EP2174064A2 - Procédé pour faire fonctionner une installation de combustion et installation de combustion - Google Patents

Procédé pour faire fonctionner une installation de combustion et installation de combustion

Info

Publication number
EP2174064A2
EP2174064A2 EP08802952A EP08802952A EP2174064A2 EP 2174064 A2 EP2174064 A2 EP 2174064A2 EP 08802952 A EP08802952 A EP 08802952A EP 08802952 A EP08802952 A EP 08802952A EP 2174064 A2 EP2174064 A2 EP 2174064A2
Authority
EP
European Patent Office
Prior art keywords
air
membrane
oxygen
incinerator
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08802952A
Other languages
German (de)
English (en)
Inventor
Carsten Graeber
Tobias Jockenhoevel
Harald Landes
Franz STUHLMÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08802952A priority Critical patent/EP2174064A2/fr
Publication of EP2174064A2 publication Critical patent/EP2174064A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0048Air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a method for operating a combustion plant and an incinerator.
  • combustion gas flue gas
  • CO2 carbon dioxide
  • Natural gas deposits, aquifers or coal seams, CO2 can be separated with different processes in the power plant process.
  • Post-combustion CO2 capture from the N2 / CO2 / H2O mixture of the combustion gas at the cold end of a conventional power plant process by absorption (chemical and physical), adsorption, liquefaction or membrane processes is cumbersome.
  • the energy required for this is z. B. removed from the process steam and leads to significant loss of efficiency.
  • the advantage of post-combustion C02 capture is that the intervention in the power plant process is lower compared to other processes and therefore this process is also suitable for retrofitting existing power plants.
  • the fuel coal is first gasified (integrated gasification combined cycle, IGCC power plant) and the CO formed in this case Water vapor reformed to H2 and CO2 (water gas reaction or "CO shift").
  • the CO2 can now be removed in higher concentration and under high pressure from the fuel gas by physical absorption.
  • the remaining hydrogen is available for power generation by gas and steam turbines.
  • the exhaust gas that leaves the power plant in the end is therefore virtually CO2-free.
  • the combustion gas energy losses are reduced due to the elimination of the ballast content of the air nitrogen in the combustion gas, and thirdly, the nitrogen oxide emissions caused by the air nitrogen are avoided.
  • Air can be separated into its components by various methods (ie primarily nitrogen, oxygen, and also noble gases).
  • cryogenic air separation decomposes the air in a mechanically driven thermodynamic process Essential components nitrogen and oxygen and includes the sub-steps compression of the air, removal of water vapor and carbon dioxide, fractional distillation (rectification) and cooling by throttling relaxation.
  • membrane-based arrangements for air separation have the disadvantage that the membrane unit must be maintained at a comparatively high operating temperature in the range of 700 ° C. to 1000 ° C. (high-temperature membrane method) so that the membrane can perform its function. Accordingly, heating energy must be permanently supplied to the membrane reactor so that it has the required process temperature for oxygen separation from the air.
  • the oxyfuel concept where the membrane is a key component of the process, can be found, for example, in the AZEP (Advanced Zero Emission Power Plant, 5th Framework Program of the European Union, project number: ENK5- CT-2001-00514;
  • the circuit of the combustion process of the Oxycoal AC process is outlined in FIG.
  • a key feature of this process is the integrated high-temperature membrane unit for oxygen production, which is supplied with air on the high-pressure side and delivers oxygen to the recirculated combustion gas flow via an ion-conducting membrane at operating temperatures of about 800 ° C.
  • the gas mixture supplied to the burners by the high-temperature membrane system consists essentially of CO 2, H 2 O and O 2 and has approximately the same
  • Oxygen content as the combustion air in conventional combustion so that should also set the usual combustion in combustion technology combustion temperatures.
  • the separation of the water from the combustion gas discharged from the process can be carried out by condensation.
  • the object of the invention is therefore to propose a method for operating an incinerator and an incinerator, the o.g. Overcome the disadvantages of a membrane-based oxygen separation.
  • heating energy is supplied to maintain the required process temperature of the membrane, wherein the heating energy is obtained from the resulting during operation of a burner combustion gas in a heat exchange with the air, and the heated air is supplied to the membrane and the separated oxygen via a line of the membrane is led away.
  • the heat exchange process and its advantageous coupling to the high temperature level of the combustion gas produced during operation of the burner results in a particularly efficient method of heating the air to the required process temperature, that is to say a temperature required for operation of the membrane unit, and then heating the heated air to the membrane aggregate already to be fed in the correct temperature.
  • the membrane can be brought to the operating temperature, typically 700 0 C to 1000 0 C, in a particularly simple manner.
  • the temperature of the oxygen separated in the membrane is also still substantially at the original process temperature and, before it is fed into the carrier gas of combustion (mostly CO2), can advantageously be used to heat a portion of the air to be supplied to the membrane ,
  • the substantially still at the original temperature, i. Process temperature, heated depleted air leaving the membrane aggregate on the retentate side is advantageously available for other useful applications, be it e.g. for utilizing the heat energy of the heated air by transferring the heat to a water-steam circuit or for driving an expander of a gas turbine set, which in turn is advantageously used for the compression of the air to be supplied to the membrane.
