EP2161408B1 - Aubes d'écran thermique réparées pour entretoise d'échappement de turbine et procédés de réparation - Google Patents
Aubes d'écran thermique réparées pour entretoise d'échappement de turbine et procédés de réparation Download PDFInfo
- Publication number
- EP2161408B1 EP2161408B1 EP20090250939 EP09250939A EP2161408B1 EP 2161408 B1 EP2161408 B1 EP 2161408B1 EP 20090250939 EP20090250939 EP 20090250939 EP 09250939 A EP09250939 A EP 09250939A EP 2161408 B1 EP2161408 B1 EP 2161408B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vane
- replacement section
- heat treating
- damaged portion
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims description 41
- 239000000463 material Substances 0.000 claims description 37
- 238000003466 welding Methods 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 2
- VZUPOJJVIYVMIT-UHFFFAOYSA-N [Mo].[Ni].[Cr].[Fe] Chemical compound [Mo].[Ni].[Cr].[Fe] VZUPOJJVIYVMIT-UHFFFAOYSA-N 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 25
- 239000000243 solution Substances 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 229910001026 inconel Inorganic materials 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 229910000856 hastalloy Inorganic materials 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000013500 performance material Substances 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- OGSYQYXYGXIQFH-UHFFFAOYSA-N chromium molybdenum nickel Chemical compound [Cr].[Ni].[Mo] OGSYQYXYGXIQFH-UHFFFAOYSA-N 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/005—Repairing methods or devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P6/00—Restoring or reconditioning objects
- B23P6/002—Repairing turbine components, e.g. moving or stationary blades, rotors
- B23P6/005—Repairing turbine components, e.g. moving or stationary blades, rotors using only replacement pieces of a particular form
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49236—Fluid pump or compressor making
- Y10T29/49238—Repairing, converting, servicing or salvaging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/49318—Repairing or disassembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49718—Repairing
- Y10T29/49732—Repairing by attaching repair preform, e.g., remaking, restoring, or patching
- Y10T29/49734—Repairing by attaching repair preform, e.g., remaking, restoring, or patching and removing damaged material
Definitions
- This disclosure relates to gas turbine engines.
- this disclosure relates to repaired turbine exhaust strut heat shield vanes and repair methods.
- An industrial gas turbine generally includes a stationary exhaust duct through which hot combustion gases are flowed before exiting the main engine into a power turbine used to, for example, generate electricity.
- the exhaust duct commonly includes an inner annular ring forming the inner wall of the gas path and an outer annular ring forming the outer wall of the gas path.
- Radially extending struts circumferentially distributed about the engine longitudinal axis span the gas path between and connect to the inner and outer annular rings.
- Each radially extending strut may be surrounded by an airfoil, thereby forming a stationary vane. The vane acts both to direct gas flow through the exhaust duct and to shield the load bearing struts from heat.
- Hot combustion gases discharging from the turbine into the exhaust duct during engine operation commonly have a residual velocity component in the tangential direction with respect to the gas path.
- the tangential velocity component of the hot combustion gases is undesirable as it detracts from the useful energy that may be extracted from the gas flow. Converting the tangential velocity to axial velocity increases the axial thrust produced by the engine, which in turn increases engine performance.
- the tangential velocity component of the gas flow may be redirected axially by the vanes surrounding the struts of the exhaust duct. More specifically, each vane airfoil may be contoured to aerodynamically redirect the flow of gases from a tangential direction to an axial direction.
- the durability of the turbine exhaust case and its associated load bearing struts depends largely on the material selected for the case. It is generally desirable to select the material of the case struts based on structural versus, for example, thermal properties. Therefore, it is not uncommon to shield the struts by encapsulating them with non-structural vanes that act as heat shields. In this way the exhaust case struts may be formed of a material that exhibits optimal structural properties, but may not be able to withstand the operating temperatures of the engine without the shielding of the vanes.
- the vanes on the other hand, may be formed of a material that exhibits optimal thermal, and oxidation and corrosion resistance properties, while not necessarily exhibiting high strengths.
