EP2174017B1 - Measuring method and measuring device - Google Patents

Measuring method and measuring device Download PDF

Info

Publication number
EP2174017B1
EP2174017B1 EP08759349.7A EP08759349A EP2174017B1 EP 2174017 B1 EP2174017 B1 EP 2174017B1 EP 08759349 A EP08759349 A EP 08759349A EP 2174017 B1 EP2174017 B1 EP 2174017B1
Authority
EP
European Patent Office
Prior art keywords
curve
drive signal
control electronics
loop control
predefined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08759349.7A
Other languages
German (de)
French (fr)
Other versions
EP2174017A1 (en
Inventor
Michael Kaczorowski
Peter Meyer
Klaus Baumeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2174017A1 publication Critical patent/EP2174017A1/en
Application granted granted Critical
Publication of EP2174017B1 publication Critical patent/EP2174017B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating

Definitions

  • the invention relates to a calibration method for determining a characteristic diagram of a control electronics or control electronics of a hydraulic drive according to the preamble of patent claim 1.
  • the invention further relates to a calibration device according to the preamble of patent claim 12.
  • Hydraulic drives have long been equipped with control electronics or control electronics to ensure the accuracy required in industrial drive technology, high response speeds and compliance with given trajectories. It is desirable to equip various hydraulic drives with as standardized as possible control electronics. Due to a variety of varying mechanical parameters of the various valves and valve types, the hydraulic consumers, and not least install the pressure medium source and the pressure medium piping system, but almost every electro-hydraulic system has its own control behavior. Therefore, conventional control electronics or control electronics have a plurality of adjustable parameters in order to optimally adapt the control or regulating behavior of the hydraulic system to the mechanical conditions. In a hydraulic timing chain - typically a proportional valve with a hooked hydraulic consumer - the drive signal of the proportional valve is usually a measure of the speed of the hydraulic consumer.
  • the speed is normally in a non-linear relationship with the drive signal of the proportional valve. This is mainly due to the design of the control cross sections on the valve, the non-linear fluid dynamic relationship between the opening cross section and flow rate, as well as by overlaps in the zero position of the valve and by the surface asymmetry of hydraulic consumers - eg differential cylinder - due to the direction of movement.
  • the non-linear behavior of the hydraulic timing chain is compensated as far as possible by means of maps in the control electronics or control electronics. Put simply, an inverse characteristic of the hydraulic timing chain is stored in the map.
  • a disadvantage of this concept is the time-consuming detection of the individual speed values via separate measurements.
  • the cylinder must be moved to a suitable position before a measurement in order to have enough free distance available. This additionally increases the time required.
  • the electrohydraulic system is subjected to heavy mechanical loading. Vibrations may occur which increase the load and distort the measurement result.
  • the US 6,282,891 B1 describes an electro-hydraulic control for a mobile work machine.
  • a method is proposed in which proportional valves with different electric currents C are applied.
  • a position measurement is made to the supplied via the respective proportional valves hydraulic cylinder.
  • a fluid quantity Q is calculated, which is assigned to the electrical drive current.
  • the proportionate value Q% of the fluid quantity is assigned at maximum drive current. It is proposed to compensate for a time delay in valve actuation by averaging a subsequent Q measured value recorded at a higher current with the actual Q measured value.
  • the inventive Einmess vide for determining a map of control electronics or control electronics of a hydraulic drive in which a hydraulic load can be controlled by means of an actuator, in which the map indicates an assignment of control signal values to AnĂȘtsignal Bristol for the actuator, and in which a position of the hydraulic
  • This method makes it possible to record a large number-if not all-of the data needed to calculate the map within a coherent predetermined detection period. Since the drive signal specification curve passes through an interval during the detection period, a large number of closely spaced measurement points for both the drive signal and the speed of the consumer are available in the detection period. Instead of performing a separate speed measurement procedure for each drive signal value, the speed curve and the drive signal specification curve according to the present invention may be recorded in a continuous process. The speed of the consumer is possibly in the control or electronic control anyway in the form of a derivative signal of the position of the consumer. Otherwise, it can be calculated with little effort from the position values. With the recorded velocity curve and the recorded drive signal default curve, the data immediately required to generate the map are already present. The calculation of the map from this data is very simple.
  • the Einmessvorgang is feasible with little effort, it can be repeated at regular or irregular intervals, for. compensate for aging of the hydraulic drive. From the change of the map, it may be possible to conclude the wear state of the hydraulic drive. This information can be used as part of condition monitoring.
  • a calibration device for determining a characteristic diagram of a control electronics or control electronics of a hydraulic drive by means of a calibration method according to one of claims 1 to 11 is provided which comprises the control electronics or control electronics.
  • the control electronics or control electronics are set up such that at least the following steps of the calibration process are executable by the control electronics or control electronics: recording the drive signal specification curve in the default period, detecting position values of the hydraulic load in the default period, and recording the velocity curve of the hydraulic consumer in FIG the default period with the help of the recorded position values.
  • the calibration process can be carried out largely automated.
  • the effort and the requirements for additional hardware are very low, since important steps of the calibration process already by the already existing control electronics or control electronics using their usual input and output interfaces -.
  • the valve control output, the setpoint input, the input for the position sensor - are performed.
  • the calculation of the characteristic may e.g. using the recorded values on a commercially available computer.
  • the drive signal default curve is generated by supplying a position preset curve to the control electronics.
  • an already existing input interface of the control electronics is used.
  • the position of the hydraulic load is always determined by the position preset curve, ie the actual position is tracked via the control electronics of the default position.
  • the behavior of the hydraulic Consumer during the recording of readings is predictable. No additional monitoring of the consumer's position during the recording process is needed.
  • the calibration process can be carried out in a simple and particularly reliable manner even on a hydraulic system installed ready for operation. Even for mobile hydraulic machines, the ease of predictability of the consumer position curve is an important factor in ensuring safety during the calibration process.
  • the drive signal specification curve passes through a drive signal interval upwards and downwards in the predefined period and is substantially symmetrical with respect to an extreme point passed through in this drive signal interval.
  • averaging can be used to extract acceleration effects in the drive signal, so that an exact assignment of a drive signal value to a speed value can take place during the characteristic curve calculation.
  • a drive signal average of two values associated with the speed value from a rising and a falling range of the drive signal curve is formed at a speed value and used for the calculation of the characteristic field.
  • a speed mean value of two values assigned to the drive signal value from a rising and a falling area of the speed curve can also be formed for a drive signal value and used for the calculation of the characteristic field.
  • the drive signal specification curve and / or the position specification curve are generated in accordance with a periodic basic function.
  • the drive signal specification curve and / or the position specification curve in the default period undergoes at least one, but preferably two or more periods of the basic function.
  • Suitable basic functions are, for example, the circular functions, in particular sine and cosine. Using the circular functions, continuous, non-jumper waveforms of the drive signal specification curve, the speed curve of the consumer and the acceleration acting on the consumer.
  • a further preferred embodiment of the present invention provides that the number of acquired data values of the drive signal specification curve and / or the speed curve in a region of a low degree of actuation of the actuator is greater than in a region of a greater degree of actuation of the actuator. In this way, the accuracy of the map in the coverage area of the valve can be increased. Besides, lets reduce the number of recorded measured values and thus reduce the computational effort and storage requirements for the determination of the map.
  • the computing capacity or storage capacity present in the control electronics or control electronics usually suffices to carry out at least the generation of the drive signal specification curve and the recording of the drive signal specification curve and the speed curve.
  • the computing device requires in addition to an interface to the control electronics or control electronics no further interface with the hydraulic drive and can therefore be designed as a commercially available office PC or industrial PC.
  • the calibration process can be performed even better automatically and is easier for the operator when the control electronics are adapted to perform the step of calculating the map based on the drive signal default curve and the speed curve, preferably also the step of generating the drive signal default curve. This also allows the waiver of external hardware to be provided by the operator during the calibration process.
  • the calibration process for example, can also be carried out fully automatically without monitoring or assistance of an operator at regular or irregular intervals by the hydraulic drive or its control itself. If the calculation is carried out on the microcontroller of the control electronics or control electronics, the acquired data values preferably concentrate on the region of a low degree of actuation of the actuator. As a result, the calculation can be carried out quickly even with low storage capacity and computing capacity. The important area near the overlap of the actuator is still detected accurately.
  • a particularly space-saving and highly integrated design of a hydraulic drive is achieved when the control electronics or control electronics is arranged on the housing of the actuator of the hydraulic drive. Together with the ability to automatically determine the map, a hydraulic drive as a complete, compact and above all self-configuring unit can be provided.
  • an electro-hydraulic drive 1 which comprises a controlled hydraulic axis 3 and a pressure medium supply 5 and pressure medium return.
  • the hydraulic axis 3 has as its essential components a control electronics 7, a Propörtionalventit 9 conventional design - eg a valve type 4WRSE Bosch Rexroth AG - and a hydraulic cylinder 11.
  • the position of the piston rod of the hydraulic cylinder 11 is detected by a position sensor 12 and reported back to the control electronics 7.
  • control electronics 7 has a setpoint input 16 and an interface 18 for connecting an additional calibration hardware.
  • this is an industrial PC 20.
  • the sensor input 14 and the setpoint input 16 are routed to an addition element 22.
  • the addition element 22 may be supplied with the signal of an internal setpoint generator 24.
  • the control difference signal obtained by the addition element 22 is fed to a control stage 26.
  • the control stage 26 includes one or more control members known per se, e.g. a P-controller, a PID controller or a PDT1 controller.
  • the control signal obtained from the control stage 26 is passed through a further addition element 30 and thereby modified in the context of a state feedback with a speed signal from a derivative element 28.
  • the thus modified control signal 32 is fed to a characteristic element 34.
  • the characteristic element 34 signal values of the control signal 32 a respective signal value is assigned as a drive signal 36 for the proportional valve 9.
  • the characteristic element 34 is set for normal operation so that the overall gain of the chain from the characteristic element 34, the proportional valve 9 and the hydraulic cylinder 11 is as independent as possible of the amplitude of the control signal 32.
  • the control electronics 7 is implemented by a microcontroller. In addition to the previously described controller components, the latter has a sequence controller for executing programs (not shown) and a data memory 40.
  • a data memory 40 In the data memory 40, signal values of the drive signal 36 and signal values of a speed signal of the hydraulic cylinder 12 -in this example, the output signal of the derivative member 28- can be recorded ,
  • the data memory 40 can be read by the industrial PC 20 via the interface 18.
  • the microcontroller also allows it to rewrite an assignment characteristic stored in the characteristic element 34. This also takes place via the interface 18 with data recorded by the industrial PC 20.
  • a predetermined internally generated AnĂȘtsigrial 38 are output to the proportional valve 9.
  • FIG. 2 shows a flow chart for a Einmessmaschine which is provided for execution on the electro-hydraulic drive 1. In the FIG. 3 associated signal curves are shown.
  • the calibration procedure is performed by an operator of the drive 1 or automatically, e.g. started as part of an initialization process.
  • a provisional assignment characteristic is stored, e.g. a linear actuating signal - drive signal assignment.
  • a drive signal 36 (solid curve 50 in FIG. 3 ) generated.
  • the generation of the drive signal 36 takes place in that a sine-wave signal curve is generated by the signal generator 24, which signal is fed to the adder 22 as an internally preset desired value signal 25.
  • the hydraulic cylinder 11 is subject to a position control. After starting the signal generator of the hydraulic cylinder 11 follows the position specification by the setpoint signal 25 of the signal generator 24. A position or speed jump, which may occur when starting the signal generator in the control loop is reduced after a short Einregelphase.
  • the positional curve of the hydraulic cylinder 11 is the dashed line 52 in FIG FIG.
  • values of the drive signal curve 50 are recorded in the memory 40.
  • values of the speed curve 54 are recorded in the memory 40.
  • the recording of individual control signal values and speed values takes place at the same time as possible. The time interval in which the recording is carried out begins after the adjustment phase described above.
  • the record of Drive signal values and speed values are performed for at least one period of the drive signal curve 50. Usually, however, several periods of the drive signal curve 50 and the speed curve 54 are recorded.
  • the recording is terminated and in a step s4, a new mapping characteristic of the map 34 is calculated.
  • the recorded curves are for this purpose transferred from the memory 40 via the interface 18 to the industrial PC 20.
  • the calculation of the assignment characteristic is carried out from the recorded curves.
  • the calculated assignment characteristic is transmitted via the interface 18 to the characteristic field 34 as a new assignment characteristic and replaces the provisional assignment characteristic.
  • the calculation of the assignment characteristic of the characteristic map 34 takes place according to the proviso that a possible linear relationship between the actuating signal 32 and the actual speed of the cylinder 11 is obtained.
  • a certain advantage of the speed curve 54 during braking or lagging during acceleration is due to the inertia of the cylinder, possibly by the inertia of a load and by the oil spring.
  • the non-linear control signal - opening cross-section relation of the proportional valve 9 and the possibly asymmetrical surface design of the hydraulic cylinder 11 expressed.
  • the drive signal contains signal components when the speed is increased and the speed is reduced. which go back to the acceleration processes.
  • These acceleration-related signal components have an odd symmetry with respect to the extreme points of the drive signal curve 50 or the largely in-phase velocity curve 54.
  • the averaging can also take place via two speed values which are detected with the same drive signal value but different signs of the acceleration. This type of calculation is simpler because the available interval of drive signal values is predetermined. Therefore, this calculation method is more suitable for systems with low computational and storage capacity.
  • the nonlinear drive signal-opening cross-section relation of the proportional valve 9 and the possibly asymmetrical surface design of the hydraulic cylinder 11 also flow into the calculation of the characteristic map in the averaging described, since these effects form a proportion of the velocity curve with respect to the extreme points of straight symmetry.
  • the consideration of the non-linear control signal-opening cross-section relation of the proportional valve 9 and the possibly asymmetrical surface design of the hydraulic cylinder 11 is expressly desired for the map calculation in order to ensure by means of the map a linear relationship between the control signal 32 and the actual speed of the cylinder 11.
  • signal values recorded for calculating the assignment characteristic curve comprise several periods of the drive signal curve 50 and the speed curve 54
  • a plurality of measured values for the consumer speed can be assigned to a specific control signal value.
  • the accuracy can be increased.
  • it makes sense to record drive signal curves and associated speed curves for a plurality of different frequencies of the setpoint signal 25.
  • different amplitude intervals for the drive signal curve 50 and the speed curve 54 of the hydraulic consumer can be measured.
  • a low-frequency setpoint signal 25 allows precise measurement of the hydraulic system at low drive signal amplitudes and small consumer speeds, ie near the coverage area of the proportional valve 9.
  • the influence of acceleration effects is minimal when using a low-frequency setpoint signal 25. Satisfactory calculation results are obtained, for example, when recording at least 2 signal periods of the control signal curve 50 and the speed curve 54 for 3 different frequencies of the setpoint signal 25, wherein the highest frequency based on the maximum technically achievable speed of the hydraulic cylinder 11.
  • the hydraulic consumer may be, inter alia, a linearly movable hydraulic cylinder or a hydraulic rotary motor.
  • a corresponding position sensor is used, i. a linear displacement sensor or a rotation angle sensor.
  • the calibration procedure can be carried out independently of the control stage 26 used or independently of the control concept used in normal operation. During the calibration procedure, only one position signal must be present. For the above-described generation of the drive signal 36, a position control loop for the hydraulic consumer must be closed. In normal operation itself, the hydraulic consumer can also be controlled in the context of an open timing chain. You can also continue cascaded controls - eg, a subordinate speed controller, state feedback, and speed or acceleration pilot mechanisms are used.
  • the control may also refer to the force applied by the hydraulic load. In this case, the pressure difference across the load is preferably measured as a measure of the force.
  • the drive signal 36 need not be generated within a control loop.
  • the drive signal 36 may be e.g. internally according to a specification, e.g. a sine signal, are generated and fed as an internal drive signal 38.
  • the recording of the Anberichtnchgabekurve then depletes in the adoption of existing numerical signal default values of the drive signal 38 from a signal generator. Further, in this way of generating the drive signal 36, it is not necessary to close a position control loop.
  • the calibration procedure can also be performed with an open timing chain. Only the detection of position values of the hydraulic consumer to create a speed curve must be guaranteed. However, the position of the consumer should be monitored to ensure compliance with a certain position interval. In the case of a rotary drive in which a hydraulic rotary motor is used as the consumer, this necessity may be eliminated.
  • the actuator according to the claims may be, inter alia, a proportional valve, a clocked switching valve, the volume adjusting element of a variable displacement pump or the volume adjusting element of a hydraulic rotary motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Servomotors (AREA)

