EP2161408B1 - Aubes d'écran thermique réparées pour entretoise d'échappement de turbine et procédés de réparation - Google Patents

Aubes d'écran thermique réparées pour entretoise d'échappement de turbine et procédés de réparation Download PDF

Info

Publication number
EP2161408B1
EP2161408B1 EP20090250939 EP09250939A EP2161408B1 EP 2161408 B1 EP2161408 B1 EP 2161408B1 EP 20090250939 EP20090250939 EP 20090250939 EP 09250939 A EP09250939 A EP 09250939A EP 2161408 B1 EP2161408 B1 EP 2161408B1
Authority
EP
European Patent Office
Prior art keywords
vane
replacement section
heat treating
damaged portion
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP20090250939
Other languages
German (de)
English (en)
Other versions
EP2161408A3 (fr
EP2161408A2 (fr
Inventor
Eric Herbst
Jeffrey D. Melman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP2161408A2 publication Critical patent/EP2161408A2/fr
Publication of EP2161408A3 publication Critical patent/EP2161408A3/fr
Application granted granted Critical
Publication of EP2161408B1 publication Critical patent/EP2161408B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/005Repairing turbine components, e.g. moving or stationary blades, rotors using only replacement pieces of a particular form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making
    • Y10T29/49238Repairing, converting, servicing or salvaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49718Repairing
    • Y10T29/49732Repairing by attaching repair preform, e.g., remaking, restoring, or patching
    • Y10T29/49734Repairing by attaching repair preform, e.g., remaking, restoring, or patching and removing damaged material

