EP2155838B1 - Procédé de production d'hydrocarbures ramifiés - Google Patents
Procédé de production d'hydrocarbures ramifiés Download PDFInfo
- Publication number
- EP2155838B1 EP2155838B1 EP08775468.5A EP08775468A EP2155838B1 EP 2155838 B1 EP2155838 B1 EP 2155838B1 EP 08775468 A EP08775468 A EP 08775468A EP 2155838 B1 EP2155838 B1 EP 2155838B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waxes
- fats
- oils
- plant
- fish
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 79
- 230000008569 process Effects 0.000 title claims description 67
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 45
- 229930195733 hydrocarbon Natural products 0.000 title claims description 41
- 239000000047 product Substances 0.000 claims description 81
- 239000003054 catalyst Substances 0.000 claims description 71
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 50
- 239000000194 fatty acid Substances 0.000 claims description 50
- 229930195729 fatty acid Natural products 0.000 claims description 50
- 239000003925 fat Substances 0.000 claims description 48
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 46
- 239000003502 gasoline Substances 0.000 claims description 46
- 150000004665 fatty acids Chemical class 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 38
- 239000002283 diesel fuel Substances 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 34
- 150000002576 ketones Chemical class 0.000 claims description 33
- 229910052799 carbon Inorganic materials 0.000 claims description 31
- 238000006317 isomerization reaction Methods 0.000 claims description 29
- 239000003350 kerosene Substances 0.000 claims description 27
- 241000251468 Actinopterygii Species 0.000 claims description 26
- -1 fatty acid esters Chemical class 0.000 claims description 26
- 229920006395 saturated elastomer Polymers 0.000 claims description 24
- 239000007858 starting material Substances 0.000 claims description 24
- 239000001993 wax Substances 0.000 claims description 24
- 230000005494 condensation Effects 0.000 claims description 21
- 239000010773 plant oil Substances 0.000 claims description 21
- 241001465754 Metazoa Species 0.000 claims description 20
- 239000003921 oil Substances 0.000 claims description 20
- 238000009833 condensation Methods 0.000 claims description 19
- 150000001298 alcohols Chemical class 0.000 claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- 241000196324 Embryophyta Species 0.000 claims description 15
- 239000001257 hydrogen Substances 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 15
- 150000001299 aldehydes Chemical class 0.000 claims description 14
- 150000001735 carboxylic acids Chemical class 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 14
- 239000010775 animal oil Substances 0.000 claims description 13
- 239000012164 animal wax Substances 0.000 claims description 13
- 229940013317 fish oils Drugs 0.000 claims description 13
- 239000002808 molecular sieve Substances 0.000 claims description 13
- 239000012165 plant wax Substances 0.000 claims description 13
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 12
- 238000006482 condensation reaction Methods 0.000 claims description 12
- 238000009835 boiling Methods 0.000 claims description 11
- 150000002739 metals Chemical class 0.000 claims description 11
- 238000005882 aldol condensation reaction Methods 0.000 claims description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- 238000007348 radical reaction Methods 0.000 claims description 7
- 230000001588 bifunctional effect Effects 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 6
- 150000002191 fatty alcohols Chemical class 0.000 claims description 6
- 235000021588 free fatty acids Nutrition 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000001340 alkali metals Chemical class 0.000 claims description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 5
- 239000003426 co-catalyst Substances 0.000 claims description 5
- 238000004821 distillation Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 238000005809 transesterification reaction Methods 0.000 claims description 5
- 239000004711 α-olefin Substances 0.000 claims description 5
- 150000001991 dicarboxylic acids Chemical class 0.000 claims description 4
- 230000007062 hydrolysis Effects 0.000 claims description 4
- 238000006460 hydrolysis reaction Methods 0.000 claims description 4
- 229920005862 polyol Chemical class 0.000 claims description 4
- 150000003077 polyols Chemical class 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims description 3
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 claims description 3
- 150000004703 alkoxides Chemical class 0.000 claims description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 3
- 150000008064 anhydrides Chemical class 0.000 claims description 3
- 150000002009 diols Chemical class 0.000 claims description 3
- 150000002192 fatty aldehydes Chemical class 0.000 claims description 3
- 235000013305 food Nutrition 0.000 claims description 3
- 238000010353 genetic engineering Methods 0.000 claims description 3
- 150000004679 hydroxides Chemical class 0.000 claims description 3
- 238000000197 pyrolysis Methods 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 239000012933 diacyl peroxide Substances 0.000 claims description 2
- 230000032050 esterification Effects 0.000 claims description 2
- 238000005886 esterification reaction Methods 0.000 claims description 2
- 238000007127 saponification reaction Methods 0.000 claims description 2
- 239000007860 unsaturated condensation product Substances 0.000 claims description 2