- the turbine exhaust case strut heat shield vanes may experience a loss of material due to a combination of abrasion, exfoliation, oxidation, hot corrosion and some mode of metallurgical attack during engine operation.
- the material on the vanes may have temperature limits hundreds of degrees above the engine operating temperatures.
- the damage observed on the vanes may not have structural repercussions, the damage may compromise, to an increasing degree over time, the heat shielding function of the vanes.
- structural exhaust case components, i.e. the struts which are intended to be protected by the heat shield vanes may also be compromised. For example, there is an increasing risk that the strength properties of the struts will be degraded and that the struts may yield during operation.
- EP 1605068 A2 discloses a method of homogeneously welding a superalloy which includes preheating the superalloy prior to welding and allowing it to cool prior to welding.
- a method of repairing a turbine exhaust case strut heat shield vane comprises removing a damaged portion of the vane; solution heat treating the vane; attaching a replacement section to the vane; and relieving local stresses in an attachment area between the replacement section and the vane; wherein attaching a replacement section to the vane comprises welding the replacement section; and wherein welding the replacement section to the vane comprises buttwelding the replacement section; the method further comprising cooling one or more portions of a strut around which the vane is arranged to protect the portions of the strut during welding.
- FIG. 1 is a partial axial section view of industrial gas turbine 10 including compressor 12, combustor 14, turbine section 16, and exhaust case 18. Although the section view of FIG. 1 shows only one combustor 14, turbine 10 will generally include multiple combustors 14 circumferentially distributed around a turbine main shaft (not shown).
- Turbine section 16 includes a plurality of rotating blades 20 secured to a rotatable rotor disk 22. A plurality of stationary vanes 24 are each alternately positioned upstream of each of the rotating blades 20. The vanes 24 are dimensioned and configured to guide the working gas over the blades 20.
- air is drawn in through the compressor 12, where it is compressed and driven towards the combustor 14.
- the compressed air enters combustor 14 through an air intake. After entering combustor 14, the air is mixed with fuel.
- Combustor 14 ignites the fuel/air mixture, thereby forming a working gas.
- the working gas exiting combustor 14 may be at a temperature approximately between 2,500° F and 2,900° F (1,371° C - 1,593° C).
- the gas expands through turbine 16, being guided by vanes 24 to drive rotating blades 20. As the gas passes through turbine 16, it rotates blades 20 which, in turn, drive disk 22, thereby transmitting usable mechanical work through disk 22 to a main shaft of turbine 10.
- the remaining portion of useful energy in the working gas exits turbine 16 and passes through exhaust case 18.
- the working gas will commonly proceed downstream from exhaust case 18 into a power turbine (not shown) attached to industrial turbine 10, which may be used to power, for example, an electrical generator.
- Industrial gas turbine 10 may also include a cooling system configured to supply a coolant, for example, steam or compressed air, to internally cool blades 20 and vanes 24 and other turbine components.
- Exhaust case 18 is positioned downstream of the last row of turbine blades 20 shown in FIG. 1 .
- FIG. 2 is a detail view of exhaust case 18 including a pair of annular rings, such as diffusers 34 and 36, struts 38, and heat shield vanes 40.
- Diffuser 34 forms the inner wall of the working gas path and diffuser 36 forms the outer wall of the working gas path.
- Radially extending struts 38 are circumferentially distributed about the engine axis and span the gas path between diffusers 34, 36. Each radially extending strut 38 is surrounded by vane 40. Vanes 40 act both to direct working gas flow through exhaust case 18 and to shield load bearing struts 38 from heat.
- Vanes 40 shown in FIGS. 1 and 2 may experience a loss of material due to a combination of abrasion, exfoliation, oxidation, hot corrosion and some mode of metallurgical attack during engine operation. Although the damage observed on vanes 40 may not have structural repercussions, the damage may compromise, to an increasing degree over time, the heat shielding function of vanes 40. Vanes 40 may therefore be repaired by embodiments of the exemplary method, such as method 50 illustrated by the flow chart of FIG. 3 . In FIG.
