EP2173524B1 - Hydraulic pick - Google Patents

Hydraulic pick Download PDF

Info

Publication number
EP2173524B1
EP2173524B1 EP08779510A EP08779510A EP2173524B1 EP 2173524 B1 EP2173524 B1 EP 2173524B1 EP 08779510 A EP08779510 A EP 08779510A EP 08779510 A EP08779510 A EP 08779510A EP 2173524 B1 EP2173524 B1 EP 2173524B1
Authority
EP
European Patent Office
Prior art keywords
piston rod
channel
chamber
piston
created
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08779510A
Other languages
German (de)
French (fr)
Other versions
EP2173524A1 (en
Inventor
Stefan KONECNÍK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konek sro
Original Assignee
Konek sro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konek sro filed Critical Konek sro
Priority to PL08779510T priority Critical patent/PL2173524T3/en
Publication of EP2173524A1 publication Critical patent/EP2173524A1/en
Application granted granted Critical
Publication of EP2173524B1 publication Critical patent/EP2173524B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/16Valve arrangements therefor
    • B25D9/20Valve arrangements therefor involving a tubular-type slide valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/04Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously of the hammer piston type, i.e. in which the tool bit or anvil is hit by an impulse member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/145Control devices for the reciprocating piston for hydraulically actuated hammers having an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/26Control devices for adjusting the stroke of the piston or the force or frequency of impact thereof
    • B25D9/265Control devices for adjusting the stroke of the piston or the force or frequency of impact thereof with arrangements for automatic stopping when the tool is lifted from the working face or suffers excessive bore resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2209/00Details of portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D2209/005Details of portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously having a tubular-slide valve, which is coaxial with the piston
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/035Bleeding holes, e.g. in piston guide-sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/125Hydraulic tool components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/131Idling mode of tools

Definitions

  • the technical solution relates to hydraulic excavating hammers belonging to the category of percussive and pressurized fluid driven portable impacting devices. It is about a piston hammer in which a pulse element - firing pin strikes a working tool - chisel. Such a hydraulic Abbanhammer is from the WO 02/06 014 A known.
  • WO 02/06014 A discloses a hydraulic excavation hammer composed of a monolithic support housing, a cylindrical piston rod, a striker and a work tool and provided with a supply and discharge of pressurized liquid, wherein in a part of support housing is a piston rod immovably inserted with a piston on an axle stiff firing pin is pushed, and wherein in the second part of the support housing, a working tool is inserted.
  • the previously known solutions are based on a hydraulic control of firing pin.
  • the firing pin has the shape of a continuous piston rod.
  • the piston rod has in its middle part an enlarged diameter, which assumes the function of a weakly sealed by a cylinder gap piston. Because the firing pin is statically over-defined after any contact of the piston member with the cylinder in its storage, the gap must be sufficiently large, causing large flow losses. It has the greatest influence on efficiency reduction of hammers of today's world production.
  • the pressure oil supply is guided by the control of the support housing in the working chambers of the cylinder through channels, which reduce with their resistance, the effectiveness of hammer, especially in the impact movement of the firing pin.
  • a switching pulse of the control in upper position is succeeded by the control channel in the cylinder.
  • the channel does not allow a cuff seal of the firing pin piston. For that reason, the diameter of firing pin is as small as possible. In order to achieve a target mass, so that the firing pin length increases. A reduction of axle stiffness and thereby a reduction of impact rate at the same speed achieved are the consequences.
  • support housings of hammers are constructed of several parts and connected with long screws, which by their elasticity, destroys destructive effects on the lower part of the hammer and the boom of the working machine. These screws are so strained that it comes not only to plastic deformation of nuts but also to screw break itself. The plastic deformation of nuts and bolts is eliminated during operation by regular tightening of the nuts. The residual energy of the working instrument is absorbed by a transverse pin. This results in damage to journal bearing in the tool and the pin itself. The weakened shank of the tool causes it to break during a lever action.
  • the working tool is stored in thermally hardened steel bushes in the lower part of the hammer.
  • the result is a dust and Unreingkeiteneintritt in the storage and not least an emergence of eccentric blows of the firing pin on the tool head.
  • For underwater work compressed air is therefore fed into the tool storage room.
  • Today solutions are known where the problem is solved by an elastic seal with simultaneous interval Fetzuschreib from Agregat the working machine.
  • the working tool transfers the pressing force of the working machine on the hammer over the circular ring surface, which resulted from reduction of the diameter of the tool head.
  • this makes the tool head weaker, which can be a cause of its demolition or smashing.
  • hammers for mechanical protection are encapsulated in another cabinet attached to the machine by means of an adapter.
  • the solutions are known, where to reduce adverse effects on the machine, the hammer is resiliently encapsulated in a cabinet. Or is it designed to prevent blank space.
  • the concept works with a continuous outflow flow and when the function starts up, the pressure in the hydraulic system increases up to the safety pressure value. That works unfavorable to the entire hydraulic system with simultaneous overheating of working fluid.
  • the cabinet is equipped with a Schalldammstoff to dampen the outer noise of the hammer.
  • a common feature of the hammer of world production is its very sophisticated technology, great mass, dimensions and sensitivity to rough treatments.
  • the above-mentioned ironing eliminates the invention with an inverse concept when serving as a firing pin cylinder, which is attached to a fixedly connected to a support housing piston rod.
  • the control comes from a hydraulic tilt circuit, which reacts only to the two end positions of the firing pin.
  • a mounted in the piston rod control switches at high speed the flow direction of the pressure working fluid. It is hydraulically braked in the end positions. In the case when the work tool leaves its work area, the pressure of liquid in the system decreases. This breaks the hammer action. There will be no idle strokes and the working fluid will not overheat.
  • a Hochdruckakkumulator used in other hammers is here replaced by a pressure transducer with a cylinder and a piston.
  • the piston has on one side a common with the firing pin low-pressure gas chamber.
  • the piston On the other side, the piston has a compensation chamber, which is connected only in its initial position with the gas chamber.
  • the cylinder of the pressure transducer is connected to the supply line of the working fluid.
  • the core of the hydraulic excavation hammer according to the invention is that in the upper part of the rotary support housing immovable piston rod is inserted with the piston.
  • a valve ring and a firing pin are pushed on the piston rod of the pressure transducer piston.
  • the firing pin is inserted in a box inserted to the inside of the support housing.
  • a continuous supply channel is arranged with branch paths. He is finished with a control canteen.
  • a jerk channel is set up with a branch line. Through the channels, the working fluid flows.
  • the piston rod further openings from its surface are created in the control canals.
  • a switching element of shell construction is inserted.
  • valve ring equipped with an internal recess is pushed with its underside onto the piston rod in the region of its reduced diameter.
  • the upper side of the valve ring is slid in the part on the piston rod body, where its diameter is not reduced.
  • the first channel is opened by control channels.
  • the working tool is applied from the second (lower) side, which is embedded in cans free of food.
  • the rifles are protected from the outside against the working environment. They are compacted and closed by a lid.
  • the short and stiff firing pin causes a greater rapidity of the blow.
  • the head diameter is therefore inversely increased.
  • the tool does not chip for a safety pin.
  • the tool of new form is unbreakable when levering.
  • the hammer allows underwater work without compressed air supply. With a sudden resistance breakthrough, the tool is axially cushioned. against idle beats the hammer is equipped with a safety circuit. When the striker goes into an out-of-work position, the pressure in the hydraulic system when using the circuit does not increase, contrary to the known solutions, to the value of safety pressure.
  • the control flip-flop is switched at full speed, it is in end positions hydraulically braked. It does not depend on hydraulic resistances. Very laborious decompression of hammer, which was previously realized by its superimposition in a cabinet superficially, is moved directly to the source of acoustic performance (firing pin - working tool) into its interior. Another advantage is small dimensions and less than half the mass of the known hammer, which extends its use in a larger scope of work machines.
  • the hammer contains no screw connections. The hammer parts are held together after assembly in the whole with sufficiently large forces, which are caused by the pressure of the filling gas. The filling gas is usually nitrogen. The hammer does not need maintenance. A smearing of rifles of the working tool comes from the low-pressure return line self-active.
  • Figure 1 shows schematically a longitudinal average of the hydraulic excavating hammer of the first example of the realization.
  • Fig. 2 shows an enlarged detail of the control unit from Fig. 1.
  • Fig. 3 shows schematically the hammer in a longitudinal average with another safety circuit according to the second embodiment.
  • the hydraulic mining hammer is assembled from four main parts. They are: a monolithic rotary support housing 1, a piston rod 2, a firing pin 3 and a working tool 4.
  • the piston rod 2 is immovably inserted. It is secured with a retaining ring 5 against a feed.
  • the firing pin 3 is pushed bewegich on the piston rod 2 . It is made as a rotary body which is axially drilled according to the diameter of piston rod 2 and has an internal recess.
  • After the use of the firing pin 3 on the piston rod 2 its cavity is divided by a sealed piston 21 into the first chamber 41 and the second chamber 42 .
  • the piston rod 2 has a reduced diameter at a portion in the region of the first chamber 41 .
  • valve ring 23 is pushed onto the piston rod 2 .
  • the length of valve ring 23 is greater than the length of the section where the piston rod 2 has its reduced diameter.
  • the valve ring 23 is adapted to the situation so that its end on the side closer to the piston 21 has an axis hole which corresponds to the diameter of the piston rod 2 in its non-reduced part.
  • the valve ring 23 has on its opposite side a forehead with an axis opening which corresponds to the diameter of the piston rod 2 in its reduced part.
  • the valve ring 23 has an inner recess between the two Endstirnen. After placement of valve ring 23 on the piston rod 2 , the recess between the two bodies forms a ring cavity 46.
  • a continuous supply channel 6 with the first branch 7, the third branch 9 and the fourth branch 10 is configured inside the piston rod 2 .
  • a subsequent room is linked.
  • the switching element 20 is designed as a ring with graduated outside and inside diameters so that the total area of its lower (left in the picture) forehead is greater than the total area of its upper (right in the picture) forehead.
  • a passage 14 and an inlet opening 15 is configured in the switching element 20 .
  • four cavities are provided in the inserted next following space. They include: the lower lumen 47, the lumen 48, the middle lumen 49 and the upper lumen 50.
  • the lower lumen 47 is connected to the lumen 46 through the first channel 16 .
  • the small cavity 48 is connected in the first chamber 41 to the surface of piston rod 2 through the lower nozzle 22 and the second channel 17 .
  • the fourth branch path 10 of the supply channel 6 is initiated. From the switching element side, the inlet port 15 is connected to it.
  • the upper cavity 50 is connected to the supply duct 6 through its third branch path 9 . With the surface of the piston rod 2 , it is connected through the fifth channel 31 and the upper nozzle 11 . From the surface of the piston rod 2 to the switching element 20 each carries a channel on the two sides of the piston 21; the third channel 18 leads out of the first chamber 41, the fourth channel 19 leads out of the second chamber 42. Through the third channel 18 and the passage 14 , the first chamber 41 is permanently connected to the return channel 12 configured in the piston rod 2 .
  • the firing pin 3 is inserted into a metal-free sealed axially displaceable sleeve 24 , which is pushed into the support housing 1 .
  • a small-scale pressure converter is still assembled in the upper (right) part of the piston rod 2 . It consists of a bell-shaped collet 25, a sealed cylinder 43 and a compensation chamber 44 so that the cylinder 43 is made from the walls of the piston 25 and the piston rod 2 and connected to the first branch path 7 of the supply channel 6 .
  • the sealed compensation chamber 44 is created between the piston 25 and the cover of piston rod 2 .
  • a gas chamber 45 is configured in the space defined by the support housing 1, sleeve 24, striker 5, piston rod 2 and pressure transducer piston 25 .
  • the compensation chamber 44 is connected to the gas chamber 45 through a connection channel 26 .
  • the working tool 4 is eilitz in the support housing 1 by means of a metal-free sleeve 27 , which is made in the realization example as a three-part 27.1, 27.2, 27.3 , wherein in its central part a spring insert 27.2 is used.
  • the sleeve 27 is sealed to the tool 4 with a Wegabstreifring 28 .
  • the wiper ring 28 has a support housing 1 against axially immovable seal.
  • the lower lid 29 is secured with a retaining ring 30 against extension.
  • the retaining ring 30 has by forces of gas pressure in the gas chamber 45 to a permanent bias.
  • the hammer is equipped with a safety circuit which is made by means of a connection of the bore 51 with the supply channel 6 through the first safety channel 53 and with the return channel 12 through the second safety channel 54 .
  • the bore 51 is made from the lower end of the piston rod 2 into its interior in the longitudinal axis direction of the piston rod 2 .
  • a movable piston 52 is inserted in the bore 51 in the bore 51 .
  • gas Prior to using the hydraulic excavating hammer, gas is forced into the gas chamber 45 at the required pressure through a not-shown passage and a shutter in the piston rod 2 .
  • the high-pressure gas pushes the firing pin 3 in the position in which he leans the sleeve 27 . Due to the movement, the head of the working tool 4 also delays from the end of the piston rod 2 .
  • the body of the firing pin 3 covers the upper nozzle 11 and the fifth channel 31.
  • the working fluid acts on the bottom of bore 51 to a pressure on the flask 52 and pushes it into a permanent contact with the tool 4.
  • the firing pin 3 pushes it out of the hammer so far out that the piston 52, following the movement of the tool 4, at its opposite end the previously closed by it connection of the supply channel 6 with the return channel 12th through the first and second safety channels 53, 54 opens. At that moment, the hammer loses the working pressure of the liquid, if it has become available earlier. As a result of the connection, the hammer is inoperable.
  • the piston 52 pushes into the piston rod 2 until it thereby to the interruption of the connection of the supply channel 6 with the return channel 12 in the bore 51 is coming.
  • the pressure increases.
  • the annular cavity 46 is filled with the hydraulic fluid through the first channel 16 : The hydraulic fluid moves the valve ring 23 in the lower (left) position until it stops.
  • the valve ring 23 In the position of the small cavity 48 with the first chamber 41 through the lower nozzle 22 and the second channel 17 are connected. Because the first chamber 41 is permanently connected to the return channel 12 , so also the small cavity 48 remains without increased pressure.
  • the end faces of switching element 20 thus creates an imbalance of forces, which brings the switching element 20 in rapid movement towards the lower cavity 47 .
  • the working fluid flows from the small cavity 48 through the second channel 17 and the lower nozzle 22 into the first chamber 41.
  • the pressure in the small cavity 48 is increased, causing intensive braking of the switching element 20 .
  • the tip-over of switching element 20 is terminated at a low speed in the emptying of small cavity 48 into the first chamber 41 only by the lower nozzle 22 .
  • the inlet port 15 is connected to the fourth channel 19 and the connection of the fourth channel 19 to the passage 14 of the switching element 20 is interrupted.
  • the pressure increases, which brings the firing pin 3 in a movement in the direction of the gas chamber 45 against the gas pressure.
  • the heavy firing pin 3 starts slowly.
  • the cylinder 43 of the light pressure transducer prevents an increase of pressure peak. It absorbs a deviation of the steady flow of working fluid supplied from the working machine.
  • the pressure transducer piston 25 thereby moves against the movement of the firing pin 3. After the start of the firing pin 3 at the speed corresponding to the feeding flow, the pressure transducer piston 25 is brought to a standstill due to increased gas pressure in the gas chamber 45 .
  • the lower nozzle 22 connects with the movement of the valve ring with the annular cavity 46 and the second channel is covered 17 from the valve annulus, the pressure increases in the small cavity 48. Because the joint end surface of switching element 20 in the sub-cavity 47 and the small cavity 48 is greater as the common end face in the central cavity 49 and upper cavity 50, the switching element 20 moves in the direction of the upper cavity 50 despite the high pressure of working fluid in all cavities The speed of its movement is increased by the connection of the second channel 17 with the annular cavity 46 in steps. During the movement, the second chamber 42 is separated from the supply passage 6 and connected to the first chamber 41 through the fourth passage 19, the passage 14 and the third passage 18 .
  • the safety circuit consists of the second branch track 8, a return branch track 13 and a safety chamber 40.
  • the second branch track 8 is drilled from the supply channel 6 to the surface of piston rod 2 .
  • the returning branch line 13 leads from the return channel 12 to the surface of the piston rod 2.
  • the securing chamber 40 is configured in the upper part of the firing pin 3 in its interior.
  • the second branch 8 and also the back branch 13 are configured in a plane perpendicular to the hammer longitudinal axis. The rest of Hammer's composition is identical to the previous example.
  • gas Prior to using the hydraulic excavating hammer, gas is forced into the gas chamber 45 at the required pressure through a not-shown passage and a shutter in the piston rod 2 .
  • the high-pressure gas pushes the firing pin 3 in the position in which he leans the sleeve 27 . Due to the movement, the head of the working tool 4 also delays from the end of the piston rod 2 .
  • the body of striker 3 conceals the upper nozzle 11 and the fifth channel 31.
  • the safety chamber 40, the second branch 8 and the return branch 13 connect the inlet channel 6 to the return channel 12.
  • connection of the supply channel 6 with the return channel 12 is thus interrupted.
  • the pressure increases.
  • the annular cavity 46 is filled with the pressurized working fluid through the first channel 16 .
  • the working fluid pushes the valve ring 23 in the lower (left) position until it stops. This starts the hammer action described in the first example.
  • the function of the safety circuit is the same even if the work object breaks through.
  • the working tool 4 is brought to a standstill. Spaces from Hammer are excluded.
  • An advantage of the hydraulic mining hammer according to the invention is its significantly increased performance due to high reaching to 90% of the effective force and an increased impact rate, which is caused by repeated axial stiffness of the firing pin 3 .
  • the hammer are predestined in the most difficult conditions without labor restrictions.
  • High switching speed in lower position of striker 3 strikingly reduces a momentum of retreat force.
  • Small dimensions and mass of hammer and great resistance to damage make it possible to use a hammer size on all machines up to the mass of 12.5 t.
  • the support housing 1 is only a rotating body without screw and transverse openings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Valve Device For Special Equipments (AREA)
  • Fluid-Driven Valves (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