Definitions

  • This disclosure relates to gas turbine engines.
  • this disclosure relates to repaired turbine exhaust strut heat shield vanes and repair methods.
  • An industrial gas turbine generally includes a stationary exhaust duct through which hot combustion gases are flowed before exiting the main engine into a power turbine used to, for example, generate electricity.
  • the exhaust duct commonly includes an inner annular ring forming the inner wall of the gas path and an outer annular ring forming the outer wall of the gas path.
  • Radially extending struts circumferentially distributed about the engine longitudinal axis span the gas path between and connect to the inner and outer annular rings.
  • Each radially extending strut may be surrounded by an airfoil, thereby forming a stationary vane. The vane acts both to direct gas flow through the exhaust duct and to shield the load bearing struts from heat.
  • Hot combustion gases discharging from the turbine into the exhaust duct during engine operation commonly have a residual velocity component in the tangential direction with respect to the gas path.
  • the tangential velocity component of the hot combustion gases is undesirable as it detracts from the useful energy that may be extracted from the gas flow. Converting the tangential velocity to axial velocity increases the axial thrust produced by the engine, which in turn increases engine performance.
  • the tangential velocity component of the gas flow may be redirected axially by the vanes surrounding the struts of the exhaust duct. More specifically, each vane airfoil may be contoured to aerodynamically redirect the flow of gases from a tangential direction to an axial direction.
  • the durability of the turbine exhaust case and its associated load bearing struts depends largely on the material selected for the case. It is generally desirable to select the material of the case struts based on structural versus, for example, thermal properties. Therefore, it is not uncommon to shield the struts by encapsulating them with non-structural vanes that act as heat shields. In this way the exhaust case struts may be formed of a material that exhibits optimal structural properties, but may not be able to withstand the operating temperatures of the engine without the shielding of the vanes.
  • the vanes on the other hand, may be formed of a material that exhibits optimal thermal, and oxidation and corrosion resistance properties, while not necessarily exhibiting high strengths.
  • the turbine exhaust case strut heat shield vanes may experience a loss of material due to a combination of abrasion, exfoliation, oxidation, hot corrosion and some mode of metallurgical attack during engine operation.
  • the material on the vanes may have temperature limits hundreds of degrees above the engine operating temperatures.
  • the damage observed on the vanes may not have structural repercussions, the damage may compromise, to an increasing degree over time, the heat shielding function of the vanes.
  • structural exhaust case components, i.e. the struts which are intended to be protected by the heat shield vanes may also be compromised. For example, there is an increasing risk that the strength properties of the struts will be degraded and that the struts may yield during operation.
  • EP 1605068 A2 discloses a method of homogeneously welding a superalloy which includes preheating the superalloy prior to welding and allowing it to cool prior to welding.
  • a method of repairing a turbine exhaust case strut heat shield vane comprises removing a damaged portion of the vane; solution heat treating the vane; attaching a replacement section to the vane; and relieving local stresses in an attachment area between the replacement section and the vane; wherein attaching a replacement section to the vane comprises welding the replacement section; and wherein welding the replacement section to the vane comprises buttwelding the replacement section; the method further comprising cooling one or more portions of a strut around which the vane is arranged to protect the portions of the strut during welding.
  • FIG. 1 is a partial axial section view of industrial gas turbine 10 including compressor 12, combustor 14, turbine section 16, and exhaust case 18. Although the section view of FIG. 1 shows only one combustor 14, turbine 10 will generally include multiple combustors 14 circumferentially distributed around a turbine main shaft (not shown).
  • Turbine section 16 includes a plurality of rotating blades 20 secured to a rotatable rotor disk 22. A plurality of stationary vanes 24 are each alternately positioned upstream of each of the rotating blades 20. The vanes 24 are dimensioned and configured to guide the working gas over the blades 20.
  • air is drawn in through the compressor 12, where it is compressed and driven towards the combustor 14.
  • the compressed air enters combustor 14 through an air intake. After entering combustor 14, the air is mixed with fuel.
  • Combustor 14 ignites the fuel/air mixture, thereby forming a working gas.
  • the working gas exiting combustor 14 may be at a temperature approximately between 2,500° F and 2,900° F (1,371° C - 1,593° C).
  • the gas expands through turbine 16, being guided by vanes 24 to drive rotating blades 20. As the gas passes through turbine 16, it rotates blades 20 which, in turn, drive disk 22, thereby transmitting usable mechanical work through disk 22 to a main shaft of turbine 10.