- method 50 of repairing a strut heat shield vane includes removing a damaged portion of the vane (step 52), solution heat treating the vane (step 54), cooling an exhaust case strut around which the vane is arranged (step 56), attaching a replacement section to the vane (step 58), relieving local stresses in an attachment area between the replacement section and the vane (step 60), and removing material from the attachment area between the replacement section and the vane (step 62).
- Method 50 includes removing a damaged portion of the vane (step 52).
- the damaged portion of the vane removed (step 52) may be, for example, a damaged portion of the leading edge of the vane.
- the leading edge may exhibit thinning, cracking, pitting, crevice corrosion, and even holes penetrating the vane wall.
- the leading edge of the vane generally experiences higher temperatures and greater oxidation, abrasion, and corrosion than other portions of the vane. Therefore, the leading edge of the vane may be worn to a further extent and more rapidly than other portions of the heat shield vane.
- the damaged portion of the vane may be removed (step 52) with, for example, a manual die grinder or cutting wheel, or by another equivalent method known in the art.
- method 50 includes solution heat treating the vane (step 54).
- Solution heat treatment is a process in which an alloy is heated to a suitable temperature and held at this temperature for a sufficient length of time to allow a desired constituent to enter into solid solution, followed by rapid cooling to hold the constituent in solution.
- solution heat treating the vane (step 54) may be employed to, for example, improve the weldability of the vane prior to attaching a replacement section to the vane (step 56), while avoiding any detrimental metallurgical affects to the dissimilar alloy of the structural turbine exhaust case strut (discussed in more detail below).
- thermal loading may degrade the heat shield vane material by causing certain constituents, such as carbides and nitrides, to come out of solution and migrate toward grain boundaries.
- the out of solution constituents may degrade the thermal and structural properties of the heat shield vane material.
- Solution heat treating the vane facilitates bringing the constituents, e.g. carbides and nitrides, of the vane material back into solution in the alloy, which generally rejuvenates the material properties and improves weldability by, for example, improving ductility at the weld site.
- Solution heat treating the vane may include heat treating the vane in a protective atmosphere of Argon, Hydrogen, Helium, or in a vacuum.
- the vane may be heated at, for example, 1350 +/- 25° F (732 +/- 14° C) for 4 hours +/- 10 minutes and cooled from 1350+/- 25° F (732 +/- 14° C) to 1200 +/- 25° F (650 +/- 14° C) at a rate of 100 +/- 25 F° (56 +/- 14 C °) per 1 hour +/- 10 minutes.
- the vane may then be held at 1200 +/- 25° F (650 +/- 14° C) for 3 hours +/- 10 minutes. Any convenient cooling rate may be used below 1200° F (650° C).
- method 50 may include the optional step of cooling an exhaust case strut around which the vane is arranged (step 56).
- the exhaust case struts are formed of materials that may need to be kept to temperatures well below the operating temperatures of the engine to maintain their strength.
- An example material used for turbine exhaust cases, including the struts, is INCONEL® alloy 718 Manufactured by Special Metals Corporation of Huntington, West Virginia.
- INCONEL® alloy 718 is a precipitation-hardenable nickel-chromium alloy also containing significant amounts of iron, niobium, and molybdenum along with lesser amounts of aluminum and titanium.
- Cooling the exhaust case strut (step 56) may include, for example, directing pressurized air against the strut on the exhaust case.
- Method 50 also includes attaching a replacement section to the vane (step 58).
- Methods of repairing strut heat shield vanes facilitate providing repeatable processes for repairing, as opposed to completely replacing, worn heat shield vanes.
- the exemplary methods facilitate improving the operational performance of the vane by substituting newer, higher performance materials during the repair as compared to known repair methods.
- the damaged portion of the vane removed (step 52) may be fabricated from a first material and the replacement section attached to the vane (step 58) may be fabricated from a second material.
- the first and second materials may be identical, i.e., simply replacing the damaged portion with a substantially equivalent replacement section.
- the first and second materials may be different from one another.
- the first material of the damaged portion may include a nickel-chromium-molybdenum alloy, such as INCONEL® alloy 625 manufactured by Special Metals Corporation of Huntington, West Virginia
- the second material of the replacement section may include a nickel-chromium-iron-molybdenum, such as HASTELLOY® X manufactured by Haynes International, Inc. of Kokomo, Indiana.
