EP2156511A1 - Omnidirectional volumetric antenna - Google Patents

Omnidirectional volumetric antenna

Info

Publication number
EP2156511A1
EP2156511A1 EP08760450A EP08760450A EP2156511A1 EP 2156511 A1 EP2156511 A1 EP 2156511A1 EP 08760450 A EP08760450 A EP 08760450A EP 08760450 A EP08760450 A EP 08760450A EP 2156511 A1 EP2156511 A1 EP 2156511A1
Authority
EP
European Patent Office
Prior art keywords
elements
antenna according
conductive
antenna
conductive elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08760450A
Other languages
German (de)
French (fr)
Inventor
Julian Thevenard
Dominique Lo Hine Tong
Ali Louzir
Corinne Nicolas
Christian Person
Jean-Philippe Coupez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP2156511A1 publication Critical patent/EP2156511A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/247Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element

Definitions

  • the field of the invention is that of omnidirectional volume antennas such as biconical or discone antennas, to which the addition of elements in the formation zone of the radiation pattern allows a division of the azimuthal angular space.
  • a biconical antenna is obtained by the superposition of two cones facing each other by their pointed end, the supply being effected by the center of the cones.
  • the shape of the cones makes it possible to determine a zone of progressive flare where the wave propagates.
  • This flaring zone may be of various shapes and may in particular provide an outline such as those used for "Vivaldi" type antennas with quasi-shear profiles; this outline can just as easily be reduced to a simple straight line.
  • the discone antenna is made by means of a reflector plane on which a cone is arranged, this association has substantially the same characteristics as the bi-conical antenna in terms of performance.
  • the omnidirectional antennas of the known art may have a good directivity in all directions in an azimuth plane but do not allow to benefit from latitude to preferentially influence the directivity in a subset of directions. The transition without contact then makes it easier to integrate the antenna.
  • an omnidirectional antenna in which the directivity of the antenna can be modified by varying the electric field at the excitation source thereof, this by means of switching diodes.
  • the present invention proposes an antenna integrating a contactless three-dimensional transition between a coaxial excitation line and two conductive elements having a symmetry of revolution, corresponding to the three-dimensional transposition of a micro-ribbon line planar transition. slit line and having elements modifying the radiation of the antenna in at least one flared part of the antenna.
  • the invention relates to a wideband omnidirectional antenna comprising at least a first conductive element and a second conductive element having a symmetry of revolution about a common axis of revolution and central openings, said elements being positioned opposite one of the other, at least one of the elements having a progressive flaring zone characterized in that it comprises a central coaxial excitation line and a space between the two conductive elements so as to achieve a contactless transition in three dimensions between the coaxial exciter line and the conductive elements and modifying elements of the radiation pattern in the splay area.
  • one of the conductive elements is plane. According to a variant of the invention, at least one of the conductive elements is a cone.
  • the smallest diameter of the cone is of greater dimension than the section of the coaxial exciter line.
  • At least one of the conductive elements is a half-sphere.
  • the modifying elements comprise diodes that can switch from a conductive state to an insulating state or MEMS-type components.
  • at least one of the conductive elements comprises radial insulating sectors supporting the modifying elements.
  • At least one of the conductive elements comprising insulating sectors is made of plastic and comprises metallized parts.
  • the modifying elements are fed by printed tracks directly on the plastic element comprising metallized parts.
  • the antenna further comprises metal rods connecting the two conductive elements so as to ensure a continuity of mass.
  • the antenna comprises at least one solid insulating part in which is formed a conductive element having a progressive flaring zone.
  • FIG. 1 illustrates a first example of an omnidirectional antenna according to the art known
  • FIGS. 2a and 2b illustrate two other examples of omnidirectional antenna according to the known art
  • FIG. 3 illustrates an antenna structure according to the invention comprising two conical elements and a central coaxial line
  • FIGS. a and 4b respectively illustrate a perspective view and a sectional view of an example of an antenna according to the invention and having modifying elements of the radiation pattern;
  • FIGS. 5a, 5b and 5c respectively show the radiation patterns of the antenna illustrated in FIGS. 4a and 4b in a three-dimensional view, a view in the azimuth plane and a view in the elevation plane;
  • FIG. 6 illustrates the reflection losses of the antenna illustrated in FIGS. 4a and 4b;
  • FIG. 7 illustrates a variant in which the cones have an enlargement of the central opening with respect to the dimension of the central exciter line
  • FIG. 8 illustrates a variant of the invention in which the conductive elements are made in a solid piece of plastic
  • FIGS. 9a and 9b illustrate a variant of the invention in which one of the conductive elements is plane