  • the remaining portion of useful energy in the working gas exits turbine 16 and passes through exhaust case 18.
  • the working gas will commonly proceed downstream from exhaust case 18 into a power turbine (not shown) attached to industrial turbine 10, which may be used to power, for example, an electrical generator.
  • Industrial gas turbine 10 may also include a cooling system configured to supply a coolant, for example, steam or compressed air, to internally cool blades 20 and vanes 24 and other turbine components.
  • Exhaust case 18 is positioned downstream of the last row of turbine blades 20 shown in FIG. 1 .
  • FIG. 2 is a detail view of exhaust case 18 including a pair of annular rings, such as diffusers 34 and 36, struts 38, and heat shield vanes 40.
  • Diffuser 34 forms the inner wall of the working gas path and diffuser 36 forms the outer wall of the working gas path.
  • Radially extending struts 38 are circumferentially distributed about the engine axis and span the gas path between diffusers 34, 36. Each radially extending strut 38 is surrounded by vane 40. Vanes 40 act both to direct working gas flow through exhaust case 18 and to shield load bearing struts 38 from heat.
  • Vanes 40 shown in FIGS. 1 and 2 may experience a loss of material due to a combination of abrasion, exfoliation, oxidation, hot corrosion and some mode of metallurgical attack during engine operation. Although the damage observed on vanes 40 may not have structural repercussions, the damage may compromise, to an increasing degree over time, the heat shielding function of vanes 40. Vanes 40 may therefore be repaired by embodiments of the exemplary method, such as method 50 illustrated by the flow chart of FIG. 3 . In FIG.
  • method 50 of repairing a strut heat shield vane includes removing a damaged portion of the vane (step 52), solution heat treating the vane (step 54), cooling an exhaust case strut around which the vane is arranged (step 56), attaching a replacement section to the vane (step 58), relieving local stresses in an attachment area between the replacement section and the vane (step 60), and removing material from the attachment area between the replacement section and the vane (step 62).
  • Method 50 includes removing a damaged portion of the vane (step 52).
  • the damaged portion of the vane removed (step 52) may be, for example, a damaged portion of the leading edge of the vane.
  • the leading edge may exhibit thinning, cracking, pitting, crevice corrosion, and even holes penetrating the vane wall.
  • the leading edge of the vane generally experiences higher temperatures and greater oxidation, abrasion, and corrosion than other portions of the vane. Therefore, the leading edge of the vane may be worn to a further extent and more rapidly than other portions of the heat shield vane.
  • the damaged portion of the vane may be removed (step 52) with, for example, a manual die grinder or cutting wheel, or by another equivalent method known in the art.
  • method 50 includes solution heat treating the vane (step 54).
  • Solution heat treatment is a process in which an alloy is heated to a suitable temperature and held at this temperature for a sufficient length of time to allow a desired constituent to enter into solid solution, followed by rapid cooling to hold the constituent in solution.
  • solution heat treating the vane (step 54) may be employed to, for example, improve the weldability of the vane prior to attaching a replacement section to the vane (step 56), while avoiding any detrimental metallurgical affects to the dissimilar alloy of the structural turbine exhaust case strut (discussed in more detail below).
  • thermal loading may degrade the heat shield vane material by causing certain constituents, such as carbides and nitrides, to come out of solution and migrate toward grain boundaries.
  • the out of solution constituents may degrade the thermal and structural properties of the heat shield vane material.
  • Solution heat treating the vane facilitates bringing the constituents, e.g. carbides and nitrides, of the vane material back into solution in the alloy, which generally rejuvenates the material properties and improves weldability by, for example, improving ductility at the weld site.
  • Solution heat treating the vane may include heat treating the vane in a protective atmosphere of Argon, Hydrogen, Helium, or in a vacuum.
  • the vane may be heated at, for example, 1350 +/- 25° F (732 +/- 14° C) for 4 hours +/- 10 minutes and cooled from 1350+/- 25° F (732 +/- 14° C) to 1200 +/- 25° F (650 +/- 14° C) at a rate of 100 +/- 25 F° (56 +/- 14 C °) per 1 hour +/- 10 minutes.
  • the vane may then be held at 1200 +/- 25° F (650 +/- 14° C) for 3 hours +/- 10 minutes. Any convenient cooling rate may be used below 1200° F (650° C).
  • method 50 may include the optional step of cooling an exhaust case strut around which the vane is arranged (step 56).
  • the exhaust case struts are formed of materials that may need to be kept to temperatures well below the operating temperatures of the engine to maintain their strength.
  • An example material used for turbine exhaust cases, including the struts, is INCONEL® alloy 718 Manufactured by Special Metals Corporation of Huntington, West Virginia.
  • INCONEL® alloy 718 is a precipitation-hardenable nickel-chromium alloy also containing significant amounts of iron, niobium, and molybdenum along with lesser amounts of aluminum and titanium.
  • Cooling the exhaust case strut (step 56) may include, for example, directing pressurized air against the strut on the exhaust case.
