EP2179143A2 - Gas turbine installation - Google Patents

Gas turbine installation

Info

Publication number
EP2179143A2
EP2179143A2 EP08786927A EP08786927A EP2179143A2 EP 2179143 A2 EP2179143 A2 EP 2179143A2 EP 08786927 A EP08786927 A EP 08786927A EP 08786927 A EP08786927 A EP 08786927A EP 2179143 A2 EP2179143 A2 EP 2179143A2
Authority
EP
European Patent Office
Prior art keywords
wall
gap
radially
turbine
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08786927A
Other languages
German (de)
French (fr)
Other versions
EP2179143B1 (en
Inventor
Ulrich Steiger
Willy Heinz Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2179143A2 publication Critical patent/EP2179143A2/en
Application granted granted Critical
Publication of EP2179143B1 publication Critical patent/EP2179143B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor

Definitions

  • the present invention relates to a gas turbine plant, in particular for a power plant.
  • Such a gas turbine plant usually comprises a combustion chamber which radially delimits a combustion gas path at least in an annular outlet region with a chamber inner wall and with a chamber outer wall. Furthermore, such a gas turbine plant usually comprises a turbine which radially delimits a turbine gas path at least in a stationary annular inlet area with a turbine inner wall and with a turbine outer wall. In order to avoid excessive component voltages during transient operating conditions of the gas turbine plant, the gas turbine plant can also be provided with a radially inner and / or radially outer axially between the
  • Combustion chamber and the turbine running gap be provided, at which the inner and / or outer chamber wall and the inner and / or outer turbine wall end.
  • a cooling gas supply be provided, which introduces a cooling gas into the turbine gas path and / or in the combustion gas path via the gap.
  • a gas turbine is known from US 2006/0034689 A1, in which a row of guide vanes has on its inflow side a multiplicity of flow guide elements projecting radially into the gas path. With the aid of these flow guide elements, a leakage flow flowing around the blade tips upstream of the rotor blades can be reduced or deflected in the axial direction so as to increase the efficiency of the gas turbine.
  • the invention as characterized in the claims, deals with the problem of providing for a gas turbine plant of the type mentioned in an improved embodiment, which is characterized in particular by an increased efficiency. This problem is solved according to the invention by the subject matter of the independent claim. Advantageous embodiments are the subject of the dependent claims.
  • the invention is based on the general idea of achieving a pressure distribution in the gap influencing the flow of cooling gas by a specific positioning of circumferentially alternating positive and negative steps along the gap.
  • This pressure distribution can be specifically set up so that areas with increased cooling demand are subjected to a higher cooling gas flow than areas with a smaller cooling demand. As a result, the total amount of cooling gas required can be reduced, which ultimately increases the efficiency of the gas turbine plant.
  • the combustion chamber wall or the turbine wall is correspondingly contoured in the end section adjoining the gap.
  • the circumferentially varying contours of the respective chamber wall and the respective turbine wall in the region of the radially inner gap and / or in the region of the radially outer gap can be selected and designed on the basis of different criteria. For example, in order to design the alternately arranged in the circumferential direction arrangement of positive and negative steps at the gap in the circumferential direction distribution of alternating pressure sides and suction sides of
  • Guide vanes are used in a stationary inlet area arranged Leitschaufelsch.
  • This guide blade row arranged in the entry region is usually the so-called “first row of guide blades.”
  • the pressure sides and suction sides of the guide blades bring about this Also upstream to the gap varying pressures in the circumferential direction, which may affect the flow of cooling gas in the gap.
  • these adverse influences can be reduced.
  • a pressure distribution which varies in the circumferential direction during operation of the gas turbine plant at or in the exit region of the combustion chamber can also be taken into account. It has been found that in the exit region of the combustion chamber in the circumferential direction different
  • the pressure distribution or velocity distribution which arises during steady-state operation of the gas turbine can be stationary and could, for example, be due to the burner arranged distributed in the circumferential direction in a multi-burner combustion chamber.
  • the pressures varying in the circumferential direction in the exit region of the combustion chamber also influence the flow of cooling gas through the gap.
  • the disadvantageous influence on the cooling gas flow can be reduced.
  • FIG. 1 shows a greatly simplified axial section of a gas turbine plant in the region of a gap between a combustion chamber and a turbine.
  • a gas turbine plant 1 which is preferably used in a power plant, ie stationary, a combustion chamber 2 and a turbine 3, between which an axial gap 4 is arranged. Furthermore, a cooling gas supply 5 indicated by arrows is provided.
  • a longitudinal center axis or axis of rotation X As a reference for the radial and axial orientation is entered in Fig. 1, a longitudinal center axis or axis of rotation X.
  • the combustion chamber 2 has, at least in an annular outlet region 6, a chamber inner wall 7 and a chamber outer wall 8, which together radially bound a combustion chamber gas path 9 indicated by an arrow.
  • the turbine 3 has, at least in a stationary, ie stator, annular inlet region 10, a turbine inner wall 1 1 and a turbine outer wall 12, which together define a radially indicated by an arrow turbine gas path 13.
  • the turbine 3 in the stationary inlet region 10 can usually have a row of guide vanes 14 with a plurality of guide vanes 15 which are adjacent in the circumferential direction. Since this vane row 14 is the first row of blades impinged by the hot gases of the combustion chamber 2, it is usually also referred to as the first row of stator blades 14.
  • the gap 4 consists in the example shown of a radially inner gap 16 and a radially outer gap 17.
  • the radially inner gap 16 is referred to below as the inner gap 16 or inner gap 16.
  • the radially outer gap 17 is also referred to as the outer gap 17 or outer gap 17.
  • the chamber inner wall 7 and the turbine inner wall 1 1 each end axially.
  • the chamber outer wall 8 and the turbine outer wall 12 each end axially.
  • the cooling gas feed 5 is designed such that it introduces a cooling gas into the turbine gas path 13 or into the combustion gas path 9 via the gap 4 or via the respective sub-gap 16 or 17.
  • the introduction of cooling gas into the gap 4 serves to avoid the entry of hot gases from the combustion gas path 9 or from the turbine gas path 13 through the gap 4 in the areas behind the respective chamber walls 7, 8 and turbine walls 11, 12th
  • the turbine walls 7, 8 may be formed, for example, by heat shield elements or by so-called liners 18.
  • the turbine walls 11, 12 can by platforms 19 and 20, which are formed on the respective blade root radially outside and inside, be formed.
  • alternating positive and negative steps are formed in the axial direction. If we achieve this by means of a corresponding shaping of an end section of the respective turbine wall 11, 12 or of the respective chamber wall 7, 8 adjoining the respective gap 4 or 16 or 17.
  • An end section of the chamber inner wall 7 is designated 21
  • an end section of the chamber outer wall 8 is designated 22
  • an end portion of the turbine inner wall 1 1 is denoted by 23
  • an end portion of the turbine outer wall 12 is denoted by 24.
  • Regions of the end portions 21 to 24 lying in the sectional plane are shown by solid lines, while offset portions of the end portions 21 to 24 thereof are shown by broken lines.
  • the named stages are denoted by the lowercase letters a to d.
  • a denotes a positive step formed on the inner gap 16
  • b denotes a negative step formed on the inner gap 16.
  • a positive stage at the outer gap 17 is denoted by c
  • d denotes a negative step at the outer gap 17.
  • a positive stage a, c is present when the respective downstream wall 1 1, 12 protrudes radially into the respective gas path 9, 13 with respect to the respective upstream wall 7, 8.
  • there is a negative stage b, d when the respective upstream wall 7, 8 projecting radially projecting into the respective gas path 9, 13 with respect to the respective downstream wall 1 1, 12.
  • the positive stage a can be realized, for example, that the combustion chamber inner wall 7 in the adjacent to the gap 4 and the inner gap 16 end portion 21 in the positive stage a relative to the in the circumferential direction on both sides of the positive Stage a adjacent areas radially offset inwardly.
  • the inner positive stage a can thus be e.g. be realized only by contouring the chamber inner wall 7 in the end portion 21.
  • the inner positive stage a can be realized in that the turbine inner wall 1 1 extends in the associated end section 23 in the region of the positive step a radially outwardly offset relative to the areas adjacent to the positive step a in the circumferential direction. In this way, the positive stage a can be realized in principle only by a corresponding contouring of the turbine inner wall 11 in the end portion 23.
  • This negative step b can be realized in that the burner inner wall 7 in which the inner gap 16 adjacent end portion in the region of the negative stage b relative to the circumferentially on both sides of the negative step b adjacent areas radially offset outwardly extends.
  • the negative step b can also be realized in that the turbine inner wall 1 1 extends radially inwardly in the region adjacent to the inner gap 16 in the region of negative steps b relative to the regions adjacent to the negative step b in the circumferential direction.
  • the negative stage b can be realized by a combination of the above measures.
  • the positive stage c at the outer gap 17 can be realized in that the turbine outer wall 12 in the adjoining the outer gap 17 end portion 24 in the positive stage c relative to the circumferentially on both sides of the positive stage c adjacent areas radially inwardly offset runs.
  • the negative step d be realized, for example, that the combustion chamber outer wall 8 in the adjacent to the outer gap 17 end portion 22 in the negative stage d relative to the circumferentially on both sides of the negative step d adjacent areas radially inwardly staggered.
  • the negative step d can be realized at the outer gap 17 that the turbine outer wall 12 in the adjoining the outer gap 17 end portion 24 in the negative stage d relative to the circumferentially on both sides of the negative step d adjacent areas offset radially outwards. It is clear that a combination of the two above measures is also preferably realized in order to form the respective negative step d at the outer gap 17.
  • Gas paths 9, 13 alternate convex and concave areas, but gradually merge into each other.
  • the arrangement of positive and negative stages a, b, c, d which varies in the circumferential direction, may be formed as a function of a cooling requirement which occurs during operation of the gas turbine plant 1 at the respective gap 4 or at the inner gap 16 and / or at the outer gap 17 and especially in the circumferential direction can vary. It is clear that this cooling demand curve is present in the gap 16, 17 at a stationary operating state of the gas turbine plant 1 is substantially stationary. In order to increase the cooling gas flow in a peripheral segment that has an increased cooling requirement, a negative step b, d can be provided in this area.
  • a distribution in the circumferential direction of pressure sides and suction sides of the guide vanes 15 of the first row of guide vanes 14 can be taken into account.
  • These pressure sides and suction sides alternate in the circumferential direction and result from the profiling of the guide vanes 15.
  • alternating pressure sides and suction sides influence the pressure in the respective gas path 9, 13 also in the counterflow direction and at least up to the gap 4 a corresponding consideration of this distribution of the pressure sides and suction sides in the design of the steps at the gap 4, their influence can be reduced accordingly or used to set the desired cooling gas distribution.
  • flow conditions may arise in its gas path 9, which generate flow velocities or varying pressures varying at least in the outlet region 6 in the circumferential direction.
  • this pressure distribution varying in the circumferential direction can be stationary in a stationary operating state of the gas turbine plant 1. Accordingly, here too, the influence of a pressure distribution generated in the gap 4 by the operation of the combustion chamber 2 can be reduced or utilized for the desired cooling gas distribution by suitable design of stages a to d.
  • the measures proposed according to the invention are characterized by the fact that a significant influence of the cooling gas flow in the gap 4 can be realized without appreciably increasing the surface of the combustion chamber 2 or the turbine 3 exposed to the hot working gases becomes.
  • An enlarged surface as it is realized for example by projecting into the gas path Strömungsleitieri simultaneously increases the cooling demand for the flow guide and is disadvantageous in this respect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to a gas turbine installation (1) in particular for a power station, comprising a combustion chamber (2) which radially bounds a combustion chamber gas path (9) at least in an annular outlet area (6) with a chamber inner wall (7) and with a chamber outer wall (8), a turbine (3), which radially bounds a turbine gas path (13) in a stationary, annular inlet area (10) with a turbine inner wall (11) and with a turbine outer wall (12), a gap (4; 16, 17) which is provided radially on the inside and/or radially on the outside axially between the combustion chamber (2) and the turbine (3) and at which the inner and/or outer chamber wall (7, 8) and the inner and/or outer turbine wall (11, 12) end/ends, and a cooling gas supply (5) which introduces a cooling gas through the gap into the turbine gas path (13) and/or into the combustion chamber gas path (9). An end section (21, 22, 23, 24), which is adjacent to the gap of the respective turbine wall (11, 12) and/or of the respective chamber wall (7, 8) is shaped radially on the inside and/or radially on the outside such that positive steps (a, c), in the case of which the respective downstream wall projects with respect to the respective upstream wall (7, 8) radially into the respective gas path (9, 13), and negative steps (b, d), in the case of which the respective upstream wall projects radially into the respective gas path (9, 13) with respect to the respective downstream wall, alternates in the circumferential direction on the gap.