- 240000006064 Urena lobata Species 0.000 claims 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 42
- 239000000446 fuel Substances 0.000 description 35
- 235000019197 fats Nutrition 0.000 description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 26
- 239000001301 oxygen Substances 0.000 description 26
- 229910052760 oxygen Inorganic materials 0.000 description 26
- 239000004215 Carbon black (E152) Substances 0.000 description 23
- 229930195734 saturated hydrocarbon Natural products 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 22
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 20
- 239000002551 biofuel Substances 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000007789 gas Substances 0.000 description 18
- 235000019198 oils Nutrition 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 229910001868 water Inorganic materials 0.000 description 18
- 239000003225 biodiesel Substances 0.000 description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 238000009826 distribution Methods 0.000 description 13
- 235000019688 fish Nutrition 0.000 description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 239000005864 Sulphur Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 10
- 235000019482 Palm oil Nutrition 0.000 description 10
- 239000002199 base oil Substances 0.000 description 10
- 239000002540 palm oil Substances 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 10
- 239000010734 process oil Substances 0.000 description 10
- 239000002028 Biomass Substances 0.000 description 9
- 125000005842 heteroatom Chemical group 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical class [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 150000003626 triacylglycerols Chemical class 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 235000021355 Stearic acid Nutrition 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 5
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 5
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000008117 stearic acid Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 235000015112 vegetable and seed oil Nutrition 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical class [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 239000007859 condensation product Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 4
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- 238000007869 Guerbet synthesis reaction Methods 0.000 description 3
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 3
- 229910003294 NiMo Inorganic materials 0.000 description 3
- 235000019484 Rapeseed oil Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 3
- 239000002815 homogeneous catalyst Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910017464 nitrogen compound Inorganic materials 0.000 description 3
- 150000002830 nitrogen compounds Chemical class 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 235000003441 saturated fatty acids Nutrition 0.000 description 3
- 150000004671 saturated fatty acids Chemical class 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000003784 tall oil Substances 0.000 description 3
- HVZJRWJGKQPSFL-UHFFFAOYSA-N tert-Amyl methyl ether Chemical compound CCC(C)(C)OC HVZJRWJGKQPSFL-UHFFFAOYSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000252203 Clupea harengus Species 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 229910001570 bauxite Inorganic materials 0.000 description 2
- 235000014121 butter Nutrition 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000004203 carnauba wax Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 239000004148 curcumin Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 238000006392 deoxygenation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 239000002638 heterogeneous catalyst Substances 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 150000004668 long chain fatty acids Chemical class 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 239000003346 palm kernel oil Substances 0.000 description 2
- 235000019865 palm kernel oil Nutrition 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000004537 pulping Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 125000005480 straight-chain fatty acid group Chemical group 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical class O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Chemical class 0.000 description 2
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical group CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000006214 Clemmensen reduction reaction Methods 0.000 description 1
- 241001454694 Clupeiformes Species 0.000 description 1
- 244000180278 Copernicia prunifera Species 0.000 description 1
- 235000010919 Copernicia prunifera Nutrition 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000221089 Jatropha Species 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- 235000016856 Palma redonda Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 244000037433 Pongamia pinnata Species 0.000 description 1
- 235000004599 Pongamia pinnata Nutrition 0.000 description 1
- 235000019774 Rice Bran oil Nutrition 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 241001125046 Sardina pilchardus Species 0.000 description 1
- 241000269821 Scombridae Species 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 239000000061 acid fraction Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- ZOJBYZNEUISWFT-UHFFFAOYSA-N allyl isothiocyanate Chemical compound C=CCN=C=S ZOJBYZNEUISWFT-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000019513 anchovy Nutrition 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 235000019519 canola oil Nutrition 0.000 description 1