- HASTELLOY® X alloy possesses a combination of oxidation resistance, fabricability and high-temperature strength. It has also been found to be resistant to stress-corrosion cracking and exhibits good ductility after prolonged exposure at temperatures of, for example, 1200, 1400, and 1600°F (650, 760, and 870°C respectively).
- Attaching a replacement section to the vane may include, for example, butt-welding the replacement section.
- Butt-welding the replacement section to the strut heat shield vane may include manual gas tungsten arc or manual plasma-transferred arc welding with INCONEL® 625 or HASTELLOY® X weld filler wire. Argon purge back ups may be employed during welding to maximize the weld quality.
- method 50 includes relieving local stresses in an attachment area between the replacement section and the vane (step 60).
- Relieving local stresses in an attachment area between the replacement section and the vane (step 60) may include, for example, heat treating the vane.
- the weld site i.e. attachment area
- the HAZ commonly includes detrimental effects, such as grain growth, which may make the vane alloy more brittle and cause cracking. Additionally, the rapid cooling of the hot weld material places the material at the weld site in tension, i.e.
- heat treating the vane after attaching the replacement section (step 58) may act to reduce grain size in the HAZ, as well as relieve residual stresses created during welding.
- the stress relief heat treatment conducted after attaching the replacement section (step 58) may employ a similar heat treatment schedule as described above with reference to the solution heat treating (step 54).
- Method 50 may also include removing material from the attachment area between the replacement section and the vane (step 62). Attaching the replacement section to the vane (step 58) may leave excess material in an attachment area between the replacement section and the vane. For example, in the case the replacement section is welded to the vane, weld beads may protrude between approximately 0.020 - 0.030 inches (0.508 - 0.762 mm respectively) above the surrounding surfaces of the vane and therefore may necessitate blending to match the contoured geometry of the vane.
- Removing material from the welded connection may include one or more of grinding, polishing, and sanding the welded connection. For example, rotary hand tools and aluminum oxide impregnated grinding wheels may be employed to manually blend the weld areas with the adjacent surfaces of the vane.
- the repaired strut heat shield vane may be inspected. Inspecting the vane may include, for example, wetting the vane weld areas with high sensitivity fluorescent fluid, and visually inspecting the weld areas under an ultraviolet light source. After inspecting the weld areas, the cross-sectional shape and size of the replacement section may be measured by, for example, using a profile gauge to ensure the replacement section complies with the original specifications of the vane.
- FIGS. 4A and 4B are detail views of strut heat shield vane 40 repaired by method 50 illustrated in FIG. 3 .
- Heat shield vane 40 surrounds strut 38 between diffusers 34 and 36.
- Vane 40 includes leading edge 64 and replacement section 64a.
- leading edge 64 may have experienced a loss of material due to a combination of abrasion, oxidation and some mode of metallurgical attack during engine operation. The damaged portion of vane 40 has therefore been removed in the region of leading edge 64.
- Replacement section 64a has then been attached to vane 40 by, for example, welding replacement section 64a to vane 40.
- the exemplary methods of repairing strut heat shield vanes discussed above facilitate providing repeatable processes for repairing, as opposed to completely replacing, warn or damaged heat shield vanes.
- improving the operational performance of the vane by substituting newer, higher performance materials during the repair may be facilitated.
- the damaged leading edge of the vane may be fabricated from a nickel alloy, such as INCONEL® 625, while the replacement section attached to the vane in the exemplary methods may be formed of a newer generation, higher performance nickel alloy, such as HASTELLOY® X.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Claims (11)
- Procédé (50) de réparation d'une aube d'écran thermique d'entretoise de buse d'échappement de turbine (40), le procédé comprenant les étapes consistant à :retirer (52) une portion endommagée de l'aube ;traiter l'aube à chaud en solution (54) ;fixer (58) une section de remplacement à l'aube ; etlibérer les contraintes locales (60) dans une zone de fixation entre la section de remplacement et l'aube ;dans lequel la fixation d'une section de remplacement à l'aube comprend le soudage de la section de remplacement ; etdans lequel le soudage de la section de remplacement à l'aube comprend le soudage bout à bout de la section de remplacement ; le procédé comprenant en outre :le refroidissement d'une ou plusieurs portions d'une entretoise autour de laquelle l'aube est aménagée pour protéger les portions de l'entretoise au cours du soudage.