Description

Gasturbinenanlage Gas turbine plant
Technisches GebietTechnical area
Die vorliegende Erfindung betrifft eine Gasturbinenanlage, insbesondere für eine Kraftwerksanlage.The present invention relates to a gas turbine plant, in particular for a power plant.
Stand der TechnikState of the art
Eine derartige Gasturbinenanlage umfasst üblicherweise eine Brennkammer, die zumindest in einem ringförmigen Austrittsbereich mit einer Kammerinnenwand und mit einer Kammeraußenwand einen Brennkammergaspfad radial begrenzt. Ferner umfasst eine solche Gasturbinenanlage üblicherweise eine Turbine, die zumindest in einem stationären ringförmigen Eintrittsbereich mit einer Turbineninnenwand und mit einer Turbinenaußenwand einen Turbinengaspfad radial begrenzt. Um bei transienten Betriebszuständen der Gasturbinenanlage überhöhte Bauteilspannungen zu vermeiden, kann die Gasturbinenanlage außerdem mit einem radial innen und/oder radial außen axial zwischen derSuch a gas turbine plant usually comprises a combustion chamber which radially delimits a combustion gas path at least in an annular outlet region with a chamber inner wall and with a chamber outer wall. Furthermore, such a gas turbine plant usually comprises a turbine which radially delimits a turbine gas path at least in a stationary annular inlet area with a turbine inner wall and with a turbine outer wall. In order to avoid excessive component voltages during transient operating conditions of the gas turbine plant, the gas turbine plant can also be provided with a radially inner and / or radially outer axially between the
Brennkammer und der Turbine verlaufenden Spalt ausgestattet sein, an dem die innere und/oder äußere Kammerwand und die innere und/oder äußere Turbinenwand enden. Zur Vermeidung eines Eintrags heißer Arbeitsgase in diesen Spalt kann zweckmäßigerweise außerdem eine Kühlgaszuführung vorgesehen sein, die über den Spalt ein Kühlgas in den Turbinengaspfad und/oder in den Brennkammergaspfad einbringt.Combustion chamber and the turbine running gap be provided, at which the inner and / or outer chamber wall and the inner and / or outer turbine wall end. To avoid an entry of hot working gases in this gap may also expediently a cooling gas supply be provided, which introduces a cooling gas into the turbine gas path and / or in the combustion gas path via the gap.
Die Zuführung von Kühlgas zum Arbeitsgas der Gasturbinenanlage reduziert jedoch direkt deren Leistung und deren Wirkungsgrad. Es ist daher anzustreben, möglichst wenig Kühlgas zu verwenden.However, the supply of cooling gas to the working gas of the gas turbine plant directly reduces their performance and their efficiency. It is therefore desirable to use as little as possible cooling gas.
Aus der US 6,283,713 B1 und aus der GB 2,281 ,356 A sind Gasturbinen bekannt, bei denen zumindest bei einer Leitschaufelreihe die radial innenliegenden Plattformen der einzelnen Leitschaufeln so konturiert sind, dass sich in Umfangsrichtung ein wellenförmiger Oberflächenverlauf ergibt. Hierdurch kann der statische Druck im Arbeitsgas dahingehend beeinflusst werden, dass sich im Idealfall unmittelbar stromab der Leitschaufelreihe in Umfangsrichtung ein im wesentlichen konstanter statischer Druck einstellt.Gas turbines are known from US Pat. No. 6,283,713 B1 and GB 2,281,356 A, in which the radially inner platforms of the individual guide vanes are contoured at least in one row of guide vanes so that a wave-shaped surface course results in the circumferential direction. As a result, the static pressure in the working gas can be influenced to the effect that in the ideal case immediately downstream of the guide vane row sets a substantially constant static pressure.
Aus der US 2006/0034689 A1 ist eine Gasturbine bekannt, bei der eine Leitschaufelreihe an ihrer Anströmseite eine Vielzahl radial in den Gaspfad hineinragender Strömungsleitelemente aufweist. Mit Hilfe dieser Strömungsleitelemente kann eine die Schaufelspitzen stromauf angeordneter Laufschaufeln umströmende Leckageströmung reduziert bzw. in axialer Richtung umgelenkt werden, um so den Wirkungsgrad der Gasturbine zu erhöhen.A gas turbine is known from US 2006/0034689 A1, in which a row of guide vanes has on its inflow side a multiplicity of flow guide elements projecting radially into the gas path. With the aid of these flow guide elements, a leakage flow flowing around the blade tips upstream of the rotor blades can be reduced or deflected in the axial direction so as to increase the efficiency of the gas turbine.
Darstellung der ErfindungPresentation of the invention
Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für eine Gasturbinenanlage der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die sich insbesondere durch einen erhöhten Wirkungsgrad auszeichnet. Dieses Problem wird erfindungsgemäß durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.The invention, as characterized in the claims, deals with the problem of providing for a gas turbine plant of the type mentioned in an improved embodiment, which is characterized in particular by an increased efficiency. This problem is solved according to the invention by the subject matter of the independent claim. Advantageous embodiments are the subject of the dependent claims.
Die Erfindung beruht auf dem allgemeinen Gedanken, durch eine gezielte Positionierung einander in Umfangsrichtung abwechselnder positiver und negativer Stufen entlang des Spalts eine die Kühlgasströmung beeinflussende Druckverteilung im Spalt zu erzielen. Diese Druckverteilung lässt sich dabei gezielt so einrichten, dass Bereiche mit erhöhtem Kühlbedarf mit einem höheren Kühlgasstrom beaufschlagt werden als Bereiche mit einem kleineren Kühlbedarf. Hierdurch kann die insgesamt erforderliche Kühlgasmenge reduziert werden, was letztlich den Wirkungsgrad der Gasturbinenanlage erhöht.The invention is based on the general idea of achieving a pressure distribution in the gap influencing the flow of cooling gas by a specific positioning of circumferentially alternating positive and negative steps along the gap. This pressure distribution can be specifically set up so that areas with increased cooling demand are subjected to a higher cooling gas flow than areas with a smaller cooling demand. As a result, the total amount of cooling gas required can be reduced, which ultimately increases the efficiency of the gas turbine plant.
Um die in Umfangsrichtung einander abwechselnden positiven und negativen Stufen realisieren zu können, ist die Brennkammerwand bzw. die Turbinenwand in dem an den Spalt angrenzenden Endabschnitt entsprechend konturiert.In order to be able to realize the alternating positive and negative steps in the circumferential direction, the combustion chamber wall or the turbine wall is correspondingly contoured in the end section adjoining the gap.
Die in Umfangsrichtung variierenden Konturen der jeweiligen Kammerwand und der jeweiligen Turbinenwand im Bereich des radial innenliegenden Spalts und/oder im Bereich des radial außenliegenden Spalts können anhand unterschiedlicher Kriterien ausgewählt und ausgelegt sein. Beispielsweise kann zur Auslegung der in der Umfangsrichtung abwechselnden Anordnung positiver und negativer Stufen am Spalt eine in der Umfangsrichtung vorliegende Verteilung von einander abwechselnden Druckseiten und Saugseiten vonThe circumferentially varying contours of the respective chamber wall and the respective turbine wall in the region of the radially inner gap and / or in the region of the radially outer gap can be selected and designed on the basis of different criteria. For example, in order to design the alternately arranged in the circumferential direction arrangement of positive and negative steps at the gap in the circumferential direction distribution of alternating pressure sides and suction sides of