- 239000000828 canola oil Substances 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000012174 chinese wax Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 235000019383 crystalline wax Nutrition 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 239000012183 esparto wax Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000002397 field ionisation mass spectrometry Methods 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000010460 hemp oil Substances 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 235000019514 herring Nutrition 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000012182 japan wax Substances 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229910001710 laterite Inorganic materials 0.000 description 1
- 239000011504 laterite Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000020640 mackerel Nutrition 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 1
- 239000008164 mustard oil Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000008165 rice bran oil Substances 0.000 description 1
- 229940119224 salmon oil Drugs 0.000 description 1
- 235000019512 sardine Nutrition 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000012176 shellac wax Substances 0.000 description 1
- 150000004666 short chain fatty acids Chemical class 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 239000004291 sulphur dioxide Substances 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910003158 γ-Al2O3 Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/50—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G50/00—Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
- C10G50/02—Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation of hydrocarbon oils for lubricating purposes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/207—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/13—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation with simultaneous isomerisation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
- C10G3/45—Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
- C10G3/45—Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
- C10G3/46—Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
- C10G3/47—Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
- C10G3/48—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
- C10G3/49—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
- C10G45/64—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
- C10G2300/1014—Biomass of vegetal origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
- C10G2300/1018—Biomass of animal origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/205—Metal content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4018—Spatial velocity, e.g. LHSV, WHSV
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/06—Gasoil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/08—Jet fuel
Definitions
- the invention relates to a process for the manufacture of branched saturated hydrocarbons from renewable sources and particularly to a process for the manufacture of hydrocarbons suitable for diesel fuel, kerosene or gasoline pool.
- the process comprises steps wherein a feedstock of biological origin is condensed and then subjected to a combined catalytic hydrodefunctionalization and isomerization step.
- Fatty acids are used as raw materials in various applications in the chemical industry and typically in the manufacture of products ranging from lubricants, polymers, fuels and solvents to cosmetics.
- Fatty acids are generally obtained from wood pulping processes or by hydrolysis of triglycerides of plant or animal origin.
- Naturally occurring triglycerides are usually esters of glycerol and straight chain, even numbered carboxylic acids having 4-26 carbon atoms.
- Most common fatty acids contain 16, 18, 20 or 22 carbon atoms, but there is also lot of triglycerides with C4-C14 fatty acids.
- formic acid (C1) and acetic acids (C2) are naturally occurring carboxylic acids.
- Fatty acids may either be saturated or they may contain one or more unsaturated bonds.
- Unsaturated fatty acids are often olefinic having carbon-carbon double bonds with cis-configuration. The unsaturated centers appear in preferred positions in the carbon chain. The most common position is ⁇ 9, like in oleic acid (C18:1) and erucic acid (C22:1).
- Poly-unsaturated acids generally have a methylene interrupted arrangement of cis-olefinic double bonds.
- Saturated long straight chain fatty acids (C10:0 and higher) are solid at room temperature, which makes their processing and use difficult in a number of applications.
- Unsaturated long chain fatty acids like oleic acid are easily processable liquids at room temperature, but unstable due to double bonds.
- Branched fatty acids mimic the properties of straight chain unsaturated fatty acids in many respects, but they are more stable.
- branched C18:0 fatty acid known as isostearic acid
- isostearic acid is liquid at room temperature, but it is not as unstable as C18:1 acid, since the unsaturated bonds are absent in branched C18:0. Therefore, branched fatty acids are more desirable for many applications than straight chain fatty acids.
- Biodiesel is mono-alkyl esters of long chain fatty acids derived from plant oils or animal fats, which conform to ASTM D6751 or EN 14214 specification for use in diesel engines as described in following Table 1. Biodiesel refers to pure fuel before blending with conventional diesel fuel (B100). TABLE 1.