Description

Die Erfindung betrifft ein Einmessverfahren zur Bestimmung eines Kennfelds einer Steuerelektronik bzw. Regelelektronik eines hydraulischen Antriebs gemĂ€ĂŸ dem Oberbegriff des Patentanspruchs 1. Die Erfindung betrifft weiterhin eine Einmessvorrichtung gemĂ€ĂŸ dem Oberbegriff des Patentanspruchs 12.The invention relates to a calibration method for determining a characteristic diagram of a control electronics or control electronics of a hydraulic drive according to the preamble of patent claim 1. The invention further relates to a calibration device according to the preamble of patent claim 12.

Hydraulische Antriebe werden seit geraumer Zeit mit Steuerelektroniken oder Regelelektroniken ausgestattet, um die in der industriellen Antriebstechnik geforderte Genauigkeit, hohe Ansprechgeschwindigkeiten und die Einhaltung von vorgegebenen Bahnkurven zu gewĂ€hrleisten. Es ist wĂŒnschenswert, verschiedene hydraulische Antriebe mit möglichst einer standardisierten Steuer- oder Regelelektronik ausstatten zur können. Aufgrund einer Vielzahl variierender mechanischer Parameter der verschiedenen Ventile und Ventiltypen, der hydraulischen Verbraucher, und nicht zuletzt der installieren Druckmittelquelle und des Druckmittelleitungssystems, besitzt aber nahezu jedes elektro-hydraulische System sein eigenes Steuer- bzw. Regelverhalten. Daher besitzen ĂŒbliche Steuerelektroniken oder Regelelektroniken eine Vielzahl einstellbarer Parameter, um das Steuer- bzw. Regelverhalten des hydraulischen Systems möglichst optimal an die mechanischen Gegebenheiten anzupassen. Bei einer hydraulischen Steuerkette - typischerweise ein Proportionalventil mit einem hachgeschalteten hydraulischen Verbraucher - ist das Ansteuersignal des Proportionalventils meist ein Maß fĂŒr die Geschwindigkeit des hydraulischen Verbrauchers. Die Geschwindigkeit steht jedoch normalerweise in einem nicht-linearen Zusammenhang zu dem Ansteuersignal des Proportionalventils. Dies ist hauptsĂ€chlich durch die Gestaltung der Steuerquerschnitte am Ventil, dem nicht-linearen fluiddynamischen Zusammenhang zwischen Öffnungsquerschnitt und Durchflussmenge, sowie durch Überdeckungen in der Nullstellung des Ventils und durch die FlĂ€chenasymmetrie hydraulischer Verbraucher - z.B. Differentialzylinder - hinsichtlich der Bewegungsrichtung bedingt.Hydraulic drives have long been equipped with control electronics or control electronics to ensure the accuracy required in industrial drive technology, high response speeds and compliance with given trajectories. It is desirable to equip various hydraulic drives with as standardized as possible control electronics. Due to a variety of varying mechanical parameters of the various valves and valve types, the hydraulic consumers, and not least install the pressure medium source and the pressure medium piping system, but almost every electro-hydraulic system has its own control behavior. Therefore, conventional control electronics or control electronics have a plurality of adjustable parameters in order to optimally adapt the control or regulating behavior of the hydraulic system to the mechanical conditions. In a hydraulic timing chain - typically a proportional valve with a hooked hydraulic consumer - the drive signal of the proportional valve is usually a measure of the speed of the hydraulic consumer. However, the speed is normally in a non-linear relationship with the drive signal of the proportional valve. This is mainly due to the design of the control cross sections on the valve, the non-linear fluid dynamic relationship between the opening cross section and flow rate, as well as by overlaps in the zero position of the valve and by the surface asymmetry of hydraulic consumers - eg differential cylinder - due to the direction of movement.

Das nicht-lineare Verhalten der hydraulischen Steuerkette wird mittels Kennfeldem in der Steuerelektronik oder Regelelektronik soweit möglich ausgeglichen. Vereinfacht gesagt, ist im Kennfeld eine inverse Kennlinie der hydraulischen Steuerkette abgelegt. Indem das Stellsignal fĂŒr die hydraulische Steuerkette ĂŒber das Kennfeld modifiziert wird, um ein Ansteuersignal fĂŒr das Proportionalventil zu erhalten, erzielt man ĂŒber weite Bereiche des Stellsignals einen konstanten Signal-Geschwindigkeits-Zusammenhang - im Folgenden auch VerstĂ€rkung genannt - der Kette aus Kennfeld, Proportionalventil und hydraulischer Verbraucher.The non-linear behavior of the hydraulic timing chain is compensated as far as possible by means of maps in the control electronics or control electronics. Put simply, an inverse characteristic of the hydraulic timing chain is stored in the map. By modifying the control signal for the hydraulic timing chain on the map to obtain a drive signal for the proportional valve, one achieves a constant signal-speed relationship over a wide range of the control signal - also referred to as gain - the chain of map, proportional valve and hydraulic consumer.