Leitschaufeln einer im stationären Eintrittsbereich angeordneten Leitschaufelreihe herangezogen werden. Bei dieser im Eintrittsbereich angeordneten Leitschaufelreihe handelt es sich üblicherweise um die sogenannte „erste Leitschaufelreihe". Die Druckseiten und Saugseiten der Leitschaufeln bewirken auch stromauf bis zum Spalt variierende Drücke in Umfangsrichtung, die sich auf den Kühlgasstrom im Spalt auswirken können. Durch eine entsprechende Berücksichtigung der Druckseiten und Saugseiten bei der Dimensionierung und Positionierung der Stufen entlang des Spalts lassen sich diese nachteiligen Einflüsse reduzieren.Guide vanes are used in a stationary inlet area arranged Leitschaufelreihe. This guide blade row arranged in the entry region is usually the so-called "first row of guide blades." The pressure sides and suction sides of the guide blades bring about this Also upstream to the gap varying pressures in the circumferential direction, which may affect the flow of cooling gas in the gap. By appropriate consideration of the pressure sides and suction sides in the dimensioning and positioning of the steps along the gap, these adverse influences can be reduced.
Des weiteren ist es zusätzlich oder alternativ möglich, eine Abhängigkeit von im Betrieb der Gasturbinenanlage entstehenden, in der Umfangsrichtung beabstandet aufeinander folgenden, sich stromauf ausbreitenden Bugwellen von Leitschaufeln einer im stationären Eintrittsbereich angeordneten Leitschaufelreihe zu berücksichtigen. Auch derartige Bugwellen können sich bis zum Spalt ausbreiten und können dort die Druckverteilung beeinflussen. Durch die Berücksichtigung dieser Bugwellenverteilung lassen sich deren negative Einflüsse auf die Kühlgasströmung reduzieren.Furthermore, it is additionally or alternatively possible to take into account a dependency of bow-shafts of guide vanes of a guide blade row arranged in the stationary inlet region, which arise during operation of the gas turbine plant and are spaced successively in the circumferential direction. Even such bow waves can spread to the gap and can influence the pressure distribution there. By taking into account this bow wave distribution, their negative effects on the cooling gas flow can be reduced.
Zusätzlich oder alternativ kann bei der Auslegung der Stufen am Spalt auch eine sich im Betrieb der Gasturbinenanlage am oder im Austrittsbereich der Brennkammer einstellende, in der Umfangsrichtung variierende Druckverteilung berücksichtigt werden. Es hat sich gezeigt, dass im Austrittsbereich der Brennkammer in der Umfangsrichtung unterschiedlicheAdditionally or alternatively, during the design of the steps at the gap, a pressure distribution which varies in the circumferential direction during operation of the gas turbine plant at or in the exit region of the combustion chamber can also be taken into account. It has been found that in the exit region of the combustion chamber in the circumferential direction different
Strömungsgeschwindigkeiten bzw. variierende Drücke auftreten können. Die sich im stationären Betrieb der Gasturbine einstellende Druckverteilung bzw. Geschwindigkeitsverteilung kann dabei stationär sein und könnte beispielsweise bei einer Mehrbrenner-Brennkammer auf die in der Umfangsrichtung verteilt angeordneten Brenner zurückzuführen sein. Die im Austrittsbereich der Brennkammer in der Umfangsrichtung variierenden Drücke beeinflussen ebenfalls den Kühlgasstrom durch den Spalt. Durch eine entsprechende Berücksichtigung der Druckverteilung im Austrittsbereich der Brennkammer kann der nachteilige Einfluss auf die Kühlgasströmung reduziert werden. Weitere wichtige Merkmale und Vorteile der erfindungsgemäßen Gasturbinenanlage ergeben sich aus den Unteransprüchen, aus der Zeichnung und aus der zugehörigen Figurenbeschreibung anhand der Zeichnung.Flow rates or varying pressures may occur. The pressure distribution or velocity distribution which arises during steady-state operation of the gas turbine can be stationary and could, for example, be due to the burner arranged distributed in the circumferential direction in a multi-burner combustion chamber. The pressures varying in the circumferential direction in the exit region of the combustion chamber also influence the flow of cooling gas through the gap. By appropriate consideration of the pressure distribution in the outlet region of the combustion chamber, the disadvantageous influence on the cooling gas flow can be reduced. Further important features and advantages of the gas turbine plant according to the invention will become apparent from the subclaims, from the drawing and from the associated description of the figures with reference to the drawing.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Bevorzugte Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.Preferred embodiments of the invention are illustrated in the drawings and will be explained in more detail in the following description.
Die einzige Fig. 1 zeigt einen stark vereinfachten Axialschnitt einer Gasturbinenanlage im Bereich eines Spalts zwischen einer Brennkammer und einer Turbine.The only Fig. 1 shows a greatly simplified axial section of a gas turbine plant in the region of a gap between a combustion chamber and a turbine.
Wege zur Ausführung der ErfindungWays to carry out the invention
Entsprechend Fig. 1 umfasst eine Gasturbinenanlage 1 , die bevorzugt in einer Kraftwerksanlage, also stationär verwendet wird, eine Brennkammer 2 und eine Turbine 3, zwischen denen ein axialer Spalt 4 angeordnet ist. Ferner ist eine durch Pfeile angedeutete Kühlgaszuführung 5 vorgesehen. Als Bezug für die radiale und axiale Orientierung ist in Fig. 1 eine Längsmittelachse oder Rotationsachse X eingetragen.1, a gas turbine plant 1, which is preferably used in a power plant, ie stationary, a combustion chamber 2 and a turbine 3, between which an axial gap 4 is arranged. Furthermore, a cooling gas supply 5 indicated by arrows is provided. As a reference for the radial and axial orientation is entered in Fig. 1, a longitudinal center axis or axis of rotation X.
Die Brennkammer 2 weist zumindest in einem ringförmigen Austrittsbereich 6 eine Kammerinnenwand 7 und eine Kammeraußenwand 8 auf, die zusammen einen durch einen Pfeil angedeuteten Brennkammergaspfad 9 radial begrenzen. Die Turbine 3 weist zumindest in einem stationären, also statorseitigen, ringförmigen Eintrittsbereich 10 eine Turbineninnenwand 1 1 und eine Turbinenaußenwand 12 auf, die zusammen einen durch einen Pfeil angedeuteten Turbinengaspfad 13 radial begrenzen. Ferner kann die Turbine 3 im stationären Eintrittsbereich 10 üblicherweise eine Leitschaufelreihe 14 mit mehreren, in der Umfangsrichtung benachbarten Leitschaufeln 15 aufweisen. Da diese Leitschaufelreihe 14 die erste von den Heißgasen der Brennkammer 2 angeströmte Schaufelreihe ist, wird sie üblicherweise auch als erste Leitschaufelreihe 14 bezeichnet.The combustion chamber 2 has, at least in an annular outlet region 6, a chamber inner wall 7 and a chamber outer wall 8, which together radially bound a combustion chamber gas path 9 indicated by an arrow. The turbine 3 has, at least in a stationary, ie stator, annular inlet region 10, a turbine inner wall 1 1 and a turbine outer wall 12, which together define a radially indicated by an arrow turbine gas path 13. Furthermore, the turbine 3 in the stationary inlet region 10 can usually have a row of guide vanes 14 with a plurality of guide vanes 15 which are adjacent in the circumferential direction. Since this vane row 14 is the first row of blades impinged by the hot gases of the combustion chamber 2, it is usually also referred to as the first row of stator blades 14.
Der Spalt 4 besteht im gezeigten Beispiel aus einem radial innenliegenden Spalt 16 und einem radial außenliegenden Spalt 17. Der radial innenliegende Spalt 16 wird im folgenden auch als innerer Spalt 16 oder Innenspalt 16 bezeichnet. Entsprechend dazu wird im folgenden der radial außenliegende Spalt 17 auch als äußerer Spalt 17 oder Außenspalt 17 bezeichnet. Am inneren Spalt 16 enden die Kammerinnenwand 7 und die Turbineninnenwand 1 1 jeweils axial. Am äußeren Spalt 17 enden die Kammeraußenwand 8 und die Turbinenaußenwand 12 jeweils axial.The gap 4 consists in the example shown of a radially inner gap 16 and a radially outer gap 17. The radially inner gap 16 is referred to below as the inner gap 16 or inner gap 16. Accordingly, in the following, the radially outer gap 17 is also referred to as the outer gap 17 or outer gap 17. At the inner gap 16, the chamber inner wall 7 and the turbine inner wall 1 1 each end axially. At the outer gap 17, the chamber outer wall 8 and the turbine outer wall 12 each end axially.