- Biodiesel (B100, 100 %) Property ASTM D6751 EN 14214 Unit Density at 15 °C 860-900 kg/m 3 Flash point (closed cup) 130 ⁇ 120 °C Water and sediment ⁇ 0.050 ⁇ 0.050 % Kinematic viscosity 40 °C 1.9-6.0 3.5-5.0 mm 2 /s Sulfated ash ⁇ 0.020 ⁇ 0.020 wt.% Sulfur ⁇ 0.05 ⁇ 0.001 wt.% Cetane number ⁇ 47 ⁇ 51 Carbon residue ⁇ 0.050 wt.% Carbon residue 10 % dist bottom ⁇ 0.3 wt.% Acid number ⁇ 0.80 ⁇ 0.5 mg KOH/g Free glycerol ⁇ 0.020 ⁇ 0.02 wt.% Total glycerol ⁇ 0.240 ⁇ 0.25 wt.% Phosphorus content ⁇ 0.001 ⁇ 0.001 wt.%
- biodiesel there are also following biofuels available:
- BioTAME Tetiary Amyl Methyl Ether
- the European Union directive 2003/30/EC promotes the use of biofuels or other renewable fuels.
- the directive has set a minimum percentage of biofuels to replace diesel or gasoline for transport purposes so, that by the end of 2010 there should be a 5.75 % minimum proportion of biofuels in all gasoline and diesel fuels sold.
- Oxygenates are commonly alcohols and ethers which, when added to gasoline, increase the amount of oxygen in that gasoline blend.
- Common ethers in use as oxygenates include ETBE (Ethyl Tertiary Butyl Ether), MTBE (Methyl Tertiary Butyl Ether) and TAME (Tertiary Amyl Methyl Ether).
- ETBE Ethyl Tertiary Butyl Ether
- MTBE Metal Tertiary Butyl Ether
- TAME Tertiary Amyl Methyl Ether
- Common alcohols are methanol and ethanol. Oxygenate ethers improve the solubility of ethanol to gasoline.
- Ethanol can be produced in different ways, using a variety of feedstocks.
- Bioethanol is obtained from the conversion of hydrocarbon based renewable agricultural feedstocks, such as sugarcane and corn; or from feedstocks from wood pulping.
- Biomethanol can be produced from synthesis gas, derived from biomass feedstocks in Fischer-Tropsch synthesis.
- Another biosource for methanol production is glycerol, a byproduct of biodiesel production.
- Synthetic biofuels can be produced from biomass by pyrolysis and by Fischer-Tropsch process; or alternatively, from triglycerides by processes which mimic traditional mineral crude oil refining processes.
- Biomethanol is most suitable for application as a petrol substitute in spark ignition engines due to its high octane rating. Just like in the case of bioethanol, the lower vapor pressure, the lower volumetric energy density (about half of that of petrol) and the incompatibility with engine materials should be taken into account when applying it as an automotive fuel. Biomethanol can be blended up to 10-20 % with petrol without the need for engine or infrastructure modifications. However, additional safety measures need to be taken for handling of methanol since pure methanol bums with an invisible flame, unlike ethanol. Moreover, because methanol is poisonous, contact with skin and eyes should be avoided.
- Ethanol fuel can be combined with gasoline in any concentration up to pure ethanol (E100).
- Anhydrous ethanol with at most 1 % water content can be blended with gasoline in varying quantities to reduce consumption of petroleum fuels.
- Worldwide automotive ethanol capabilities vary widely and most spark-ignited gasoline style engines will operate well with mixtures of 10 % ethanol (E10). At a 10 % mixture, ethanol reduces the likelihood of engine knock, by raising the octane rating.
- Most common ethanol fuel composition is Europe is E85, with 85 % ethanol and 15 % gasoline.
- Alkylate is a branched paraffin compound (i-paraffin) formed by the catalytic reaction of isobutane with light olefins, such as ethylene, propylene, butylene, and amylene (pentylene), the carbon number is thus C6-C9.
- Alkylate is a desirable gasoline blending component due to its high octane and relatively low volatility properties.