  • FIG. 10 illustrates a variant of the invention in which the conductive elements are half-spheres.
  • the antenna according to the invention comprises at least a first element of flared and conductive shape and a second element which is also conductive and which can also be of flared or planar shape.
  • the assembly consisting of these two elements is coupled to a coaxial central excitation line.
  • This exciting line comprises a metal central rod that provides the antenna power function by bringing a short circuit at the opening between the two conductive elements to allow coupling between the coaxial type of access and the together constituted by the two conductive elements.
  • This short circuit is achieved by placing an "open circuit" at a distance of ⁇ / 4 at the end of the metal rod.
  • the height above the end of this central rod is also a setting parameter of the adaptation of the antenna.
  • FIG. 3 shows an example of an omnidirectional antenna structure, more precisely comprising a first conical element C c i, a second conical element C2 , a central coaxial excitation line L c .
  • Each conductive element has a central opening O 1 , O 2 allowing the insertion of the exciter line within said elements and a symmetry of revolution about a central axis A 0 .
  • This exciting line comprises a metal central rod Lc-i, the length of penetration of this central rod at the first conductive element is typically of the order of ⁇ / 4 to bring a short circuit at the opening of the biconical antenna.
  • the spacing e in the vertical direction Dz between the two conical elements allows the coupling between the coaxial excitatory line mode and the mode of the assembly constituted by the two cones.
  • the antenna further comprises modifying elements of the radiation pattern Ri, (guiding elements and reflectors) in the flaring zone of the voluminal antenna as illustrated in FIGS. 4a and 4b.
  • These elements are advantageously semiconductor elements that can pass from an insulating state to a conductive state and which fit into the flaring zone of the voluminal antenna. They are fed by printed tracks pi connected to a control circuit and positioned on insulating sectors integrated with one of the conductive elements constituting the voluminal antenna.
  • 6a, 6b (4-sector configuration) can be, for example, components such as PIN diodes, varactor diodes or even MEMS-type components which are connected to a control circuit. placed under the structure.
  • the conductive element comprising insulating sectors and conducting sectors may advantageously be a plastic part on which metallized sectors S d are made .
  • the main piece of plastic can be interconnected to the circuit by means of a mechanical system of clips or pins, it can also be reported for example by welding.
  • the continuity of mass between the cones is ensured by means of metal rods Mi connecting the two elements Cc i and C c2 .
  • Exemplary embodiment of the omnidirectional antenna illustrated in Figure 4a and 4b comprising four sectors and calibrated to be operational at 5 GHz:
  • This antenna comprises a three-dimensional main piece made of "metallized plastic” technology which constitutes the support of the "reference” antenna device and which comprises in a "traditional” configuration two plastic cones positioned head-to-tail, with a hole central to allow the supply of the antenna which can be achieved for example by means of a coaxial cable type access.
  • the height of this main room in this example is
  • the space between the two cones set at 4mm in this example is an important parameter of optimization, this opening plays a role in the antenna power system which is achieved by a coupling between the mode of the coaxial cable and the mode of the biconical antenna.
  • This method The power supply is similar to a coaxial-slot slot-type power supply system that is transposed into a three-dimensional configuration.
  • FIGS. 5a, 5b and 5c relating to this type of antenna having 5GHz radiation patterns. These diagrams are shown in Figure 5a (three-dimensional view), 5b (seen in the azimuth plane) and 5c (seen in the elevation plane).
  • the directivity is 4.92dB
  • the beamwidth at -3dB is 90 ° in elevation and 160 ° in the azimuth plane for a front-to-back ratio of less than -8dB.
  • the omnidirectional antenna has an enlargement of the small diameter of the cone x c with respect to the dimensions of the outer cylinder of the coaxial supply cable XL and more precisely with respect to the cylindrical recessed zone. constituting the outer wall of the coaxial cable.
  • This variant has the advantage of simpler manufacturing, especially in view of molding constraints when using a plastic part.
  • the omnidirectional antenna comprises parts that are no longer hollowed out as in the previously described variants but parts made of "solid" plastic, making it possible to reinforce the mechanical strength of said antenna.
  • the figure illustrates this configuration.
  • the conductive elements C d and Cc 2 are then formed inside said plastic part P.
  • the antenna is a discone antenna having a small footprint due to one of the conductive elements which is plane facing the first conductive element.
  • the antenna comprises an upper cone metallized to the interior Bcc, a reflective ground plane Pc 2 with access to the coaxial cable Lc, an opening between the cone and the reflector ground plane.
  • the conductive parts comprise a contour of the flaring zone such as those encountered for "Vivaldi” type antennas with quasi-spherical profiles and therefore made up of two Sci half-spheres. and Sc2 coupled to the coaxial excitation line 1c .