Die Kühlgaszuführung 5 ist so ausgestaltet, dass sie über den Spalt 4 bzw. über den jeweiligen Teilspalt 16 bzw. 17 ein Kühlgas in den Turbinengaspfad 13 bzw. in den Brennkammerergaspfad 9 einbringt. Die Einbringung von Kühlgas in den Spalt 4 dient dabei zur Vermeidung eines Eintritts von Heißgasen aus dem Brennkammergaspfad 9 bzw. aus dem Turbinengaspfad 13 durch den Spalt 4 in die Bereiche hinter den jeweiligen Kammerwänden 7, 8 bzw. Turbinenwänden 11 , 12.The cooling gas feed 5 is designed such that it introduces a cooling gas into the turbine gas path 13 or into the combustion gas path 9 via the gap 4 or via the respective sub-gap 16 or 17. The introduction of cooling gas into the gap 4 serves to avoid the entry of hot gases from the combustion gas path 9 or from the turbine gas path 13 through the gap 4 in the areas behind the respective chamber walls 7, 8 and turbine walls 11, 12th
Die Turbinenwände 7, 8 können beispielsweise durch Hitzeschildelemente bzw. durch sogenannten Liner 18 gebildet sein. Die Turbinenwände 11 , 12 können durch Plattformen 19 und 20, die am jeweiligen Schaufelfuß radial außen und innen ausgebildet sind, gebildet sein.The turbine walls 7, 8 may be formed, for example, by heat shield elements or by so-called liners 18. The turbine walls 11, 12 can by platforms 19 and 20, which are formed on the respective blade root radially outside and inside, be formed.
Um den Kühlgasbedarf zu reduzieren, sind erfindungsgemäß am Spalt 4 radial innen und/oder radial außen, also am Innenspalt 16 und/oder am Außenspalt 17 sich in Umfangsrichtung abwechselnde positive und negative Stufen in axialer Richtung ausgebildet. Erreicht wir dies durch eine entsprechende Formgebung eines an den jeweiligen Spalt 4 bzw. 16 oder 17 angrenzenden Endabschnitts der jeweiligen Turbinenwand 1 1 , 12 bzw. der jeweiligen Kammerwand 7, 8. Ein Endabschnitt der Kammerinnenwand 7 ist mit 21 bezeichnet, ein Endabschnitt der Kammeraußenwand 8 ist mit 22 bezeichnet, ein Endabschnitt der Turbineninnenwand 1 1 ist mit 23 bezeichnet und ein Endabschnitt der Turbinenaußenwand 12 ist mit 24 bezeichnet. In der Schnittebene liegende Bereiche der Endabschnitte 21 bis 24 sind mit durchgezogenen Linien dargestellt, während versetzt dazu angeordnete Bereiche der Endabschnitte 21 bis 24 mit unterbrochenen Linien dargestellt sind. Ferner sind die genannten Stufen mit den Kleinbuchstaben a bis d bezeichnet. Dabei bezeichnet a eine am Innenspalt 16 ausgebildete positive Stufe, während b eine am Innenspalt 16 ausgebildete negative Stufe bezeichnet. Eine positive Stufe am Außenspalt 17 ist mit c bezeichnet, während mit d eine negative Stufe am Außenspalt 17 bezeichnet ist. Eine positive Stufe a, c liegt dann vor, wenn die jeweilige stromab liegende Wand 1 1 , 12 gegenüber der jeweiligen stromauf liegenden Wand 7, 8 in den jeweiligen Gaspfad 9, 13 hineinragend radial vorsteht. Im Unterschied dazu liegt eine negative Stufe b, d vor, wenn die jeweilige stromauf liegende Wand 7, 8 gegenüber der jeweiligen stromab liegenden Wand 1 1 , 12 in den jeweiligen Gaspfad 9, 13 hineinragend radial vorsteht.In order to reduce the cooling gas requirement, according to the invention at the gap 4 radially inwardly and / or radially outwardly, ie at the inner gap 16 and / or the outer gap 17 in the circumferential direction alternating positive and negative steps are formed in the axial direction. If we achieve this by means of a corresponding shaping of an end section of the respective turbine wall 11, 12 or of the respective chamber wall 7, 8 adjoining the respective gap 4 or 16 or 17. An end section of the chamber inner wall 7 is designated 21, an end section of the chamber outer wall 8 is designated 22, an end portion of the turbine inner wall 1 1 is denoted by 23 and an end portion of the turbine outer wall 12 is denoted by 24. Regions of the end portions 21 to 24 lying in the sectional plane are shown by solid lines, while offset portions of the end portions 21 to 24 thereof are shown by broken lines. Furthermore, the named stages are denoted by the lowercase letters a to d. Here, a denotes a positive step formed on the inner gap 16, while b denotes a negative step formed on the inner gap 16. A positive stage at the outer gap 17 is denoted by c, while d denotes a negative step at the outer gap 17. A positive stage a, c is present when the respective downstream wall 1 1, 12 protrudes radially into the respective gas path 9, 13 with respect to the respective upstream wall 7, 8. In contrast, there is a negative stage b, d, when the respective upstream wall 7, 8 projecting radially projecting into the respective gas path 9, 13 with respect to the respective downstream wall 1 1, 12.
Grundsätzlich kann es ausreichend sein, wenn nur am Innenspalt 16 oder nur am Außenspalt 17 die in Umfangsrichtung abwechselnde Abfolge positiver und negativer Stufen a, b bzw. c, d realisiert wird. Gezeigt ist jedoch die Variante, bei der sowohl radial innen als auch radial außen am Spalt 4 die in Umfangsrichtung abwechselnde Abfolge positiver und negativer Stufen a bis d realisiert ist.In principle, it may be sufficient if only at the inner gap 16 or only at the outer gap 17, the sequence alternating positive and positive in the circumferential direction negative stages a, b and c, d is realized. Shown, however, is the variant in which both radially inward and radially outward at the gap 4, the sequence of positive and negative steps a to d alternating in the circumferential direction is realized.
Am radial innenliegenden Spalt 16 kann die positive Stufe a beispielsweise dadurch realisiert werden, dass die Brennkammerinnenwand 7 in dem an den Spalt 4 bzw. an den Innenspalt 16 angrenzenden Endabschnitt 21 im Bereich der positiven Stufe a relativ zu den in der Umfangsrichtung beiderseits an die positive Stufe a angrenzenden Bereichen radial nach innen versetzt verläuft. Die innere positive Stufe a kann somit z.B. ausschließlich durch eine Konturierung der Kammerinnenwand 7 in deren Endabschnitt 21 realisiert werden.At the radially inner gap 16, the positive stage a can be realized, for example, that the combustion chamber inner wall 7 in the adjacent to the gap 4 and the inner gap 16 end portion 21 in the positive stage a relative to the in the circumferential direction on both sides of the positive Stage a adjacent areas radially offset inwardly. The inner positive stage a can thus be e.g. be realized only by contouring the chamber inner wall 7 in the end portion 21.
Zusätzlich oder alternativ lässt sich die innere positive Stufe a dadurch realisieren, dass die Turbineninnenwand 1 1 im zugehörigen Endabschnitt 23 im Bereich der positiven Stufe a relativ zu den in Umfangsrichtung beiderseits an die positive Stufe a angrenzenden Bereichen radial nach außen versetzt verläuft. Auf diese Weise kann die positive Stufe a grundsätzlich ausschließlich durch eine entsprechende Konturierung der Turbineninnenwand 11 im Endabschnitt 23 realisiert werden.Additionally or alternatively, the inner positive stage a can be realized in that the turbine inner wall 1 1 extends in the associated end section 23 in the region of the positive step a radially outwardly offset relative to the areas adjacent to the positive step a in the circumferential direction. In this way, the positive stage a can be realized in principle only by a corresponding contouring of the turbine inner wall 11 in the end portion 23.