  • this process has several advantages. First, the membrane is not exposed to combustion gas, so no hot gas cleaning is required. In this circuit, the membrane only comes into contact with air. Damage to the membrane material by the combustion products contained in the combustion gas is excluded. Second, hot combustion gas only has to be transported in the comparatively short recirculation line.
  • membrane technology can be integrated into first-generation oxycoal processes.
  • the inventive incinerator in particular for
  • Carrying out the inventive method comprises a burner and a membrane unit comprising a membrane, a retentate side and a permeate side, for the deposition of Oxygen from air, wherein the membrane unit is connected with its permeate side via a line to the burner, wherein in the combustion gas flow, a heat exchanger is connected such that it can be acted upon by the primary side of emerging during the fossil firing hot combustion gas and the secondary side of the heat exchanger deliverable air a temperature required for the operation of the membrane unit can be heated and supplied to the membrane unit and the oxygen deposited in the membrane unit can be led away from the membrane via a line.
  • an oxygen / air heat exchanger is connected in the conduit between permeate side and burner to lower the temperature of the oxygen separated in the membrane, which still substantially corresponds to the original process temperature, to the extent that a recirculated combustion gas - i. C02 flow through the mixture with the oxygen is no longer or only insignificantly raised in its temperature.
  • a recirculation line for combustion gas and the connection of this recirculation line with the oxygen-carrying line between the permeate side of the membrane and the burner.
  • the return of the resulting during operation of the burner, cooled in heat exchange with the air combustion gas (Usually CO2), and the introduction of the separated oxygen into this recirculated combustion gas prevent the high combustion temperatures that otherwise arise when burning fossil fuels with pure oxygen.
  • the retentate side of the membrane is connected to a compressor to which air for disassembly with the membrane can be fed, and which is coupled to an expander which is at substantially the original temperature, i. Process temperature, heated oxygen-depleted air leaving the membrane aggregate on the retentate side, can be acted upon.
  • the membrane is preferably an oxygen ion conducting membrane.
  • the incinerator expediently comprises a fossil-fired steam generator.
  • combustion system in a steam power plant with a steam turbine, in particular, if this steam power plant comprises a CO2 separator, by means of which the highly enriched CO2 can be separated from the combustion gas.
  • FIG. 2 Schematic diagram of the inventive combustion plant, by way of example for a coal dust-fired steam power plant.
  • Figure 1 shows the circuit of the combustion process of the known from the prior art oxycoal AC method.
  • the incinerator 1 has a steam generator 2 with a burner 3.
  • the steam generator 2 is connected in the water-steam circuit of a steam turbine plant, not shown.
  • the burner 3 has a supply line for the fossil fuel 4. Furthermore, a supply line 5 for an oxygen / combustion gas mixture is present, which opens into the burner 3.
  • the fossil fuel is burned together with the oxygen / combustion gas mixture, whereby the water is converted in the pipe system of the steam generator to high-temperature steam.
  • oxygen is deposited from air at a process temperature by means of a membrane 6 of a membrane unit 26 whose retentate side 7 is supplied with compressed air 22 and recirculated to a compressed air
  • the necessary for maintaining the required process temperature heating energy is recovered from the combustion gas 9, the permeate side 8 of the membrane 6 via a recirculation line 28 and is discharged together with the oxygen 25 again (sweep gas).
  • This operation management also a high partial pressure gradient and thus a high permeability for the oxygen 25 are achieved.
  • the oxygen / combustion gas mixture 10 is in
  • This mixture 10 is supplied to the burner 3 for reaction with the fossil fuel 4.
  • the at least partially depleted air 24 by the withdrawal of oxygen 25 by means of the membrane 6 is fed to an expander 11. Coupled to the expander 11 on the same shaft 12 is a gas turbine set, the compressor 13 sucks in air 21 and the membrane 6 is acted upon by compressed air 22 via a compressed air line 29.
  • a hot gas cleaning 14 is connected between the steam generator 2 and the diaphragm 6.
  • a fan 15 supports the combustion gas circulation.
  • FIG. 2 shows, as an exemplary embodiment of the inventive combustion installation 1, the basic circuit diagram for a coal dust-fired steam power plant.
  • the following descriptions are essentially limited to the differences from the exemplary embodiment of the prior art from FIG. 1, to which reference is made with regard to features and functions that remain the same. Substantially identical components are always numbered with the same reference numerals.
  • Heating energy is not supplied directly via the combustion gas, but via the air 23, with which the retentate 7 of the membrane 6 is to be acted upon.
  • This air is in a combustion gas / air heat exchanger 17 in heat exchange with the combustion gas to 700 0 C to 1000 0 C, preferably 800 0 C to 900 0 C, heated to ensure a sufficient operating temperature of the membrane 6.
  • the oxygen 25 (permeate) which accumulates on the permeate side 8 of the membrane is conveyed away by means of a blower 16 via the line 27 and fed to the burner 3.
  • Another heat exchanger 18, which is installed in this oxygen path has the task of lowering the oxygen temperature of diaphragm operating temperature as far as that - with dust-fired steam generators 2 - the recycled via a recirculation line 28 carbon dioxide stream 9 by mixing with the oxygen 25 is not or only is raised slightly in its temperature.
  • the secondary side of this heat exchanger 18 is acted upon via a compressed air line 29 by a part of the Verêtrend Kunststoff 19, which in this case heated and the, from