Abstract

The invention relates to a wide-band omnidirectional antenna including at least a first conducting member (Cc1) and a second conducting member (Cc2) having a revolution symmetry about a common revolution axis and central openings (O1, O2), said members being arranged opposite each other, at least one member having a progressively flaring area, characterised in that it comprises a gap between the conducting members and a central coaxial excitation line (Lc) so as to achieve a three-dimensional contactless transition between the coaxial excitation line and the conducting members and members for modifying the radiation pattern in the flaring area (Ri) of the diode type for selectively radiating the gap depending on the on- or off-state of said diodes.

Description

Antenne volumique omnidirectïonnelle Omnidirectial aerial antenna
Le domaine de l'invention est celui des antennes volumiques omnidirectionnelles telles que les antennes biconique ou discone, auxquelles l'ajout d'éléments dans la zone de formation du diagramme de rayonnement permet une sectorisation de l'espace angulaire azimutal. De manière générale une antenne biconique est obtenue par la superposition de deux cônes mis en regard par leur extrémité pointue, l'alimentation s'effectuant par le centre des cônes. La forme des cônes permet de déterminer une zone d'évasement progressif où l'onde se propage. Cette zone d'évasement peut être de formes diverses et peut notamment offrir un contour tels que ceux utilisés pour des antennes de type « Vivaldi » avec des profils quasi-shérique; ce contour peut tout aussi bien être réduit à une simple droite. L'antenne discône est, elle, réaiisée au moyen d'un plan réflecteur sur lequel un cône est disposé, cette association présente sensiblement les mêmes caractéristiques que l'antenne bi-conique en terme de performances.The field of the invention is that of omnidirectional volume antennas such as biconical or discone antennas, to which the addition of elements in the formation zone of the radiation pattern allows a division of the azimuthal angular space. In general, a biconical antenna is obtained by the superposition of two cones facing each other by their pointed end, the supply being effected by the center of the cones. The shape of the cones makes it possible to determine a zone of progressive flare where the wave propagates. This flaring zone may be of various shapes and may in particular provide an outline such as those used for "Vivaldi" type antennas with quasi-shear profiles; this outline can just as easily be reduced to a simple straight line. The discone antenna is made by means of a reflector plane on which a cone is arranged, this association has substantially the same characteristics as the bi-conical antenna in terms of performance.
Il est connu des antennes omnidirectionnelles comportant deux éléments conducteurs de type cône Ci et plan P2 comme illustré en figure 1 , dans laquelle l'âme centrale du câble coaxial est en contact avec le cône supérieur tandis que le plan inférieur est en contact avec la masse extérieure du câble coaxial d'alimentation.It is known omnidirectional antennas comprising two conductive elements Ci-cone type and plane P 2 as shown in Figure 1, wherein the central core of the coaxial cable is in contact with the upper cone while the lower plane is in contact with the external mass of the coaxial power cable.
Il est également connu des antennes comportant deux cônes Ci et C2 avec deux câbles coaxiaux Li et L2 (illustrée en figure 2a) ou comme décrit dans la demande de brevet publiée 2 246 090, une antenne comportant deux cônes 1 , 2 dans laquelle il est proposé d'intégrer un élément coaxial central 3,4 et de le connecter aux portions de cône, électriquement via deux réseaux de conducteurs 5,6 le tout étant noyé dans un matériau 7 (illustrée en figure 2b).It is also known antennas having two cones Ci and C 2 with two coaxial cables Li and L 2 (illustrated in Figure 2a) or as described in the published patent application 2,246,090, an antenna having two cones 1, 2 in which it is proposed to integrate a central coaxial element 3,4 and connect it to the cone portions, electrically via two networks of conductors 5,6 all embedded in a material 7 (illustrated in Figure 2b).
Les antennes omnidirectionnelles de l'art connu peuvent présenter une bonne directivité dans l'ensemble des directions dans un plan azimutal mais ne permettent pas de bénéficier de latitude pour influencer de manière préférentielle la directivité dans un sous-ensemble de directions. La transition sans contact permet alors de faciliter l'intégration de l'antenne. 11 est également connu et notamment décrit dans ia demande de brevet EP 1 460 717, une antenne omnidirectionnelie, dans laquelle la directivité de l'antenne peut être modifiée par variation du champ électrique au niveau de la source d'excitation de celle-ci, ce au moyen de diodes de commutation. Dans ce contexte, la présente invention propose une antenne intégrant une transition sans contact en trois dimensions entre une ligne excitatrice coaxiale et deux éléments conducteurs présentant une symétrie de révolution, correspondant à la transposition en trois dimensions d'une transition planaire ligne micro-ruban/iigne à fente et présentant des éléments modificateurs du rayonnement de l'antenne dans au moins une partie évasée de l'antenne.The omnidirectional antennas of the known art may have a good directivity in all directions in an azimuth plane but do not allow to benefit from latitude to preferentially influence the directivity in a subset of directions. The transition without contact then makes it easier to integrate the antenna. It is also known, and in particular described in the patent application EP 1 460 717, an omnidirectional antenna, in which the directivity of the antenna can be modified by varying the electric field at the excitation source thereof, this by means of switching diodes. In this context, the present invention proposes an antenna integrating a contactless three-dimensional transition between a coaxial excitation line and two conductive elements having a symmetry of revolution, corresponding to the three-dimensional transposition of a micro-ribbon line planar transition. slit line and having elements modifying the radiation of the antenna in at least one flared part of the antenna.
Plus précisément l'invention a pour objet une antenne omnidirectionnelie à large bande comportant au moins un premier élément conducteur et un second élément conducteur présentant une symétrie de révolution autour d'un axe commun de révolution et des ouvertures centrales, lesdits éléments étant positionnés en regard l'un de l'autre, au moins un des éléments présentant une zone d'évasement progressif caractérisée en ce qu'elle comprend une ligne excitatrice coaxiaie centrale et un espace entre les deux éléments conducteurs de manière à réaliser une transition sans contact en trois dimensions entre la ligne excitatrice coaxiale et les éléments conducteurs et des éléments modificateurs du diagramme de rayonnement dans Ia zone d'évasement.More specifically, the invention relates to a wideband omnidirectional antenna comprising at least a first conductive element and a second conductive element having a symmetry of revolution about a common axis of revolution and central openings, said elements being positioned opposite one of the other, at least one of the elements having a progressive flaring zone characterized in that it comprises a central coaxial excitation line and a space between the two conductive elements so as to achieve a contactless transition in three dimensions between the coaxial exciter line and the conductive elements and modifying elements of the radiation pattern in the splay area.