Aufgrund der Vielzahl der mechanischen Parameter der Ventile und hydraulischen Verbraucher, muss fĂŒr jede Kombination aus Proportionalventil und hydraulischem Verbraucher eine eigene Kennlinie vermessen und ein eigenes Kennfeld berechnet werden. Es gibt Versuche dieses möglichst automatisiert durchzufĂŒhren.Due to the large number of mechanical parameters of the valves and hydraulic consumers, a separate characteristic curve must be measured for each combination of proportional valve and hydraulic consumer, and a separate characteristic field must be calculated. There are attempts to do this as automated as possible.

In der DE 198 06 544 B4 wird fĂŒr ein elektro-hydraulisches System aus einer Steuerelektronik, einem Proportionalventil und einem Differentialzylinder ein Verfahren beschrieben, um eine Geschwindigkeits-Strom-Kennlinie der hydraulischen Steuerkette zu erhalten. Dabei wird fĂŒr eine bestimmte Zeit ein bestimmter Ansteuerstrom an das Ventil geschaltet. Aus der in der bestimmten Zeit zurĂŒckgelegten Strecke des Zylinders wird dessen Geschwindigkeit bestimmt. Dieses Verfahren wird mit verschiedenen Werten fĂŒr den Ansteuerstrom wiederholt, um StĂŒtzpunkte der Kennlinie zu erhalten. Ein Mikrokontroller der Steuerelektronik modifiziert mittels dieser gemessenen Kennlinie die Arbeitskennlinie fĂŒr die Ansteuerung des Proportionalventils.In the DE 198 06 544 B4 For an electro-hydraulic system comprising an electronic control unit, a proportional valve and a differential cylinder, a method is described for obtaining a speed-current characteristic of the hydraulic timing chain. In this case, a certain drive current is switched to the valve for a certain time. From the distance covered by the cylinder in the given time, its speed is determined. This procedure is repeated with different values for the drive current to obtain vertices of the characteristic. A microcontroller of the control electronics modified by means of this measured characteristic curve, the working characteristic for the control of the proportional valve.

Nachteilig an diesem Konzept ist die zeitaufwendige Erfassung der einzelnen Geschwindigkeitswerte ĂŒber separate Messungen. Es erfolgt zu Beginn jeder Messung eine starke Beschleunigung und am Ende der Messung ein starkes Abbremsen. Die Beschleunigung und das Abbremsen sollten nicht innerhalb der Messstrecke liegen, um das Messergebnis nicht zu verfĂ€lschen: Es ist eine separate Beschleunigungs- und Bremsstrecke einzuplanen. Der Zylinder muss vor einer Messung ggf. in eine geeignete Position gefahren werden, um genĂŒgend freie Strecke zur VerfĂŒgung zu haben. Dies erhöht den Zeitaufwand zusĂ€tzlich. Durch die abrupten Beschleunigungs- und BremsvorgĂ€nge wird das elektro-hydraulische System mechanisch stark belastet. Es können Schwingungen auftreten, die die Belastung noch erhöhen und das Messergebnis verfĂ€lschen.A disadvantage of this concept is the time-consuming detection of the individual speed values via separate measurements. There is a strong acceleration at the beginning of each measurement and a strong deceleration at the end of the measurement. Acceleration and deceleration should not be within the measuring distance so as not to falsify the measurement result: it is a schedule separate acceleration and braking distance. If necessary, the cylinder must be moved to a suitable position before a measurement in order to have enough free distance available. This additionally increases the time required. As a result of the abrupt acceleration and braking processes, the electrohydraulic system is subjected to heavy mechanical loading. Vibrations may occur which increase the load and distort the measurement result.

Die US 6,282,891 B1 beschreibt eine elektro-hydraulische Steuerung fĂŒr eine mobile Arbeitsmaschine. Zum Einmessen von Kennfeldern ist ein Verfahren vorgeschlagen, bei dem Proportionalventile mit verschiedenen elektrischen Strömen C beaufschlagt werden. Dabei wird eine Positionsmessung an den ĂŒber die jeweiligen Proportionalventile versorgten hydraulischen Zylinder vorgenommen. Aus der Positionskurve wird eine Fluidmenge Q errechnet, welche dem elektrischen Ansteuerstrom zugeordnet ist. Im Kennfeld wird einem Stromwert C der anteilige Wert Q% der Fluidmenge bei maximalen Ansteuerstrom zugeordnet. Es wird vorgeschlagen, eine Zeitverzögerung bei der Ventilansteuerung dadurch auszugleichen, dass ein nachfolgender, bei höherem Strom aufgenommener Q-Messwert mit dem eigentlichen Q-Messwert gemittelt wird.The US 6,282,891 B1 describes an electro-hydraulic control for a mobile work machine. For measuring characteristic maps, a method is proposed in which proportional valves with different electric currents C are applied. In this case, a position measurement is made to the supplied via the respective proportional valves hydraulic cylinder. From the position curve, a fluid quantity Q is calculated, which is assigned to the electrical drive current. In the map a current value C, the proportionate value Q% of the fluid quantity is assigned at maximum drive current. It is proposed to compensate for a time delay in valve actuation by averaging a subsequent Q measured value recorded at a higher current with the actual Q measured value.

Es ist die Aufgabe der vorliegenden Erfindung, die Bestimmung eines Kennfelds - insbesondere zur Verwendung bei einem hydraulischen Antrieb - zu vereinfachen.It is the object of the present invention to simplify the determination of a characteristic map, in particular for use in a hydraulic drive.

Diese Aufgabe wird erfindungsgemĂ€ĂŸ durch ein Einmessverfahren mit den Merkmalen des Patentanspruchs 1 gelöst. Die Aufgabe wird weiterhin durch eine Einmessvorrichtung gemĂ€ĂŸ den Merkmalen des Patentanspruchs 9 gelöst.This object is achieved by a Einmessverfahren with the features of claim 1. The object is further achieved by a calibration device according to the features of claim 9.

Das erfindungsgemĂ€ĂŸe Einmessverfahren zur Bestimmung eines Kennfelds einer Steuerelektronik bzw. Regelelektronik eines hydraulischen Antriebs, bei dem ein hydraulischer Verbraucher mittels eines Stellglieds ansteuerbar ist, bei dem das Kennfeld eine Zuordnung von Stellsignalwerten zu Ansteuersignalwerten fĂŒr das Stellglied angibt, und bei dem eine Position des hydraulischen Verbrauchers mittels eines Positionssensors erfassbar ist, umfasst die folgenden Schritte: Es wird eine Ansteuersignalvorgabekurve erzeugt, welche in einem Vorgabezeitraum ein vorgegebenes Ansteuersignalintervall im Wesentlichen stetig durchlĂ€uft. Weiter wird die Ansteuersignalvorgabekurve und die Geschwindigkeitskurve des hydraulischen Verbrauchers in dem Vorgabezeitraum aufgezeichnet. Die Geschwindigkeitskurve wird mit Hilfe von erfassten Positionswerten des hydraulischen Verbrauchers bestimmt. Das Kennfeld wird anhand der aufgezeichneten Ansteuersignalvorgabekurve und der aufgezeichneten Geschwindigkeitskurve berechnet.The inventive Einmessverfahren for determining a map of control electronics or control electronics of a hydraulic drive, in which a hydraulic load can be controlled by means of an actuator, in which the map indicates an assignment of control signal values to Ansteuersignalwerten for the actuator, and in which a position of the hydraulic The consumer can be detected by means of a position sensor comprises the following steps: A drive signal specification curve is generated, which passes through a predefined drive signal interval essentially continuously in a predefined period. Further, the drive signal command curve and the speed curve of the hydraulic load are recorded in the default period. The speed curve is determined by means of detected position values of the hydraulic consumer. The map is calculated from the recorded drive signal default curve and the recorded speed curve.

Dieses Verfahren erlaubt es, eine Vielzahl - wenn nicht sogar alle - der fĂŒr die Berechnung des Kennfeldes benötigten Daten innerhalb eines zusammenhĂ€ngenden vorgegebenen Erfassungszeitraums aufzuzeichnen. Da die Ansteuersignalvorgabekurve im Erfassungszeitraum ein Intervall durchlĂ€uft, stehen im Erfassungszeitraum eine große Zahl eng beieinander liegender Messpunkte sowohl fĂŒr das Ansteuersignal als auch fĂŒr die Geschwindigkeit des Verbrauchers zur VerfĂŒgung. Anstatt fĂŒr jeden Ansteuersignalwert eine eigene Geschwindigkeitsmessprozedur durchzufĂŒhren, kann die Geschwindigkeitskurve und die Ansteuersignalvorgabekurve gemĂ€ĂŸ der vorliegenden Erfindung in einem kontinuierlichen Vorgang aufgezeichnet werden. Die Geschwindigkeit des Verbrauchers liegt ggf. in der Steuer- oder Regelelektronik ohnehin in Form eines Ableitungssignals der Position des Verbrauchers vor. Andernfalls lĂ€sst sie sich mit wenig Aufwand aus den Positionswerten berechnen. Mit der aufgezeichneten Geschwindigkeitskurve und der aufgezeichneten Ansteuersignalvorgabekurve liegen die zur Erzeugung des Kennfelds unmittelbar benötigten Daten bereits vor. Die Berechnung des Kennfelds aus diesen Daten gestaltet sich sehr einfach.This method makes it possible to record a large number-if not all-of the data needed to calculate the map within a coherent predetermined detection period. Since the drive signal specification curve passes through an interval during the detection period, a large number of closely spaced measurement points for both the drive signal and the speed of the consumer are available in the detection period. Instead of performing a separate speed measurement procedure for each drive signal value, the speed curve and the drive signal specification curve according to the present invention may be recorded in a continuous process. The speed of the consumer is possibly in the control or electronic control anyway in the form of a derivative signal of the position of the consumer. Otherwise, it can be calculated with little effort from the position values. With the recorded velocity curve and the recorded drive signal default curve, the data immediately required to generate the map are already present. The calculation of the map from this data is very simple.