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Air Supply (AREA)

Abstract

L'invention concerne une installation de combustion avec un brûleur et une unité de membrane, comprenant un côté rétentat et un côté perméat, pour séparer l'oxygène de l'air. L'unité de membrane est connectée par son côté perméat au brûleur par le biais d'une conduite et un échangeur de chaleur est monté dans un courant de gaz de combustion de telle sorte qu'il puisse être sollicité du côté primaire par du gaz de combustion chaud provenant d'une combustion fossile et, du côté secondaire, l'air pouvant être acheminé à l'échangeur de chaleur peut être chauffé à une température nécessaire pour le fonctionnement de l'unité de membrane et acheminé à l'unité de membrane. L'invention concerne aussi un procédé pour faire fonctionner une telle installation de combustion.
EP08802952A 2007-08-07 2008-08-01 Procédé pour faire fonctionner une installation de combustion et installation de combustion Withdrawn EP2174064A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08802952A EP2174064A2 (fr) 2007-08-07 2008-08-01 Procédé pour faire fonctionner une installation de combustion et installation de combustion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07015542A EP2026004A1 (fr) 2007-08-07 2007-08-07 Procédé de fonctionnement d'une installation de combustion et installation de combustion
EP08802952A EP2174064A2 (fr) 2007-08-07 2008-08-01 Procédé pour faire fonctionner une installation de combustion et installation de combustion
PCT/EP2008/060152 WO2009019218A2 (fr) 2007-08-07 2008-08-01 Procédé pour faire fonctionner une installation de combustion et installation de combustion