  • Method 50 also includes attaching a replacement section to the vane (step 58).
  • Methods of repairing strut heat shield vanes facilitate providing repeatable processes for repairing, as opposed to completely replacing, worn heat shield vanes.
  • the exemplary methods facilitate improving the operational performance of the vane by substituting newer, higher performance materials during the repair as compared to known repair methods.
  • the damaged portion of the vane removed (step 52) may be fabricated from a first material and the replacement section attached to the vane (step 58) may be fabricated from a second material.
  • the first and second materials may be identical, i.e., simply replacing the damaged portion with a substantially equivalent replacement section.
  • the first and second materials may be different from one another.
  • the first material of the damaged portion may include a nickel-chromium-molybdenum alloy, such as INCONEL® alloy 625 manufactured by Special Metals Corporation of Huntington, West Virginia
  • the second material of the replacement section may include a nickel-chromium-iron-molybdenum, such as HASTELLOY® X manufactured by Haynes International, Inc. of Kokomo, Indiana.
  • HASTELLOY® X alloy possesses a combination of oxidation resistance, fabricability and high-temperature strength. It has also been found to be resistant to stress-corrosion cracking and exhibits good ductility after prolonged exposure at temperatures of, for example, 1200, 1400, and 1600°F (650, 760, and 870°C respectively).
  • Attaching a replacement section to the vane may include, for example, butt-welding the replacement section.
  • Butt-welding the replacement section to the strut heat shield vane may include manual gas tungsten arc or manual plasma-transferred arc welding with INCONEL® 625 or HASTELLOY® X weld filler wire. Argon purge back ups may be employed during welding to maximize the weld quality.
  • method 50 includes relieving local stresses in an attachment area between the replacement section and the vane (step 60).
  • Relieving local stresses in an attachment area between the replacement section and the vane (step 60) may include, for example, heat treating the vane.
  • the weld site i.e. attachment area
  • the HAZ commonly includes detrimental effects, such as grain growth, which may make the vane alloy more brittle and cause cracking. Additionally, the rapid cooling of the hot weld material places the material at the weld site in tension, i.e.
  • heat treating the vane after attaching the replacement section (step 58) may act to reduce grain size in the HAZ, as well as relieve residual stresses created during welding.
  • the stress relief heat treatment conducted after attaching the replacement section (step 58) may employ a similar heat treatment schedule as described above with reference to the solution heat treating (step 54).
  • Method 50 may also include removing material from the attachment area between the replacement section and the vane (step 62). Attaching the replacement section to the vane (step 58) may leave excess material in an attachment area between the replacement section and the vane. For example, in the case the replacement section is welded to the vane, weld beads may protrude between approximately 0.020 - 0.030 inches (0.508 - 0.762 mm respectively) above the surrounding surfaces of the vane and therefore may necessitate blending to match the contoured geometry of the vane.
  • Removing material from the welded connection may include one or more of grinding, polishing, and sanding the welded connection. For example, rotary hand tools and aluminum oxide impregnated grinding wheels may be employed to manually blend the weld areas with the adjacent surfaces of the vane.
  • the repaired strut heat shield vane may be inspected. Inspecting the vane may include, for example, wetting the vane weld areas with high sensitivity fluorescent fluid, and visually inspecting the weld areas under an ultraviolet light source. After inspecting the weld areas, the cross-sectional shape and size of the replacement section may be measured by, for example, using a profile gauge to ensure the replacement section complies with the original specifications of the vane.
  • FIGS. 4A and 4B are detail views of strut heat shield vane 40 repaired by method 50 illustrated in FIG. 3 .
  • Heat shield vane 40 surrounds strut 38 between diffusers 34 and 36.
  • Vane 40 includes leading edge 64 and replacement section 64a.
  • leading edge 64 may have experienced a loss of material due to a combination of abrasion, oxidation and some mode of metallurgical attack during engine operation. The damaged portion of vane 40 has therefore been removed in the region of leading edge 64.
  • Replacement section 64a has then been attached to vane 40 by, for example, welding replacement section 64a to vane 40.
  • the exemplary methods of repairing strut heat shield vanes discussed above facilitate providing repeatable processes for repairing, as opposed to completely replacing, warn or damaged heat shield vanes.
  • improving the operational performance of the vane by substituting newer, higher performance materials during the repair may be facilitated.
  • the damaged leading edge of the vane may be fabricated from a nickel alloy, such as INCONEL® 625, while the replacement section attached to the vane in the exemplary methods may be formed of a newer generation, higher performance nickel alloy, such as HASTELLOY® X.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (11)