Zur Verbesserung der erzielten Genauigkeit kann bei dem erfindungsgemĂ€ĂŸen Verfahren ohne weiteres auf statistische Methoden, beispielsweise eine Mittelwertbildung, zurĂŒckgegriffen werden. Der im Wesentlichen stetige Verlauf der Ansteuersignalvorgabekurve erlaubt es, den Messvorgang mit maßvollen Beschleunigungswerten und einer geringen mechanischen Belastung des hydraulischen Antriebs durchzufĂŒhren.In order to improve the accuracy achieved in the inventive method readily statistical methods, such as averaging, resorted. The substantially steady course of the drive signal specification curve makes it possible to perform the measurement process with moderate acceleration values and a low mechanical load of the hydraulic drive.

Da der Einmessvorgang mit wenig Aufwand durchfĂŒhrbar ist, kann er in regelmĂ€ĂŸigen oder unregelmĂ€ĂŸigen AbstĂ€nden wiederholt werden, um z.B. eine Alterung des hydraulischen Antriebs auszugleichen. Aus der VerĂ€nderung des Kennfelds kann ggf. auf den Verschleiß-Zustand des hydraulischen Antriebs geschlossen werden. Diese Information kann im Rahmen eines Condition Monitoring verwendet werden.Since the Einmessvorgang is feasible with little effort, it can be repeated at regular or irregular intervals, for. compensate for aging of the hydraulic drive. From the change of the map, it may be possible to conclude the wear state of the hydraulic drive. This information can be used as part of condition monitoring.

GemĂ€ĂŸ einem weiteren Aspekt der Erfindung ist eine Einmessvorrichtung zur Bestimmung eines Kennfelds einer Steuerelektronik bzw. Regelelektronik eines hydraulischen Antriebs mittels eines Einmessverfahrens gemĂ€ĂŸ einem der AnsprĂŒche 1 bis 11 vorgesehen, welche die Steuerelektronik bzw. Regelelektronik umfasst. Die Steuerelektronik bzw. Regelelektronik ist so eingerichtet, dass zumindest die folgenden Schritte des Einmessverfahrens durch die Steuerelektronik bzw. Regelelektronik ausfĂŒhrbar sind: Aufzeichnen der Ansteuersignalvorgabekurve in dem Vorgabezeitraum, Erfassen von Positionswerten des hydraulischen Verbrauchers in dem Vorgabezeitraum, und Aufzeichnen der Geschwindigkeitskurve des hydraulischen Verbrauchers in dem Vorgabezeitraum mit Hilfe der erfassten Positionswerte.According to a further aspect of the invention, a calibration device for determining a characteristic diagram of a control electronics or control electronics of a hydraulic drive by means of a calibration method according to one of claims 1 to 11 is provided which comprises the control electronics or control electronics. The control electronics or control electronics are set up such that at least the following steps of the calibration process are executable by the control electronics or control electronics: recording the drive signal specification curve in the default period, detecting position values of the hydraulic load in the default period, and recording the velocity curve of the hydraulic consumer in FIG the default period with the help of the recorded position values.

Auf diese Weise kann der Einmessvorgang weitestgehend automatisiert durchgefĂŒhrt werden. Der Aufwand und die Anforderungen an zusĂ€tzliche Hardware sind sehr gering, da wichtige Schritte des Einmessverfahrens bereits durch die ohnehin vorhandene Steuerelektronik bzw. Regelelektronik unter Verwendung deren ĂŒblichen Eingangs- und Ausgangsschnittstellen - z.B. der Ventilansteuerausgang, der Sollwerteingang, der Eingang fĂŒr den Positionssensor - durchgefĂŒhrt werden. Die Berechnung der Kennlinie kann z.B. anhand der aufgezeichneten Werte auf einem handelsĂŒblichen Computer erfolgen.In this way, the calibration process can be carried out largely automated. The effort and the requirements for additional hardware are very low, since important steps of the calibration process already by the already existing control electronics or control electronics using their usual input and output interfaces -. the valve control output, the setpoint input, the input for the position sensor - are performed. The calculation of the characteristic may e.g. using the recorded values on a commercially available computer.

Bei der vorliegenden Erfindung wird die Ansteuersignalvorgabekurve durch ZufĂŒhren einer Positionsvorgabekurve an die Regelelektronik erzeugt. Dadurch wird eine ohnehin vorhandene Eingangsschnittstelle der Regelelektronik verwendet. Außerdem ist die Position des hydraulischen Verbrauchers stets durch die Positionsvorgabekurve bestimmt, d.h. die tatsĂ€chliche Position wird ĂŒber die Regelelektronik der Vorgabeposition nachgefĂŒhrt. Das Verhalten des hydraulischen Verbrauchers wĂ€hrend der Aufzeichnung von Messwerten ist vorhersehbar. Es wird keinerlei zusĂ€tzliche Überwachung der Position des Verbrauchers wĂ€hrend des Aufzeichnungsvorgangs benötigt. Dadurch kann der Einmessvorgang auf einfache und besonders sichere Weise auch an einer betriebsfertig installierten hydraulischen Anlage durchgefĂŒhrt werden. Auch fĂŒr mobile hydraulische Arbeitsmaschinen ist die einfache Vorhersehbarkeit der Verbraucherpositionskurve eine bedeutende Erleichterung zur GewĂ€hrleistung der Sicherheit wĂ€hrend des Einmessvorgangs.In the present invention, the drive signal default curve is generated by supplying a position preset curve to the control electronics. As a result, an already existing input interface of the control electronics is used. In addition, the position of the hydraulic load is always determined by the position preset curve, ie the actual position is tracked via the control electronics of the default position. The behavior of the hydraulic Consumer during the recording of readings is predictable. No additional monitoring of the consumer's position during the recording process is needed. As a result, the calibration process can be carried out in a simple and particularly reliable manner even on a hydraulic system installed ready for operation. Even for mobile hydraulic machines, the ease of predictability of the consumer position curve is an important factor in ensuring safety during the calibration process.

ErfindungsgemĂ€ĂŸ ist vorgesehen, dass die Ansteuersignalvorgabekurve im Vorgabezeitraum ein Ansteuersignalintervall aufwĂ€rts und abwĂ€rts durchlĂ€uft und bezĂŒglich eines in diesem Ansteuersignalintervall durchschrittenen Extrempunkt im Wesentlichen symmetrisch ist. Mittels den so aufgezeichneten Kurven des Ansteuersignals und der Verbrauchergeschwindigkeit lassen sich durch Mittelwertbildung Beschleunigungseffekte im Ansteuersignal herausmitteln, so dass bei der Kennlinienberechnung eine genaue Zuordnung eines Ansteuersignalwerts zu einem Geschwindigkeitswert erfolgen kann. Vorzugsweise wird zu einem Geschwindigkeitswert ein Ansteuersignalmittelwert aus zwei dem Geschwindigkeitswert jeweils zugeordneten Werten aus einem ansteigenden und einem abfallenden Bereich der Ansteuersignalkurve gebildet und fĂŒr die Berechnung des Kennfelds verwendet. Alternativ kann jedoch auch zu einem Ansteuersignalwert ein Geschwindigkeitsmittelwert aus zwei dem Ansteuersignalwert jeweils zugeordneten Werten aus einem ansteigenden und einem abfallenden Bereich der Geschwindigkeitskurve gebildet und fĂŒr die Berechnung des Kennfelds verwendet werden.According to the invention, it is provided that the drive signal specification curve passes through a drive signal interval upwards and downwards in the predefined period and is substantially symmetrical with respect to an extreme point passed through in this drive signal interval. By means of the curves of the drive signal and the consumer speed thus recorded, averaging can be used to extract acceleration effects in the drive signal, so that an exact assignment of a drive signal value to a speed value can take place during the characteristic curve calculation. Preferably, a drive signal average of two values associated with the speed value from a rising and a falling range of the drive signal curve is formed at a speed value and used for the calculation of the characteristic field. Alternatively, however, a speed mean value of two values assigned to the drive signal value from a rising and a falling area of the speed curve can also be formed for a drive signal value and used for the calculation of the characteristic field.

Auf besonders einfache Weise wird die Ansteuersignalvorgabekurve und/oder die Positionsvorgabekurve gemĂ€ĂŸ einer periodischen Grundfunktion erzeugt. Vorzugsweise durchlĂ€uft die Ansteuersignalvorgabekurve und/oder die Positionsvorgabekurve in dem Vorgabezeitraum wenigstens eine, vorzugsweise aber zwei oder mehr Perioden der Grundfunktion. Geeignete Grundfunktionen sind z.B. die Kreisfunktionen, insbesondere Sinus und Kosinus. Unter Verwendung der Kreisfunktionen lassen sich kontinuierliche, sprungfreie VerlĂ€ufe der Ansteuersignalvorgabekurve, der Geschwindigkeitskurve des Verbrauchers und der auf den Verbraucher wirkenden Beschleunigung erzielen.In a particularly simple manner, the drive signal specification curve and / or the position specification curve are generated in accordance with a periodic basic function. Preferably, the drive signal specification curve and / or the position specification curve in the default period undergoes at least one, but preferably two or more periods of the basic function. Suitable basic functions are, for example, the circular functions, in particular sine and cosine. Using the circular functions, continuous, non-jumper waveforms of the drive signal specification curve, the speed curve of the consumer and the acceleration acting on the consumer.

Weitere vorteilhafte Ausgestaltungen sind in den UnteransprĂŒchen angegeben.Further advantageous embodiments are specified in the subclaims.

Eine weitere bevorzugten Ausbildung der vorliegenden Erfindung sieht vor, dass die Anzahl erfasster Datenwerte der Ansteuersignalvorgabekurve und/oder der Geschwindigkeitskurve in einem Bereich eines geringen BetĂ€tigungsgrads des Stellglieds grĂ¶ĂŸer ist als in einem Bereich eines stĂ€rkeren BetĂ€tigungsgrads des Stellglieds. Auf diese Weise lĂ€sst sich die Genauigkeit des Kennfelds im Überdeckungsbereich des Ventils steigern. Außerdem lĂ€sst sich die Anzahl der aufgezeichneten Messwerte verringern und damit der Rechenaufwand und Speicherbedarf fĂŒr die Bestimmung des Kennfelds verringern.A further preferred embodiment of the present invention provides that the number of acquired data values of the drive signal specification curve and / or the speed curve in a region of a low degree of actuation of the actuator is greater than in a region of a greater degree of actuation of the actuator. In this way, the accuracy of the map in the coverage area of the valve can be increased. Besides, lets reduce the number of recorded measured values and thus reduce the computational effort and storage requirements for the determination of the map.