Publications (1)

Publication Number Publication Date
EP2174064A2 true EP2174064A2 (fr) 2010-04-14

Family

ID=38904733

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07015542A Withdrawn EP2026004A1 (fr) 2007-08-07 2007-08-07 Procédé de fonctionnement d'une installation de combustion et installation de combustion
EP08802952A Withdrawn EP2174064A2 (fr) 2007-08-07 2008-08-01 Procédé pour faire fonctionner une installation de combustion et installation de combustion

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07015542A Withdrawn EP2026004A1 (fr) 2007-08-07 2007-08-07 Procédé de fonctionnement d'une installation de combustion et installation de combustion

Country Status (5)

Country Link
US (1) US20100205968A1 (fr)
EP (2) EP2026004A1 (fr)
CN (1) CN102216687A (fr)
RU (1) RU2010108334A (fr)
WO (1) WO2009019218A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7954458B2 (en) 2007-11-14 2011-06-07 Alstom Technology Ltd Boiler having an integrated oxygen producing device
DE102009021623A1 (de) 2009-05-16 2010-11-25 Forschungszentrum Jülich GmbH Kraftwerk sowie Verfahren zum Betreiben desselben
EP2281785A1 (fr) * 2009-08-06 2011-02-09 AGC Glass Europe Four de fusion du verre
EP2281777A1 (fr) * 2009-08-06 2011-02-09 AGC Glass Europe Four de fusion du verre
US8506676B2 (en) * 2011-02-11 2013-08-13 General Electric Company Waste heat recovery system and method of using waste heat
DE102013103426B4 (de) 2013-04-05 2018-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Membranmodul zur energieeffizienten Sauerstofferzeugung in der Biomassevergasung
DE102013107610A1 (de) 2013-07-17 2015-01-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Membrantrennverfahren und Membrananlage zur energieeffizienten Erzeugung von Sauerstoff
FR3015635B1 (fr) * 2013-12-23 2019-05-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede integre d'oxycombustion et de production d'oxygene
US9409120B2 (en) 2014-01-07 2016-08-09 The University Of Kentucky Research Foundation Hybrid process using a membrane to enrich flue gas CO2 with a solvent-based post-combustion CO2 capture system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443183A (en) * 1981-07-21 1984-04-17 Osaka Gas Company Limited Combustion apparatus
US4509915A (en) * 1981-09-21 1985-04-09 Osaka Gas Company Limited Liquid fuel combustion apparatus
US4932464A (en) * 1989-10-06 1990-06-12 Bechtel Group, Inc. Method and system for preheating combustion air
US5565017A (en) * 1993-12-17 1996-10-15 Air Products And Chemicals, Inc. High temperature oxygen production with steam and power generation
US5516359A (en) * 1993-12-17 1996-05-14 Air Products And Chemicals, Inc. Integrated high temperature method for oxygen production
NO308399B1 (no) * 1997-06-06 2000-09-11 Norsk Hydro As Prosess for generering av kraft og/eller varme
NO314911B1 (no) * 2000-04-19 2003-06-10 Norsk Hydro As Fremgangsmåte for generering av varme og kraft samt anvendelse derav
NO318619B1 (no) * 2000-12-29 2005-04-18 Norsk Hydro As Anordning for forbrenning av et karbonholdig brensel, en fremgangsmate for a betjene nevnte anordning, samt anvendelse av anordningen.
US6562105B2 (en) * 2001-09-27 2003-05-13 Praxair Technology, Inc. Combined method of separating oxygen and generating power
US6702570B2 (en) * 2002-06-28 2004-03-09 Praxair Technology Inc. Firing method for a heat consuming device utilizing oxy-fuel combustion
WO2004046523A2 (fr) * 2002-11-15 2004-06-03 Clean Energy Systems, Inc. Systeme de production d'energie peu polluant prevoyant une separation de l'air au moyen d'une membrane pour le transfert des ions
DE102005025345A1 (de) * 2005-05-31 2006-12-07 Forschungszentrum Jülich GmbH Kraftwerk mit CO2-Heißgasrückführung sowie Verfahren zum Betreiben desselben