A hydraulic pick has a supporting body with a piston and a piston rod fixedly positioned in the supporting body. A working tool is driven by a short, axially rigid striking pin, guided in a bushing. A pressure transformer cylinder and an equalizing chamber are formed between the piston rod and a pressure transformer piston. The striking pin is driven by a working fluid under pressure, which is distributed by a system of channels in the piston rod.

Description

Bereich der TechnikField of engineering

Die technische Lösung betrifft hydraulischen Abbauhammer der in die Kategorie von mit einem Schlag wirkenden und durch Druckflüssigkeit getriebenen tragbaren durchschlagenden Einrichtungen gehört. Es geht um einen Kolbenhammer in dem ein Impulselement - Schlagbolzen auf ein Arbeitsinstrument - Meissel schlägt. Ein solcher hydraulischer Abbanhammer ist aus der WO 02/06 014 A bekannt.The technical solution relates to hydraulic excavating hammers belonging to the category of percussive and pressurized fluid driven portable impacting devices. It is about a piston hammer in which a pulse element - firing pin strikes a working tool - chisel. Such a hydraulic Abbanhammer is from the WO 02/06 014 A known.

Bisheriger Zustand der TechnikPrevious state of the art

Dokument WO 02/06014 A offenbart einen hydraulischen Abbauhammer, der aus einem monolithischen Traggehäuse, einer zylindrischen Kolbenstange, einem Schlagbolzen und einem Arbeitswerkzeug zusammengestellt ist und mit einer Zuleitung und einer Abführung von Druckflüssigkeit vorgesehen ist, wobei in einem Teil von Traggehäuse eine unbeweglich eingelegte Kolbenstange mit einem Kolben ist, auf die ein achsensteifer Schlagbolzen aufgeschoben ist, und wobei in dem zweiten Teil des Traggehäuses ein Arbeitswerkzeug eingelegt ist.document WO 02/06014 A discloses a hydraulic excavation hammer composed of a monolithic support housing, a cylindrical piston rod, a striker and a work tool and provided with a supply and discharge of pressurized liquid, wherein in a part of support housing is a piston rod immovably inserted with a piston on an axle stiff firing pin is pushed, and wherein in the second part of the support housing, a working tool is inserted.

Die bisher bekannten Lösungen sind an einer hydraulischen Steuerung von Schlagbolzen gegründet. Der Schlagbolzen weist die Form einer durchlaufenden Kolbenstange auf. Die Kolbenstange hat in ihrem mittleren Teil einen vergrösserten Durchmesser, der die Funktion eines durch einen Zylinderspalt schwach abgedichteten Kolbens übernimmt. Weil der Schlagbolzen nach einem etwaigen Kontakt des Kolbenteiles mit dem Zylinder in seiner Einlagerung statisch überdefiniert ist, muß der Spalt ausreichend groß sein, was große Durchflußverluste verursacht. Es hat den größten Einfluß auf Wirkungskraftminderung von Hammern heutiger Weltproduktion. Die Druckölzufuhr wird von der Steuerung über das Traggehäuse in die Arbeitskammern des Zylinders durch Kanäle geführt, die mit ihrem Widerstand die Wirkungskraft von Hammer besonders bei der Schlagbewegung des Schlagbolzens vermindern. Ein Umschaltimpuls des Steuerelements in oberer Position wird vom Steuerkanal im Zylinder gelungen. Der Kanal ermöglicht keine Manschettendichtung des Schlagbolzenkolbens. Aus dem Grunde ist der Durchmesser von Schlagbolzen möglichst der kleinste. Um eine Soll-Masse zu erreichen, wächst damit die Schlagbolzenlänge. Eine Verminderung von Achsensteife und dadurch auch eine Verminderung von Schlagrasanz bei gleich erzielter Geschwindigkeit sind die Folgen.The previously known solutions are based on a hydraulic control of firing pin. The firing pin has the shape of a continuous piston rod. The piston rod has in its middle part an enlarged diameter, which assumes the function of a weakly sealed by a cylinder gap piston. Because the firing pin is statically over-defined after any contact of the piston member with the cylinder in its storage, the gap must be sufficiently large, causing large flow losses. It has the greatest influence on efficiency reduction of hammers of today's world production. The pressure oil supply is guided by the control of the support housing in the working chambers of the cylinder through channels, which reduce with their resistance, the effectiveness of hammer, especially in the impact movement of the firing pin. A switching pulse of the control in upper position is succeeded by the control channel in the cylinder. The channel does not allow a cuff seal of the firing pin piston. For that reason, the diameter of firing pin is as small as possible. In order to achieve a target mass, so that the firing pin length increases. A reduction of axle stiffness and thereby a reduction of impact rate at the same speed achieved are the consequences.