Eine bereits vorhandene Steuerelektronik bzw. Regelelektronik - insbesondere wenn diese einen Mikrokontroller besitzt - benötigt nur eine geringe Anpassung um das Einmessverfahren durchzufĂŒhren, wenn neben der Steuerelektronik bzw. Regelelektronik eine Rechenvorrichtung vorhanden ist, die dazu eingerichtet ist, den Schritt des Berechnens des Kennfelds anhand der Ansteuersignalvorgabekurve und der Geschwindigkeitskurve auszufĂŒhren. In diesen FĂ€llen reicht die in der Steuerelektronik bzw. Regelelektronik vorhandene RechenkapazitĂ€t oder SpeicherkapazitĂ€t ĂŒblicherweise aus, um zumindest die Erzeugung der Ansteuersignalvorgabekurve und das Aufzeichnen der Ansteuersignalvorgabekurve und der Geschwindigkeitskurve durchzufĂŒhren. Die Rechenvorrichtung benötigt neben einer Schnittstelle zur Steuerelektronik bzw. Regelelektronik keinerlei weitere Schnittstelle mit dem hydraulischen Antrieb und kann daher als marktĂŒblicher BĂŒro PC oder Industrie PC ausgebildet sein.An existing control electronics or control electronics - especially if they have a microcontroller - only needs a small adjustment to perform the Einmessverfahren if in addition to the control electronics or control electronics, a computing device is provided which is adapted to the step of calculating the map based on the Execute drive signal specification curve and the speed curve. In these cases, the computing capacity or storage capacity present in the control electronics or control electronics usually suffices to carry out at least the generation of the drive signal specification curve and the recording of the drive signal specification curve and the speed curve. The computing device requires in addition to an interface to the control electronics or control electronics no further interface with the hydraulic drive and can therefore be designed as a commercially available office PC or industrial PC.

Der Einmessvorgang kann noch besser automatisch abgearbeitet werden und gestaltet sich fĂŒr den Bediener einfacher, wenn die Steuerelektronik bzw. Regelelektronik dazu eingerichtet ist, den Schritt des Berechnens des Kennfelds anhand der Ansteuersignalvorgabekurve und der Geschwindigkeitskurve auszufĂŒhren, vorzugsweise ebenfalls den Schritt des Erzeugens der Ansteuersignalvorgabekurve. Dies erlaubt beim Einmessvorgang zudem den Verzicht auf externe vom Bediener bereitzustellende Hardware. Zudem kann der Einmessvorgang z.B. auch vollautomatisch ohne Überwachung oder UnterstĂŒtzung eines Bedieners in regelmĂ€ĂŸigen oder unregelmĂ€ĂŸigen AbstĂ€nden durch den hydraulischen Antrieb bzw. seine Steuerung selbst durchgefĂŒhrt werden. Erfolgt die Berechnung auf dem Mikrokontroller der Regelelektronik bzw. Steuerelektronik so konzentrieren sich die erfassten Datenwerte vorzugsweise auf den Bereich eines geringen BetĂ€tigungsgrads des Stellglieds. Dadurch kann die Berechnung auch bei geringer SpeicherkapazitĂ€t und RechenkapazitĂ€t zĂŒgig durchgefĂŒhrt werden. Der wichtige Bereich nahe der Überdeckung des Stellglieds wird dennoch genau erfasst.The calibration process can be performed even better automatically and is easier for the operator when the control electronics are adapted to perform the step of calculating the map based on the drive signal default curve and the speed curve, preferably also the step of generating the drive signal default curve. This also allows the waiver of external hardware to be provided by the operator during the calibration process. In addition, the calibration process, for example, can also be carried out fully automatically without monitoring or assistance of an operator at regular or irregular intervals by the hydraulic drive or its control itself. If the calculation is carried out on the microcontroller of the control electronics or control electronics, the acquired data values preferably concentrate on the region of a low degree of actuation of the actuator. As a result, the calculation can be carried out quickly even with low storage capacity and computing capacity. The important area near the overlap of the actuator is still detected accurately.

Eine besonders platzsparende und hoch integrierte Bauform eines hydraulischen Antriebs wird erzielt, wenn die Steuerelektronik bzw. Regelelektronik auf dem GehĂ€use des Stellglieds des hydraulischen Antriebs angeordnet ist. Zusammen mit der FĂ€higkeit zur automatischen Ermittlung des Kennfelds kann ein hydraulischer Antrieb als vollstĂ€ndige, kompakte und vor allem selbstkonfigurierende Baueinheit zur VerfĂŒgung gestellt werden.A particularly space-saving and highly integrated design of a hydraulic drive is achieved when the control electronics or control electronics is arranged on the housing of the actuator of the hydraulic drive. Together with the ability to automatically determine the map, a hydraulic drive as a complete, compact and above all self-configuring unit can be provided.

Nachfolgend werden die vorliegende Erfindung und deren Vorteile unter Bezugnahme auf das in den Figuren dargestellte AusfĂŒhrungsbeispiel nĂ€her erlĂ€utert.Hereinafter, the present invention and its advantages will be explained in more detail with reference to the embodiment shown in the figures.

Es zeigen:

Fig. 1
ein einfaches Schaltbild eines hydraulischen Antriebs, auf dem das erfindungsgemĂ€ĂŸe Einmessverfahren durchfĂŒhrbar ist, mit einer Regelelektronik, einem durch die Regelelektronik angesteuerten Proportionalventil und einen hydraulischen Verbraucher,
Fig. 2
die GrundzĂŒge eines Ablaufschemas fĂŒr das erfindungsgemĂ€ĂŸe Einmessverfahren, und
Fig. 3
einen zeitlichen Verlauf einer Positionskurve des hydraulischen Verbrauchers, einer Ansteuersignalvorgabekurve und einer Geschwindigkeitskurve des hydraulischen Verbrauchers.
Show it:
Fig. 1
a simple circuit diagram of a hydraulic drive on which the Einmessverfahren invention is feasible, with a control electronics, a controlled by the control electronics proportional valve and a hydraulic consumer,
Fig. 2
the basic features of a flow chart for the Einmessverfahren invention, and
Fig. 3
a time course of a position curve of the hydraulic consumer, a Ansteuersignalvorgabekurve and a speed curve of the hydraulic consumer.

In der Figur 1 ist ein elektrohydraulischer Antrieb 1 dargestellt, der eine geregelte hydraulische Achse 3 sowie eine Druckmittelversorgung 5 und DruckmittelrĂŒckfĂŒhrung umfasst. Die hydraulische Achse 3 besitzt als ihre wesentlichen Komponenten eine Regelelektronik 7, ein Propörtionalventit 9 ĂŒblicher Bauart - z.B. ein Ventil vom Typ 4WRSE der Firma Bosch Rexroth AG - und einen Hydrozylinder 11. Die Position der Kolbenstange des Hydrozylinders 11 wird ĂŒber einen Positionssensor 12 erfasst und an die Regelelektronik 7 zurĂŒckgemeldet.In the FIG. 1 an electro-hydraulic drive 1 is shown, which comprises a controlled hydraulic axis 3 and a pressure medium supply 5 and pressure medium return. The hydraulic axis 3 has as its essential components a control electronics 7, a Propörtionalventit 9 conventional design - eg a valve type 4WRSE Bosch Rexroth AG - and a hydraulic cylinder 11. The position of the piston rod of the hydraulic cylinder 11 is detected by a position sensor 12 and reported back to the control electronics 7.

Neben dem Eingang 14 fĂŒr den Messwert des Positionssensors 12 verfĂŒgt die Regelelektronik 7 ĂŒber einen Sollwerteingang 16 und ĂŒber eine Schnittstelle 18 zur Anbindung einer zusĂ€tzlichen Einmesshardware. Dabei handelt es sich im beschriebenen AusfĂŒhrungsbeispiel um einen Industrie PC 20.In addition to the input 14 for the measured value of the position sensor 12, the control electronics 7 has a setpoint input 16 and an interface 18 for connecting an additional calibration hardware. In the described exemplary embodiment, this is an industrial PC 20.

In der Regelelektronik 7 sind der Sensoreingang 14 und der Sollwerteingang 16 auf ein Additionsglied 22 gefĂŒhrt. Des weiteren kann dem Additionsglied 22 das Signal eines internen Sollwertgenerators 24 zugefĂŒhrt sein. Das vom Additionsglied 22 erhaltene Regeldifferenzsignal wird einer Regelstufe 26 zugefĂŒhrt. Die Regelstufe 26 enthĂ€lt eines oder mehrere von an sich bekannte Regelgliedern, z.B. einen P-Regler, einen PID-Regler oder einen PDT1-Regler. Das von der Regelstufe 26 erhaltene Stellsignal wird durch ein weiteres Additionsglied 30 gefĂŒhrt und dabei im Rahmen einer ZustandsrĂŒckfĂŒhrung mit einem Geschwindigkeitssignal aus einem Ableitungsglied 28 modifiziert. Das so modifizierte Stellsignal 32 ist einem Kennlinienglied 34 zugefĂŒhrt. Durch das Kennlinienglied 34 wird Signalwerten des Stellsignals 32 ein jeweiliger Signalwert als Ansteuersignal 36 fĂŒr das Proportionalventil 9 zugeordnet. Das Kennlinienglied 34 ist fĂŒr den Normalbetrieb so eingestellt, dass die GesamtverstĂ€rkung der Kette aus dem Kennlinienglied 34, dem Proportionalventil 9 und dem Hydrozylinder 11 möglichst unabhĂ€ngig von der Amplitude des Stellsignals 32 ist.In the control electronics 7, the sensor input 14 and the setpoint input 16 are routed to an addition element 22. Furthermore, the addition element 22 may be supplied with the signal of an internal setpoint generator 24. The control difference signal obtained by the addition element 22 is fed to a control stage 26. The control stage 26 includes one or more control members known per se, e.g. a P-controller, a PID controller or a PDT1 controller. The control signal obtained from the control stage 26 is passed through a further addition element 30 and thereby modified in the context of a state feedback with a speed signal from a derivative element 28. The thus modified control signal 32 is fed to a characteristic element 34. By the characteristic element 34 signal values of the control signal 32, a respective signal value is assigned as a drive signal 36 for the proportional valve 9. The characteristic element 34 is set for normal operation so that the overall gain of the chain from the characteristic element 34, the proportional valve 9 and the hydraulic cylinder 11 is as independent as possible of the amplitude of the control signal 32.