- Biodiesel is an alternative fuel, produced from renewable sources and it contains no petroleum. It can be blended in minor amounts with petroleum diesel to create a biodiesel blend, further it is non-toxic and essentially free of sulfur and aromatics. It can be used in compression-ignition (diesel) engines with little or no modifications.
- Sulphur free fuels are required in order to gain the full effect of new and efficient anti-pollution technologies in modem vehicles and to cut emissions of nitrogen oxides, volatile hydrocarbons and particles, as well as to achieve direct reduction of sulphur dioxide in exhaust gases.
- the European Union has decreed that these products must be available to the market from 2005 and must be the only form on sale from 2009. This new requirement will reduce annual sulphur emissions from automotive fuels.
- Starting materials originating from biological sources contain usually high amounts of oxygen, and as examples of oxygen containing compounds fatty acids, fatty acid esters, aldehydes, primary alcohols and their derivatives can be mentioned.
- EP 457,665 discloses a method for producing ketones from triglycerides, fatty acids, fatty acid esters, fatty acid salts, and fatty acid anhydrides using a bauxite catalyst containing iron oxide.
- a process for condensing alcohols using alkali metal or alkaline earth metal hydroxides with metal oxide cocatalyst to give Guerbet alcohols is disclosed in US 5,777,183 .
- Basic homogeneous catalysts such as NaOH and Ca(OH) 2 and supported alkali metals like Na/SiO 2 may be mentioned as heterogeneous catalysts for condensing aldehydes, as described by Kelly, G. J. et al., Green Chemistry, 2002, 4, 392-399 .
- Acid stable aldehydes or ketones can be reduced to corresponding hydrocarbons by the Clemmensen reduction.
- a mixture of amalgamated zinc and hydrochloric acid is used as deoxygenation catalyst.
- FI 100248 describes a two-step process for producing middle distillate from plant oil by hydrogenating fatty acids or triglycerides of plant oil using commercial sulphur removal catalysts (NiMo and CoMo) to give n-paraffins, followed by isomerising said n-paraffins using metal containing molecule sieves or zeolites to obtain branched-chain paraffins.
- the hydrotreating was carried out at reaction temperatures of 330 - 450 °C.
- Dewaxing catalysts with hydroisomerization function are generally thought to be intolerant of heteroatom contaminants, and typically sulphur demanding hydrotreating step is employed before dewaxing in order to remove heteroatom contaminants from the feed, because said contaminants are thought to result in accelerated catalyst deactivation.
- a process for production of diesel fuel from plant oils and animal fats comprising hydrodeoxygenating and hydroisomerizing the feed oil in a single step.
- EP 1,549,725 relates to an integrated catalytic hydrodewaxing process of hydrocarbon feedstock containing sulphur and nitrogen contaminants, including hydrotreating, hydrodewaxing (hydroisomerisation) and/or hydrofinishing without disengagement between the process steps.
- WO 2006/100584 a process for the production of diesel fuel from plant oils and animal fats is disclosed, comprising hydrodeoxygenating and hydroisomerizing the feed oil in a single step
- An object of the invention is a process for producing branched saturated hydrocarbons.
- Another object of the invention is a process for producing saturated diesel fuels, kerosenes and gasolines.
- Still another object of the invention is a process for producing saturated diesel fuels, kerosenes and gasolines using starting materials of biological origin.
- Still another object of the invention is a process for producing diesel fuels, kerosenes and gasolines, wherein feedstock derived from biological starting material is condensed, followed by a combined hydrodefunctionalization and isomerization step.
- Carboxylic acids and derivatives thereof include fatty acids and derivatives thereof. Carbon number of fatty acids and their derivatives is at least C1, and after condensation reaction the chain length of the reaction product is at least 5 carbons, carbon number being C5.
- Carboxylic acids marked for example C18:1 refer here to C18 chain with one double bond.
- saturated hydrocarbon used herein refers to paraffmic and naphthenic compounds, but not to aromatics. Paraffinic compounds may either be linear (n-paraffins) or branched (i-paraffins).
- Saturated diesel fuels, kerosenes and gasolines comprise here saturated hydrocarbons.
- Naphthenic compounds are cyclic saturated hydrocarbons, i.e. cycloparaffins. Such hydrocarbons with cyclic structure are typically derived from cyclopentane or cyclohexane.