  1. Procédé (50) de réparation d'une aube d'écran thermique d'entretoise de buse d'échappement de turbine (40), le procédé comprenant les étapes consistant à :
    retirer (52) une portion endommagée de l'aube ;
    traiter l'aube à chaud en solution (54) ;
    fixer (58) une section de remplacement à l'aube ; et
    libérer les contraintes locales (60) dans une zone de fixation entre la section de remplacement et l'aube ;
    dans lequel la fixation d'une section de remplacement à l'aube comprend le soudage de la section de remplacement ; et
    dans lequel le soudage de la section de remplacement à l'aube comprend le soudage bout à bout de la section de remplacement ; le procédé comprenant en outre :
    le refroidissement d'une ou plusieurs portions d'une entretoise autour de laquelle l'aube est aménagée pour protéger les portions de l'entretoise au cours du soudage.
  2. Procédé selon la revendication 1, dans lequel le retrait d'une portion endommagée de l'aube comprend au moins l'un ou l'autre d'un meulage et d'un découpage à l'emporte-pièce.
  3. Procédé selon la revendication 1 ou la revendication 2, dans lequel la portion endommagée comprend un premier matériau et la section de remplacement comprend un second matériau ; et dans lequel le premier matériau et le second matériau sont sensiblement les mêmes ou, en variante, dans lequel le premier matériau et le second matériau sont différents l'un de l'autre.
  4. Procédé selon la revendication 3, dans lequel le premier matériau comprend un alliage de nickel-chrome-molybdène et le second matériau comprend un alliage de nickel-chrome-fer-molybdène.
  5. Procédé selon la revendication 1, 2, 3 ou 4, dans lequel le retrait d'une portion endommagée de l'aube comprend le retrait d'une portion endommagée d'un bord d'attaque de l'aube.
  6. Procédé selon la revendication 1, 2, 3, 4 ou 5, dans lequel le traitement à chaud en solution de l'aube comprend le traitement à chaud de l'aube dans une atmosphère protectrice d'au moins l'une ou l'autre d'argon, d'hydrogène et d'hélium ; en variante, dans lequel le traitement à chaud en solution de l'aube comprend le traitement à chaud dans un vide.
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le traitement à chaud en solution de l'aube comprend :
    le chauffage de l'aube à 732 +/- 14 °C (1350 +/-25 °F) pendant 4 heures +/- 10 minutes ;
    le refroidissement de l'aube de 732 +/- 14 °C (1350 +/- 25 °F) à 650 +/- 14 °C (1200 +/- 25 °F) à raison de 56 +/- 14 °C (100 +/- 25 °F) pendant 1 heure +/- 10 minutes ; et
    le chauffage de l'aube à 650 +/- 14 °C (1200 +/-25 °F) pendant 3 heures +/- 10 minutes.
  8. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre le retrait (62) de matériau d'une liaison soudée entre la section de remplacement et l'aube.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la libération des contraintes locales dans une zone de fixation entre la section de remplacement et l'aube comprend le traitement à chaud de l'aube dans une atmosphère protectrice d'au moins l'une ou l'autre d'argon, d'hydrogène et d'hélium ; en variante, dans lequel la libération des contraintes locales dans une zone de fixation entre la section de remplacement et l'aube comprend le traitement à chaud de l'aube dans un vide.
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel la libération des contraintes locales dans une zone de fixation entre la section de remplacement et l'aube comprend :
    le chauffage de l'aube à 732 +/- 14 °C (1350 +/-25 °F) pendant 4 heures +/- 10 minutes ;
    le refroidissement de l'aube de 732 +/- 14 °C (1350 +/- 25 °F) à 650 +/- 14 °C (1200 +/- 25 °F) à raison de 56 +/- 14 °C (100 +/- 25 °F) pendant 1 heure +/- 10 minutes ; et
    le chauffage de l'aube à 650 +/- 14 °C (1200 +/-25 °F) pendant 3 heures +/- 10 minutes.
  11. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre (56) le refroidissement de l'entretoise de buse de d'échappement au cours du traitement à chaud en solution.
EP20090250939 2008-09-05 2009-03-30 Aubes d'écran thermique réparées pour entretoise d'échappement de turbine et procédés de réparation Ceased EP2161408B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/205,257 US8083465B2 (en) 2008-09-05 2008-09-05 Repaired turbine exhaust strut heat shield vanes and repair methods