Bevorzugt wird jedoch eine Ausführungsform, bei der sowohl eine variierende Kontur an der Brennkammerinnenwand 7 im Bereich des Endabschnitts 21 als auch eine variierende Kontur der Turbineninnenwand 1 1 im Bereich des Endabschnitts 23 zusammenwirken, um die gewünschte positive Stufe a am Innenspalt 16 auszubilden.However, preference is given to an embodiment in which both a varying contour on the combustion chamber inner wall 7 in the region of the end portion 21 and a varying contour of the turbine inner wall 1 1 in the region of the end portion 23 cooperate to form the desired positive stage a at the inner gap 16.
Für die am Innenspalt 16 ausgebildete negative Stufe b gelten entsprechende Konfigurationsmöglichkeiten. Diese negative Stufe b kann dadurch realisiert werden, dass die Brennerinnenwand 7 in dem an den Innenspalt 16 angrenzenden Endabschnitt im Bereich der negativen Stufe b relativ zu den in Umfangsrichtung beiderseits an die negative Stufe b angrenzenden Bereichen radial nach außen versetzt verläuft. Die negative Stufe b kann auch dadurch realisiert werden, dass die Turbineninnenwand 1 1 in dem an den Innenspalt 16 angrenzenden Endabschnitt 23 im Bereich negativen Stufen b relativ zu dem in der Umfangsrichtung beiderseits an die negative Stufe b angrenzenden Bereichen radial nach innen versetzt verläuft. Ebenso kann die negative Stufe b durch eine Kombination der vorstehenden Maßnahmen realisiert sein.For the formed on the inner gap 16 negative stage b apply corresponding configuration options. This negative step b can be realized in that the burner inner wall 7 in which the inner gap 16 adjacent end portion in the region of the negative stage b relative to the circumferentially on both sides of the negative step b adjacent areas radially offset outwardly extends. The negative step b can also be realized in that the turbine inner wall 1 1 extends radially inwardly in the region adjacent to the inner gap 16 in the region of negative steps b relative to the regions adjacent to the negative step b in the circumferential direction. Likewise, the negative stage b can be realized by a combination of the above measures.
Entsprechendes gilt nun auch für den Außenspalt 17. Um dort die positive Stufe c zu realisieren, kann die Brennkammeraußenwand 8 in dem an den Außenspalt 17 angrenzenden Endabschnitt 22 im Bereich der positiven Stufe c relativ zu den in Umfangsrichtung beiderseits an die positive Stufe c angrenzenden Bereichen radial nach außen versetzt verlaufen. Ebenso kann die positive Stufe c am Außenspalt 17 dadurch realisiert werden, dass die Turbinenaußenwand 12 in dem an den Außenspalt 17 angrenzenden Endabschnitt 24 im Bereich der positiven Stufe c relativ zu den in der Umfangsrichtung beiderseits an die positive Stufe c angrenzenden Bereichen radial nach innen versetzt verläuft. Bevorzugt wird jedoch eine Kombination der beiden vorstehend genannten Maßnahmen.The same now applies to the outer gap 17. In order to realize there the positive stage c, the combustion chamber outer wall 8 in the adjoining the outer gap 17 end portion 22 in the positive stage c relative to the circumferentially on both sides of the positive stage c adjacent areas offset radially outward. Likewise, the positive stage c at the outer gap 17 can be realized in that the turbine outer wall 12 in the adjoining the outer gap 17 end portion 24 in the positive stage c relative to the circumferentially on both sides of the positive stage c adjacent areas radially inwardly offset runs. However, preference is given to a combination of the two measures mentioned above.
Analog dazu kann am Außenspalt 17 die negative Stufe d beispielsweise dadurch realisiert werden, dass die Brennkammeraußenwand 8 in dem an den Außenspalt 17 angrenzenden Endabschnitt 22 im Bereich der negativen Stufe d relativ zu den in Umfangsrichtung beiderseits an die negative Stufe d angrenzenden Bereichen radial nach innen versetzt verläuft. Ebenso kann die negative Stufe d am Außenspalt 17 dadurch realisiert werden, dass die Turbinenaußenwand 12 in dem an den Außenspalt 17 angrenzenden Endabschnitt 24 im Bereich der negativen Stufe d relativ zu den in der Umfangsrichtung beiderseits an die negative Stufe d angrenzenden Bereichen radial nach außen versetzt verläuft. Es ist klar, dass auch hier bevorzugt eine Kombination der beiden vorstehenden Maßnahmen realisiert wird, um die jeweilige negative Stufe d am Außenspalt 17 auszubilden.Similarly, at the outer gap 17, the negative step d be realized, for example, that the combustion chamber outer wall 8 in the adjacent to the outer gap 17 end portion 22 in the negative stage d relative to the circumferentially on both sides of the negative step d adjacent areas radially inwardly staggered. Similarly, the negative step d can be realized at the outer gap 17 that the turbine outer wall 12 in the adjoining the outer gap 17 end portion 24 in the negative stage d relative to the circumferentially on both sides of the negative step d adjacent areas offset radially outwards. It is clear that a combination of the two above measures is also preferably realized in order to form the respective negative step d at the outer gap 17.
In Fig. 1 sind die Abweichungen der Kontur an den jeweiligen Wänden 7, 8, 1 1 , 12 übertrieben dargestellt, um ihre Erkennbarkeit für die vorliegende Beschreibung zu verbessern.In Fig. 1, the deviations of the contour on the respective walls 7, 8, 1 1, 12 are exaggerated in order to improve their visibility for the present description.
In der Umfangsrichtung können sich somit an der jeweiligen Wand 7, 8, 1 1 , 12 im Bereich des jeweiligen Endabschnitts 21 , 22, 23, 24 bezüglich des jeweiligenIn the circumferential direction can thus on the respective wall 7, 8, 1 1, 12 in the region of the respective end portion 21, 22, 23, 24 with respect to the respective
Gaspfads 9, 13 konvexe und konkave Bereiche abwechseln, die jedoch stufenlos ineinander übergehen.Gas paths 9, 13 alternate convex and concave areas, but gradually merge into each other.
Für die Auslegung, insbesondere für die Dimensionierung und Positionierung, der positiven und negativen Stufen a, b, c, d, ergeben sich unterschiedliche Möglichkeiten, die jeweils alternativ oder ganz oder teilweise kumulativ anwendbar sind. Im folgenden werden exemplarisch einige Kriterien näher erläutert, die bei der erfindungsgemäßen Gasturbinenanlage 1 separat oder insgesamt oder in beliebiger Kombination realisiert sein können.For the design, in particular for the dimensioning and positioning of the positive and negative stages a, b, c, d, there are different possibilities, which are alternatively or completely or partially cumulatively applicable. In the following, some criteria are explained in more detail by way of example, which can be implemented separately or in total or in any combination in the gas turbine plant 1 according to the invention.
Beispielsweise kann die in Umfangsrichtung abwechselnde Anordnung positiver und negativer Stufen a, b, c, d in Abhängigkeit eines Kühlbedarfs ausgebildet sein, der sich im Betrieb der Gasturbinenanlage 1 am jeweiligen Spalt 4 bzw. am Innenspalt 16 und/oder am Außenspalt 17 einstellt und der insbesondere in der Umfangsrichtung variieren kann. Dabei ist klar, dass dieser Kühlbedarfsverlauf im Spalt 16, 17 bei einem stationären Betriebszustand der Gasturbinenanlage 1 im wesentlichen stationär vorliegt. Um in einem Umfangssegment, das einen erhöhten Kühlbedarf besitzt, den Kühlgasstrom zu erhöhen, kann in diesem Bereich eine negative Stufe b, d vorgesehen werden. Durch die sich im Spalt 4 einer solchen negativen Stufe b, d einstellenden Druckverhältnisse lässt sich gezielt eine Druckabsenkung und somit eine Beschleunigung bzw. eine höhere Strömungsgeschwindigkeit für das Kühlgas realisieren. Im Unterschied dazu kann bei Umfangssegmenten, bei denen ein reduzierter Kühlgasstrom ausreicht, eine positive Stufe a, c realisiert werden, die zu einer Druckerhöhung und somit zu einer Abbremsung bzw. zu einer reduzierten Strömungsgeschwindigkeit im Kühlgas führt.For example, the arrangement of positive and negative stages a, b, c, d, which varies in the circumferential direction, may be formed as a function of a cooling requirement which occurs during operation of the gas turbine plant 1 at the respective gap 4 or at the inner gap 16 and / or at the outer gap 17 and especially in the circumferential direction can vary. It is clear that this cooling demand curve is present in the gap 16, 17 at a stationary operating state of the gas turbine plant 1 is substantially stationary. In order to increase the cooling gas flow in a peripheral segment that has an increased cooling requirement, a negative step b, d can be provided in this area. Through which in the gap 4 Such a negative stage b, d-adjusting pressure conditions can be targeted realize a pressure drop and thus an acceleration or a higher flow velocity for the cooling gas. In contrast, in circumferential segments in which a reduced cooling gas flow is sufficient, a positive step a, c can be realized, which leads to an increase in pressure and thus to a deceleration or to a reduced flow velocity in the cooling gas.