- a naphthenic compound may comprise a single ring structure (mononaphthene) or two isolated ring structures (isolated dinaphthene), or two fused ring structures (fused dinaphthene) or three or more fused ring structures (polycyclic naphthenes or polynaphthenes).
- Condensation refers here to a reaction wherein two feedstock molecules combine to form a larger molecule.
- the carbon chains of the feedstock molecules are lengthened to the level necessary for the diesel fuels, kerosenes and gasolines, typically to hydrocarbon chain lengths of at least C5.
- Deoxygenation or hydrodeoxygenation refers here to removal of oxygen by means of hydrogen. Water is liberated in the reaction. The structure of the biological starting material is converted to either paraffinic or olefinic, according to the catalyst and reaction conditions used.
- HDF Hydrodefunctionalization
- Isomerization refers here to hydroisomerization of linear hydrocarbons (n-paraffins) resulting in a branched structure (i-paraffins).
- Combined hydrodefunctionalization and isomerization step refers here to removal of oxygen, nitrogen and sulphur atoms by means of hydrogen and isomerizing wax molecules to branched isomerates (hydrocarbons).
- pressures are gauge pressures relative to normal atmospheric pressure.
- Classification of the periodic table of the elements is the IUPAC Periodic Table format having Groups from 1 to 18.
- width of carbon number range refers to the difference of the carbon numbers of the largest and the smallest molecules plus one, measured from the main peak in FIMS analysis of the product.
- a feedstock is subjected to condensation, yielding a condensed product comprising hydrocarbons containing one or more heteroatoms selected from oxygen, sulphur and nitrogen, and the condensed product is then subjected to a combined hydrodefunctionalization and isomerization step (CHI), whereby simultaneously isomerization takes place and heteroatoms are removed in one single catalytic process step.
- CHI hydrodefunctionalization and isomerization step
- FIG. 1 a preferable embodiment of the invention is shown schematically.
- the condensation step is carried out prior to the combined hydrodefunctionalization and isomerization step.
- heteroatoms containing feedstock stream 2 is passed to condensation reactor 3, followed by passing of the condensed stream 4 to a combined hydrodefunctionalization and isomerization reactor 5, together with hydrogen gas 6.
- Excess of hydrogen and hydrogenated heteroatoms are removed as gaseous stream 7.
- the obtained branched paraffinic stream 8 is passed to distillation and/or separation unit 9, where product components boiling at different temperature ranges, gases 10, gasoline 11, kerosene 12 and diesel 13 are separated.
- distillation cuts of different fractions may vary.
- gases comprise C1-C5 hydrocarbons boiling in the range of -162 - 36 °C
- gasoline comprises C5-C10 hydrocarbons boiling in the range of 36 - 174°C
- kerosene comprises C9-C14 hydrocarbons boiling in the range of 151 - 254 °C
- diesel comprises C12-C28 hydrocarbons boiling in the range of 216 - 431 °C.
- boiling ranges are those determined for n-paraffins with said carbon number. Boiling points of the isomerized compounds are naturally lower.
- hydrodeoxygenation and isomerization reactions can be successfully performed simultaneously in the same reactor in the presence of hydrogen and a catalyst having both an acidic function and a hydrogenation function.
- the catalyst typically comprises a combination of molecular sieve and metal.
- the feedstock of the condensation step is suitably material derived from starting material of biological origin.
- the feedstock is selected from ketones, aldehydes, alcohols, carboxylic acids, esters of carboxylic acids and anhydrides of carboxylic acids, alpha olefins produced from carboxylic acids, metal salts of carboxylic acids, and corresponding sulphur compounds, corresponding nitrogen compounds and combinations thereof, originating from biological starting material.
- the selection of the feedstock depends on the type of the condensation reaction used.
- the feedstock may have a total carbon number ranging from 1 to 26 (having boiling point at 412 °C), preferably from 1 to 20 and particularly preferably from 1 to 14.
- the feedstock is selected from fatty acid esters, fatty acid anhydrides, fatty alcohols, fatty ketones, fatty aldehydes, natural waxes, and metal salts of fatty acids.