Aus Montagegründen und auch um Leerlaufschläge bzw. Restenergie nach einem plötzlichen Durchbruch des Widerstandes aufzufangen, sind Traggehäuser von Hammern aus mehreren Teilen konstruiert und mit langen Schrauben zusammen verbunden, die durch ihre E-lastizität zerstörende Wirkungen auf den unteren Teil des Hammers und den Ausleger von Arbeitsmaschine entkräften. Diese Schrauben werden derart angestrengt, dass es nicht nur zu plastischer Verformung von Muttern sondern auch zum Schraubenbruch selbst kommt. Die plastische Verformung von Muttren und Schrauben wird im Betrieb durch regelmässige Nachziehen der Muttern eliminiert. Die Restenergie des Arbeitsinstruments wird von einem Querzapfen aufgenommen. Dabei kommt es zu einer Beschädigung von Zapfenauflagerung im Werkzeug und des Zapfens selbst. Der abgeschwächte Schaft des Arbeitswerkzeugs verursacht seinen Bruch während einer Hebelwirkung.For assembly reasons and also to catch idle or residual energy after a sudden breakthrough of resistance, support housings of hammers are constructed of several parts and connected with long screws, which by their elasticity, destroys destructive effects on the lower part of the hammer and the boom of the working machine. These screws are so strained that it comes not only to plastic deformation of nuts but also to screw break itself. The plastic deformation of nuts and bolts is eliminated during operation by regular tightening of the nuts. The residual energy of the working instrument is absorbed by a transverse pin. This results in damage to journal bearing in the tool and the pin itself. The weakened shank of the tool causes it to break during a lever action.

Das Arbeitswerkzeug ist in termisch ausgehärteten Stahlbüchsen im unteren Teil des Hammers gelagert. Hier kommt es zum Festfressen der Lagerung und zur fortlaufenden Vergrösserung ihres Spiels. Die Folge ist einen Staub- und Unreingkeiteneintritt in die Lagerung und nicht zuletzt eine Entstehung von exzentrischen Schlägen des Schlagbolzens auf den Werkzeugkopf. Für Unterwasserarbeiten wird deshalb Druckluft in den Werkzeug - Lagerungsraum zugeführt. Heute sind Lösungen bekannt, wo das Problem durch eine elastische Abdichtung bei gleichzeitigem Intervall-Fetzufuhr vom Agregat der Arbeitsmaschine gelöst wird.The working tool is stored in thermally hardened steel bushes in the lower part of the hammer. Here it comes to the seizure of storage and to the progressive enlargement of their game. The result is a dust and Unreingkeiteneintritt in the storage and not least an emergence of eccentric blows of the firing pin on the tool head. For underwater work compressed air is therefore fed into the tool storage room. Today solutions are known where the problem is solved by an elastic seal with simultaneous interval Fetzufuhr from Agregat the working machine.

Das Arbeitswerkzeug überträgt Anpresskraft der Arbeitsmaschine auf den Hammer über die Kreisring-Fläche, die durch Verkleinerung des Durchmessers von Werzeugkopf entstand. Das macht allerdings den Werkzeugkopf schwächer, was eine Ursache seines Abbruchs oder Zerschmiedens sein kann.The working tool transfers the pressing force of the working machine on the hammer over the circular ring surface, which resulted from reduction of the diameter of the tool head. However, this makes the tool head weaker, which can be a cause of its demolition or smashing.

Als Ganzheit werden Hammer zum mechanischen Schutz in einen weiteren mit Hilfe eines Adapters an der Arbeitsmaschine befestigten Schrank gekapselt. Es sind die Lösungen bekannt, wo um ungünstige Wirkungen an die Arbeitsmaschine zu verringern, ist der Hammer in einen Schrank federnd gekapselt . Oder ist er so konstruiert, um Leerschläge zu verhindern. Das Konzept arbeitet mit einem Dauer-Abstrom-Durchfluss und bei einem Anlauf der Funktion erhöht sich der Druck im Hydrauliksystem bis auf den Sicherungsdruckwert. Das wirkt ungünstig an das ganze Hydrauliksystem bei gleichzeitiger Überhitzung von Arbeitsflüssigkeit. Es sind auch Lösungen bekannt wo der Schrank mit einem Schalldammstoff bestückt ist, um Aussengeräusch des Hammers zu dämpfen.As a whole, hammers for mechanical protection are encapsulated in another cabinet attached to the machine by means of an adapter. The solutions are known, where to reduce adverse effects on the machine, the hammer is resiliently encapsulated in a cabinet. Or is it designed to prevent blank space. The concept works with a continuous outflow flow and when the function starts up, the pressure in the hydraulic system increases up to the safety pressure value. That works unfavorable to the entire hydraulic system with simultaneous overheating of working fluid. There are also known solutions where the cabinet is equipped with a Schalldammstoff to dampen the outer noise of the hammer.

Ein gemeinsames Merkmal der Hammer von Weltproduktion ist ihre sehr anspruchsvolle Technologie, grosse Masse, Abmessungen und Empfindlichkeit auf grobe Behandlungen.A common feature of the hammer of world production is its very sophisticated technology, great mass, dimensions and sensitivity to rough treatments.

Erfindungskerninvention core

Die Erfindung wird im Anspruch 1 beschrieben. Vorteilhafte Ausführungen sind in den Unteransprüchen beschrieben.The invention is described in claim 1. Advantageous embodiments are described in the subclaims.

Die erwähnten Mangeln beseitigt die Erfindung mit einem inversen Konzept, wenn als Schlagbolzen ein Zylinder dient, der auf eine mit einem Traggehäuse fest verbundene Kolbenstange aufgesteckt ist. Die Steuerung kommt von einer hydraulischen Kippschaltung, die bloss an die beiden Endpositionen des Schlagbolzens reagiert. Ein in der Kolbenstange angebrachtes Steuerelement schaltet mit grosser Geschwindigkeit die Stromrichtung der Druck-Arbeitsflüssigkeit um. Es wird in den Endpositionen hydraulisch gebremst. Im Falle, wenn das Arbeitswerkzeug seinen Arbeitsbereich verlässt, nimmt der Druck von Flüssigkeit im System ab. Dadurch wird die Hammertätigkeit unterbrochen. Es kommt zu keinen Leerlauf-Schlägen und die Arbeitsflüssigkeit wird nicht überhitzen.The above-mentioned ironing eliminates the invention with an inverse concept when serving as a firing pin cylinder, which is attached to a fixedly connected to a support housing piston rod. The control comes from a hydraulic tilt circuit, which reacts only to the two end positions of the firing pin. A mounted in the piston rod control switches at high speed the flow direction of the pressure working fluid. It is hydraulically braked in the end positions. In the case when the work tool leaves its work area, the pressure of liquid in the system decreases. This breaks the hammer action. There will be no idle strokes and the working fluid will not overheat.

Ein in anderen Hammern verwendeter Hochdruckakkumulator ist hier durch einen Druckumformer mit einem Zylinder und einem Kolben ersetzt. Der Kolben weisst an einer Seite eine mit dem Schlagbolzen gemeinsame Niederdruck-Gaskammer auf. An der anderen Seite weisst der Kolben eine Ausgleichskammer auf, die nur in seiner Ausgangsposition mit der Gaskammer verbunden ist. Der Zylinder des Druckumformers ist zur Zuleitung der Arbeitsflüssigkeit angeschlossen. Infolge einer Mitbewegung des Druckumformerkolbens mit dem Schlagbolzen bleibt der Druck im Hydrauliksystem fast konstant. Bei einer gesteuerten und von Durchfluss abhängigen Dämpfung sind auch Bewegungsvibrationen von Schlagbolzen beseitigt.A Hochdruckakkumulator used in other hammers is here replaced by a pressure transducer with a cylinder and a piston. The piston has on one side a common with the firing pin low-pressure gas chamber. On the other side, the piston has a compensation chamber, which is connected only in its initial position with the gas chamber. The cylinder of the pressure transducer is connected to the supply line of the working fluid. As a result of a co-movement of the pressure transducer piston with the firing pin, the pressure in the hydraulic system remains almost constant. In a controlled and flow-dependent damping and vibration of moving firing pin are eliminated.

Der Kern des hydraulischen Abbauhammers nach der Erfindung liegt darin, dass in dem oberen Teil von Rotations-Traggehäuse eine unbewegbare Kolbenstange mit dem Kolben eingelegt ist. Auf die Kolbenstange sind der Druckumformerkolben, ein Ventilring und ein Schlagbolzen aufgeschoben. Der Schlagbolzen ist in eine zur Innenseite des Traggehäuses eingelegte Büchse eingeführt. Im Kolbenstange-Körper ist ein durchgehender Zufuhrkanal mit Zweigbahnen eingerichtet. Er ist mit einem Steuerkanälchen beendet. Im Kolbenstange-körper ist auch ein Ruckführkanal mit einer Zweigbahn eingerichtet. Durch die Kanäle strömt die Arbeit-Druckflüssigkeit. In der Kolbenstange sind noch weitere Offnungen aus ihrer Oberfläche in das Steuerkanälchen erstellt. Im Steuerkanälchen ist ein Umschaltelement von Schalenkonstruktion eingelegt. Der mit einem Innenaussparung ausgestatetten Ventilring ist mit seiner Unterseite auf die Kolbenstange im Bereich von ihrem verkleinerten Durchmesser aufgeschoben. Die obere Seite vom Ventilring ist in dem Teil auf den Kolbenstange-Körper aufgeschoben, wo sein Durchmesser nicht verkleinert ist. In den durch eine Aussparung ausgestalteten Ringhohlraum ist der erste Kanal von Steuerkanälchen eingemündet.The core of the hydraulic excavation hammer according to the invention is that in the upper part of the rotary support housing immovable piston rod is inserted with the piston. On the piston rod of the pressure transducer piston, a valve ring and a firing pin are pushed. The firing pin is inserted in a box inserted to the inside of the support housing. In the piston rod body, a continuous supply channel is arranged with branch paths. He is finished with a control canteen. In the piston rod body and a jerk channel is set up with a branch line. Through the channels, the working fluid flows. In the piston rod further openings from its surface are created in the control canals. In the control channel a switching element of shell construction is inserted. The valve ring equipped with an internal recess is pushed with its underside onto the piston rod in the region of its reduced diameter. The upper side of the valve ring is slid in the part on the piston rod body, where its diameter is not reduced. In the annular cavity formed by a recess, the first channel is opened by control channels.