Im Betrieb der Gasturbinenanlage 1 kommt es im Bereich des Spalts 4 zu anderen dynamischen Effekten, welche den Druckverlauf in Umfangsrichtung des Spalts 4 ungleichförmig beeinflussen können. Diese Randbedingungen können bei der Auslegung der Stufenverteilung entlang des Spalts 4 entsprechend berücksichtigt werden.In the operation of the gas turbine plant 1, other dynamic effects occur in the region of the gap 4, which can influence the pressure progression in the circumferential direction of the gap 4 nonuniformly. These boundary conditions can be taken into account when designing the step distribution along the gap 4 accordingly.
Beispielsweise kann für die in Umfangsrichtung abwechselnde Anordnung positiver und negativer Stufen a, b, c, d eine in der Umfangsrichtung vorliegende Verteilung von Druckseiten und Saugseiten der Leitschaufeln 15 der ersten Leitschaufelreihe 14 berücksichtigt werden. Diese Druckseiten und Saugseiten wechseln sich dabei in der Umfangsrichtung ab und ergeben sich aus der Profilierung der Leitschaufeln 15. In der Umfangsrichtung einander abwechselnden Druckseiten und Saugseiten beeinflussen den Druck im jeweiligen Gaspfad 9, 13 auch in Gegenstromrichtung und zwar zumindest bis zum Spalt 4. Durch eine entsprechende Berücksichtigung dieser Verteilung der Druckseiten und Saugseiten bei der Auslegung der Stufen am Spalt 4 kann deren Einfluss entsprechend reduziert bzw. zur Einstellung der gewünschten Kühlgasverteilung genutzt werden.For example, for the circumferentially alternating arrangement of positive and negative stages a, b, c, d, a distribution in the circumferential direction of pressure sides and suction sides of the guide vanes 15 of the first row of guide vanes 14 can be taken into account. These pressure sides and suction sides alternate in the circumferential direction and result from the profiling of the guide vanes 15. In the circumferential direction alternating pressure sides and suction sides influence the pressure in the respective gas path 9, 13 also in the counterflow direction and at least up to the gap 4 a corresponding consideration of this distribution of the pressure sides and suction sides in the design of the steps at the gap 4, their influence can be reduced accordingly or used to set the desired cooling gas distribution.
Im Betrieb der Gasturbinenanlage 1 können sich außerdem an den Anströmkanten der Leitschaufeln 15 der ersten Leitschaufelreihe 14 sogenannten Bugwellen ausbilden, die sich entgegen der Strömungsrichtung ausbreiten und zumindest bis zum Spalt 4 gelangen können. Derartige Bugwellen führen ebenfalls zu einer stationären Beeinflussung der Druckverteilung in Umfangsrichtung im Spalt 4. Durch eine entsprechende Berücksichtigung der Bugwellenverteilung bei der Auslegung der Stufen a bis d lässt sich dieser Effekt reduzieren bzw. für die gewünschte Kühlung nutzen.During operation of the gas turbine plant 1, moreover, at the leading edges of the guide vanes 15 of the first guide blade row 14, so-called Form bow waves that propagate against the flow direction and can reach at least until the gap 4. Such bow waves also lead to a stationary influencing of the pressure distribution in the circumferential direction in the gap 4. By a corresponding consideration of the bow wave distribution in the design of stages a to d, this effect can be reduced or used for the desired cooling.
Des weiteren können im Betrieb der Brennkammer 2 in deren Gaspfad 9 Strömungsverhältnisse entstehen, die in der Umfangsrichtung zumindest im Austrittsbereich 6 variierende Strömungsgeschwindigkeiten bzw. variierende Drücke erzeugen. Dabei kann diese in Umfangsrichtung variierende Druckverteilung in einem stationären Betriebszustand der Gasturbinenanlage 1 stationär sein. Dementsprechend kann auch hier der Einfluss einer durch den Betrieb der Brennkammer 2 erzeugten Druckverteilung im Spalt 4 durch geeignete Auslegung der Stufen a bis d reduziert bzw. für die gewünschte Kühlgasverteilung genutzt werden.Furthermore, during operation of the combustion chamber 2, flow conditions may arise in its gas path 9, which generate flow velocities or varying pressures varying at least in the outlet region 6 in the circumferential direction. In the process, this pressure distribution varying in the circumferential direction can be stationary in a stationary operating state of the gas turbine plant 1. Accordingly, here too, the influence of a pressure distribution generated in the gap 4 by the operation of the combustion chamber 2 can be reduced or utilized for the desired cooling gas distribution by suitable design of stages a to d.
Die erfindungsgemäß vorgeschlagenen Maßnahmen, die separat oder beliebig kumuliert realisierbar sind, zeichnen sich dadurch aus, dass damit eine signifikante Beeinflussung der Kühlgasströmung im Spalt 4 realisierbar ist, ohne dass dabei die den heißen Arbeitsgasen ausgesetzte Oberfläche der Brennkammer 2 bzw. der Turbine 3 merklich vergrößert wird. Eine vergrößerte Oberfläche, wie sie beispielsweise durch in den Gaspfad hineinragende Strömungsleitelemente realisiert wird, erhöht gleichzeitig den Kühlbedarf für die Strömungsleitelemente und ist insoweit nachteilig. The measures proposed according to the invention, which can be implemented separately or in any cumulative form, are characterized by the fact that a significant influence of the cooling gas flow in the gap 4 can be realized without appreciably increasing the surface of the combustion chamber 2 or the turbine 3 exposed to the hot working gases becomes. An enlarged surface, as it is realized for example by projecting into the gas path Strömungsleitelemente simultaneously increases the cooling demand for the flow guide and is disadvantageous in this respect.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Gasturbinenanlage 2 Brennkammer1 gas turbine plant 2 combustion chamber
3 Turbine3 turbine
4 Spalt4 gap
5 Kühlgaszuführung5 cooling gas supply
6 Austrittsbereich der Brennkammer 7 Brennkammerinnenwand6 exit area of the combustion chamber 7 combustion chamber inner wall
8 Brennkammeraußenwand8 combustion chamber outer wall
9 Brennkammergaspfad9 combustion chamber gas path
10 Eintrittsbereich der Turbine10 inlet area of the turbine
1 1 Turbineninnenwand 12 Turbinenaußenwand1 1 Turbine inner wall 12 Turbinenaußenwand
13 Turbinengaspfad13 turbine gas path
14 Leitschaufelreihe14 vane row
15 Leitschaufel15 vane
16 Innenspalt 17 Außenspalt16 inner gap 17 outer gap
18 Hitzeschildelement18 heat shield element
19 äu ßere Plattform der Turbinenleitschaufel19 Outer platform of the turbine vane
20 innere Plattform der Turbinenleitschaufel20 inner platform of turbine vane
21 Endabschnitt von 7 22 Endabschnitt von 821 end section of 7 22 end section of 8
23 Endabschnitt von 11 24 Endabschπitt von 1223 end of 11 24 final section of 12
25 Vorderkante der Leits25 leading edge of the guide
a positive Stufe bei 16 b negative Stufe bei 16a positive step at 16 b negative step at 16
C positive Stufe bei 17 d negative Stufe bei 17C positive stage at 17 d negative stage at 17
X Längsmittelachse/Rotationsachse X longitudinal center axis / rotation axis