Die Regelelektronik 7 ist durch einen Mikrokontroller implementiert. Neben den zuvor beschriebenen Reglerkomponenten besitzt dieser eine Ablaufsteuerung zur AusfĂŒhrung von Programmen (nicht dargestellt) und einen Datenspeicher 40. In dem Datenspeicher 40 können Signalwerte des Ansteuersignals 36 und Signalwerte eines Geschwindigkeitssignals des Hydrozylinders 12 - in diesem Beispiel das Ausgangssignal des Ableitungsglieds 28 - aufgezeichnet werden. Der Datenspeicher 40 kann vom Industrie PC 20 ĂŒber die Schnittstelle 18 ausgelesen werden. Der Mikrokontroller lĂ€sst es weiterhin zu, eine im Kennlinienglied 34 abgelegte Zuordnungskennlinie neu zu beschreiben. Dies erfolgt ebenfalls ĂŒber die Schnittstelle 18 mit vom Industrie PC 20 eingespielten Daten. Gegebenenfalls kann ein vorgegebenes intern erzeugtes Ansteuersigrial 38 an das Proportionalventil 9 ausgegeben werden.The control electronics 7 is implemented by a microcontroller. In addition to the previously described controller components, the latter has a sequence controller for executing programs (not shown) and a data memory 40. In the data memory 40, signal values of the drive signal 36 and signal values of a speed signal of the hydraulic cylinder 12 -in this example, the output signal of the derivative member 28- can be recorded , The data memory 40 can be read by the industrial PC 20 via the interface 18. The microcontroller also allows it to rewrite an assignment characteristic stored in the characteristic element 34. This also takes place via the interface 18 with data recorded by the industrial PC 20. Optionally, a predetermined internally generated Ansteuersigrial 38 are output to the proportional valve 9.

Die Figur 2 zeigt ein Ablaufdiagramm fĂŒr ein Einmessverfahren, welches zur AusfĂŒhrung auf dem elektrohydraulischen Antrieb 1 vorgesehen ist. In der Figur 3 sind zugehörige Signalkurven dargestellt.The FIG. 2 shows a flow chart for a Einmessverfahren which is provided for execution on the electro-hydraulic drive 1. In the FIG. 3 associated signal curves are shown.

Das Einmessverfahren wird durch einen Bediener des Antriebs 1 oder automatisch, z.B. als Teil eines Initialisierungsablaufes gestartet. Im Kennlinienglied 34 ist zunÀchst eine vorlÀufige Zuordnungskennlinie gespeichert, z.B. eine lineare Stellsignal - Ansteuersignal Zuordnung.The calibration procedure is performed by an operator of the drive 1 or automatically, e.g. started as part of an initialization process. In the characteristic element 34, first a provisional assignment characteristic is stored, e.g. a linear actuating signal - drive signal assignment.

In einem ersten Schritt s1 wird ein Ansteuersignal 36 (durchgezogene Kurve 50 in Figur 3) erzeugt. Die Erzeugung des Ansteuersignals 36 erfolgt dadurch, dass durch den Signalgenerator 24 eine Sinus-Signalkurve erzeugt wird, welche dem Additionsglied 22 als intern vorgegebenes Sollwertsignal 25 zugefĂŒhrt ist. Der Hydrozylinder 11 unterliegt dabei einer Positionsregelung. Nach dem Starten des Signalgenerators folgt der Hydrozylinder 11 der Positionsvorgabe durch das Sollwertsignal 25 des Signalgenerators 24. Ein Positions- oder Geschwindigkeitssprung, der ggf. beim Starten des Signalgenerators in der Regelschleife auftritt, ist nach einer kurzen Einregelphase abgebaut. Die Positionskurve des Hydrozylinders 11 ist die gestrichelte Linie 52 in Figur 3. Das mit Hilfe des RĂŒckkopplungsmechanismus der Regelschleife - aus den Komponenten 7, 9, 11 und 12 gebildet - erzeugte Ansteuersignal 36 durchlĂ€uft mit einer Phasenverschiebung zum zyklischen Sollwertsignal bzw. der Positionskurve 52 des Hydrozylinders 11 die ebenfalls zyklische Funktionskurve 50. Durch die zeitliche Ableitung der Positionskurve 52 erhĂ€lt man die strichpunktierte Geschwindigkeitskurve 54. Die Geschwindigkeitskurve 54 wird dabei gleitend durch das Ableitungsglied 28 aus den Positionsmesswerten des Sensors 12 ermittelt.In a first step s1, a drive signal 36 (solid curve 50 in FIG FIG. 3 ) generated. The generation of the drive signal 36 takes place in that a sine-wave signal curve is generated by the signal generator 24, which signal is fed to the adder 22 as an internally preset desired value signal 25. The hydraulic cylinder 11 is subject to a position control. After starting the signal generator of the hydraulic cylinder 11 follows the position specification by the setpoint signal 25 of the signal generator 24. A position or speed jump, which may occur when starting the signal generator in the control loop is reduced after a short Einregelphase. The positional curve of the hydraulic cylinder 11 is the dashed line 52 in FIG FIG. 3 , With the aid of the feedback mechanism of the control loop - formed from the components 7, 9, 11 and 12 - generated drive signal 36 passes through with a phase shift to the cyclic setpoint signal or the position curve 52 of the hydraulic cylinder 11, the likewise cyclic function curve 50. By the temporal derivative of the position curve 52, the dash-dotted velocity curve 54 is obtained. The velocity curve 54 is thereby determined in a sliding manner by the derivative element 28 from the position measured values of the sensor 12.

In einem nĂ€chsten Schritt s2 werden Werte der Ansteuersignalkurve 50 im Speicher 40 aufgezeichnet. Ein einem weiteren Schritt s3 werden Werte der Geschwindigkeitskurve 54 im Speicher 40 aufgezeichnet. Das Aufzeichnen einzelner Ansteuersignalwerte und Geschwindigkeitswerte erfolgt dabei möglichst zeitgleich. Das Zeitintervall, in dem die Aufzeichnung durchgefĂŒhrt wird, beginnt nach der zuvor beschriebenen Einregelphase. Die Aufzeichnung der Ansteuersignalwerte und Geschwindigkeitswerte wird fĂŒr mindestens eine Periode der Ansteuersignalkurve 50 durchgefĂŒhrt. Üblicherweise werden jedoch mehrere Perioden der Ansteuersignalkurve 50 und der Geschwindigkeitskurve 54 aufgezeichnet.In a next step s2, values of the drive signal curve 50 are recorded in the memory 40. In a further step s3, values of the speed curve 54 are recorded in the memory 40. The recording of individual control signal values and speed values takes place at the same time as possible. The time interval in which the recording is carried out begins after the adjustment phase described above. The record of Drive signal values and speed values are performed for at least one period of the drive signal curve 50. Usually, however, several periods of the drive signal curve 50 and the speed curve 54 are recorded.

Nach einer vorbestimmten Aufzeichnungsdauer oder Periodenzahl der aufgezeichneten Kurven wird die Aufzeichnung beendet und in einem Schritt s4 eine neue Zuordnungskennlinie des Kennfeldes 34 berechnet. Im beschriebenen AusfĂŒhrungsbeispiel werden die aufgezeichneten Kurven dazu aus dem Speicher 40 ĂŒber die Schnittstelle 18 auf den Industrie PC 20 ĂŒbertragen. Auf dem Industrie PC 20 erfolgt aus den aufgezeichneten Kurven die Berechnung der Zuordnungskennlinie. Die berechnete Zuordnungskennlinie wird ĂŒber die Schnittstelle 18 an das Kennfeld 34 als neue Zuordnungskennlinie ĂŒbertragen und ersetzt die vorlĂ€ufige Zuordnungskennlinie.After a predetermined recording period or period number of the recorded curves, the recording is terminated and in a step s4, a new mapping characteristic of the map 34 is calculated. In the described embodiment, the recorded curves are for this purpose transferred from the memory 40 via the interface 18 to the industrial PC 20. On the industrial PC 20, the calculation of the assignment characteristic is carried out from the recorded curves. The calculated assignment characteristic is transmitted via the interface 18 to the characteristic field 34 as a new assignment characteristic and replaces the provisional assignment characteristic.

Die Berechnung der Zuordnungskennlinie des Kennfelds 34 erfolgt nach der Maßgabe, dass ein möglichst linearen Zusammenhang zwischen dem Stellsignal 32 und der tatsĂ€chlichen Geschwindigkeit des Zylinders 11 erhalten wird.The calculation of the assignment characteristic of the characteristic map 34 takes place according to the proviso that a possible linear relationship between the actuating signal 32 and the actual speed of the cylinder 11 is obtained.

In dem hydrautischen System aus dem Proportionalventil 9 und dem Hydrozylinder 11 folgt die Geschwindigkeit des Hydrozylinders 11 nahezu unmittelbar einem Ansteuersignalwert des Proportionalventils 9. Daher kann durch einen Vergleich der Ansteuersignalkurve 50 und der Geschwindigkeitskurve 54 zu gleichen Zeitpunkten eine Zuordnung zwischen einem Ansteuersignalwert und einem Geschwindigkeitswert auf einfache Weise ermittelt werden.In the hydraulic system of the proportional valve 9 and the hydraulic cylinder 11, the speed of the hydraulic cylinder 11 almost immediately follows a drive signal value of the proportional valve 9. Therefore, by comparing the drive signal curve 50 and the speed curve 54 at the same time, an association between a drive signal value and a speed value can occur easy way to be determined.

Ein gewisses Vorteilen der Geschwindigkeitskurve 54 bei AbbremsvorgĂ€ngen bzw. ein Nacheilen bei BeschleunigungsvorgĂ€ngen ist durch die MassentrĂ€gheit des Zylinders, ggf. durch die MassentrĂ€gheit einer Last und durch die Ölfeder bedingt. Außerdem kommen in der Abweichung der beiden Kurven 54 und 50 voneinander die nichtlineare Ansteuersignal - Öffnungsquerschnitt Relation des Proportionalventils 9 und die ggf. unsymmetrische FlĂ€chengestaltung des Hydrozylinders 11 zum Ausdruck.A certain advantage of the speed curve 54 during braking or lagging during acceleration is due to the inertia of the cylinder, possibly by the inertia of a load and by the oil spring. In addition, in the deviation of the two curves 54 and 50 from each other, the non-linear control signal - opening cross-section relation of the proportional valve 9 and the possibly asymmetrical surface design of the hydraulic cylinder 11 expressed.

Betrachtet man das Ansteuersignal, so enthĂ€lt dieses bei einer Erhöhung der Geschwindigkeit und auch bei einer Erniedrigung der Geschwindigkeit Signalanteile, die auf die BeschleunigungsvorgĂ€nge zurĂŒckgehen. Diese beschleunigungsbedingten Signalanteile besitzen eine zu den Extrempunkten der Ansteuersignalkurve 50 bzw. der weitgehend phasengleichen Geschwindigkeitskurve 54 ungerade Symmetrie.If the drive signal is considered, it contains signal components when the speed is increased and the speed is reduced. which go back to the acceleration processes. These acceleration-related signal components have an odd symmetry with respect to the extreme points of the drive signal curve 50 or the largely in-phase velocity curve 54.