Selon une variante de l'invention, l'un des éléments conducteurs est plan. Selon une variante de l'invention, au moins un des éléments conducteurs est un cône.According to a variant of the invention, one of the conductive elements is plane. According to a variant of the invention, at least one of the conductive elements is a cone.
Selon une variante de l'invention, le plus petit diamètre du cône est de plus grande dimension que la section de la ligne excitatrice coaxiale.According to a variant of the invention, the smallest diameter of the cone is of greater dimension than the section of the coaxial exciter line.
Selon une variante de l'invention, au moins un des éléments conducteurs est une demi-sphère.According to a variant of the invention, at least one of the conductive elements is a half-sphere.
Selon une variante de l'invention, les éléments modificateurs comportent des diodes pouvant commuter d'un état conducteur passant à un état isolant ou des composants de type MEMS. Selon une variante de l'invention, au moins un des éléments conducteurs comprend des secteurs isolants radiaux supportant les éléments modificateurs.According to a variant of the invention, the modifying elements comprise diodes that can switch from a conductive state to an insulating state or MEMS-type components. According to a variant of the invention, at least one of the conductive elements comprises radial insulating sectors supporting the modifying elements.
Avantageusement, au moins un des éléments conducteurs comportant des secteurs isolants est en plastique et comporte des parties métallisées.Advantageously, at least one of the conductive elements comprising insulating sectors is made of plastic and comprises metallized parts.
Avantageusement, les éléments modificateurs sont alimentés par des pistes imprimées directement sur l'élément en plastique comportant des parties métallisées. Selon une variante de l'invention, l'antenne comporte en outre des tiges métalliques reliant les deux éléments conducteurs de manière à assurer une continuité de masse.Advantageously, the modifying elements are fed by printed tracks directly on the plastic element comprising metallized parts. According to a variant of the invention, the antenna further comprises metal rods connecting the two conductive elements so as to ensure a continuity of mass.
Selon une variante de l'invention, l'antenne comporte au moins une pièce pleine isolante dans laquelle est réalisé un élément conducteur présentant une zone d'évasement progressif.According to a variant of the invention, the antenna comprises at least one solid insulating part in which is formed a conductive element having a progressive flaring zone.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles : - la figure 1 illustre un premier exemple d'antenne omnidirectionnelle selon l'art connu ;The invention will be better understood and other advantages will become apparent on reading the description which follows given by way of nonlimiting example and with reference to the appended figures in which: FIG. 1 illustrates a first example of an omnidirectional antenna according to the art known;
- les figures 2a et 2b illustrent deux autres exemples d'antenne omnidirectionnelle selon l'art connu ;FIGS. 2a and 2b illustrate two other examples of omnidirectional antenna according to the known art;
- la figure 3 illustre une structure d'antenne selon l'invention comportant deux éléments coniques et une ligne coaxiale centrale ;FIG. 3 illustrates an antenna structure according to the invention comprising two conical elements and a central coaxial line;
- les figures a et 4b illustrent respectivement une vue en perspective et une vue en coupe d'un exemple d'antenne selon l'invention et comportant des éléments modificateurs du diagramme de rayonnement ;- Figures a and 4b respectively illustrate a perspective view and a sectional view of an example of an antenna according to the invention and having modifying elements of the radiation pattern;
- les figures 5a, 5b et 5c illustrent respectivement les diagrammes de rayonnement de l'antenne illustrée en figure 4a et 4b selon une vue en trois dimensions, une vue dans le plan azimutai et une vue dans le plan d'élévation ; - la figure 6 illustre les pertes par réflexion de ['antenne illustrée en figure 4a et 4b ;FIGS. 5a, 5b and 5c respectively show the radiation patterns of the antenna illustrated in FIGS. 4a and 4b in a three-dimensional view, a view in the azimuth plane and a view in the elevation plane; FIG. 6 illustrates the reflection losses of the antenna illustrated in FIGS. 4a and 4b;
- la figure 7 illustre une variante dans laquelle les cônes présentent un élargissement de l'ouverture centrale par rapport à la dimension de la ligne excitatrice centrale ;FIG. 7 illustrates a variant in which the cones have an enlargement of the central opening with respect to the dimension of the central exciter line;
- la figure 8 illustre une variante de l'invention dans laquelle les éléments conducteurs sont réalisés dans une pièce pleine en plastique ;FIG. 8 illustrates a variant of the invention in which the conductive elements are made in a solid piece of plastic;
- les figures 9a et 9b illustrent une variante de l'invention dans laquelle l'un des éléments conducteurs est plan ;FIGS. 9a and 9b illustrate a variant of the invention in which one of the conductive elements is plane;
- la figure 10 illustre une n variante de l'invention dans laquelle les éléments conducteurs sont des demi-sphères.FIG. 10 illustrates a variant of the invention in which the conductive elements are half-spheres.
De manière générale, l'antenne selon l'invention comporte au moins un premier élément de forme évasée et conducteur et un second élément également conducteur pouvant également être de forme évasée ou de forme plane. L'ensemble constitué pas ces deux éléments est couplé à une ligne excitatrice centrale coaxiale. Cette iigne excitatrice comprend une tige centrale métallique qui assure la fonction d'alimentation de l'antenne en ramenant un court circuit au niveau de l'ouverture entre les deux éléments conducteurs afin de permettre le couplage entre l'accès de type coaxial et l'ensemble constitué par les deux éléments conducteurs. Ce court-circuit est réalisé en plaçant un « circuit ouvert » à une distance de λ/4 à l'extrémité de la tige métallique. La hauteur au dessus de l'extrémité de cette tige centrale est également un paramètre de réglage de l'adaptation de l'antenne.In general, the antenna according to the invention comprises at least a first element of flared and conductive shape and a second element which is also conductive and which can also be of flared or planar shape. The assembly consisting of these two elements is coupled to a coaxial central excitation line. This exciting line comprises a metal central rod that provides the antenna power function by bringing a short circuit at the opening between the two conductive elements to allow coupling between the coaxial type of access and the together constituted by the two conductive elements. This short circuit is achieved by placing an "open circuit" at a distance of λ / 4 at the end of the metal rod. The height above the end of this central rod is also a setting parameter of the adaptation of the antenna.