Claims

Patentansprüche claims
1. Gasturbinenanlage, insbesondere für eine Kraftwerksanlage, - mit einer Brennkammer (2), die zumindest in einem ringförmigen Austrittsbereich (6) mit einer Kammerinnenwand (7) und mit einer Kammeraußenwand (8) einen Brennkammergaspfad (9) radial begrenzt,1. gas turbine plant, in particular for a power plant, - with a combustion chamber (2) which at least in an annular outlet region (6) with a chamber inner wall (7) and with a chamber outer wall (8) radially bounds a combustion gas path (9),
- mit einer Turbine (3), die zumindest in einem stationären, ringförmigen Eintrittsbereich (10) mit einer Turbineninnenwand (1 1 ) und mit einer Turbinenaußenwand (12) einen Turbinengaspfad (13) radial begrenzt,- With a turbine (3) which at least in a stationary, annular inlet region (10) with a turbine inner wall (1 1) and with a turbine outer wall (12) radially a turbine gas path (13) radially,
- mit einem radial innen und/oder radial außen axial zwischen der Brennkammer (2) und der Turbine (3) vorhandenen Spalt (4; 16, 17), an dem die innere und/oder äußere Kammerwand (7, 8) und die innere und/oder äußere Turbinenwand (1 1 , 12) enden, - mit einer Kühlgaszuführung (5), die über den Spalt (4; 16, 17) ein Kühlgas in den Turbinengaspfad (13) und/oder in den Brennkammergaspfad (9) einbringt,- With a radially inner and / or radially outer axially between the combustion chamber (2) and the turbine (3) existing gap (4; 16, 17), to which the inner and / or outer chamber wall (7, 8) and the inner and / or outer turbine wall (1 1, 12) ends, - with a cooling gas supply (5), which introduces via the gap (4; 16, 17) a cooling gas in the turbine gas path (13) and / or in the combustion gas path (9) .
- wobei radial innen und/oder radial außen ein an den Spalt (4; 16, 17) angrenzender Endabschnitt (21 , 22, 23, 24) der jeweiligen Turbinenwand (1 1 , 12) und/oder der jeweiligen Kammerwand (7, 8) so geformt ist, dass sich in Umfangsrichtung am Spalt (4; 16, 17) positive Stufen (a, c), bei denen die jeweilige stromab liegende Wand (1 1 , 12) gegenüber der jeweiligen stromauf liegenden Wand (7, 8) in den jeweiligen Gaspfad (9, 13) hineinragend radial vorsteht, und negative Stufen (b, d) abwechseln, bei denen die jeweilige stromauf liegende Wand (7, 8) gegenüber der jeweiligen stromab liegenden Wand (1 1 , 12) in den jeweiligen Gaspfad (9, 13) hineinragend radial vorsteht. - wherein radially on the inside and / or radially outside of the gap (4; 16, 17) adjacent end portion (21, 22, 23, 24) of the respective turbine wall (1 1, 12) and / or the respective chamber wall (7, 8 ) is shaped so that in the circumferential direction at the gap (4; 16, 17) positive steps (a, c), in which the respective downstream wall (1 1, 12) relative to the respective upstream wall (7, 8) protruding radially into the respective gas path (9, 13), and alternating negative stages (b, d), in which the respective upstream wall (7, 8) opposite to the respective downstream wall (1 1, 12) in the respective Gas path (9, 13) projecting radially projecting.
2. Gasturbinenanlage nach Anspruch 1 , dadurch gekennzeichnet, dass die in Umfangsrichtung abwechselnde Anordnung positiver und negativer Stufen (a, b, c, d) in Abhängigkeit eines sich im Betrieb der Gasturbinenanlage (1) am Spalt (4; 16, 17) einstellenden, in Umfangsrichtung variierenden Kühlbedarfs ausgewählt ist.2. Gas turbine plant according to claim 1, characterized in that the alternately in the circumferential direction arrangement of positive and negative stages (a, b, c, d) depending on a in operation of the gas turbine plant (1) at the gap (4; 16, 17) adjusting is selected in the circumferential direction varying cooling demand.
3. Gasturbinenanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die in Umfangsrichtung abwechselnde Anordnung positiver und negativer Stufen (a, b, c, d) in Abhängigkeit einer in Umfangsrichtung vorliegenden Verteilung von einander abwechselnden Druckseiten und Saugseiten von Leitschaufeln (15) einer im stationären Eintrittsbereich (10) angeordneten (ersten) Leitschaufelreihe (14) ausgewählt ist.3. Gas turbine plant according to claim 1 or 2, characterized in that the alternately in the circumferential direction arrangement of positive and negative stages (a, b, c, d) in dependence of a present in the circumferential direction distribution of alternating pressure sides and suction sides of vanes (15) of a in the stationary inlet region (10) arranged (first) guide vane row (14) is selected.
4. Gasturbinenanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die in Umfangsrichtung abwechselnde Anordnung positiver und negativer Stufen (a, b, c, d) in Abhängigkeit von im Betrieb der Gasturbinenanlage (1) entstehenden, in der Umfangsrichtung beabstandet aufeinander folgenden, sich stromauf ausbreitenden Bugwellen von Leitschaufeln (15) einer im stationären Einlassbereich (10) angeordneten (ersten) Leitschaufelreihe (14) ausgewählt ist.4. Gas turbine plant according to one of claims 1 to 3, characterized in that the alternately in the circumferential direction arrangement of positive and negative stages (a, b, c, d) depending on the operation of the gas turbine plant (1) resulting in the circumferential direction spaced apart following, upstream propagating bow waves of vanes (15) of a (10) arranged in the stationary inlet region (first) row of guide vanes (14) is selected.
5. Gasturbinenanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die in Umfangsrichtung abwechselnde Anordnung positiver und negativer Stufen (a, b, c, d) in Abhängigkeit einer sich im Betrieb der Gasturbinenanlage (1) an oder im Austrittsbereich (6) der Brennkammer (2) einstellenden, in der Umfangsrichtung variierenden Druckverteilung ausgewählt ist. 5. Gas turbine arrangement according to one of claims 1 to 4, characterized in that the alternately in the circumferential direction arrangement of positive and negative stages (a, b, c, d) in response to a during operation of the gas turbine plant (1) at or in the exit region (6 ) of the combustion chamber (2) adjusting, varying in the circumferential direction pressure distribution is selected.
6. Gasturbinenanlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass am Spalt (4; 16) radial innen eine positive Stufe (a) dadurch gebildet ist, dass die Brennkammerinnenwand (7) in dem an den Spalt (4; 16) angrenzenden Endabschnitt (21) im Bereich der positiven Stufe (a) relativ zu den in Umfangsrichtung beiderseits an die positive Stufe (a) angrenzenden Bereichen radial nach innen versetzt verläuft und/oder dass die Turbineninnenwand (11) in dem an den Spalt (4; 16) angrenzenden Endabschnitt (23) im Bereich der positiven Stufe (a) relativ zu den in Umfangsrichtung beiderseits an die positive Stufe (a) angrenzenden Bereichen radial nach außen versetzt verläuft.6. gas turbine plant according to one of claims 1 to 5, characterized in that at the gap (4; 16) radially inwardly a positive step (a) is formed by the fact that the combustion chamber inner wall (7) in which at the gap (4; 16) adjacent end portion (21) in the region of the positive step (a) relative to the circumferentially on both sides of the positive step (a) adjacent areas radially inwardly offset extends and / or that the turbine inner wall (11) in which the gap (4; 16) adjoining end portion (23) in the region of the positive step (a) relative to the circumferentially on both sides of the positive step (a) adjacent areas radially offset outwardly.
7. Gasturbinenanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass am Spalt (4; 16) radial innen eine negative Stufe (b) dadurch gebildet ist, dass die Brennkammerinnenwand (7) in dem an den Spalt (4; 16) angrenzenden Endabschnitt (6) im Bereich der negativen Stufe (b) relativ zu den in Umfangsrichtung beiderseits an die negative Stufe (b) angrenzenden Bereichen radial nach außen versetzt verläuft und/oder dass die Turbineninnenwand (11) in dem an den Spalt (4; 16) angrenzenden Endabschnitt (23) im Bereich der negativen Stufe (b) relativ zu den in der Umfangsrichtung beiderseits an die negative Stufe (b) angrenzenden Bereichen radial nach innen versetzt verläuft.7. gas turbine plant according to one of claims 1 to 6, characterized in that at the gap (4; 16) radially inwardly a negative step (b) is formed by the fact that the combustion chamber inner wall (7) in which at the gap (4; 16) adjacent end portion (6) in the region of the negative step (b) relative to the circumferentially on both sides of the negative step (b) adjacent areas radially outwardly offset and / or that the turbine inner wall (11) in which the gap (4; 16) adjacent the end portion (23) in the region of the negative step (b) is offset radially inwardly relative to the regions adjacent to the negative step (b) in the circumferential direction on both sides.
8. Gasturbinenanlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass am Spalt (4; 17) radial außen eine positive Stufe (c) dadurch gebildet ist, dass die Brennkammeraußenwand (8) in dem an den Spalt (4; 17) angrenzenden Endabschnitt (22) im Bereich der positiven Stufe (c) relativ zu den in Umfangsrichtung beiderseits an die positive Stufe (c) angrenzenden Bereichen radial nach außen versetzt verläuft und/oder dass die Turbinenaußenwand (12) in dem an den Spalt (4; 17) angrenzenden Endabschnitt (24) im Bereich der positiven Stufe (c) relativ zu den in Umfangsrichtung beiderseits an die positive Stufe (c) angrenzenden Bereichen radial nach innen versetzt verläuft.8. Gas turbine plant according to one of claims 1 to 7, characterized in that at the gap (4; 17) a positive step (c) is formed radially on the outside, in that the combustion chamber outer wall (8) in which the gap (4; 17) adjacent end portion (22) in the region of the positive step (c) relative to the circumferentially on both sides of the positive step (c) adjacent areas extends radially outward and / or that the turbine outer wall (12) in the adjacent to the gap (4; 17) end portion (24) in the positive stage (c) relative to the circumferentially on both sides of the positive stage (c) adjacent areas radially offset inwardly.
9. Gasturbinenanlage nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass am Spalt (4; 17) radial außen eine negative Stufe (d) dadurch gebildet ist, dass die Brennkammeraußenwand (8) in dem an den Spalt (4; 17) angrenzenden Endabschnitt (22) im Bereich der negativen Stufe (d) relativ zu den in9. Gas turbine plant according to one of claims 1 to 8, characterized in that at the gap (4; 17) a negative step (d) is formed radially on the outside, in that the combustion chamber outer wall (8) adjoins the gap (4; End portion (22) in the region of the negative stage (d) relative to the in
Umfangsrichtung beiderseits an die negative Stufe (d) angrenzenden Bereichen radial nach innen versetzt verläuft und/oder dass die Turbinenaußenwand (12) in dem an den Spalt (4; 17) angrenzenden Endabschnitt (24) im Bereich der negativen Stufe (b) relativ zu dem in Umfangsrichtung beiderseits an die negative Stufe (d) angrenzenden Bereichen radial nach außen versetzt verläuft.Circumferentially extending radially inwardly on both sides of the negative step (d) adjacent areas and / or that the turbine outer wall (12) in the gap (4; 17) adjacent end portion (24) in the region of the negative stage (b) relative to in the circumferential direction on both sides of the negative step (d) adjacent areas radially offset to the outside.
10. Gasturbinenanlage nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in Umfangsrichtung sämtliche Übergänge zwischen verschiedenen Stufen (a, b, c, d) zugeordneten Bereichen im jeweiligen Endabschnitt (21 , 22, 23, 24) der Brennkammerinnenwand (7) und/oder der Brennkammeraußenwand (8) und/oder der Turbineninnenwand (11 ) und/oder der Turbinenaußenwand (12) stufenlos ausgestaltet sind. 10. gas turbine plant according to one of claims 1 to 9, characterized in that in the circumferential direction all transitions between different stages (a, b, c, d) associated areas in the respective end portion (21, 22, 23, 24) of the combustion chamber inner wall (7) and / or the combustion chamber outer wall (8) and / or the turbine inner wall (11) and / or the turbine outer wall (12) are designed to be infinitely variable.
EP08786927A 2007-08-06 2008-08-06 Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation Active EP2179143B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007037070 2007-08-06
PCT/EP2008/060320 WO2009019282A2 (en) 2007-08-06 2008-08-06 Gap cooling between a combustion chamber wall and a turbine wall of a gas turbine installation