Durch Bildung eines Mittelwerts zweier Ansteuersignalwerte bei gleicher Verbrauchergeschwindigkeit, jedoch bei unterschiedlichem Vorzeichen der Beschleunigung, können Beschleunigungseffekte bei der Berechnung des Kennfelds unterdrĂŒckt werden. Die benötigten Ansteuersignalwerte werden dem ansteigenden Abschnitt und dem fallenden Abschnitt einer halben Periode der Ansteuersignalkurve entnommen. Bei dieser Art der Berechnung kann eine hohe Genauigkeit in der Zuordnung von einer Verbrauchergeschwindigkeit zu einem Ansteuersignalwert erreicht werden.By forming an average of two drive signal values at the same consumer speed, but with different signs of the acceleration, acceleration effects can be suppressed in the calculation of the map. The required drive signal values are taken from the rising portion and the falling portion of half a period of the drive signal curve. In this type of calculation, a high accuracy in the assignment of a consumer speed to a Ansteuersignalwert can be achieved.

Alternativ kann die Mittelung auch ĂŒber zwei Geschwindigkeitswerte erfolgen, die bei gleichem Ansteuersignalwert, aber unterschiedlichem Vorzeichen der Beschleunigung erfasst sind. Diese Art der Berechnung ist einfacher, weil das zur VerfĂŒgung stehende Intervall von Ansteuersignalwerten vorab festgelegt ist. Daher ist diese Berechnungsmethode eher fĂŒr Systeme mit geringer Rechen- und SpeicherkapazitĂ€t geeignet.Alternatively, the averaging can also take place via two speed values which are detected with the same drive signal value but different signs of the acceleration. This type of calculation is simpler because the available interval of drive signal values is predetermined. Therefore, this calculation method is more suitable for systems with low computational and storage capacity.

Die nichtlineare Ansteuersignal - Öffnungsquerschnitt Relation des Proportionalventils 9 und die ggf. unsymmetrische FlĂ€chengestaltung des Hydrozylinders 11 fließen dagegen auch bei der beschriebenen Mittelwertbildung in die Berechnung des Kennfelds ein, da diese Effekte einen Anteil der Geschwindigkeitskurve mit bezĂŒglich der Extrempunkte gerader Symmetrie bilden. Die BerĂŒcksichtigung der nichtlineare Ansteuersignal - Öffnungsquerschnitt Relation des Proportionalventils 9 und die ggf. unsymmetrische FlĂ€chengestaltung des Hydrozylinders 11 ist fĂŒr die Kennfeldberechnung ausdrĂŒcklich erwĂŒnscht, um mittels des Kennfelds einen möglichst linearen Zusammenhang zwischen dem Stellsignal 32 und der tatsĂ€chlichen Geschwindigkeit des Zylinders 11 zu gewĂ€hrleisten.By contrast, the nonlinear drive signal-opening cross-section relation of the proportional valve 9 and the possibly asymmetrical surface design of the hydraulic cylinder 11 also flow into the calculation of the characteristic map in the averaging described, since these effects form a proportion of the velocity curve with respect to the extreme points of straight symmetry. The consideration of the non-linear control signal-opening cross-section relation of the proportional valve 9 and the possibly asymmetrical surface design of the hydraulic cylinder 11 is expressly desired for the map calculation in order to ensure by means of the map a linear relationship between the control signal 32 and the actual speed of the cylinder 11.

Wenn zur Berechnung der Zuordnungskennlinie aufgezeichnete Signalwerte aus mehreren Perioden der Ansteuersignalkurve 50 und der Geschwindigkeitskurve 54 vorhanden sind können einem bestimmten Ansteuersignalwert mehrere Messwerte fĂŒr die Verbrauchergeschwindigkeit zugeordnet werden. Durch die Mittelwertbildung ĂŒber mehr als 2 Messwerte, z.B. 4, 6 oder 8 Werte lĂ€sst sich die Genauigkeit erhöhen. Weiterhin bietet es sich an, Ansteuersignalkurven und.zugehörige Geschwindigkeitskurven fĂŒr mehrere unterschiedliche Frequenzen des Sollwertsignals 25 aufzuzeichnen. Dadurch können unterschiedliche Amplitudenintervalle fĂŒr die Ansteuersignalkurve 50 und die Geschwindigkeitskurve 54 des hydraulischen Verbrauchers vermessen werden. Insbesondere erlaubt ein niederfrequentes Sollwertsignal 25 das genaue Vermessen des hydraulischen Systems bei geringen Ansteuersignalamplituden und kleinen Verbrauchergeschwindigkeiten, also nahe des Überdeckungsbereichs des Proportionalventils 9. Der Einfluss von Beschleunigungseffekten ist bei Verwendung eines niederfrequenten Sollwertsignals 25 minimal. Zufriedenstellende Berechnungsergebnisse erhĂ€lt man z.B. bei Aufzeichnung von jeweils mindestens 2 Signalperioden der Ansteuersignalkurve 50 und der Geschwindigkeitskurve 54 fĂŒr 3 verschiedene Frequenzen des Sollwertsignals 25, wobei sich die höchste Frequenz an der technisch maximal erzielbaren Geschwindigkeit des Hydrozylinders 11 orientiert.If signal values recorded for calculating the assignment characteristic curve comprise several periods of the drive signal curve 50 and the speed curve 54, a plurality of measured values for the consumer speed can be assigned to a specific control signal value. By averaging over more than 2 measured values, eg 4, 6 or 8 values, the accuracy can be increased. Furthermore, it makes sense to record drive signal curves and associated speed curves for a plurality of different frequencies of the setpoint signal 25. As a result, different amplitude intervals for the drive signal curve 50 and the speed curve 54 of the hydraulic consumer can be measured. In particular, a low-frequency setpoint signal 25 allows precise measurement of the hydraulic system at low drive signal amplitudes and small consumer speeds, ie near the coverage area of the proportional valve 9. The influence of acceleration effects is minimal when using a low-frequency setpoint signal 25. Satisfactory calculation results are obtained, for example, when recording at least 2 signal periods of the control signal curve 50 and the speed curve 54 for 3 different frequencies of the setpoint signal 25, wherein the highest frequency based on the maximum technically achievable speed of the hydraulic cylinder 11.

Im Folgenden werden weitere Varianten des AusfĂŒhrungsbeispiels beschrieben, die durch die vorliegende Erfindung umfasst sind.In the following, further variants of the embodiment are described, which are encompassed by the present invention.

Der hydraulische Verbraucher kann unter Anderem ein linear bewegbarer Hydrozylinder oder ein hydraulischer Rotationsmotor sein. AbhÀngig von der Art des hydraulischen Verbrauchers kommt ein entsprechender Positionssensor zum Einsatz, d.h. ein linearer Wegsensor oder ein Drehwinkelsensor.The hydraulic consumer may be, inter alia, a linearly movable hydraulic cylinder or a hydraulic rotary motor. Depending on the type of hydraulic consumer, a corresponding position sensor is used, i. a linear displacement sensor or a rotation angle sensor.

Das Einmessverfahren lĂ€sst sich unabhĂ€ngig von der verwendeten Regelstufe 26 bzw. unabhĂ€ngig von dem im Normalbetrieb verwendeten Regelkonzept durchfĂŒhren. WĂ€hrend des Einmessverfahrens muss lediglich ein Positionssignal vorliegen. FĂŒr die zuvor beschriebene Erzeugung des Ansteuersignals 36 muss ein Positionsregelkreis fĂŒr den hydraulischen Verbraucher geschlossen sein. Im Normalbetrieb selbst kann der hydraulische Verbraucher auch im Rahmen einer offenen Steuerkette angesteuert werden. Weiterhin können auch kaskadierte Regelungen - z.B. ein unterlagerter Geschwindigkeitsregler-, eine ZustandsrĂŒckfĂŒhrung und Geschwindigkeits- oder Beschleunigungsvorsteuermechanismen verwendet werden. Die Regelung kann sich auch auf die durch den hydraulischen Verbraucher aufgebrachte Kraft beziehen. Dabei wird vorzugsweise die Druckdifferenz ĂŒber den Verbraucher als Maß fĂŒr die Kraft gemessen.The calibration procedure can be carried out independently of the control stage 26 used or independently of the control concept used in normal operation. During the calibration procedure, only one position signal must be present. For the above-described generation of the drive signal 36, a position control loop for the hydraulic consumer must be closed. In normal operation itself, the hydraulic consumer can also be controlled in the context of an open timing chain. You can also continue cascaded controls - eg, a subordinate speed controller, state feedback, and speed or acceleration pilot mechanisms are used. The control may also refer to the force applied by the hydraulic load. In this case, the pressure difference across the load is preferably measured as a measure of the force.

Das Ansteuersignal 36 braucht nicht innerhalb einer Regelschleife erzeugt werden. Das Ansteuersignal 36 kann z.B. intern nach einer Vorgabe, z.B. einem Sinus-Signal, erzeugt werden und als internes Ansteuersignal 38 eingespeist werden. Die Aufzeichnung der Ansteuersignalvorgabekurve gemĂ€ĂŸ den PatentansprĂŒchen erschöpft sich dann in der Übernahme vorhandener numerischer Signalvorgabewerte des Ansteuersignal 38 von einem Signalgenerator. Weiter ist es bei dieser Art der Erzeugung des Ansteuersignals 36 nicht notwendig eine Positionsregelschleife zu schließen. Das Einmessverfahren kann auch mit einer offenen Steuerkette durchgefĂŒhrt werden. Lediglich die Erfassung von Positionswerten des hydraulischen Verbrauchers zur Erstellung einer Geschwindigkeitskurve muss gewĂ€hrleistet sein. Allerdings sollte die Position des Verbrauchers ĂŒberwacht werden, um die Einhaltung eines gewissen Positionsintervalls zu gewĂ€hrleisten. Bei einem Rotationsantrieb, bei dem als Verbraucher ein hydraulischer Rotationsmotor zum Einsatz kommt entfĂ€llt ggf. diese Notwendigkeit.The drive signal 36 need not be generated within a control loop. The drive signal 36 may be e.g. internally according to a specification, e.g. a sine signal, are generated and fed as an internal drive signal 38. The recording of the Ansteuersignalvorgabekurve then depletes in the adoption of existing numerical signal default values of the drive signal 38 from a signal generator. Further, in this way of generating the drive signal 36, it is not necessary to close a position control loop. The calibration procedure can also be performed with an open timing chain. Only the detection of position values of the hydraulic consumer to create a speed curve must be guaranteed. However, the position of the consumer should be monitored to ensure compliance with a certain position interval. In the case of a rotary drive in which a hydraulic rotary motor is used as the consumer, this necessity may be eliminated.