La figure 3 détaille un exemple de structure d'antenne omnidirectionnelle, comportant plus précisément un premier élément de forme conique Cci , un second élément de forme conique CC2, une iigne excitatrice coaxiale centrale Lc. Chaque élément conducteur présente une ouverture centrale O1, O2 permettant l'insertion de la ligne excitatrice au sein desdits éléments et une symétrie de révolution autour d'un axe central A0. Cette ligne excitatrice comprend une tige centrale métallique Lc-i, la longueur de pénétration de cette tige centrale au niveau du premier élément conducteur est typiquement de l'ordre de λ/4 afin de ramener un court circuit au niveau de l'ouverture de l'antenne biconique. Par ailleurs l'espacement e selon la direction verticale Dz entre les deux éléments coniques permet le couplage entre ie mode de la ligne excitatrice coaxiale et le mode de l'ensemble constitué par les deux cônes.FIG. 3 shows an example of an omnidirectional antenna structure, more precisely comprising a first conical element C c i, a second conical element C2 , a central coaxial excitation line L c . Each conductive element has a central opening O 1 , O 2 allowing the insertion of the exciter line within said elements and a symmetry of revolution about a central axis A 0 . This exciting line comprises a metal central rod Lc-i, the length of penetration of this central rod at the first conductive element is typically of the order of λ / 4 to bring a short circuit at the opening of the biconical antenna. Moreover the spacing e in the vertical direction Dz between the two conical elements allows the coupling between the coaxial excitatory line mode and the mode of the assembly constituted by the two cones.
Typiquement l'espacement e selon la direction Dz peut être de l'ordre de 4mm. Les éléments coniques peuvent présenter un rayon de 15 mm, la structure mesurant environ 48 mm. Selon l'invention, l'antenne comprend en outre des éléments modificateurs du diagramme de rayonnement Ri, (éléments directeurs et réflecteurs) dans la zone d'évasement de l'antenne volumique comme illustrée en figures 4a et 4b. Ces éléments sont avantageusement des éléments semiconducteurs pouvant passer d'un état isolant à un état conducteur et qui s'insèrent dans la zone d'évasement de l'antenne volumique. Ils sont alimentés par des pistes imprimées pi reliées à un circuit de contrôle et positionnées sur des secteurs isolants intégrés à l'un des éléments conducteurs constitutifs de l'antenne volumique. Ces éléments représentés par des tiges métalliques sur les schémas des figures 6a, 6b (configuration à 4 secteurs) peuvent être par exemple des composants comme des diodes PIN, des diodes varactor ou encore des composants de type MEMS qui sont reliés à un circuit de contrôle placé sous la structure. Les éléments modificateurs sont représentés schématiquement par des lignes discontinues lorsqu'ils sont dans un état bloquant. Ces composants sont disposés de telle manière à pouvoir générer un court circuit à une distance de λg/4 (avec λg =longueur d'onde guidée entre les deux cônes) du centre du cône où se situe la tige centrale métallique du câble coaxial afin de générer un couplage maximal et d'assurer le passage de l'énergie du câble coaxial à l'antenne biconique. Ces composants sont donc soit dans un état permettant de réaliser un court circuit afin de relier électriquement les masses des deux cônes entre elles et de ce fait de se comporter comme un élément réflecteur, soit dans un état rendant ces composants des éléments directeurs. Le contrôle des états de ces multiples composants permet une sectorisation de l'espace. Leur nombre détermine également le nombre de secteurs pouvant être couverts par le système.Typically the spacing e along the direction Dz can be of the order of 4mm. The conical elements may have a radius of 15 mm, the structure measuring approximately 48 mm. According to the invention, the antenna further comprises modifying elements of the radiation pattern Ri, (guiding elements and reflectors) in the flaring zone of the voluminal antenna as illustrated in FIGS. 4a and 4b. These elements are advantageously semiconductor elements that can pass from an insulating state to a conductive state and which fit into the flaring zone of the voluminal antenna. They are fed by printed tracks pi connected to a control circuit and positioned on insulating sectors integrated with one of the conductive elements constituting the voluminal antenna. These elements represented by metal rods in the diagrams of FIGS. 6a, 6b (4-sector configuration) can be, for example, components such as PIN diodes, varactor diodes or even MEMS-type components which are connected to a control circuit. placed under the structure. The modifying elements are schematically represented by broken lines when in a blocking state. These components are arranged in such a way as to be able to generate a short circuit at a distance of λg / 4 (with λg = guided wavelength between the two cones) of the center of the cone where the metal central rod of the coaxial cable is located in order to generate a maximum coupling and ensure the passage of energy from the coaxial cable to the biconical antenna. These components are therefore either in a state allowing a short circuit to electrically connect the masses of the two cones together and thus behave as a reflective element, or in a state making these components of the guiding elements. Controlling the states of these multiple components allows sectorization of the space. Their number also determines the number of sectors that can be covered by the system.
La configuration précédente a été décrite avec quatre secteurs, on peut avantageusement jouer sur le nombre de secteurs, typiquement il est intéressant d'en réaliser huit pour moduler davantage le diagramme de rayonnement de l'antenne selon l'invention.The previous configuration has been described with four sectors, we can advantageously play on the number of sectors, typically it is interesting to achieve eight to further modulate the radiation pattern of the antenna according to the invention.
Par ailleurs, l'élément conducteur comportant des secteurs isolants et des secteurs conducteurs peut avantageusement être une pièce en plastique sur laquelle sont réaiisés des secteurs métallisés Sd. La pièce principale en plastique peut être interconnectée au circuit au moyen d'un système mécanique de clips ou de picots, elle peut également être reportée par exemple par soudure. La continuité de masse entre les cônes est assurée au moyen de tiges métalliques Mi reliant les deux éléments Cci et Cc2.Moreover, the conductive element comprising insulating sectors and conducting sectors may advantageously be a plastic part on which metallized sectors S d are made . The main piece of plastic can be interconnected to the circuit by means of a mechanical system of clips or pins, it can also be reported for example by welding. The continuity of mass between the cones is ensured by means of metal rods Mi connecting the two elements Cc i and C c2 .
Ainsi, la possibilité au sein d'un unique bloc antenne d'intégrer une fonction de sectorisation offre un gain de place très conséquent. D'un point de vue réalisation, le recours à la technologie plastique, qui offre une voie de réalisation du système antennaire de type bi-conique ou discone, autorise grâce à la dualité et la versatilité du matériau plastique de pouvoir utiliser le plastique comme support de propagation de l'énergie et de ce fait ouvre de nouvelles perspectives en terme de gain de place, de poids et de facilité d'interconnexion avec le reste de la chaîne de communication.Thus, the possibility within a single antenna block to integrate a sectoring function offers a very substantial space saving. From a production point of view, the use of plastic technology, which offers a way of realization of the antennal system of bi-conic or discone type, allows thanks to the duality and the versatility of the plastic material to be able to use the plastic as support of energy propagation and thus opens up new perspectives in terms of gaining space, weight and ease of interconnection with the rest of the communication chain.
