6, caractérisé en ce que les métaux ou au moins l'un des métaux constitutifs des composés métalliques nanoparticulaires sont choisis parmi le lanthane, l'ytterbium et/ou le gadolinium. 7. attenuator material according to claim 6, characterized in that the metals or at least one of the constituent metals of the nanoparticulate metal compounds are chosen from lanthanum, ytterbium and / or gadolinium.
8.- Matériau atténuateur selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'il comprend une combinaison d'au moins trois composés nanoparticulaires dont le métal est choisi dans chacun des trois groupes suivants :8. attenuator material according to any one of claims 5 to 7, characterized in that it comprises a combination of at least three nanoparticulate compounds whose metal is selected in each of the following three groups:
(i) l'étain et/ou l'antimoine, et (ii) le lanthane et/ou le gadolinium et/ou l'ytterbium, et(i) tin and / or antimony, and (ii) lanthanum and / or gadolinium and / or ytterbium, and
(iii) le bismuth.(iii) bismuth.
9.- Matériau atténuateur selon l'une quelconque des revendications 1 à 4, pour la protection contre les rayonnements particulaires, caractérisé en ce que les métaux ou au moins l'un des métaux constitutifs des composés métalliques nanoparticulaires ont un numéro atomique z compris entre 3 et 7, bornes incluses.9. A attenuator material according to any one of claims 1 to 4 for the protection against particulate radiation, characterized in that the metals or at least one of the constituent metals of the nanoparticulate metal compounds have an atomic number z between 3 and 7, terminals included.
10.- Matériau atténuateur selon l'une quelconque des revendications 1 à 4, pour la protection contre les rayonnements particulaires, caractérisé en ce que les métaux ou au moins l'un des métaux constitutifs des composés métalliques nanoparticulaires sont du type gadolinium. 10. attenuator material according to any one of claims 1 to 4 for the protection against particulate radiation, characterized in that the metals or at least one of the constituent metals of the nanoparticulate metal compounds are of the gadolinium type.
1 1 .- Matériau atténuateur selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les composés métalliques nanoparticulaires ont une dimension maximale inférieure à 20 nm.1 1 .- attenuator material according to any one of claims 1 to 10, characterized in that the nanoparticulate metal compounds have a maximum dimension of less than 20 nm.
12.- Ecran de radioprotection constitué d'un matériau atténuateur transparent selon l'une quelconque des revendications 1 à 1 1. 12. Radiation protection screen made of a transparent attenuator material according to any one of claims 1 to 1 1.
13.- Procédé de fabrication d'un matériau atténuateur selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce qu'il consiste en la mise en œuvre des étapes suivantes :13. A method of manufacturing an attenuator material according to any one of claims 1 to 1 1, characterized in that it consists of the implementation of the following steps:
- préparation des composés métalliques nanoparticulaires, éventuellement sous forme de type « cœur-écorce », - dispersion desdits composés nanoparticulaires soit dans un ou plusieurs polymères en solution, soit dans un ou plusieurs monomères en solution destinés à être polymérisés, en vue de former la matrice organique, les métaux desdits composés métalliques nanoparticulaires représentant au minimum 25 % de la masse dudit matériau obtenu. preparation of the nanoparticulate metal compounds, optionally in the form of a "core-shell" type, dispersion of said nanoparticulate compounds either in one or more polymers in solution, or in one or more monomers in solution intended to be polymerized, in order to form the organic matrix, the metals of said nanoparticulate metal compounds representing at least 25% of the mass of said material obtained.
14.- Procédé selon la revendication 13, caractérisé en ce qu'il consiste à apporter un greffon sur les composés métalliques nanoparticules, apte à améliorer la solubilité ou la dispersion desdits composés métalliques nanoparticulaires dans la matrice organique.14.- Method according to claim 13, characterized in that it consists in providing a graft on the nanoparticle metal compounds capable of improving the solubility or dispersion of said nanoparticulate metal compounds in the organic matrix.
15.- Procédé selon la revendication 14, caractérisé en ce que les greffons sont rapportés au cours de la synthèse des nanoparticules, en utilisant un solvant de synthèse comprenant un mélange d'éthylène glycol méthacrylate phosphate, d'acide phosphorique et d'une aminé. 15.- Method according to claim 14, characterized in that the grafts are reported during the synthesis of the nanoparticles, using a solvent of synthesis comprising a mixture of ethylene glycol methacrylate phosphate, phosphoric acid and an amine.
EP08826609A 2007-07-13 2008-07-11 Radiation attenuating material and method for producing the same Active EP2181447B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0705082A FR2918785B1 (en) 2007-07-13 2007-07-13 RADIOATTENUATOR MATERIAL, AND PROCESS FOR OBTAINING SUCH MATERIAL
PCT/FR2008/051317 WO2009013426A2 (en) 2007-07-13 2008-07-11 Radiation attenuating material and method for producing the same

Publications (2)

Publication Number Publication Date
EP2181447A2 true EP2181447A2 (en) 2010-05-05
EP2181447B1 EP2181447B1 (en) 2011-01-12