- Procédé selon la revendication 1, dans lequel le retrait d'une portion endommagée de l'aube comprend au moins l'un ou l'autre d'un meulage et d'un découpage à l'emporte-pièce.
- Procédé selon la revendication 1 ou la revendication 2, dans lequel la portion endommagée comprend un premier matériau et la section de remplacement comprend un second matériau ; et dans lequel le premier matériau et le second matériau sont sensiblement les mêmes ou, en variante, dans lequel le premier matériau et le second matériau sont différents l'un de l'autre.
- Procédé selon la revendication 3, dans lequel le premier matériau comprend un alliage de nickel-chrome-molybdène et le second matériau comprend un alliage de nickel-chrome-fer-molybdène.
- Procédé selon la revendication 1, 2, 3 ou 4, dans lequel le retrait d'une portion endommagée de l'aube comprend le retrait d'une portion endommagée d'un bord d'attaque de l'aube.
- Procédé selon la revendication 1, 2, 3, 4 ou 5, dans lequel le traitement à chaud en solution de l'aube comprend le traitement à chaud de l'aube dans une atmosphère protectrice d'au moins l'une ou l'autre d'argon, d'hydrogène et d'hélium ; en variante, dans lequel le traitement à chaud en solution de l'aube comprend le traitement à chaud dans un vide.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le traitement à chaud en solution de l'aube comprend :le chauffage de l'aube à 732 +/- 14 °C (1350 +/-25 °F) pendant 4 heures +/- 10 minutes ;le refroidissement de l'aube de 732 +/- 14 °C (1350 +/- 25 °F) à 650 +/- 14 °C (1200 +/- 25 °F) à raison de 56 +/- 14 °C (100 +/- 25 °F) pendant 1 heure +/- 10 minutes ; etle chauffage de l'aube à 650 +/- 14 °C (1200 +/-25 °F) pendant 3 heures +/- 10 minutes.
- Procédé selon l'une quelconque des revendications précédentes, comprenant en outre le retrait (62) de matériau d'une liaison soudée entre la section de remplacement et l'aube.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la libération des contraintes locales dans une zone de fixation entre la section de remplacement et l'aube comprend le traitement à chaud de l'aube dans une atmosphère protectrice d'au moins l'une ou l'autre d'argon, d'hydrogène et d'hélium ; en variante, dans lequel la libération des contraintes locales dans une zone de fixation entre la section de remplacement et l'aube comprend le traitement à chaud de l'aube dans un vide.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la libération des contraintes locales dans une zone de fixation entre la section de remplacement et l'aube comprend :le chauffage de l'aube à 732 +/- 14 °C (1350 +/-25 °F) pendant 4 heures +/- 10 minutes ;le refroidissement de l'aube de 732 +/- 14 °C (1350 +/- 25 °F) à 650 +/- 14 °C (1200 +/- 25 °F) à raison de 56 +/- 14 °C (100 +/- 25 °F) pendant 1 heure +/- 10 minutes ; etle chauffage de l'aube à 650 +/- 14 °C (1200 +/-25 °F) pendant 3 heures +/- 10 minutes.