Exemple de réalisation de l'antenne omnidirectionneile illustrée en figure 4a et 4b comportant quatre secteurs et calibrée pour être opérationnelle à 5 GHz :Exemplary embodiment of the omnidirectional antenna illustrated in Figure 4a and 4b comprising four sectors and calibrated to be operational at 5 GHz:
Cette antenne comprend une pièce principale en trois dimensions réalisée en technologie « plastique métallisé» qui constitue le support du dispositif antennaire « de référence » et qui comprend dans une configuration « traditionnelle » deux cônes en plastique positionnés de manière tête-bêche, avec un trou central afin de permettre l'alimentation de l'antenne qui peut-être réalisée par exemple au moyen d'un accès de type câble coaxial. La hauteur de cette pièce principale dans cet exemple est deThis antenna comprises a three-dimensional main piece made of "metallized plastic" technology which constitutes the support of the "reference" antenna device and which comprises in a "traditional" configuration two plastic cones positioned head-to-tail, with a hole central to allow the supply of the antenna which can be achieved for example by means of a coaxial cable type access. The height of this main room in this example is
48 mm, le rayon des cônes de 20 mm pour un fonctionnement à 5GHz.48 mm, the cone radius of 20 mm for operation at 5GHz.
L'espace entre les deux cônes réglée à 4mm dans cet exemple, est un paramètre important d'optimisation, cette ouverture joue un rôle dans le système d'alimentation de l'antenne qui est réalisée par un couplage entre le mode du câble coaxial et le mode de l'antenne biconique. Cette méthode d'alimentation s'apparente à un système d'alimentation de type transition câble coaxial-iigne à fente transposé dans une configuration en trois dimensions.The space between the two cones set at 4mm in this example is an important parameter of optimization, this opening plays a role in the antenna power system which is achieved by a coupling between the mode of the coaxial cable and the mode of the biconical antenna. This method The power supply is similar to a coaxial-slot slot-type power supply system that is transposed into a three-dimensional configuration.
La présence et surtout le contrôle des éléments réflecteurs permettent d'éclairer des secteurs donnés et de manière séiective l'espace grâce à l'utilisation d'un unique dispositif central. Ceci est illustré avec une structure à quatre secteurs isolants comportant de tels éléments et grâce aux figures 5a, 5b et 5c relatives à ce type d'antenne présentant des diagrammes de rayonnement à 5GHz. Ces diagrammes sont présentés en figure 5a (vue en trois dimensions), 5b (vue dans le plan azimutal) et 5c (vue dans le plan d'élévation). La directivité est de 4.92dB, la largeur de faisceau à -3dB est de 90° en élévation et 160° dans le plan azimutal pour un rapport avant- arrière inférieur à -8dB.The presence and especially the control of the reflective elements make it possible to illuminate given sectors and in a selective way the space thanks to the use of a single central device. This is illustrated with a structure with four insulating sectors comprising such elements and with FIGS. 5a, 5b and 5c relating to this type of antenna having 5GHz radiation patterns. These diagrams are shown in Figure 5a (three-dimensional view), 5b (seen in the azimuth plane) and 5c (seen in the elevation plane). The directivity is 4.92dB, the beamwidth at -3dB is 90 ° in elevation and 160 ° in the azimuth plane for a front-to-back ratio of less than -8dB.
Cet exemple de structure réalisée pour fonctionner à 5GHz, présente typiquement des pertes par réflexion illustrées en figure 6.This exemplary structure made to operate at 5GHz, typically has reflection losses illustrated in FIG. 6.
Selon une variante de l'invention illustrée en figure 7, l'antenne omnidirectionnelie présente un élargissement du petit diamètre du cône xc par rapport aux dimensions du cylindre extérieur du câble coaxial d'alimentation XL et plus précisément par rapport à ia zone évidée cylindrique constituant la paroi externe du câble coaxial. Cette variante présente l'intérêt d'une fabrication plus simple compte tenu notamment des contraintes de moulage lorsque l'on utilise une pièce en matière plastique.According to a variant of the invention illustrated in FIG. 7, the omnidirectional antenna has an enlargement of the small diameter of the cone x c with respect to the dimensions of the outer cylinder of the coaxial supply cable XL and more precisely with respect to the cylindrical recessed zone. constituting the outer wall of the coaxial cable. This variant has the advantage of simpler manufacturing, especially in view of molding constraints when using a plastic part.
Selon une variante de l'invention, l'antenne omnidirectionnelle comporte des pièces non plus évidées comme dans les variantes précédemment décrites mais des pièces constituées de plastique « plein » , permettant de renforcer ia tenue mécanique de ladite antenne. La figure δillustre cette configuration. Les éléments conducteurs Cd et Cc2 sont alors réalisés à l'intérieur de ladite pièce en plastique P.According to one variant of the invention, the omnidirectional antenna comprises parts that are no longer hollowed out as in the previously described variants but parts made of "solid" plastic, making it possible to reinforce the mechanical strength of said antenna. The figure illustrates this configuration. The conductive elements C d and Cc 2 are then formed inside said plastic part P.
Selon une variante de l'invention, l'antenne est une antenne discone présentant un faible encombrement en raison d'un des éléments conducteurs qui est plan en regard du premier élément conducteur. Comme illustré en figure 9a et 9b, l'antenne comporte un cône supérieur métallisé à l'intérieur Cci, un plan de masse réflecteur Pc2 avec un accès vers le câble coaxial Lc, une ouverture entre le cône et le plan de masse réflecteur.According to a variant of the invention, the antenna is a discone antenna having a small footprint due to one of the conductive elements which is plane facing the first conductive element. As illustrated in FIGS. 9a and 9b, the antenna comprises an upper cone metallized to the interior Bcc, a reflective ground plane Pc 2 with access to the coaxial cable Lc, an opening between the cone and the reflector ground plane.
Seion une variante de l'invention illustrée en figure 10, les pièces conductrices comportent un contour de la zone d'évasement tel que ceux rencontrées pour des antennes de type « Vivaldi » avec des profils quasi sphérique et donc constitués de deux demi-sphères Sci et Sc2 couplées à la ligne excitatrice coaxiale l_c. According to a variant of the invention illustrated in FIG. 10, the conductive parts comprise a contour of the flaring zone such as those encountered for "Vivaldi" type antennas with quasi-spherical profiles and therefore made up of two Sci half-spheres. and Sc2 coupled to the coaxial excitation line 1c .