Publications (3)

Publication Number Publication Date
EP2161408A2 EP2161408A2 (fr) 2010-03-10
EP2161408A3 EP2161408A3 (fr) 2013-11-06
EP2161408B1 true EP2161408B1 (fr) 2015-04-22

Family

ID=41348309

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090250939 Ceased EP2161408B1 (fr) 2008-09-05 2009-03-30 Aubes d'écran thermique réparées pour entretoise d'échappement de turbine et procédés de réparation

Country Status (2)

Country Link
US (1) US8083465B2 (fr)
EP (1) EP2161408B1 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062559B2 (en) * 2011-08-02 2015-06-23 Siemens Energy, Inc. Movable strut cover for exhaust diffuser
US8985942B2 (en) 2012-07-02 2015-03-24 United Technologies Corporation Turbine exhaust case duct
WO2014105657A1 (fr) 2012-12-29 2014-07-03 United Technologies Corporation Monture à pattes pouvant être infléchies
WO2014105780A1 (fr) 2012-12-29 2014-07-03 United Technologies Corporation Ensemble et support de joint de turbine à gaz à usages multiples
EP2938868B1 (fr) 2012-12-29 2019-08-07 United Technologies Corporation Ensemble de déviation de flux
US10006306B2 (en) 2012-12-29 2018-06-26 United Technologies Corporation Turbine exhaust case architecture
US9982564B2 (en) * 2012-12-29 2018-05-29 United Technologies Corporation Turbine frame assembly and method of designing turbine frame assembly
EP2938834A1 (fr) 2012-12-29 2015-11-04 United Technologies Corporation Pare-chocs pour joints d'étanchéité dans un carter d'échappement de turbine
WO2014105602A1 (fr) 2012-12-29 2014-07-03 United Technologies Corporation Bouclier thermique pour carter
US9541006B2 (en) 2012-12-29 2017-01-10 United Technologies Corporation Inter-module flow discourager
US9297312B2 (en) 2012-12-29 2016-03-29 United Technologies Corporation Circumferentially retained fairing
WO2014137444A2 (fr) 2012-12-29 2014-09-12 United Technologies Corporation Joint d'étanchéité à doigt à nappes multiples
WO2014105619A1 (fr) 2012-12-29 2014-07-03 United Technologies Corporation Bossage multifonction pour carter de sortie turbine
EP2938857B2 (fr) 2012-12-29 2020-11-25 United Technologies Corporation Bouclier thermique pour le refroidissement d'une entretoise
EP2938844B1 (fr) 2012-12-29 2017-02-08 United Technologies Corporation Nervures de guidage basées sur un bouclier thermique pour un carter d'échappement de turbine
EP2938836B1 (fr) 2012-12-29 2020-02-05 United Technologies Corporation Disque et ensemble de support d'étanchéité
US9206742B2 (en) 2012-12-29 2015-12-08 United Technologies Corporation Passages to facilitate a secondary flow between components
US9850780B2 (en) 2012-12-29 2017-12-26 United Technologies Corporation Plate for directing flow and film cooling of components
EP2938863B1 (fr) 2012-12-29 2019-09-25 United Technologies Corporation Liaison mécanique destinée à un écran thermique segmenté
US9631517B2 (en) 2012-12-29 2017-04-25 United Technologies Corporation Multi-piece fairing for monolithic turbine exhaust case
US9347330B2 (en) 2012-12-29 2016-05-24 United Technologies Corporation Finger seal
WO2014143329A2 (fr) * 2012-12-29 2014-09-18 United Technologies Corporation Trous de refroidissement pour jonction de châssis
EP2938837B1 (fr) 2012-12-29 2018-06-27 United Technologies Corporation Ensemble de joint d'étanchéité de turbine à gaz et support de joint d'étanchéité
US9863261B2 (en) 2012-12-29 2018-01-09 United Technologies Corporation Component retention with probe
WO2014105800A1 (fr) 2012-12-29 2014-07-03 United Technologies Corporation Ensemble d'étanchéité de turbine à gaz et support d'étanchéité
US10240481B2 (en) 2012-12-29 2019-03-26 United Technologies Corporation Angled cut to direct radiative heat load