- Procédé selon l'une quelconque des revendications précédentes, comprenant en outre (56) le refroidissement de l'entretoise de buse de d'échappement au cours du traitement à chaud en solution.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/205,257 US8083465B2 (en) | 2008-09-05 | 2008-09-05 | Repaired turbine exhaust strut heat shield vanes and repair methods |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2161408A2 EP2161408A2 (fr) | 2010-03-10 |
EP2161408A3 EP2161408A3 (fr) | 2013-11-06 |
EP2161408B1 true EP2161408B1 (fr) | 2015-04-22 |
Family
ID=41348309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20090250939 Ceased EP2161408B1 (fr) | 2008-09-05 | 2009-03-30 | Aubes d'écran thermique réparées pour entretoise d'échappement de turbine et procédés de réparation |
Country Status (2)
Country | Link |
---|---|
US (1) | US8083465B2 (fr) |
EP (1) | EP2161408B1 (fr) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9062559B2 (en) * | 2011-08-02 | 2015-06-23 | Siemens Energy, Inc. | Movable strut cover for exhaust diffuser |
US8985942B2 (en) | 2012-07-02 | 2015-03-24 | United Technologies Corporation | Turbine exhaust case duct |
WO2014105657A1 (fr) | 2012-12-29 | 2014-07-03 | United Technologies Corporation | Monture à pattes pouvant être infléchies |
WO2014105780A1 (fr) | 2012-12-29 | 2014-07-03 | United Technologies Corporation | Ensemble et support de joint de turbine à gaz à usages multiples |
EP2938868B1 (fr) | 2012-12-29 | 2019-08-07 | United Technologies Corporation | Ensemble de déviation de flux |
US10006306B2 (en) | 2012-12-29 | 2018-06-26 | United Technologies Corporation | Turbine exhaust case architecture |
US9982564B2 (en) * | 2012-12-29 | 2018-05-29 | United Technologies Corporation | Turbine frame assembly and method of designing turbine frame assembly |
EP2938834A1 (fr) | 2012-12-29 | 2015-11-04 | United Technologies Corporation | Pare-chocs pour joints d'étanchéité dans un carter d'échappement de turbine |
WO2014105602A1 (fr) | 2012-12-29 | 2014-07-03 | United Technologies Corporation | Bouclier thermique pour carter |
US9541006B2 (en) | 2012-12-29 | 2017-01-10 | United Technologies Corporation | Inter-module flow discourager |
US9297312B2 (en) | 2012-12-29 | 2016-03-29 | United Technologies Corporation | Circumferentially retained fairing |
WO2014137444A2 (fr) | 2012-12-29 | 2014-09-12 | United Technologies Corporation | Joint d'étanchéité à doigt à nappes multiples |
WO2014105619A1 (fr) | 2012-12-29 | 2014-07-03 | United Technologies Corporation | Bossage multifonction pour carter de sortie turbine |
EP2938857B2 (fr) | 2012-12-29 | 2020-11-25 | United Technologies Corporation | Bouclier thermique pour le refroidissement d'une entretoise |
EP2938844B1 (fr) | 2012-12-29 | 2017-02-08 | United Technologies Corporation | Nervures de guidage basées sur un bouclier thermique pour un carter d'échappement de turbine |
EP2938836B1 (fr) | 2012-12-29 | 2020-02-05 | United Technologies Corporation | Disque et ensemble de support d'étanchéité |
US9206742B2 (en) | 2012-12-29 | 2015-12-08 | United Technologies Corporation | Passages to facilitate a secondary flow between components |
US9850780B2 (en) | 2012-12-29 | 2017-12-26 | United Technologies Corporation | Plate for directing flow and film cooling of components |
EP2938863B1 (fr) | 2012-12-29 | 2019-09-25 | United Technologies Corporation | Liaison mécanique destinée à un écran thermique segmenté |
US9631517B2 (en) | 2012-12-29 | 2017-04-25 | United Technologies Corporation | Multi-piece fairing for monolithic turbine exhaust case |
US9347330B2 (en) | 2012-12-29 | 2016-05-24 | United Technologies Corporation | Finger seal |
WO2014143329A2 (fr) * | 2012-12-29 | 2014-09-18 | United Technologies Corporation | Trous de refroidissement pour jonction de châssis |
EP2938837B1 (fr) | 2012-12-29 | 2018-06-27 | United Technologies Corporation | Ensemble de joint d'étanchéité de turbine à gaz et support de joint d'étanchéité |
US9863261B2 (en) | 2012-12-29 | 2018-01-09 | United Technologies Corporation | Component retention with probe |