In das Traggehäuse ist das Arbeitswerkzeug von der zweiten (unteren) Seite angelegt, das in Büchsen fressenfrei gebettet ist. Die Büch-sen werden von Aussen gegen die Arbeitsumwelt geschützt. Sie sind von einem Deckel verdichtet und abgeschlossen. Der kurze und steife Schlagbolzen ruft eine grössere Rasanz des Schlages hervor. Der Kopfdurchmesser ist deswegen invers vergrössert. Das Werkzeug hat kein Abschwechen für einen Sicherungszapfen. Das Werkzeug neuer Form ist bruchsicher beim Hebeln. Der Hammer ermöglicht eine Unter-wasserarbeit ohne Druckluftzufuhr. Bei einem plötzlichen Widerstand-durchbruch ist das Werkzeug axial abgefedert. Gegen Leerlaufschlä-gen ist der Hammer mit einem Sicherheitskreis ausgerüstet. Wenn der Schlagbolzen in eine Ausserarbeitsposition kommt, wird der Druck im Hydrauliksystem bei der Verwendung des Kreises den bekannten Lösungen entgegen bis auf den Wert von Sicherheitsdruck nicht erhöht. Umgekehrt, er wird gesunken, wodurch die Hammerfunktion sofort gestoppt ist. Die Steuer-Kippschaltung wird in voller Geschwindigkeit umgeschaltet, sie ist in Endpositionen hydraulisch gebremst. Sie hängt von hydraulischen Widerständen nicht ab. Sehr arbeitsauwendige Entlärmung von Hammer, die bisher durch seine Einlagerung in einen Schrank oberflächlich realisiert wurde, ist direkt zur Quelle der akustischen Leistung (Schlagbolzen - Arbeitswerkzeug) in sein Inneres verschoben. Ein weiterer Vorteil sind kleine Abmessungen und weniger als halbige Masse gegen die bekannten Hammer, was seine Verwendung in einen grösseren Umfang von Arbeitsmaschinen erweitert. Der Hammer beinhaltet keine Schraubverbindungen. Die Hammerteile sind nach der Zusammenbau ins Ganze mit ausreichend grossen Kräften zusammengehalten, die durch den Druck vom Füllungsgas hervorgerufen werden. Als Füllungsgas nimmt man üblicherweise Stickstoff. Der Hammer braucht keine Wartung. Ein Zuschmieren von Büchsen des Arbeitswerkzeugs kommt von der Niederdruck-Rückleitung selbst-tätig.In the supporting housing, the working tool is applied from the second (lower) side, which is embedded in cans free of food. The rifles are protected from the outside against the working environment. They are compacted and closed by a lid. The short and stiff firing pin causes a greater rapidity of the blow. The head diameter is therefore inversely increased. The tool does not chip for a safety pin. The tool of new form is unbreakable when levering. The hammer allows underwater work without compressed air supply. With a sudden resistance breakthrough, the tool is axially cushioned. Against idle beats the hammer is equipped with a safety circuit. When the striker goes into an out-of-work position, the pressure in the hydraulic system when using the circuit does not increase, contrary to the known solutions, to the value of safety pressure. Conversely, it sinks, causing the hammer function to stop immediately. The control flip-flop is switched at full speed, it is in end positions hydraulically braked. It does not depend on hydraulic resistances. Very laborious decompression of hammer, which was previously realized by its superimposition in a cabinet superficially, is moved directly to the source of acoustic performance (firing pin - working tool) into its interior. Another advantage is small dimensions and less than half the mass of the known hammer, which extends its use in a larger scope of work machines. The hammer contains no screw connections. The hammer parts are held together after assembly in the whole with sufficiently large forces, which are caused by the pressure of the filling gas. The filling gas is usually nitrogen. The hammer does not need maintenance. A smearing of rifles of the working tool comes from the low-pressure return line self-active.

Übersicht von BildungenOverview of formations

Bild 1 zeigt schematisch einen Längstdurchschnitt vom hydraulischen Abbauhammer aus dem ersten Beispiel der Verwirklichung. Im Bild 2 ist im Schnitt ein vergrössertes Detail vom Steuerwerk aus dem Bild 1. Das Bild 3 zeigt schematisch den Hammer in einem Längstdurchschnitt mit einem anderen Sicherheitskreis nach dem zweiten Verwirklichungsbeispiel.Figure 1 shows schematically a longitudinal average of the hydraulic excavating hammer of the first example of the realization. Fig. 2 shows an enlarged detail of the control unit from Fig. 1. Fig. 3 shows schematically the hammer in a longitudinal average with another safety circuit according to the second embodiment.

Beispiele der VerwirklichungExamples of the realization

Der hydraulische Abbauhammer ist aus vier Hauptteile zusammengebaut. Es sind: ein monolithisches Rotations-Traggehäuse 1, eine Kolbenstange 2, ein Schlagbolzen 3 und ein Arbeitswerkzeug 4. Im Traggehäuse 1 ist die Kolbenstange 2 unbeweglich eingelegt. Sie ist mit einem Haltering 5 gegen einen Vorschub gesichert. Der Schlagbolzen 3 ist auf die Kolbenstange 2 bewegich aufgeschoben. Er ist als ein Rotationskörper gefertigt, der nach dem Durchmesser von Kolbenstange 2 achsendurchgebohrt ist und eine Innenaussparung aufweist. Nach dem Einsatz des Schlagbolzens 3 auf die Kolbenstange 2 ist sein Hohlraum durch einen abgedichteten Kolben 21 in die erste Kammer 41 und die zweite Kammer 42 geteilt. Die Kolbenstange 2 weist an einem Abschnitt im Bereich der ersten Kammer 41 einen verkleinerten Durchmesser auf. An der Stelle ist ein Ventilring 23 auf die Kolbenstange 2 aufgeschoben. Die Länge von Ventilring 23 ist grösser als die Länge des Abschnitts wo die Kolbenstange 2 ihren verkleinerten Durchmesser hat. Der Ventilring 23 wird der Situation so angepasst, dass sein Stirn an der dem Kolben 21 näheren Seite ein Achsenloch aufweist, das dem Durchmesser von Kolbenstange 2 in ihrem nicht verkleinerten Teil entspricht. Der Ventilring 23 weist an seiner Gegenseite einen Stirn mit einer Achsenöffnung auf, die dem Durchmesser der Kolbenstange 2 in ihrem verkleinerten Teil entspricht. Der Ventilring 23 hat zwischen beiden Endstirnen eine innere Ausparung. Nach dem Aufsetzen von Ventilring 23 auf die Kolbenstange 2 bildet die Aussparung zwischen den beiden Körpern einen Ringhohlraum 46. Im Inneren der Kolbenstange 2 ist ein durchlaufender Zuleitungskanal 6 mit der ersten Zweigbahn 7, der dritten Zweigbahn 9 und der vierten Zweigbahn 10 ausgestaltet. An das Ende vom Zuleitungskanal 6 ist ein nachfolgender Raum angeknüpft. In den Raum ist ein leichtes Umschaltelement 20 von Schalenkonstruktion hineingelegt. Das Umschaltelement 20 ist als ringförmig mit abgestuften Aussen- und Innendurchmessern so gefertigt, dass die Gesamtfläche seiner unteren (im Bild linken) Stirnen grösser als die Gesamtfläche seiner oberen (im Bild rechten) Stirnen ist. Im Umschaltelement 20 ist ein Durchlass 14 und eine Einlassöffnung 15 ausgestaltet. Nach dem Einlegen von Umschaltelement 20 sind vier Hohlräume im eingeführten nächfolgenden Raum ausgstaltet. Es sind: der Unterhohlraum 47, der Kleinhohlraum 48, der Mittelhohlraum 49 und der Oberhohlraum 50. Der Unterhohlraum 47 ist mit dem Ringhohlraum 46 durch den ersten Kanal 16 verbunden. Der Kleinhohlraum 48 ist in der ersten Kammer 41 mit der Oberfläche von Kolbenstange 2 durch die untere Düse 22 und den zweiten Kanal 17 verbunden. In den Mittelhohlraum 49 ist die vierte Zweigbahn 10 des Zuleitungskanals 6 eingeleitet. Von der Umschaltelement-Seite ist der Einlassöffnung 15 mit ihr verbunden. Der Oberhohlraum 50 ist mit dem Zuleitungskanal 6 durch seine dritte Zweigbahn 9 verbunden. Mit der Oberfläche der Kolbenstange 2 ist er durch den fünften Kanal 31 und die obere Düse 11 verbunden. Aus der Oberfläche der Kolbenstange 2 zum Umschaltelement 20 führt je ein Kanal an den beiden Seiten des Kolbens 21; der dritte Kanal 18 führt aus der ersten Kammer 41, der vierte Kanal 19 führt aus der zweiten Kammer 42. Durch den dritten Kanal 18 und den Durchlass 14 ist die erste Kammer 41 mit dem in der Kolbenstange 2 ausgestalteten Rückführkanal 12 dauerverbunden.The hydraulic mining hammer is assembled from four main parts. They are: a monolithic rotary support housing 1, a piston rod 2, a firing pin 3 and a working tool 4. In the support housing 1 , the piston rod 2 is immovably inserted. It is secured with a retaining ring 5 against a feed. The firing pin 3 is pushed bewegich on the piston rod 2 . It is made as a rotary body which is axially drilled according to the diameter of piston rod 2 and has an internal recess. After the use of the firing pin 3 on the piston rod 2 , its cavity is divided by a sealed piston 21 into the first chamber 41 and the second chamber 42 . The piston rod 2 has a reduced diameter at a portion in the region of the first chamber 41 . At the point a valve ring 23 is pushed onto the piston rod 2 . The length of valve ring 23 is greater than the length of the section where the piston rod 2 has its reduced diameter. The valve ring 23 is adapted to the situation so that its end on the side closer to the piston 21 has an axis hole which corresponds to the diameter of the piston rod 2 in its non-reduced part. The valve ring 23 has on its opposite side a forehead with an axis opening which corresponds to the diameter of the piston rod 2 in its reduced part. The valve ring 23 has an inner recess between the two Endstirnen. After placement of valve ring 23 on the piston rod 2 , the recess between the two bodies forms a ring cavity 46. Inside the piston rod 2 , a continuous supply channel 6 with the first branch 7, the third branch 9 and the fourth branch 10 is configured. At the end of the supply channel 6 , a subsequent room is linked. In the room a light switching element 20 is inserted by shell construction. The switching element 20 is designed as a ring with graduated outside and inside diameters so that the total area of its lower (left in the picture) forehead is greater than the total area of its upper (right in the picture) forehead. In the switching element 20 , a passage 14 and an inlet opening 15 is configured. After inserting switching element 20 , four cavities are provided in the inserted next following space. They include: the lower lumen 47, the lumen 48, the middle lumen 49 and the upper lumen 50. The lower lumen 47 is connected to the lumen 46 through the first channel 16 . The small cavity 48 is connected in the first chamber 41 to the surface of piston rod 2 through the lower nozzle 22 and the second channel 17 . In the center cavity 49 , the fourth branch path 10 of the supply channel 6 is initiated. From the switching element side, the inlet port 15 is connected to it. The upper cavity 50 is connected to the supply duct 6 through its third branch path 9 . With the surface of the piston rod 2 , it is connected through the fifth channel 31 and the upper nozzle 11 . From the surface of the piston rod 2 to the switching element 20 each carries a channel on the two sides of the piston 21; the third channel 18 leads out of the first chamber 41, the fourth channel 19 leads out of the second chamber 42. Through the third channel 18 and the passage 14 , the first chamber 41 is permanently connected to the return channel 12 configured in the piston rod 2 .