US9771818B2 (en) 2012-12-29 2017-09-26 United Technologies Corporation Seals for a circumferential stop ring in a turbine exhaust case
US9562478B2 (en) 2012-12-29 2017-02-07 United Technologies Corporation Inter-module finger seal
US10094389B2 (en) 2012-12-29 2018-10-09 United Technologies Corporation Flow diverter to redirect secondary flow
US9903224B2 (en) 2012-12-29 2018-02-27 United Technologies Corporation Scupper channelling in gas turbine modules
US10294819B2 (en) 2012-12-29 2019-05-21 United Technologies Corporation Multi-piece heat shield
GB2524220B (en) 2012-12-31 2020-05-20 United Technologies Corp Turbine exhaust case multi-piece frame
EP2938860B1 (fr) 2012-12-31 2018-08-29 United Technologies Corporation Cadre à multiples pièces de compartiment d'échappement de turbine
GB2524443B (en) 2012-12-31 2020-02-12 United Technologies Corp Turbine exhaust case multi-piece frame
EP2971579B1 (fr) 2013-03-11 2020-04-29 United Technologies Corporation Sous-ensemble arrière pour un carénage de carter d'échappement de turbine
US20150159873A1 (en) * 2013-12-10 2015-06-11 General Electric Company Compressor discharge casing assembly
US10364748B2 (en) 2016-08-19 2019-07-30 United Technologies Corporation Finger seal flow metering
US10927707B2 (en) 2018-12-07 2021-02-23 Raytheon Technologies Corporation Diffuser case heat shields
JP7419002B2 (ja) * 2019-09-12 2024-01-22 三菱重工業株式会社 ストラットカバー、排気車室およびガスタービン
US11927137B2 (en) 2022-03-21 2024-03-12 Ge Infrastructure Technology Llc System and method for insulating components in an exhaust gas flow from a gas turbine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305697A (en) * 1980-03-19 1981-12-15 General Electric Company Method and replacement member for repairing a gas turbine engine vane assembly
US4726104A (en) * 1986-11-20 1988-02-23 United Technologies Corporation Methods for weld repairing hollow, air cooled turbine blades and vanes
US4993918A (en) * 1989-05-19 1991-02-19 United Technologies Corporation Replaceable fairing for a turbine exhaust case
US5897801A (en) * 1997-01-22 1999-04-27 General Electric Company Welding of nickel-base superalloys having a nil-ductility range
EP1184473B1 (fr) * 2000-08-30 2005-01-05 Kabushiki Kaisha Toshiba Alliages monocristallins à base de nickel et méthode de fabriction et éléments d'un turbine à gaz à des hautes températures à partir de ceux-ci
US6494677B1 (en) * 2001-01-29 2002-12-17 General Electric Company Turbine nozzle segment and method of repairing same
US6508000B2 (en) * 2001-02-08 2003-01-21 Siemens Westinghouse Power Corporation Transient liquid phase bonding repair for advanced turbine blades and vanes
US6685431B2 (en) * 2001-10-24 2004-02-03 United Technologies Corporation Method for repairing a turbine vane
US6792758B2 (en) * 2002-11-07 2004-09-21 Siemens Westinghouse Power Corporation Variable exhaust struts shields
US7043898B2 (en) * 2003-06-23 2006-05-16 Pratt & Whitney Canada Corp. Combined exhaust duct and mixer for a gas turbine engine
US7244320B2 (en) * 2004-06-01 2007-07-17 United Technologies Corporation Methods for repairing gas turbine engine components
US20050274701A1 (en) * 2004-06-10 2005-12-15 United Technologies Corporation Homogeneous welding via pre-heating for high strength superalloy joining and material deposition
US7100358B2 (en) * 2004-07-16 2006-09-05 Pratt & Whitney Canada Corp. Turbine exhaust case and method of making
US7587818B2 (en) * 2004-12-23 2009-09-15 General Electric Company Repair of gas turbine blade tip without recoating the repaired blade tip
US7402026B2 (en) * 2006-03-02 2008-07-22 Pratt & Whitney Canada Corp. Turbine exhaust strut airfoil profile
US7950236B2 (en) * 2006-09-11 2011-05-31 Pratt & Whitney Canada Corp. Exhaust duct and tail cone attachment of aircraft engines