WO2014105800A1 (fr) | 2012-12-29 | 2014-07-03 | United Technologies Corporation | Ensemble d'étanchéité de turbine à gaz et support d'étanchéité |
US10240481B2 (en) | 2012-12-29 | 2019-03-26 | United Technologies Corporation | Angled cut to direct radiative heat load |
US9771818B2 (en) | 2012-12-29 | 2017-09-26 | United Technologies Corporation | Seals for a circumferential stop ring in a turbine exhaust case |
US9562478B2 (en) | 2012-12-29 | 2017-02-07 | United Technologies Corporation | Inter-module finger seal |
US10094389B2 (en) | 2012-12-29 | 2018-10-09 | United Technologies Corporation | Flow diverter to redirect secondary flow |
US9903224B2 (en) | 2012-12-29 | 2018-02-27 | United Technologies Corporation | Scupper channelling in gas turbine modules |
US10294819B2 (en) | 2012-12-29 | 2019-05-21 | United Technologies Corporation | Multi-piece heat shield |
GB2524220B (en) | 2012-12-31 | 2020-05-20 | United Technologies Corp | Turbine exhaust case multi-piece frame |
EP2938860B1 (fr) | 2012-12-31 | 2018-08-29 | United Technologies Corporation | Cadre à multiples pièces de compartiment d'échappement de turbine |
GB2524443B (en) | 2012-12-31 | 2020-02-12 | United Technologies Corp | Turbine exhaust case multi-piece frame |
EP2971579B1 (fr) | 2013-03-11 | 2020-04-29 | United Technologies Corporation | Sous-ensemble arrière pour un carénage de carter d'échappement de turbine |
US20150159873A1 (en) * | 2013-12-10 | 2015-06-11 | General Electric Company | Compressor discharge casing assembly |
US10364748B2 (en) | 2016-08-19 | 2019-07-30 | United Technologies Corporation | Finger seal flow metering |
US10927707B2 (en) | 2018-12-07 | 2021-02-23 | Raytheon Technologies Corporation | Diffuser case heat shields |
JP7419002B2 (ja) * | 2019-09-12 | 2024-01-22 | 三菱重工業株式会社 | ストラットカバー、排気車室およびガスタービン |
US11927137B2 (en) | 2022-03-21 | 2024-03-12 | Ge Infrastructure Technology Llc | System and method for insulating components in an exhaust gas flow from a gas turbine |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4305697A (en) * | 1980-03-19 | 1981-12-15 | General Electric Company | Method and replacement member for repairing a gas turbine engine vane assembly |
US4726104A (en) * | 1986-11-20 | 1988-02-23 | United Technologies Corporation | Methods for weld repairing hollow, air cooled turbine blades and vanes |
US4993918A (en) * | 1989-05-19 | 1991-02-19 | United Technologies Corporation | Replaceable fairing for a turbine exhaust case |
US5897801A (en) * | 1997-01-22 | 1999-04-27 | General Electric Company | Welding of nickel-base superalloys having a nil-ductility range |
EP1184473B1 (fr) * | 2000-08-30 | 2005-01-05 | Kabushiki Kaisha Toshiba | Alliages monocristallins à base de nickel et méthode de fabriction et éléments d'un turbine à gaz à des hautes températures à partir de ceux-ci |
US6494677B1 (en) * | 2001-01-29 | 2002-12-17 | General Electric Company | Turbine nozzle segment and method of repairing same |
US6508000B2 (en) * | 2001-02-08 | 2003-01-21 | Siemens Westinghouse Power Corporation | Transient liquid phase bonding repair for advanced turbine blades and vanes |
US6685431B2 (en) * | 2001-10-24 | 2004-02-03 | United Technologies Corporation | Method for repairing a turbine vane |
US6792758B2 (en) * | 2002-11-07 | 2004-09-21 | Siemens Westinghouse Power Corporation | Variable exhaust struts shields |
US7043898B2 (en) * | 2003-06-23 | 2006-05-16 | Pratt & Whitney Canada Corp. | Combined exhaust duct and mixer for a gas turbine engine |
US7244320B2 (en) * | 2004-06-01 | 2007-07-17 | United Technologies Corporation | Methods for repairing gas turbine engine components |
US20050274701A1 (en) * | 2004-06-10 | 2005-12-15 | United Technologies Corporation | Homogeneous welding via pre-heating for high strength superalloy joining and material deposition |
US7100358B2 (en) * | 2004-07-16 | 2006-09-05 | Pratt & Whitney Canada Corp. | Turbine exhaust case and method of making |
US7587818B2 (en) * | 2004-12-23 | 2009-09-15 | General Electric Company | Repair of gas turbine blade tip without recoating the repaired blade tip |
US7402026B2 (en) * | 2006-03-02 | 2008-07-22 | Pratt & Whitney Canada Corp. | Turbine exhaust strut airfoil profile |