Der Schlagbolzen 3 ist in eine metalfreie abgedichtete axialverschiebbare Büchse 24 eingeführt, die in das Traggehäuse 1 aufgeschoben ist. Im oberen (rechten) Teil der Kolbenstange 2 ist ein kleinmaterieller Druckumformer noch zusammengebaut. Er besteht aus einem glockenförmigen Kollben 25, einem abgedichteten Zylinder 43 und einer Ausgleichskammer 44 so, dass der Zylinder 43 aus den Wänden des Kolbens 25 und der Kolbenstange 2 erstellt und zu der ersten Zweigbahn 7 des Zuleitungskanals 6 angeschlossen ist. Die abgedichtete Ausgleichskammer 44 wird zwischen dem Kolben 25 und dem Deckel von Kolbenstange 2 erstellt. Eine Gaskammer 45 ist im vom Traggehäuse 1, Büchse 24, Schlagbolzen 5, Kolbenstange 2 und Druckumformer-Kolben 25 begrenzten Raum ausgestaltet. In der Ausgangsposition des Druckumformer-Kolbens 25 ist die Ausgleichskammer 44 mit der Gaskammer 45 durch einen Verbindungskanal 26 verbunden. Das Arbeitswerkzeug 4 ist im Traggehäuse 1 mittels einer metallfreien Büchse 27 eigelegt, die in dem Verwirklichungsbeispiel als dreiteilig 27.1, 27.2, 27.3 gefertigt ist, wobei in ihrem mittleren Teil ein Federeinsatz 27.2 verwendet wird. Die Büchse 27 wird dem Werkzeug 4 gegenüber mit einem Schwimmabstreifring 28 abgedichtet. Der Abstreifring 28 weist eine dem Traggehäuse 1 gegenüber axial unbewegliche Dichtung auf. Der Unterdeckel 29 ist mit einem Haltering 30 gegen ein Ausfahren gesichert. Der Haltering 30 weist durch Kräfte von Gasdruck in der Gaskammer 45 eine dauerhaftige Vorspannung auf. Abdichtung von Büchsen 27 gegenüber dem Traggehäuse 1, der Büchse 24 gegenüber dem Traggehäuse 1 und dem Schlagbolzen 3, des Schlagbolzens 3 gegenüber der Kolbenstange 2, des Kolbens 21 gegenüber dem Schlagbolzen 3, des Druckumformer-Kolbens 25 gegenüber der Kolbenstange 2 und der Kolbenstange 2 gegenüber dem Traggehäuse 1 werden durch nichtgezeichnete Dichtungsmanschetten erreicht. Der in dem Beispiel beschriebener hydraulischer Abbauhammer ist ohne Schraubverbindungen zusammengebaut.The firing pin 3 is inserted into a metal-free sealed axially displaceable sleeve 24 , which is pushed into the support housing 1 . In the upper (right) part of the piston rod 2 a small-scale pressure converter is still assembled. It consists of a bell-shaped collet 25, a sealed cylinder 43 and a compensation chamber 44 so that the cylinder 43 is made from the walls of the piston 25 and the piston rod 2 and connected to the first branch path 7 of the supply channel 6 . The sealed compensation chamber 44 is created between the piston 25 and the cover of piston rod 2 . A gas chamber 45 is configured in the space defined by the support housing 1, sleeve 24, striker 5, piston rod 2 and pressure transducer piston 25 . In the initial position of the pressure transducer piston 25 , the compensation chamber 44 is connected to the gas chamber 45 through a connection channel 26 . The working tool 4 is eigelegt in the support housing 1 by means of a metal-free sleeve 27 , which is made in the realization example as a three-part 27.1, 27.2, 27.3 , wherein in its central part a spring insert 27.2 is used. The sleeve 27 is sealed to the tool 4 with a Schwimmabstreifring 28 . The wiper ring 28 has a support housing 1 against axially immovable seal. The lower lid 29 is secured with a retaining ring 30 against extension. The retaining ring 30 has by forces of gas pressure in the gas chamber 45 to a permanent bias. Sealing of cans 27 relative to the supporting housing 1, the sleeve 24 relative to the support case 1 and the striker 3, the firing pin 3 with respect to the piston rod 2, the piston 21 against the firing pin 3, of the pressure transformer piston 25 opposite the piston rod 2 and the piston rod 2 relative to the support housing 1 are achieved by non-marked gaskets. The described in the example hydraulic excavation hammer is assembled without screw.

Der Hammer ist mit einem Sicherheitskreis ausgerüstet, der mit Hilfe einer Verbindung der Bohrung 51 mit dem Zuleitungskanal 6 durch das ersten Sicherheitskanälchen 53 und mit dem Rückführkanal 12 durch das zweite Sicherheitskanälchen 54 geschaft wird. Die Bohrung 51 wird aus dem unteren Stirn der Kolbenstange 2 in ihr Inneres in Längsachsenrichtung der Kolbenstange 2 gemacht. In die Bohrung 51 ist ein bewegliches Kölbchen 52 hineingelegt.The hammer is equipped with a safety circuit which is made by means of a connection of the bore 51 with the supply channel 6 through the first safety channel 53 and with the return channel 12 through the second safety channel 54 . The bore 51 is made from the lower end of the piston rod 2 into its interior in the longitudinal axis direction of the piston rod 2 . In the bore 51 a movable piston 52 is inserted.