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009019218A2 *

Also Published As

Publication number Publication date
WO2009019218A2 (fr) 2009-02-12
US20100205968A1 (en) 2010-08-19
WO2009019218A3 (fr) 2010-04-22
EP2026004A1 (fr) 2009-02-18
CN102216687A (zh) 2011-10-12
RU2010108334A (ru) 2011-09-20

Similar Documents

Publication Publication Date Title
DE10328863B4 (de) Befeuerungsverfahren für eine Wärme verbrauchende Vorrichtung unter Verwendung einer Sauerstoff-Brennstoff-Verbrennung
WO2009019218A2 (fr) Procédé pour faire fonctionner une installation de combustion et installation de combustion
DE60123707T2 (de) Lufttrennungsverfahren und -system zur Sauerstoffproduktion zur Verbrennungsunterstützung in einer Wärmeverbrauchsvorrichtung
DE69918492T2 (de) Turbine à gaz à chauffage indirect integree à une unite de separation des gaz de l'air
DE102008002870B4 (de) Systeme zur Energieerzeugung mit Abgas-Rückführung
DE60216248T2 (de) Verfahren zur energiegewinnung mit integrierter lufttrennung
DE102007050783A1 (de) Systeme und Verfahren zur Energieerzeugung mit Kohlendioxydisolation
DE102007050781A1 (de) Systeme und Verfahren zur Energieerzeugung mit Kohlendioxydabsonderung
DE2743830C2 (de) Verfahren zum Betreiben einer kombinierten Gas-Dampfkraftanlage und Gas-Dampfkraftanlage zur Durchführung des Verfahrens
DE102008048062B3 (de) IGCC-Kraftwerk mit Rauchgasrückführung und Spülgas
DE102004039164A1 (de) Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
DE112008001788T5 (de) Verfahren und Anlage zur kombinierten Erzeugung von elektrischer Energie und Wasser
DE102007061568A1 (de) Verfahren und System zum Einsetzen von Brenngas geringen Heizwertes in einer Gasturbine
DE102004038435A1 (de) Stromerzeugungs-Zyklus mit einer Brennstoffzelle und einem GuD-Kraftwerk
WO2009106027A2 (fr) Centrale électrique igcc à recyclage de gaz de fumée et à gaz de lavage
EP2981503B1 (fr) Procédé et module membranaire pour produire de l'oxygène de manière éco-énergétique au cours de la gazéification de la biomasse
EP2274505B1 (fr) Procédé d'exploitation d'une centrale électrique à gazéification intégrée et centrale électrique correspondante
EP2430363B1 (fr) Centrale et procédé d'exploitation de cette centrale
DE102007060550A1 (de) System und Verfahren für emissionsarme Verbrennung
WO2009118227A1 (fr) Procédé et dispositif de séparation de dioxyde de carbone d'un effluent gazeux d'une centrale électrique à combustible fossile
WO2006128426A1 (fr) Centrale electrique equipee d'un systeme de recyclage des gaz chauds a base de co2 et procede pour faire fonctionner cette centrale
DE102006035790B3 (de) Verfahren zum Betrieb einer Kraftwerksanlage mit integrierter Kohlevergasung sowie Kraftwerksanlage
DE102015119915A1 (de) Verfahren und Vorrichtung zum Betrieb einer Gasturbine mit nasser Verbrennung
WO2009106026A2 (fr) Installation de chauffe et procédé pour faire fonctionner cette dernière
DE102005042176B4 (de) Kraftwerksanlage und zugehöriges Betriebsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100112

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

R17D Deferred search report published (corrected)

Effective date: 20100422

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130301