Claims

REVENDICATIONS
1. Antenne omnidirectionnelle à large bande comportant au moins un premier élément conducteur (Cd) et un second élément conducteur (CC2) présentant une symétrie de révolution autour d'un axe commun de révolution (Ac) et des ouvertures centrales (d, O2), lesdits éléments étant positionnés en regard l'un de l'autre, au moins un des éléments présentant une zone d'évasement progressif caractérisée en ce qu'elle comprend :A wideband omnidirectional antenna comprising at least a first conductive element (Cd) and a second conductive element (C C2 ) having a symmetry of revolution about a common axis of revolution (Ac) and central openings (d, O2). ), said elements being positioned facing one another, at least one of the elements having a progressive flaring zone characterized in that it comprises:
- une ligne excitatrice coaxiale centrale (Lc) et un espace (e) entre les deux éléments conducteurs de manière à réaliser une transition sans contact en trois dimensions entre la ligne excitatrice coaxiale et les éléments conducteurs et ;- a central coaxial exciter line (L c ) and a space (e) between the two conductive elements so as to achieve a three-dimensional non-contact transition between the coaxial exciter line and the conductive elements and;
- des éléments modificateurs du diagramme de rayonnement dans la zone d'évasement (Ri).modifying elements of the radiation pattern in the flaring zone (Ri).
2. Antenne omnidirectionnelle à large bande selon la revendication 1 , caractérisée en ce que l'un des éléments conducteurs est plan (Pc2)2. Wideband omnidirectional antenna according to claim 1, characterized in that one of the conductive elements is plane (Pc 2 )
3. Antenne omnidirectionnelle à large bande selon l'une des revendications 1 ou 2, caractérisée en ce qu'au moins un des éléments conducteurs est un cône.3. An omnidirectional broadband antenna according to one of claims 1 or 2, characterized in that at least one of the conductive elements is a cone.
4. Antenne omnidirectionnelie à large bande selon la revendication 3, caractérisée en ce que le plus petit diamètre du cône (xc) est de plus grande dimension que la section (xL) de la ligne excitatrice coaxiaie.A wideband omnidirectional antenna according to claim 3, characterized in that the smallest diameter of the cone (xc) is larger than the section (x L ) of the coaxial excitation line.
5. Antenne omnidirectionnelle à large bande selon l'une des revendications 1 à 4, caractérisée en ce qu'au moins un des éléments conducteurs est une demi-sphère (Sα,Sc2)5. omnidirectional broadband antenna according to one of claims 1 to 4, characterized in that at least one of the conductive elements is a half-sphere (Sα, Sc2)
6. Antenne omnidirectionneϋe à large bande selon l'une des revendications 1 à 5, caractérisée en ce que les éléments modificateurs comportent des diodes pouvant commuter d'un état conducteur passant à un état isolant ou des composants de type MEMS. Wideband omnidirectional antenna according to one of Claims 1 to 5, characterized in that the modifying elements comprise diodes which can switch from a conductive state to an insulating state or from MEMS-type components.
7. Antenne omnidirectionnelle à large bande selon l'une des revendications 1 à 6, caractérisée en ce qu'au moins un des éléments conducteurs comprend des secteurs isolants radiaux supportant les éléments modificateurs.7. An omnidirectional wideband antenna according to one of claims 1 to 6, characterized in that at least one of the conductive elements comprises radial insulating sectors supporting the modifying elements.
8. Antenne omnidirectionnelle à large bande selon l'une des revendications 1 à 7, caractérisée en ce qu'au moins un des éléments conducteurs comportant des secteurs isolants est en plastique et comporte des parties métallisées ( SCi).8. wideband omnidirectional antenna according to one of claims 1 to 7, characterized in that at least one of the conductive elements having insulating sectors is plastic and has metallized portions (S C i).
9. Antenne omnidirectionnelie à large bande selon la revendication 8, caractérisée en ce que les éléments modificateurs sont alimentés par une piste imprimée (pi) directement sur l'élément en plastique comportant des parties métallisées.Wideband omnidirectional antenna according to claim 8, characterized in that the modifying elements are fed by a printed track (pi) directly onto the plastic element having metallized portions.
10. Antenne omnidirectionnelle à large bande selon l'une des revendications 1 à 9, caractérisée en ce qu'elle comporte en outre des tiges métalliques (Mj) reliant les deux éléments conducteurs de manière à assurer une continuité de masse.10. Wideband omnidirectional antenna according to one of claims 1 to 9, characterized in that it further comprises metal rods (Mj) connecting the two conductive elements so as to ensure a continuity of mass.
11. Antenne omnidirectionnelle à large bande selon l'une des revendications 1 à 10, caractérisée en ce qu'elle comporte au moins une pièce pleine isolante (P) dans laquelle est réalisé un élément conducteur présentant une zone d'évasement progressif. 11. Wideband omnidirectional antenna according to one of claims 1 to 10, characterized in that it comprises at least one solid insulating part (P) in which is formed a conductive element having a progressive flaring zone.
EP08760450A 2007-06-12 2008-06-04 Omnidirectional volumetric antenna Withdrawn EP2156511A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0755695 2007-06-12
PCT/EP2008/056867 WO2008155219A1 (en) 2007-06-12 2008-06-04 Omnidirectional volumetric antenna

Publications (1)

Publication Number Publication Date
EP2156511A1 true EP2156511A1 (en) 2010-02-24

Family

ID=38662810

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08760450A Withdrawn EP2156511A1 (en) 2007-06-12 2008-06-04 Omnidirectional volumetric antenna

Country Status (5)

Country Link
US (1) US11271316B2 (en)
EP (1) EP2156511A1 (en)
JP (1) JP5416100B2 (en)
CN (1) CN101682115B (en)
WO (1) WO2008155219A1 (en)

Families Citing this family (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028881A1 (en) * 2009-06-03 2010-12-09 Continental Teves Ag & Co. Ohg Vehicle antenna device with horizontal main beam direction
CN102110885B (en) * 2010-12-24 2013-08-07 哈尔滨工业大学 Omnidirectionally radiated ultra wideband antenna
CN102593580B (en) * 2012-03-29 2014-04-02 哈尔滨工业大学 Ultra-wideband omnidirectional radiation bipolar wire antenna
CN103000988B (en) * 2012-07-25 2015-02-25 中国联合网络通信集团有限公司 Antenna assembly and manufacturing method thereof
CN203312446U (en) * 2012-10-30 2013-11-27 盖尔创尼克斯有限公司 Compact broadband omnidirectional antenna used in indoor/outdoor applications
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9768520B2 (en) * 2013-08-09 2017-09-19 Harris Corporation Broadband dual polarization omni-directional antenna and associated methods
US10158178B2 (en) 2013-11-06 2018-12-18 Symbol Technologies, Llc Low profile, antenna array for an RFID reader and method of making same
US9847571B2 (en) * 2013-11-06 2017-12-19 Symbol Technologies, Llc Compact, multi-port, MIMO antenna with high port isolation and low pattern correlation and method of making same
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
CN104112899B (en) * 2014-04-28 2017-02-22 西安电子工程研究所 High-power discone antenna
KR101477985B1 (en) * 2014-07-09 2015-01-02 한밭대학교 산학협력단 Omni-directional antenna
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
CN105552560B (en) * 2015-12-14 2018-06-19 武汉大学 A kind of VHF-UHF wave bands broadband isotropic receiving antenna
EP3285332B1 (en) * 2016-08-19 2019-04-03 Swisscom AG Antenna system
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
EP3791443A1 (en) * 2018-05-08 2021-03-17 Systems and Software Enterprises, LLC Antenna with modular radiating elements
EP3826106B1 (en) 2018-08-27 2023-11-22 Yamaha Hatsudoki Kabushiki Kaisha V2x communication antenna-mounted leaning vehicle
US10833399B1 (en) * 2018-08-30 2020-11-10 Bae Systems Information And Electronic Systems Integration Inc. Embedded wide band monocone antenna
US10483640B1 (en) 2018-12-31 2019-11-19 King Saud University Omnidirectional ultra-wideband antenna
US10431893B1 (en) 2018-12-31 2019-10-01 King Saud University Omnidirectional multiband antenna
USD889445S1 (en) * 2019-01-28 2020-07-07 King Saud University Omnidirectional multiband antenna
US10411357B1 (en) 2019-01-28 2019-09-10 Kind Saud University Ultra-wideband unipole antenna
USD891404S1 (en) * 2019-01-28 2020-07-28 King Saud University Omnidirectional ultra-wideband antenna
USD890145S1 (en) * 2019-01-29 2020-07-14 King Saud University Ultra-wideband unipole antenna
US11342679B1 (en) * 2020-09-30 2022-05-24 Bae Systems Information And Electronic Systems Integration Inc. Low profile monocone antenna