Vor einer Verwendung des hydraulischen Abbauhammers wird Gas in die Gaskammer 45 auf erforderlichen Druck durch einen nicht gezeichneten Kanal und einen Verschluss in der Kolbenstange 2 angepresst. Das Hochdruckgas schiebt den Schlagbolzen 3 in die Position vor, in der er die Büchse 27 anlehnt. Durch die Bewegung zögert auch der Kopf des Arbeitswerkzeugs 4 von dem Stirn der Kolbenstange 2 hinaus. Der Körper von Schlagbolzen 3 verdeckt die obere Düse 11 und den fünften Kanal 31. Die Arbeitsflüssigkeit wirkt auf dem Boden von Bohrung 51 mit einem Druck auf das Kölbchen 52 und schiebt es zu einem Dauerkontakt mit dem Werkzeug 4. Solange lehnt das Arbeitswerkzeug 4 den Arbeitsgegenstand (oder eine andere Sperre) nicht an, schiebt der Schlagbolzen 3 es aus dem Hammer so weit hinaus, dass das Kölbchen 52, verfolgend die Bewegung von Werkzeug 4, an seinem gegnüberliegenden Ende die bisher durch es geschlossene Verbindung des Zuleitungskanals 6 mit dem Rückführkanal 12 durch das erste und zweite Sicherheitskanälchen 53, 54 öffnet. In dem Moment verliert der Hammer den Arbeitsdruck der Flüssigkeit, sofern er früher vorhanden geworden ist. Infolge der Verbindung ist der Hammer funktionsunfähig. Nach einem Eindrücken des Arbeitswerkzeugs 4 in den Hammer hinein (durch ein Zupressen von Arbeitsmaschine auf das Arbeitswerkzeug) schiebt sich auch das Kölbchen 52 in die Kolbenstange 2 ein, bis es dadurch zu dem Unterbrechen der Verbindung von Zuleitungskanal 6 mit dem Rückführkanal 12 in der Bohrung 51 kommt. In den Zweigbahnen 7 bis 10 des Zuleitungskanals 6 erhöht sich der Druck. Der Ringhohlraum 46 wird mit der Druckflüssigkeit durch den ersten Kanal 16 gefüllt: Die Druckflüssigkeit verschiebt den Ventilring 23 in die untere (linke) Position bis zum Anschlag. In der Position ist der Kleinhohlraum 48 mit der ersten Kammer 41 durch die untere Düse 22 und den zweiten Kanal 17 verbunden. Weil die erste Kammer 41 dauerhaft mit dem Rückführkanal 12 verbunden ist, bleibt so auch der Kleinhohlraum 48 ohne erhöhten Druck. Durch die vierte Zweigbahn 10 und die dritte Zweigbahn 9 erhöht sich der Druck auch im Mittelhohlraum 49 und im Oberhohlraum 50. An den Stirnflächen von Umschaltelement 20 entsteht so ein Ungleichgewicht der Kräfte, das das Umschaltelement 20 in schnelle Bewegung in Richtung Unterhohlraum 47 bringt. Während der Bewegung strömt die Arbeitsflüssigkeit aus dem Kleinhohlraum 48 durch den zweiten Kanal 17 und die untere Düse 22 in die erste Kammer 41. Durch eine Verdeckung des zweiten Kanals 17 wird der Druck im Kleinhohlraum 48 erhöht, was ein intensives Bremsen von Umschaltelement 20 verursacht. Das Umkippen von Umschaltelement 20 wird bei einer kleinen Geschwindigkeit bei der Leerung von Kleinhohlraum 48 in die erste Kammer 41 nur durch die untere Düse 22 beendet. Während der Bewegung von Umschaltelement 20 ist die Einlassöffnung 15 mit dem vierten Kanal 19 verbunden und die Verbindung des vierten Kanals 19 mit dem Durchlass 14 von Umschaltelement 20 unterbrochen wird. In der zweiten Kammer 42 erhöht sich der Druck, der den Schlagbolzen 3 in eine Bewegung in Richtung Gaskammer 45 gegen den Gasdruck bringt. Der schwere Schlagbolzen 3 fährt langsam an. Der Zylinder 43 vom leichten Druckumformer verhindert dabei eine Zunahme von Druckspitze. Er absorbiert eine Abweichung des beständigen Durchflusses von Arbeitsflüssigkeit, die aus der Arbeitsmaschine zugeliefert wird. Der Druckumformer-Kolben 25 bewegt sich dadurch gegen die Bewegung von Schlagbolzen 3. Nach dem Anlauf des Schlagbolzens 3 auf die dem zuführenden Durchfluss entsprechende Geschwindigkeit, wird der Druckumformer-Kolben 25 infolge erhöhtes Gasdrucks in der Gaskammer 45 in Stillstand gebracht. Nachdem beginnt er in die Ausgangsposition zurückzukehren. Die nun aus dem Druckumformer-Zylinder 43 durch die erste Zweigbahn 7 strömende Arbeitsflüssigkeit wird zum von der Arbeitsmaschine zugeführten Durchfluss zugerechnet. Die Geschwindigkeit von Schlagbolzen 3 wird dadurch noch erhöht: Eine verlässliche Ruckkehr des Druckumformer-Kolbens 25 in seine Ausgangsposition wird von hydraulischer Dämpfung gesichert und durch eine Mitwirkung der Ausgleichskammer 44 unterstützt. Dessen infolge wird die Geschwindigkeit des Schlagbolzens 3 kontinuierlich an den dem Flüssigkeitsdurchfluss von der Arbeitsmaschine entsprechenden Wert gesunken. Bei der Geschwindigkeit nähert sich der Schlagbolzen 3 zum oberen Totpunkt des Arbeitshubs. Bei der Bewegung wird der Ventilring 23 in der ersten Kammer 41 vom Stirn des Schlagbolzens 3 aufgefangen und mitgerissen. Wenn sich bei der Bewegung des Ventilringes 23 die untere Düse 22 mit dem Ringhohlraum 46 verbindet und der zweite Kanal 17 vom Ventilringkörper abgedeckt wird, erhöht sich der Druck im Kleinhohlraum 48. Weil die gemeinsame Stirnfläche von Umschaltelement 20 im Unterhohlraum 47 und im Kleinhohlraum 48 grösser als die gemeinsame Stirnfläche im Mittelhohlraum 49 und Oberhohlraum 50, fährt der Umschaltelement 20 in Richtung Oberhohlraum 50 trotz dem Hochdruck von Arbeitsflüssigkeit in allen Hohlräumen an Die Geschwindigkeit seiner Bewegung wird nach der Verbindung auch des zweiten Kanals 17 mit dem Ringhohlraum 46 sprungweise erhöht. Während der Bewegung wird die zweite Kammer 42 von dem Zuleitungskanal 6 abgetrennt und mit der ersten Kammer 41 durch den vierten Kanal 19, den Durchlass 14 und den dritten Kanal 18 verbunden. Die beiderseitige Verbindung der zweiten Kammer 42 mit der ersten Kammer tritt während der Füllung von Kleinhohlraum 48 mit der Arbeitsflüssigkeit durch den zweiten Kanal 17 ein Ein intensives Verlangsamen und Abbremsen des Umschaltelements 20 in der oberen (rechten) Position wird durch die obere Düse 11 erledigt, wenn der fünfte Kanal 31 durch das Umschaltelement 20 vorher geschlossen war. Nach dem Treibkraftverlust in der zweiten Kammer 42 wird die bisherige Bewegung vom Schlagbolzen 3 zum Stillstand gebracht und infolge eines Gasüberdrucks in der Gaskammer 45 in die Gegenrichtung gekehrt. Der Druck in dem Ringhohlraum 46 kehrt den Ventilring 23 zum linken Anschlag. Dabei werden der zweite Kanal 17 und die untere Düse 22 abgedeckt was eine Druckverringerung im Kleinhohlraum 48 bringt. Ein Niederdruck gibt es auch im Oberhohlraum 50, denn der mit der zweiten Kammer 42 durch den fünften Kanal 31 und die obere Düse 11 verbunden ist. Weil die Wirkungsfläche des Stirns von Umschaltelement 20 im Unterhohlraum 47 grösser als die Wirkungsfläche seines Stirns im Mittelhohlraum 49 ist, bleibt das Umschaltelement 20 in der erreichten Position fast während der ganzen Zeit der Bewegung des Schlagbolzens 3 zum Arbeitswerkzeug 4. Knapp vor dem Schlag, wenn der fünfte Kanal 31 vom Schlagbolzen 3 überdeckt wird, erhöht sich der Druck im Oberhohlraum 50. Dadurch wird das Umschaltelement 20 wieder angefahren und der ganze Zyklus wiederholt sich. Während der Bewegung von Schlagbolzen 3 zum Arbeitswerkzeug 4 strömmt keine Arbeitsflüssigkeit in den Rückführkanal 12, deswegen sind die zweite Kammer 42, die erste Kammer 41, der Kleinhohlraum 48 und der Rückführkanal 12 völlig drucklos. Die ganze Menge der durch die Arbeitsmaschine gelieferten Arbeitsflüssigkeit strömmt bloss in den Zylinder 43 des Druckumformers. Dessenwillen bewegt sich der Druckumformer-Kolben 25 mit dem Schlagbolzen 3 in der gleichen Richtung. Das bringt ein Verlangsamen des Gasdruckverlustes in der Gaskammer 45 und eine Geschwindigkeiterhöhung von Schlagbolzen 3. Wenn die Arbeitsmaschine auf den Hammer drückt, lehnt der Kopf von Arbeitswerkzeug 4 während der Schlagbolzensbewegung in den Schlag den unteren Stirn der Kolbenstange 2 an. Dadurch wird es einer Verbindung von Zuleitungskanal 6 mit dem Rückführkanal 12 durch die Bohrung 51 verhindert. Nach dem Anschlag des Schlagbolzens 3 auf den Kopf von Arbeitswerkzeug 4 wird Bewegungsenergie bis an die Spitze von Arbeitswerkzeug 4 übertragen. Im Falle eines plötzlichen Widerstanddurchbruchs prällt den Kopf von Arbeitswerkzeug 4 auf den Federeinsatz 27.2, der die Restenergie von Arbeitswerkzeug 4 geläufig aufnimmt. Der Schlagbolzen 3 bleibt an die Werkzeugbüchse 27.1 angelengt und die Hammertätigkeit wird unterbrochen. Eine Wiederaufnahme der Hammertätigkeit wird erst nach einem neuerlichen Anpressen der Arbeitsmaschine auf den Hammer durch das Arbeitswerkzeug 4 möglich.Prior to using the hydraulic excavating hammer, gas is forced into the gas chamber 45 at the required pressure through a not-shown passage and a shutter in the piston rod 2 . The high-pressure gas pushes the firing pin 3 in the position in which he leans the sleeve 27 . Due to the movement, the head of the working tool 4 also delays from the end of the piston rod 2 . The body of the firing pin 3 covers the upper nozzle 11 and the fifth channel 31. The working fluid acts on the bottom of bore 51 to a pressure on the flask 52 and pushes it into a permanent contact with the tool 4. As long as the working tool 4 rejects the work object (or another lock) does not, the firing pin 3 pushes it out of the hammer so far out that the piston 52, following the movement of the tool 4, at its opposite end the previously closed by it connection of the supply channel 6 with the return channel 12th through the first and second safety channels 53, 54 opens. At that moment, the hammer loses the working pressure of the liquid, if it has become available earlier. As a result of the connection, the hammer is inoperable. After a depression of the working tool 4 in the hammer into it (by a Zupressen of working machine on the working tool), the piston 52 pushes into the piston rod 2 until it thereby to the interruption of the connection of the supply channel 6 with the return channel 12 in the bore 51 is coming. In the branch lines 7 to 10 of the supply channel 6 , the pressure increases. The annular cavity 46 is filled with the hydraulic fluid through the first channel 16 : The hydraulic fluid moves the valve ring 23 in the lower (left) position until it stops. In the position of the small cavity 48 with the first chamber 41 through the lower nozzle 22 and the second channel 17 are connected. Because the first chamber 41 is permanently connected to the return channel 12 , so also the small cavity 48 remains without increased pressure. By the fourth branch path 10 and the third branch path 9 , the pressure increases in the central cavity 49 and in the upper cavity 50. At the end faces of switching element 20 thus creates an imbalance of forces, which brings the switching element 20 in rapid movement towards the lower cavity 47 . During the movement, the working fluid flows from the small cavity 48 through the second channel 17 and the lower nozzle 22 into the first chamber 41. By concealing the second passage 17 , the pressure in the small cavity 48 is increased, causing intensive braking of the switching element 20 . The tip-over of switching element 20 is terminated at a low speed in the emptying of small cavity 48 into the first chamber 41 only by the lower nozzle 22 . During the movement of switching element 20 , the inlet port 15 is connected to the fourth channel 19 and the connection of the fourth channel 19 to the passage 14 of the switching element 20 is interrupted. In the second chamber 42 , the pressure increases, which brings the firing pin 3 in a movement in the direction of the gas chamber 45 against the gas pressure. The heavy firing pin 3 starts slowly. The cylinder 43 of the light pressure transducer prevents an increase of pressure peak. It absorbs a deviation of the steady flow of working fluid supplied from the working machine. The pressure transducer piston 25 thereby moves against the movement of the firing pin 3. After the start of the firing pin 3 at the speed corresponding to the feeding flow, the pressure transducer piston 25 is brought to a standstill due to increased gas pressure in the gas chamber 45 . After he starts to return to the starting position. The now flowing from the pressure transducer cylinder 43 through the first branch 7 working fluid is added to the supplied from the working machine flow. The speed of the firing pin 3 is thereby further increased: Reliable return of the pressure transducer piston 25 to its starting position is ensured by hydraulic damping and assisted by cooperation of the compensation chamber 44 . As a result, the speed of the Striker 3 continuously dropped at the liquid flow from the machine corresponding value. At the speed of the striker 3 approaches the top dead center of the power stroke. During movement, the valve ring 23 is caught in the first chamber 41 from the front of the firing pin 3 and entrained. If 23, the lower nozzle 22 connects with the movement of the valve ring with the annular cavity 46 and the second channel is covered 17 from the valve annulus, the pressure increases in the small cavity 48. Because the joint end surface of switching element 20 in the sub-cavity 47 and the small cavity 48 is greater as the common end face in the central cavity 49 and upper cavity 50, the switching element 20 moves in the direction of the upper cavity 50 despite the high pressure of working fluid in all cavities The speed of its movement is increased by the connection of the second channel 17 with the annular cavity 46 in steps. During the movement, the second chamber 42 is separated from the supply passage 6 and connected to the first chamber 41 through the fourth passage 19, the passage 14 and the third passage 18 . The mutual connection of the second chamber 42 with the first chamber occurs during the filling of small cavity 48 with the working fluid through the second channel 17 An intense slowing down and deceleration of the switching element 20 in the upper (right) position is done by the upper nozzle 11 , when the fifth channel 31 was previously closed by the switching element 20 . After the loss of driving force in the second chamber 42 , the previous movement is brought to a standstill by the firing pin 3 and swept in the opposite direction due to a gas overpressure in the gas chamber 45 . The pressure in the annular cavity 46 returns the valve ring 23 to the left stop. In this case, the second channel 17 and the lower nozzle 22 are covered, which brings a pressure reduction in the small cavity 48 . There is also a low pressure in the upper cavity 50, because it is connected to the second chamber 42 through the fifth channel 31 and the upper nozzle 11 . Because the area of action of the end of switching element 20 in sub-cavity 47 is greater than the area of action of its end in central cavity 49 , switching element 20 will remain in the reached position almost during the entire time of the movement the firing pin 3 to the working tool 4. Just before the blow, when the fifth channel 31 is covered by the firing pin 3, the pressure in upper cavity 50. This increases the switching element 20 is started again and the whole cycle repeats. During the movement of firing pin 3 to the working tool 4 no working fluid flows into the return channel 12, so the second chamber 42, the first chamber 41, the small cavity 48 and the return channel 12 are completely depressurized. The whole amount of working fluid supplied by the working machine flows into the cylinder 43 of the pressure converter. For its sake, the pressure transducer piston 25 moves with the firing pin 3 in the same direction. This brings about a slowing of the gas pressure loss in the gas chamber 45 and a speed increase of striker 3. When the work machine presses on the hammer, the head of work tool 4 during the striker movement in the impact leans against the lower end of the piston rod 2 . As a result, it is prevented a connection of the supply channel 6 with the return channel 12 through the bore 51 . After the stop of the firing pin 3 on the head of working tool 4 kinetic energy is transmitted to the top of working tool 4 . In the case of a sudden resistance breakthrough the head of working tool 4 rests on the spring insert 27.2, which receives the residual energy of working tool 4 familiar. The firing pin 3 remains hinged to the tool sleeve 27.1 and the hammer action is interrupted. A resumption of the hammer action is possible only after a renewed pressing of the working machine on the hammer by the working tool 4 .