Family

ID=39078389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08826609A Active EP2181447B1 (en) 2007-07-13 2008-07-11 Radiation attenuating material and method for producing the same

Country Status (5)

Country Link
EP (1) EP2181447B1 (en)
AT (1) ATE495527T1 (en)
DE (1) DE602008004550D1 (en)
FR (1) FR2918785B1 (en)
WO (1) WO2009013426A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204827B (en) 2012-01-17 2014-12-03 上海科州药物研发有限公司 Benzothiadiazole compounds as protein kinase inhibitors, and preparation method and application thereof
CN108794678B (en) * 2018-06-07 2020-12-18 扬州大学 Flame-retardant radiation-proof gadolinium-containing organic glass and preparation method thereof
CN114678151B (en) * 2022-03-24 2024-01-23 济南大学 Preparation method and application of flexible transparent radiation protection film based on bismuth compound
CN115410736B (en) * 2022-10-11 2024-05-28 四川大学 Ray shielding material based on core-shell structure nano particles and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2259871C2 (en) * 2001-04-30 2005-09-10 Поустеч Фаундейшн Colloidal solution for nanoparticles of metal, metal-polymer nano-composites and method of production of such composites
CN1237113C (en) * 2003-07-17 2006-01-18 长春市恩特尔新型材料有限责任公司 Light scattering material of organic glass modified by Nano silicon in use for lighting and displaying, and preparation method
DE102005018452A1 (en) * 2005-04-20 2006-10-26 Degussa Ag Production of zinc oxide nanoparticles and these transparent plastic glasses containing UV protectants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009013426A3 *

Also Published As

Publication number Publication date
FR2918785B1 (en) 2009-11-13
WO2009013426A2 (en) 2009-01-29
EP2181447B1 (en) 2011-01-12
WO2009013426A3 (en) 2009-07-30
DE602008004550D1 (en) 2011-02-24
FR2918785A1 (en) 2009-01-16
ATE495527T1 (en) 2011-01-15

Similar Documents

Publication Publication Date Title
Zheng et al. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons
Liu et al. Facile single‐precursor synthesis and surface modification of hafnium oxide nanoparticles for nanocomposite γ‐ray scintillators
EP2181447B1 (en) Radiation attenuating material and method for producing the same
Tiamduangtawan et al. Comparative mechanical, self-healing, and gamma attenuation properties of PVA hydrogels containing either nano-or micro-sized Bi2O3 for use as gamma-shielding materials
Hashim et al. Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications
Das et al. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media
KR20100047510A (en) Radiation shielding members including nano-particles as a radiation shielding materials and preparation method thereof
EP2964724B1 (en) Plastic scintillator materials, plastic scintillators comprising such materials and method for distinguishing neutrons from gamma rays using said scintillators
Sen et al. Organic–inorganic composite films based on Gd3Ga3Al2O12: Ce scintillator nanoparticles for X-ray imaging applications
Jin et al. Partial ligand exchange as a critical approach to the synthesis of transparent ytterbium fluoride–polymer nanocomposite monoliths for gamma ray scintillation
Feldman et al. X-ray induced formation of metal nanoparticles from interpolyelectrolyte complexes with copper and silver ions: the radiation-chemical contrast
Low et al. Polymer composites and nanocomposites for X-rays shielding
JP2015504518A (en) Method of processing a signal from a phoswich scintillator and associated scintillation detector
Erroi et al. Ultrafast and radiation-hard lead halide perovskite nanocomposite scintillators
Alfahed et al. Preparation and characterization of tin chloride-based polymeric composite for gamma shielding applications
US20090236530A1 (en) Boron loaded scintillator
EP3591025B1 (en) Plastic scintillator doped with metal ions and uses thereof
EP2798643A1 (en) Use of a mixture comprising erbium and praseodymium as a radiation attenuating composition, radiation attenuating material, and article providing protection against ionising radiation and comprising such a composition
Chen et al. Ytterbium fluoride loaded plastic scintillators for γ-ray spectroscopy
Withers et al. Locally increased mortality of gamma-irradiated cells in presence of lanthanide-halide nanoparticles
Mahendia et al. Radiation-induced effects on the properties of polymer-metal nanocomposites
Rise et al. Bi-PMMA composite materials and their shielding capability for low energy gamma rays
Saltan et al. Boron containing polyvinyl alcohol/polyethylene oxide/polyvinyl pyrrolidone composites: Preparation, characterization, gamma radiation shielding and gamma radiation effect on it's thermal properties
Liu High-Z Nanoparticle/Polymer Nanocomposites for Gamma-Ray Scintillation Detectors
Srinivasan et al. Photoluminescence properties of LaF3: Ce nanoparticles embedded in polyacrylamide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100212

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602008004550

Country of ref document: DE

Date of ref document: 20110224

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008004550

Country of ref document: DE

Effective date: 20110224

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110112

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110412

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110423

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110512

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110412

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

26N No opposition filed

Effective date: 20111013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008004550

Country of ref document: DE

Effective date: 20111013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008004550

Country of ref document: DE

Effective date: 20120201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230606

Year of fee payment: 16

Ref country code: FR

Payment date: 20230602

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230602

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230602

Year of fee payment: 16