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602894A (en) * 1946-02-19 1952-07-08 Wilmer L Barrow Biconical electromagnetic horn
US2556046A (en) * 1946-03-28 1951-06-05 Philco Corp Directional antenna system
US3373430A (en) * 1965-03-15 1968-03-12 Nasa Usa Omnidirectional microwave spacecraft antenna
FR2246090B1 (en) * 1973-08-31 1977-05-13 Thomson Csf
US4074268A (en) 1976-06-21 1978-02-14 Hoffman Electronics Corporation Electronically scanned antenna
JPH09153727A (en) 1995-11-29 1997-06-10 Furukawa C & B Kk Broad band antenna
JPH11355031A (en) 1998-06-03 1999-12-24 Dx Antenna Co Ltd Antenna
US6154182A (en) * 1999-03-23 2000-11-28 Emc Automation, Inc. Extensible top-loaded biconical antenna
US6667721B1 (en) 2002-10-09 2003-12-23 The United States Of America As Represented By The Secretary Of The Navy Compact broad band antenna
JP4212046B2 (en) * 2003-03-20 2009-01-21 株式会社リコー Variable directivity antenna, electronic device using the antenna, and antenna directivity control method using the antenna
US7567154B2 (en) * 2004-05-21 2009-07-28 Corridor Systems, Inc. Surface wave transmission system over a single conductor having E-fields terminating along the conductor
US7221326B2 (en) * 2004-07-27 2007-05-22 Git Japan, Inc. Biconical antenna
JP2005218080A (en) 2004-12-20 2005-08-11 Tdk Corp Antenna system
US7245263B2 (en) * 2005-02-18 2007-07-17 Ricoh Company, Ltd. Antenna
US7408521B2 (en) * 2006-04-12 2008-08-05 Innerwireless, Inc. Low profile bicone antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008155219A1 *

Also Published As

Publication number Publication date
JP2010529795A (en) 2010-08-26
JP5416100B2 (en) 2014-02-12
US20120068903A1 (en) 2012-03-22
CN101682115B (en) 2015-03-11
CN101682115A (en) 2010-03-24
WO2008155219A1 (en) 2008-12-24
US11271316B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
EP2156511A1 (en) Omnidirectional volumetric antenna
FR2863109A1 (en) CONFIGURABLE AND ORIENTABLE SENDING / RECEIVING RADIATION DIAGRAM ANTENNA, CORRESPONDING BASE STATION
FR2911725A1 (en) ANTENNA OR ANTENNA MEMBER ULTRA-LARGE BAND.
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
FR2960710A1 (en) RADIANT ELEMENT WITH DUAL POLARIZATION OF MULTIBAND ANTENNA
CA2640481C (en) Circularly or linearly polarized antenna
FR3090220A1 (en) MONOPOLAR WIRE-PLATE ANTENNA
EP2543111B1 (en) Antenna structure with dipoles
EP2404344B1 (en) Device for assembling an antenna
WO2003103086A2 (en) Essentially square broadband, dual polarised radiating element
EP1516393B1 (en) Double polarization dual-band radiating device
WO2002052680A1 (en) Printed patch antenna
EP1551078B1 (en) Omnidirectional antenna with steerable diagram
EP1432073B1 (en) Coaxial collinear antenna
FR2794290A1 (en) VERTICAL POLARIZATION ANTENNA
EP0337841A1 (en) Broadband transmitting antenna loop with asymmetric feed and array of a plurality of these loops
FR2965112A1 (en) MULTI-LAYER CIRCUIT BROADBAND SYMETRISER FOR NETWORK ANTENNA
EP2226896B1 (en) Multiband omnidirectional antenna
EP1376758A1 (en) Compact patch antenna with a matching circuit
WO2004006386A1 (en) Coplanar polarization dual-band radiating device
EP0831550A1 (en) Versatile array antenna
EP1873864A1 (en) Symmetric antenna using microwave-strip technology.
FR2874748A1 (en) Hyper frequency splitter for feeding electronically scanned antenna, has ring wave guide with rectangular section and with inlets connected to side that corresponds to side of section
FR3000844A1 (en) Circular network antenna for use in e.g. rubber boat, has aerial elements, and support structure comprising base with upper part having external and internal walls, where external wall is designed planar and arranged transverse to axis
EP2880712A1 (en) Method for the electromagnetic decoupling of an antenna and the supporting pole thereof, and corresponding supporting pole

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LO HINE TONG, DOMINIQUE

Inventor name: COUPEZ, JEAN-PHILIPPE

Inventor name: NICOLAS, CORINNE

Inventor name: LOUZIR, ALI

Inventor name: THEVENARD, JULIAN

Inventor name: PERSON, CHRISTIAN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160708