In einem anderen Beispiel der Erfindungsverwirklichung besteht der Sicherheitskreis aus der zweiten Zweigbahn 8, einer rückführenden Zweigbahn 13 und einer Sicherheitskammer 40. Die zweite Zweigbahn 8 ist aus dem Zuleitungskanal 6 an die Oberfläche von Kolbenstange 2 gebohrt. Die rückführende Zweigbahn 13 führt aus dem Rückführkanal 12 an die Oberfläche von Kolbenstange 2. Die Sicherungskammer 40 ist im oberen Teil des Schlagbolzens 3 in seinem Inneren ausgestaltet. Die zweite Zweigbahn 8 und auch die rücführende Zweigbahn 13 sind in einer zur Hammer-Längsachse winkelrechten Ebene ausgestaltet. Die restliche Zusammenstellung von Hammer ist mit dem vorigen Beispiel identisch.In another example of the invention implementation, the safety circuit consists of the second branch track 8, a return branch track 13 and a safety chamber 40. The second branch track 8 is drilled from the supply channel 6 to the surface of piston rod 2 . The returning branch line 13 leads from the return channel 12 to the surface of the piston rod 2. The securing chamber 40 is configured in the upper part of the firing pin 3 in its interior. The second branch 8 and also the back branch 13 are configured in a plane perpendicular to the hammer longitudinal axis. The rest of Hammer's composition is identical to the previous example.

Vor einer Verwendung des hydraulischen Abbauhammers wird Gas in die Gaskammer 45 auf erforderlichen Druck durch einen nicht gezeichneten Kanal und einen Verschluss in der Kolbenstange 2 angepresst. Das Hochdruckgas schiebt den Schlagbolzen 3 in die Position vor, in der er die Büchse 27 anlehnt. Durch die Bewegung zögert auch der Kopf des Arbeitswerkzeugs 4 von dem Stirn der Kolbenstange 2 hinaus. Der Körper von Schlagbolzen 3 verdeckt die obere Düse 11 und den fünften Kanal 31. Die Sicherheitskammer 40, die zweite Zweigbahn 8 und die rückführende Zweigbahn 13 verbinden den Zuleitungskanal 6 mit dem Rückführkanal 12. Durch die Verbindung ist der Hammer im Stillstand. Nach einem Eindruck des Arbeitswerzeugs 4 in den Hammer durch ein Anpressen der Arbeitsmaschine auf den Arbeitsobjekt wird auch die Sicherheitskammer 40 verschoben. Die Verbindung des Zuleitungskanals 6 mit dem Rückführkanal 12 wird somit unterbrochen. In den Zweigbahnen 7 bis 10 erhöht sich der Druck. Der Ringhohlraum 46 wird mit der Druck-Arbeitsflüssigkeit durch den ersten Kanal 16 gefüllt. Die Arbeitsflüssigkeit schiebt den Ventilring 23 in die untere (linke) Position bis zum Anschlag. Damit beginnt die Hammertätigkeit, die im ersten Beispiel beschrieben ist.Prior to using the hydraulic excavating hammer, gas is forced into the gas chamber 45 at the required pressure through a not-shown passage and a shutter in the piston rod 2 . The high-pressure gas pushes the firing pin 3 in the position in which he leans the sleeve 27 . Due to the movement, the head of the working tool 4 also delays from the end of the piston rod 2 . The body of striker 3 conceals the upper nozzle 11 and the fifth channel 31. The safety chamber 40, the second branch 8 and the return branch 13 connect the inlet channel 6 to the return channel 12. Through the connection of the hammer is at a standstill. After an impression of the work tool 4 in the hammer by pressing the machine on the work object and the safety chamber 40 is moved. The connection of the supply channel 6 with the return channel 12 is thus interrupted. In the branch lines 7 to 10 , the pressure increases. The annular cavity 46 is filled with the pressurized working fluid through the first channel 16 . The working fluid pushes the valve ring 23 in the lower (left) position until it stops. This starts the hammer action described in the first example.

Die Funktion von Sicherheitkreis setzt sich auch bei einem Durchbruch von Arbeitsobjekt gleich durch. Das Arbeitswerkzeug 4 wird in Stillstand gebracht. Leerschläge von Hammer sind ausgeschlossen.The function of the safety circuit is the same even if the work object breaks through. The working tool 4 is brought to a standstill. Spaces from Hammer are excluded.

Ein Vorteil der hydraulischen Abbauhamer nach der Erfindung ist ihre erheblich gesteigerte Leistung infolge hoher bis 90 % erreichender Wirkungskraft un einer erhöhten Schlagrasanz, die durch mehrmalige Achsensteifheit des Schlagbolzens 3 hervorgerufen ist. Wegen ihrer neuen Bauform von Arbeitswerkzeug 4 und der Sitzart in einen glatten monolithischen öffnungfreien Körper mit einem Flansch zur Befestigung des Hammers zur Arbeitsmaschine über einen Adapter werden die Hammer in die schwersten Bedingungen ohne Arbeitseinschränkungen prädestiniert. Grosse Umschaltgeschwindigkeit in unterer Position des Schlagbolzens 3 markant verringert einen Impuls von Rückzugkraft. Kleine Abmessungen und Masse von Hammer und grosse Beständigkeit gegen Beschädigungen ermöglichen eine Hammergrösse an allen Arbeitsmaschinen bis der Masse von 12,5 t zu verwenden. Das Traggehäuse 1 ist nur ein Rotationkörper ohne Schraubverbindungen und Queröffnungen.An advantage of the hydraulic mining hammer according to the invention is its significantly increased performance due to high reaching to 90% of the effective force and an increased impact rate, which is caused by repeated axial stiffness of the firing pin 3 . Because of their new design of working tool 4 and the type of seat in a smooth monolithic opening-free body with a flange for attaching the hammer to the working machine via an adapter, the hammer are predestined in the most difficult conditions without labor restrictions. High switching speed in lower position of striker 3 strikingly reduces a momentum of retreat force. Small dimensions and mass of hammer and great resistance to damage make it possible to use a hammer size on all machines up to the mass of 12.5 t. The support housing 1 is only a rotating body without screw and transverse openings.

Claims (10)

  1. Hydraulic pick made of monolithic rotary supporting housing, cylindrical piston rod, rotary striking pin and rotary working tool, with inlet and outlet of pressure liquid, characterized in that the part of supporting housing (1) is non-movably placed piston rod (2) with piston (21), on which is slipped-on movable valve ring (23), short and axially solid striking pin (3), led in bush (24) of striking pin and pressure transformer's piston (25), whereby in second part of supporting housing (1) is inserted working tool (4), placed without pullbacks in tool bush (27), which is protected from outer side by lower sealing cover (29), whereby by such arrangement is between supporting housing (1), pressure transformer's piston (25) and striking pin (3) created gas chamber (45) and between piston rod (2) and pressure transformer's piston (25) is created pressure transformer's cylinder (43) and equalizing chamber (44), whereby between gas chamber (45) and equalizing chamber (44) is created connecting channel (26).
  2. Hydraulic pick according to claim 1, characterized in that the striking pin (3) is a rotary body drilled in axis according to piston rod's diameter (2) and created together with inner relive in such way that by slipped-on striking pin (3) on the piston rod (2) is created closed hollow space, which is by piston (21) divided to first chamber (41) and second chamber (42).
  3. Hydraulic pick according to claims 1 a 2, characterized in that the piston rod (2) has in the area of first chamber (41) on the surface continuous segment with limited length with diminished outer diameter, in which is slipped-on it valve ring (23) with bigger length than is the length of the segment with diminished outer diameter of piston rod (2), therefore is made as hollow annulus with non-equal diameters of loading to piston rod (2), which is by bigger diameter on the face closer to the piston (21) slipped-on the outer surface of piston rod (2) in its non-diminished part, whereby by inner relive of valve ring (23) and with the surface piston rod (2) is created closed cavity (46) in ring.
  4. Hydraulic pick according to claims 1 to 3, characterized in that in inner space of piston rod (2) are from its face created two continuous channels: return duct (12), permanently connected with first chamber (41) and equipped by return tap (13) led to the surface of piston rod (2) and inlet channel (6), equipped by first tap (7), third tap (9) and fourth tap 10), to which end is connected the lower cavity (47) of space with inserted switching element (20), by which is in this space created yet small cavity (48), middle cavity (49) and upper cavity (50), whereby the lower cavity (47) is connected with first channel (16) with cavity (46) in ring, small cavity (48) is connected with the surface of piston rod (2) in first chamber (41), lower nozzle (22) and second channel (17), into middle cavity (49) is led fourth tap (10) of inlet channel (6) and upper cavity (50) is connected with third tap (9) of inlet channel (6) and fifth channel (31) and upper nozzle (11) is connected with the surface of piston rod (2), on which is led also the first tap (7) of inlet channel (6), which is led into pressure transformer's cylinder (43), whereby from the surface of piston rod (2) is to the switching element (20) created within space of second chamber (42) fourth channel (19) and within space of first chamber (41) third channel (18), so the lower nozzle (22), second channel (17) and third channel (18) are in piston rod (2) created at the same side of piston (21) and fourth channel (19), fifth channel (31) and upper nozzle (11) are created on the opposite side of piston (21).
  5. Hydraulic pick according to claims 1 to 4, characterized in that the switching element (20) is made with the ring shape with graded outer and inner diameters in such way, that overall surface of its bottom faces is bigger than the surface of its upper faces, whereby is in this ring created duct (14) and filling duct (15).
  6. Hydraulic pick according to claims 1 to 5, characterized in that the bush (24) of striking pin and also the tool bush (27) are advantageously non-metal, placement of working tool (4) and striking pin (3) is flexible, whereby the working tool (4) and also striking pin (3) are in the lower position spring-loaded.
  7. Hydraulic pick according to claims 1 to 6, characterized in that the sound baffling material is applied in the inner space of pick, directly by the source of acoustic performance.
  8. Hydraulic pick according to claims 1 to 7, characterized in that is in stop position safely kept by gas pressure single-shot led into gas chamber (45).
  9. Hydraulic pick according to claims 1 to 8, characterized in that is equipped by safety circuit made from drilling (51) from the surface to the inner space of piston rod (2), which is connected with inlet channel (6) and with return duct (12), whereby into drilling (51) is inserted movable carpel (52).
  10. Hydraulic pick according to claims 1 to 8, characterized in that is equipped by safety circuit made from second tap (8), safety chamber (40) and return tap (13), whereby the second tap is led from the surface of piston rod (2) into inlet channel (6) in it, return tap (13) is led from the surface of piston rod (2) into return duct (12) and safety chamber (40) is created in the upper part of striking pin (3) from the inner side.
EP08779510A 2007-07-09 2008-07-08 Hydraulic pick Not-in-force EP2173524B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08779510T PL2173524T3 (en) 2007-07-09 2008-07-08 Hydraulic pick