US7950236B2 (en) * | 2006-09-11 | 2011-05-31 | Pratt & Whitney Canada Corp. | Exhaust duct and tail cone attachment of aircraft engines |
-
2008
- 2008-09-05 US US12/205,257 patent/US8083465B2/en not_active Expired - Fee Related
-
2009
- 2009-03-30 EP EP20090250939 patent/EP2161408B1/fr not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
US20100061846A1 (en) | 2010-03-11 |
EP2161408A3 (fr) | 2013-11-06 |
US8083465B2 (en) | 2011-12-27 |
EP2161408A2 (fr) | 2010-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2161408B1 (fr) | Aubes d'écran thermique réparées pour entretoise d'échappement de turbine et procédés de réparation | |
US20180216464A1 (en) | Method of repairing a blisk | |
WO2009101912A1 (fr) | Procédé de réparation d'une aube de rotor de turbine | |
US20090271984A1 (en) | Method for repairing a gas turbine engine component | |
WO2006026695A2 (fr) | Dispositif d'ecran de soudage pour soudage automatique de turbines et d'aubes et de disques combines | |
EP1564371A2 (fr) | Procédé pour la réparation de pièce coulée | |
MXPA00011074A (es) | Segmento de boquilla de turbina y metodo para reparar el mismo. | |
CN110712002B (zh) | 恢复叶片或导叶平台的方法 | |
US20090214335A1 (en) | Method of repair for cantilevered stators | |
JP4959744B2 (ja) | 蒸気タービン用タービンロータ及び蒸気タービン | |
US11982207B2 (en) | Tip repair of a turbine component using a composite tip boron base pre-sintered preform | |
US9931719B2 (en) | Method for repairing a receiving hook for guide vanes | |
US12042875B2 (en) | Weld-brazing techniques | |
RU2798932C2 (ru) | Способ восстановления полки рабочей лопатки или направляющей лопатки | |
US10563533B2 (en) | Repair or remanufacture of blade outer air seals for a gas turbine engine | |
Klimczuk | Repairability analysis of the energy gas turbine rotor blade second stage shroud by high-temperature brazing | |
US20170120399A1 (en) | Power nozzle repair with cooling hardware installed | |
Storch et al. | Repair welds in turbine blades |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 5/18 20060101ALI20130930BHEP Ipc: B23P 6/00 20060101ALI20130930BHEP Ipc: F01D 5/00 20060101AFI20130930BHEP |
|
17P | Request for examination filed |
Effective date: 20140506 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 5/18 20060101ALI20140526BHEP Ipc: B23P 6/00 20060101ALI20140526BHEP Ipc: F01D 5/00 20060101AFI20140526BHEP |
|
AKX | Designation fees paid |
Designated state(s): DE GB |
|
INTG | Intention to grant announced |
Effective date: 20140627 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE GB LI |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009030761 Country of ref document: DE Effective date: 20150603 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009030761 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160125 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: 10 FARM SPRINGS ROAD, FARMINGTON, CT 06032 (US) |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602009030761 Country of ref document: DE Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602009030761 Country of ref document: DE Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602009030761 Country of ref document: DE Owner name: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES , US Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP., HARTFORD, CONN., US |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: RAYTHEON TECHNOLOGIES CORPORATION, US Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORPORATION, US |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220225 Year of fee payment: 14 Ref country code: DE Payment date: 20220217 Year of fee payment: 14 Ref country code: CH Payment date: 20220218 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602009030761 Country of ref document: DE Owner name: RAYTHEON TECHNOLOGIES CORPORATION (N.D.GES.D.S, US Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES DELAWARE), FARMINGTON, CONN., US |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009030761 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230330 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 |