Das Stellglied gemĂ€ĂŸ den PatentansprĂŒchen kann unter Anderem ein Proportionalventil, ein getaktetes Schaltventil, das Volumenstellelement einer Verstellpumpe oder das Volumenstellelement eines hydraulischen Rotationsmotors sein.The actuator according to the claims may be, inter alia, a proportional valve, a clocked switching valve, the volume adjusting element of a variable displacement pump or the volume adjusting element of a hydraulic rotary motor.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Elektrohydraulischer AntriebElectrohydraulic drive
33
Hydraulische AchseHydraulic axis
55
DruckmittelversorgungPressure medium supply
77
Regelelektronikcontrol electronics
99
Proportionalventilproportional valve
1111
Hydrozylinderhydraulic cylinders
1212
Positionssensorposition sensor
1414
Sensoreingangsensor input
1616
SollwerteingangSetpoint input
1818
Schnittstelleinterface
2020
Industrie PCIndustry PC
2222
Additionsgliedaddition element
2424
SollwertgeneratorSetpoint generator
2525
SollwertsignalSetpoint signal
2626
Regelstufecontrol stage
2828
Ableitungsglieddissipation element
3030
Additionsgliedaddition element
3232
Stellsignalactuating signal
3434
KennliniengliedCharacteristic element
3636
Ansteuersignalcontrol signal
3838
Ansteuersignalcontrol signal
4040
Datenspeicherdata storage
5050
AnsteuersignalkurveAnsteuersignalkurve
5252
Positionskurveposition curve
5454
Geschwindigkeitskurvespeed curve

Claims (12)

  1. Measuring method for determining a family of characteristics of open-loop control electronics or closed-loop control electronics of a hydraulic drive, in which a hydraulic load can be driven using an actuator, in which the family of characteristics indicates an assignment of actuating signal values to drive signal values for the actuator, and in which a position of the hydraulic load can be detected using a position sensor, characterized by the following steps of:
    generating a drive signal predefined curve which substantially continuously passes through a predefined drive signal interval in a predefined time period,
    recording the drive signal predefined curve in the predefined time period,
    recording position values for the hydraulic load in the predefined time period,
    recording a speed curve of the hydraulic load in the predefined time period with the aid of the recorded position values, and
    calculating the family of characteristics using the recorded drive signal predefined curve and the recorded speed curve of the hydraulic load,
    characterized in that
    the drive signal predefined curve is generated by supplying a position predefined curve to the closed-loop control electronics,
    in that the drive signal predefined curve runs up and down through a drive signal interval in the predefined time period and is substantially symmetrical with respect to a bend point which is passed through in this drive signal interval, and in that
    the position predefined curve is generated according to a periodic basic function.
  2. Measuring method according to Claim 1, characterized in that the drive signal predefined curve and the position predefined curve pass through at least one, preferably two or more periods of the basic function in the predefined time period.
  3. Measuring method according to Claim 1 or 2, characterized in that the basic function is a circular function.
  4. Measuring method according to at least one of Claims 1 to 3, characterized in that the drive signal values for the actuator are each a measure of the speed of the hydraulic load.
  5. Measuring method according to at least one of Claims 1 to 4, characterized in that the speed curve is obtained by numerically differentiating the recorded position values.
  6. Measuring method according to at least one of Claims 1 to 5, characterized in that the number of recorded data values of the drive signal predefined curve and/or of the speed curve is greater in an area of a low degree of actuation of the actuator than in an area of a greater degree of actuation of the actuator.
  7. Measuring method according to at least one of Claims 1 to 6, characterized in that, for a speed value, a drive signal average value is formed from two values from a rising area and a falling area of the drive signal curve, which are each assigned to the speed value, and is used to calculate the family of characteristics.
  8. Measuring method according to at least one of Claims 1 to 7, characterized in that, for a drive signal value, a speed average value is formed from two values from a rising area and a falling area of the speed curve, which are each assigned to the drive signal value, and is used to calculate the family of characteristics.
  9. Measuring device for determining a family of characteristics of open-loop control electronics or closed-loop control electronics of a hydraulic drive using a measuring method according to one of Claims 1 to 8, which device comprises the open-loop control electronics or closed-loop control electronics, characterized in that the open-loop control electronics or the closed-loop control electronics are set up in such a manner that at least the following steps of said measuring method can be carried out by the open-loop control electronics or closed-loop control electronics:
    recording the drive signal predefined curve in the predefined time period,
    recording position values for the hydraulic load in the predefined time period,
    recording the speed curve of the hydraulic load in the predefined time period with the aid of the recorded position values, and
    generating the drive signal predefined curve by generating a position predefined curve.
  10. Measuring device according to Claim 9, characterized in that, in addition to the open-loop control electronics or closed-loop control electronics, there is a computing device which is set up to carry out the step of calculating the family of characteristics using the drive signal predefined curve and the speed curve.
  11. Measuring device according to Claim 9, characterized in that the open-loop control electronics or closed-loop control electronics are set up to carry out the step of calculating the family of characteristics using the drive signal predefined curve and the speed curve.
  12. Measuring device according to one of Claims 9 to 11, characterized in that the open-loop control electronics or closed-loop control electronics are arranged on the housing of the actuator of the hydraulic drive.
EP08759349.7A 2007-07-07 2008-06-27 Measuring method and measuring device Not-in-force EP2174017B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710031793 DE102007031793A1 (en) 2007-07-07 2007-07-07 Einmessverfahren and Einmessvorrichtung
PCT/EP2008/005260 WO2009007019A1 (en) 2007-07-07 2008-06-27 Measuring method and measuring device

Publications (2)

Publication Number Publication Date
EP2174017A1 EP2174017A1 (en) 2010-04-14
EP2174017B1 true EP2174017B1 (en) 2014-03-19

Family

ID=39769324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08759349.7A Not-in-force EP2174017B1 (en) 2007-07-07 2008-06-27 Measuring method and measuring device

Country Status (3)

Country Link
EP (1) EP2174017B1 (en)
DE (1) DE102007031793A1 (en)
WO (1) WO2009007019A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154053A (en) * 2014-07-18 2014-11-19 ć›œćź¶ç””çœ‘ć…Źćž Main-cylinder hydraulic loop system
CN105697459A (en) * 2016-04-12 2016-06-22 燕汱性歊 Hydraulic state detection and maintenance vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944627B2 (en) * 2016-10-03 2021-10-06 Smcæ ȘćŒäŒšç€Ÿ Cylinder operation status monitoring device
CN107178541B (en) * 2017-07-21 2019-03-22 äž­ć›œć·„çš‹ç‰©ç†ç ”ç©¶é™ąćŒ–ć·„ææ–™ç ”ç©¶æ‰€ The submissive loading control method in hydraulic loading test machine initial load domain
CN111399482A (en) * 2020-03-30 2020-07-10 æˆéƒœé›¶ćŻè‡ȘćŠšćŒ–æŽ§ćˆ¶æŠ€æœŻæœ‰é™ć…Źćž Fault real-time detection system and method for vehicle control leveling
DE102022205289A1 (en) * 2022-05-25 2023-11-30 Robert Bosch Gesellschaft mit beschrÀnkter Haftung Hydraulic device with status display

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285715A (en) * 1992-08-06 1994-02-15 Hr Textron, Inc. Electrohydraulic servovalve with flow gain compensation
JPH10230539A (en) 1997-02-19 1998-09-02 Mitsubishi Heavy Ind Ltd Measuring method of working characteristic of proportional solenoid control valve, working controlling method of hydraulic cylinder, and working characteristic correcting method of proportional solenoid control valve
US6282891B1 (en) * 1999-10-19 2001-09-04 Caterpillar Inc. Method and system for controlling fluid flow in an electrohydraulic system having multiple hydraulic circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154053A (en) * 2014-07-18 2014-11-19 ć›œćź¶ç””çœ‘ć…Źćž Main-cylinder hydraulic loop system
CN105697459A (en) * 2016-04-12 2016-06-22 燕汱性歊 Hydraulic state detection and maintenance vehicle

Also Published As

Publication number Publication date
WO2009007019A1 (en) 2009-01-15
DE102007031793A1 (en) 2009-01-08
EP2174017A1 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
EP2174017B1 (en) Measuring method and measuring device
DE69119573T2 (en) Control system with sliding action
DE69301736T2 (en) ANTI-SLIP BRAKE CONTROL SYSTEM
DE112011102065T5 (en) Calibrating the torque of a geared motor
DE102019212845A1 (en) Hydraulic pressure medium supply arrangement and method
DE3889496T2 (en) Electro-hydraulic servo drives.
EP3839256A1 (en) Method for operating a variable-speed adjustable pump
DE19536398A1 (en) Motor vehicle hydraulic system adaptive control method
EP3464862B1 (en) Method and apparatus for calibrating an actuator system
WO2018210448A2 (en) Method for operating a powder press having an attitude control and powder press for carrying out the method
EP0308762B1 (en) Position control device for a hydraulic advance drive, in particular a hydraulic press or stamping machine
DE3603810A1 (en) CONTROL DEVICE
DE102005002443B4 (en) Method for controlling a hydraulic actuator and control unit
DE102020002868A1 (en) Control method for a partially electronic system
DE68922590T2 (en) Method and device for controlling two or more dependent variables simultaneously.
DE102004048120A1 (en) Method for optimizing the operation of a hydrodynamic component integrated in a drive train of a vehicle
DE19835268A1 (en) Rotatable positioning device for machine housing e.g. in excavator
DE102018219365A1 (en) Hydro machine, control arrangement, hydraulic system and method
DE102020213262A1 (en) Method for operating a hydraulic drive
DE4228308A1 (en) Double-cylinder hydraulic drive control system e.g. for machine tool - compensates change in volume of pressure spaces of cylinder by piezoelectrically-actuated pistons located at ends of cylinder, with piezoelectric actuators closed off from pressure spaces
EP1342015B1 (en) Method for operating a control device for a hydraulic system
DE4417153C1 (en) Position regulation circuit for hydraulic setting element in automobile
EP3825787B1 (en) Method for rapid control of the mean of a regulating variable, data carrier with program, and engine control for carrying out said method and drive motor with such an engine control
WO2019105946A1 (en) Method for determining a required contact pressure variable of a brake
EP3230813B1 (en) Method for identifying a characteristic curve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 657857

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008011478

Country of ref document: DE

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140619

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140319

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140619

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011478

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140627

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20141222

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140627

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011478

Country of ref document: DE

Effective date: 20141222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140627

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140627

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 657857

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080627

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008011478

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101