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SK93-2007A SK932007A3 (en) 2007-07-09 2007-07-09 Hydraulic scarified hammer
PCT/SK2008/000008 WO2009008844A1 (en) 2007-07-09 2008-07-08 Hydraulic pick

Publications (2)

Publication Number Publication Date
EP2173524A1 EP2173524A1 (en) 2010-04-14
EP2173524B1 true EP2173524B1 (en) 2010-10-20

Family

ID=39865357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08779510A Not-in-force EP2173524B1 (en) 2007-07-09 2008-07-08 Hydraulic pick

Country Status (9)

Country Link
US (1) US8789617B2 (en)
EP (1) EP2173524B1 (en)
AT (1) ATE485133T1 (en)
DE (1) DE502008001610D1 (en)
ES (1) ES2357333T3 (en)
PL (1) PL2173524T3 (en)
RU (1) RU2449882C2 (en)
SK (1) SK932007A3 (en)
WO (1) WO2009008844A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SK932007A3 (en) * 2007-07-09 2009-02-05 Konek, S. R. O. Hydraulic scarified hammer
US8360167B2 (en) * 2010-08-11 2013-01-29 Caterpillar Inc. Composite seal for a hydraulic hammer
AT511810B1 (en) * 2011-09-27 2013-03-15 Tmt Bbg Res And Dev Gmbh HITCH FOR A HAMMAR EQUIPMENT AND METHOD FOR DISPLAYING A HITCH OPENING
US9562337B1 (en) * 2013-06-06 2017-02-07 Jonathan Tremmier Pile hammer
CN105916634B (en) * 2014-01-30 2017-08-25 古河凿岩机械有限公司 Fluid pressure type percussion mechanism
DE102014108848A1 (en) * 2014-06-25 2015-12-31 Construction Tools Gmbh Device for pressure monitoring
EP2987946B1 (en) * 2014-08-19 2018-02-14 Doofor Oy Valve of a hydraulic striking device
US20170157759A1 (en) * 2015-12-08 2017-06-08 Caterpillar Inc. Dust Clearing Tool
FR3057483B1 (en) * 2016-10-14 2019-04-19 Montabert PERCUSSION APPARATUS WITH A GUIDE BEARING EQUIPPED WITH A CENTERING DEVICE
WO2019039961A1 (en) * 2017-08-21 2019-02-28 Общество С Ограниченной Ответственностью Управляющая Компания "Традиция" Hydraulic hammer
RU179050U1 (en) * 2017-08-21 2018-04-25 Общество С Ограниченной Ответственностью Управляющая Компания "Традиция" (Ооо Ук "Традиция") Hydraulic hammer
CN110359173A (en) * 2019-08-14 2019-10-22 浙江慈鑫机械有限公司 A kind of Computerized flat knitting machine protection mechanism
KR102317232B1 (en) * 2020-01-08 2021-10-22 주식회사 현대에버다임 Hydraulic Breaker
CN113027447B (en) * 2021-03-11 2023-04-18 重庆工程职业技术学院 Coal mining electromechanical device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1629035A (en) * 1923-01-18 1927-05-17 Denver Rock Drill Mfg Co Fluid-operated motor
GB328235A (en) 1929-01-22 1930-04-22 John Leonard Holman Improvements in or relating to rock drills and like tools
CA956297A (en) * 1969-02-26 1974-10-15 Institut Gornogo Dela Sibirskogo Otdelenia Akademii Nauk Sssr Pneumatic percussion device for making holes in the ground by packing the latter
US3727701A (en) * 1971-02-08 1973-04-17 Inst Gornogo Dela Sibirskogo O Reversible air-punching mechanism for making holes in soil by compaction
FI50941C (en) * 1974-04-25 1976-09-10 Tampella Oy Ab Impactor for pressurized fluid.
GB1585086A (en) * 1976-07-28 1981-02-25 Compair Constr Mining Ltd Down-the-hole percussion drills
SU859622A1 (en) * 1979-04-10 1981-08-30 Криворожский Ордена Трудового Красного Знамени Горнорудный Институт Hydraulic percussion-action mechanism
US4833780A (en) * 1988-02-16 1989-05-30 Pollock William J Pick tool with support
SE8900473L (en) * 1989-02-13 1990-08-14 Sandvik Ab DRILL BIT
DE69022626T2 (en) * 1989-05-15 1996-03-21 Uryu Seisaku Ltd Pressure monitoring device for torque wrenches.
US5113950A (en) * 1991-03-18 1992-05-19 Krasnoff Eugene L For percussive tools, a housing, a pneumatic distributor, and a hammer piston means therefor
US5662180A (en) * 1995-10-17 1997-09-02 Dresser-Rand Company Percussion drill assembly
US5957220A (en) * 1995-10-17 1999-09-28 Dresser-Rand Company Percussion drill assembly
NO302191B1 (en) * 1996-06-07 1998-02-02 Bakke Oil Tools As Apparatus for applying impact energy to fixed objects in a well, to dissolve the objects
US6047778A (en) * 1996-09-30 2000-04-11 Dresser-Rand Company Percussion drill assembly
EP1165929A1 (en) * 1999-03-03 2002-01-02 Earth Tool Company L.L.C. Method and apparatus for directional boring
DE19924310B4 (en) * 1999-05-27 2007-11-22 Böllhoff GmbH Hydraulic drive device for a joining tool
FR2811601B1 (en) 2000-07-13 2002-10-11 Montabert Ets HYDRAULIC PERCUSSION APPARATUS
EP1464449B1 (en) * 2003-04-01 2010-03-24 Makita Corporation Power tool
CA2506840A1 (en) * 2004-05-17 2005-11-17 Bernard Lionel Gien Pneumatic hammer
DE102005031917A1 (en) * 2004-09-24 2006-04-13 Böllhoff Verbindungstechnik GmbH Method for joining and device for actuating a joining tool
AU2005312495A1 (en) * 2004-12-07 2006-06-15 Byung-Duk Lim A ground drilling hammer and the driving method
US7614452B2 (en) * 2005-06-13 2009-11-10 Schlumberger Technology Corporation Flow reversing apparatus and methods of use
KR101011433B1 (en) * 2005-11-03 2011-01-28 락모어 인터내셔널, 아이엔씨 Backhead and drill assembly with backhead
SK932007A3 (en) * 2007-07-09 2009-02-05 Konek, S. R. O. Hydraulic scarified hammer

Also Published As

Publication number Publication date
SK932007A3 (en) 2009-02-05
RU2010103146A (en) 2011-08-20
WO2009008844A1 (en) 2009-01-15
RU2449882C2 (en) 2012-05-10
ATE485133T1 (en) 2010-11-15
US20100193212A1 (en) 2010-08-05
US8789617B2 (en) 2014-07-29
EP2173524A1 (en) 2010-04-14
PL2173524T3 (en) 2011-04-29
DE502008001610D1 (en) 2010-12-02
ES2357333T3 (en) 2011-04-25

Similar Documents

Publication Publication Date Title
EP2173524B1 (en) Hydraulic pick
DE4227065C2 (en) Hydropneumatic hammer
DE3215106A1 (en) HYDRAULIC DEMOLITION OR STONE DRILL
DE2165066C3 (en)
DE2062690C2 (en) Hydraulic-operated countersinking hammer
WO2009156215A1 (en) Piston pump of a hydraulic vehicle brake system
DE2754489A1 (en) HYDRAULIC ACTUATOR
DE202018006641U1 (en) Fluid operated drilling device
DE3336540A1 (en) IMPACT DRILLING MACHINE
DE1297559B (en) Power operated striking tool
DE2804388A1 (en) HYDRAULIC ROCK DRILL
DE60036411T2 (en) IMPACT TOOL
DE2951794A1 (en) BLOCKING DEVICE
DE2461633C2 (en) Hydraulic impact device
WO1997035114A1 (en) Hydropneumatic machine tool
DE102004014823B4 (en) Quick coupling device on a construction device with valve centering
EP0127885A2 (en) Hydraulic impact mechanism
EP0933169B1 (en) Fluid driven percussion device
DE2349296A1 (en) COMPRESSED AIR IMPACT MACHINE
DE3229309A1 (en) Percussion mechanism
DE102014011403A1 (en) Ram boring machine
DE1779567C3 (en)
DE2536143C2 (en) Hydraulic impact device
AT404283B (en) DEVICE FOR TOOLING TOOLS
EP0447552A1 (en) Striking device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008001610

Country of ref document: DE

Date of ref document: 20101202

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101020

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20101020

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101020

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 8534

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2357333

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110221

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

26N No opposition filed

Effective date: 20110721

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001610

Country of ref document: DE

Effective date: 20110721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

BERE Be: lapsed

Owner name: KONEK, S.R.O.

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 8534

Country of ref document: SK

Effective date: 20110708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110708

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101020

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20150629

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20150701

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20160719

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160719

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160708

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170731

Year of fee payment: 10

Ref country code: ES

Payment date: 20170907

Year of fee payment: 10

Ref country code: DE

Payment date: 20170726

Year of fee payment: 10

Ref country code: IT

Payment date: 20170719

Year of fee payment: 10

Ref country code: FI

Payment date: 20170706

Year of fee payment: 10

Ref country code: GB

Payment date: 20170731

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170726

Year of fee payment: 10

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160708

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008001610

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 485133

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180708

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180708

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180708

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180708

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180709