Also Published As

Publication number Publication date
US20100061846A1 (en) 2010-03-11
EP2161408A3 (fr) 2013-11-06
US8083465B2 (en) 2011-12-27
EP2161408A2 (fr) 2010-03-10

Similar Documents

Publication Publication Date Title
EP2161408B1 (fr) Aubes d'écran thermique réparées pour entretoise d'échappement de turbine et procédés de réparation
US20180216464A1 (en) Method of repairing a blisk
WO2009101912A1 (fr) Procédé de réparation d'une aube de rotor de turbine
US20090271984A1 (en) Method for repairing a gas turbine engine component
WO2006026695A2 (fr) Dispositif d'ecran de soudage pour soudage automatique de turbines et d'aubes et de disques combines
EP1564371A2 (fr) Procédé pour la réparation de pièce coulée
MXPA00011074A (es) Segmento de boquilla de turbina y metodo para reparar el mismo.
CN110712002B (zh) 恢复叶片或导叶平台的方法
US20090214335A1 (en) Method of repair for cantilevered stators
JP4959744B2 (ja) 蒸気タービン用タービンロータ及び蒸気タービン
US11982207B2 (en) Tip repair of a turbine component using a composite tip boron base pre-sintered preform
US9931719B2 (en) Method for repairing a receiving hook for guide vanes
US12042875B2 (en) Weld-brazing techniques
RU2798932C2 (ru) Способ восстановления полки рабочей лопатки или направляющей лопатки
US10563533B2 (en) Repair or remanufacture of blade outer air seals for a gas turbine engine
Klimczuk Repairability analysis of the energy gas turbine rotor blade second stage shroud by high-temperature brazing
US20170120399A1 (en) Power nozzle repair with cooling hardware installed
Storch et al. Repair welds in turbine blades

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/18 20060101ALI20130930BHEP

Ipc: B23P 6/00 20060101ALI20130930BHEP

Ipc: F01D 5/00 20060101AFI20130930BHEP

17P Request for examination filed

Effective date: 20140506

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/18 20060101ALI20140526BHEP

Ipc: B23P 6/00 20060101ALI20140526BHEP

Ipc: F01D 5/00 20060101AFI20140526BHEP

AKX Designation fees paid

Designated state(s): DE GB

INTG Intention to grant announced

Effective date: 20140627

RBV Designated contracting states (corrected)

Designated state(s): CH DE GB LI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009030761

Country of ref document: DE

Effective date: 20150603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009030761

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: 10 FARM SPRINGS ROAD, FARMINGTON, CT 06032 (US)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009030761

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009030761

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009030761

Country of ref document: DE

Owner name: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES , US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP., HARTFORD, CONN., US

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORPORATION, US

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220225

Year of fee payment: 14

Ref country code: DE

Payment date: 20220217

Year of fee payment: 14

Ref country code: CH

Payment date: 20220218

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009030761

Country of ref document: DE

Owner name: RAYTHEON TECHNOLOGIES CORPORATION (N.D.GES.D.S, US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES DELAWARE), FARMINGTON, CONN., US

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009030761

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230330

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331