Publications (2)

Publication Number Publication Date
EP2179143A2 true EP2179143A2 (en) 2010-04-28
EP2179143B1 EP2179143B1 (en) 2011-01-26

Family

ID=40341811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08786927A Active EP2179143B1 (en) 2007-08-06 2008-08-06 Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation

Country Status (5)

Country Link
US (1) US8132417B2 (en)
EP (1) EP2179143B1 (en)
AT (1) ATE497087T1 (en)
DE (1) DE502008002497D1 (en)
WO (1) WO2009019282A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502008002497D1 (en) 2007-08-06 2011-03-10 Alstom Technology Ltd SPIDER COOLING BETWEEN FIRE CHAMBER WALL AND TURBINE WALL OF A GAS TURBINE SYSTEM
EP2248996B1 (en) * 2009-05-04 2014-01-01 Alstom Technology Ltd Gas turbine
CH703105A1 (en) 2010-05-05 2011-11-15 Alstom Technology Ltd Gas turbine with a secondary combustion chamber.
EP2428647B1 (en) * 2010-09-08 2018-07-11 Ansaldo Energia IP UK Limited Transitional Region for a Combustion Chamber of a Gas Turbine
DE102011008812A1 (en) 2011-01-19 2012-07-19 Mtu Aero Engines Gmbh intermediate housing
EP3071813B8 (en) * 2013-11-21 2021-04-07 Raytheon Technologies Corporation Axisymmetric offset of three-dimensional contoured endwalls
EP3090143B8 (en) * 2013-12-09 2021-04-21 Raytheon Technologies Corporation Array of components in a gas turbine engine
ES2632613T3 (en) * 2014-08-29 2017-09-14 MTU Aero Engines AG Gas turbine construction group
DE102014221783A1 (en) * 2014-10-27 2016-04-28 Siemens Aktiengesellschaft Hot gas duct
DE102014225689A1 (en) 2014-12-12 2016-07-14 MTU Aero Engines AG Turbomachine with annulus extension and bucket
US10641174B2 (en) 2017-01-18 2020-05-05 General Electric Company Rotor shaft cooling
KR101958109B1 (en) * 2017-09-15 2019-03-13 두산중공업 주식회사 Gas turbine
US10396795B1 (en) 2018-03-20 2019-08-27 Micron Technology, Inc. Boosted high-speed level shifter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3023466C2 (en) * 1980-06-24 1982-11-25 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Device for reducing secondary flow losses in a bladed flow channel
GB9304994D0 (en) * 1993-03-11 1993-04-28 Rolls Royce Plc Improvements in or relating to gas turbine engines
GB2281356B (en) * 1993-08-20 1997-01-29 Rolls Royce Plc Gas turbine engine turbine
EP0902164B1 (en) * 1997-09-15 2003-04-02 ALSTOM (Switzerland) Ltd Cooling of the shroud in a gas turbine
GB9823840D0 (en) 1998-10-30 1998-12-23 Rolls Royce Plc Bladed ducting for turbomachinery
EP1515000B1 (en) * 2003-09-09 2016-03-09 Alstom Technology Ltd Blading of a turbomachine with contoured shrouds
GB2417053B (en) 2004-08-11 2006-07-12 Rolls Royce Plc Turbine
US7195454B2 (en) * 2004-12-02 2007-03-27 General Electric Company Bullnose step turbine nozzle
EP1731711A1 (en) * 2005-06-10 2006-12-13 Siemens Aktiengesellschaft Transition from combustion chamber to turbine, heat shield, and turbine vane in a gas turbine
EP1741877A1 (en) * 2005-07-04 2007-01-10 Siemens Aktiengesellschaft Heat shield and stator vane for a gas turbine
DE502008002497D1 (en) 2007-08-06 2011-03-10 Alstom Technology Ltd SPIDER COOLING BETWEEN FIRE CHAMBER WALL AND TURBINE WALL OF A GAS TURBINE SYSTEM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009019282A2 *

Also Published As

Publication number Publication date
EP2179143B1 (en) 2011-01-26
ATE497087T1 (en) 2011-02-15
US20100146988A1 (en) 2010-06-17
DE502008002497D1 (en) 2011-03-10
WO2009019282A3 (en) 2009-05-07
WO2009019282A2 (en) 2009-02-12
US8132417B2 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
EP2179143B1 (en) Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation
EP1706597B1 (en) Gas turbine with axially displaceable rotor
EP1515000B1 (en) Blading of a turbomachine with contoured shrouds
DE102012013160A1 (en) labyrinth seals
EP2918778B1 (en) Method for laying out a turbine
DE2507182A1 (en) AXIAL GAS TURBINE SYSTEM
DE102007025006A1 (en) Double shaft gas turbine, has bars arranged along circumference of bearing housing and extend via circular intermediate channel into space between outer circumference surface of housing and inner circumference surface of housing wall
DE102015219556A1 (en) Diffuser for radial compressor, centrifugal compressor and turbo machine with centrifugal compressor
DE102013207452A1 (en) Housing portion of a turbomachinery compressor or turbomachinery turbine stage
EP3290644B1 (en) Gas turbine
EP2126321A1 (en) Gas turbine comprising a guide ring and a mixer
DE102009026210A1 (en) Slotted compressor diffuser and associated method
EP3064706A1 (en) Guide blade assembly for a flow engine with axial flow
CH709266B1 (en) Turbine blade and method for balancing a tip shroud of a turbine blade and gas turbine.
EP2092164B1 (en) Turbomachine, particularly a gas turbine
EP3287611B1 (en) Gas turbine
DE102017212311A1 (en) Umströmungsanordung for arranging in the hot gas duct of a turbomachine
EP1673519B1 (en) Sealing arrangement for a gas turbine
DE102013109844A1 (en) A method of circumferentially aligning a turbine by reshaping the downstream airfoils of the turbine
EP1731711A1 (en) Transition from combustion chamber to turbine, heat shield, and turbine vane in a gas turbine
DE102017109952A1 (en) Rotor device of a turbomachine
EP3495629B1 (en) Turboengine flow channel
DE102010044483A1 (en) Bloom mixer for turbofan engine of aircraft for mixture of primary current and secondary current, has projections and recesses arranged adjacent to each other in circumferential direction and formed by walls that are formed asymmetrically
EP3492701A1 (en) Turbomachine flow channel
EP2824279B1 (en) Turbomachine with sealing arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100201

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RTI1 Title (correction)

Free format text: GAP COOLING BETWEEN COMBUSTION CHAMBER WALL AND TURBINE WALL OF A GAS TURBINE INSTALLATION

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008002497

Country of ref document: DE

Date of ref document: 20110310

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008002497

Country of ref document: DE

Effective date: 20110310

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110126

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110507

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110526

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110426

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

26N No opposition filed

Effective date: 20111027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008002497

Country of ref document: DE

Effective date: 20111027

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 497087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008002497

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008002497

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008002497

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240430