- di- or multifunctional feedstocks such as dicarboxylic acids or polyols including diols, hydroxyketones, hydroxyaldehydes, hydroxycarboxylic acids, and corresponding di- or multifunctional sulphur compounds, corresponding di- or multifunctional nitrogen compounds and combinations thereof may be used.
- biological starting material The feedstock originating from starting material of biological origin, called biological starting material in this description is selected from the group consisting of:
- Bio starting materials also include corresponding compounds derived from algae, bacteria and insects as well as starting materials derived from aldehydes and ketones prepared from carbohydrates.
- suitable biological starting materials include fish oils such as Baltic herring oil, salmon oil, herring oil, tuna oil, anchovy oil, sardine oil, and mackerel oil; plant oils such as rapeseed oil, colza oil, canola oil, tall oil, sunflower seed oil, soybean oil, corn oil, hemp oil, olive oil, cottonseed oil, linen seed oil, mustard oil, palm oil, peanut oil, castor oil, jatropha seed oil, Pongamia pinnata seed oil, palm kernel oil, and coconut oil; and moreover, suitable are also animal fats such as butter, lard, tallow, and also waste and recycled food grade fats and oils, as well as fats, waxes and oils produced by genetic engineering.
- fish oils such as Baltic herring oil, salmon oil, herring oil, tuna oil, anchovy oil, sardine oil, and mackerel oil
- plant oils such as rapeseed oil, colza oil, canola oil, tall oil, sunflower seed oil, soybean oil, corn oil
- suitable starting materials of biological origin include animal waxes such as bee wax, Chinese wax (insect wax), shellac wax, and lanoline (wool wax), as well as plant waxes such as carnauba palm wax, Ouricouri palm wax, jojoba seed oil, candelilla wax, esparto wax, Japan wax, and rice bran oil.
- animal waxes such as bee wax, Chinese wax (insect wax), shellac wax, and lanoline (wool wax)
- plant waxes such as carnauba palm wax, Ouricouri palm wax, jojoba seed oil, candelilla wax, esparto wax, Japan wax, and rice bran oil.
- suitable biological starting materials include those, which have a high proportion of short chain fatty acids, such as corn oil, olive oil, peanut oil, palm kernel oil, coconut oil butter, lard and tallow.
- the biological starting material may also contain free fatty acids and/or fatty acid esters and/or metal salts thereof.
- Said metal salts are typically alkali earth metal or alkali metal salts.
- the feedstock comprising compounds having carbon number of at least C1 is processed to monofunctional or multifunctional products having carbon number from C5 to C28.
- Suitable condensation reactions are based on the functionality of the feed molecules, being decarboxylative condensation (ketonization), aldol condensation, alcohol condensation (Guerbet reaction), and radical reactions based on alpha-olefin double bonds and weak alpha-hydrogen functionality.
- the condensation reaction step is preferably selected from ketonization, aldol condensation, alcohol condensation and radical reactions. Suitable condensation reactions are described more in detail in the following.
- the functional groups typically the acid groups of fatty acids contained in the feedstock react with each other giving ketones having carbon number of at least C5.
- the ketonization may also be carried out with feedstock comprising fatty acid esters, fatty acid anhydrides, fatty alcohols, fatty aldehydes, natural waxes, and metal salts of fatty acids.
- feedstock comprising fatty acid esters, fatty acid anhydrides, fatty alcohols, fatty aldehydes, natural waxes, and metal salts of fatty acids.
- dicarboxylic acids or polyols including diols may be used as additional starting material allowing longer chain lengthening than with fatty acids only. In said case, a polyketonic molecule is obtained.
- the pressure ranges from 0 to 10 MPa, preferably from 0.1 to 5 MPa, particularly preferably from 0.1 to 1 MPa, whereas the temperature ranges between 10 and 500 °C, preferably between 100 and 400 °C, particularly preferably between 300 and 400 °C, the feed flow rate WHSV being from 0.1 to 10 1/h, preferably from 0.3 to 5 1/h, particularly preferably from 0.3 to 3 1/h.
- metal oxide catalysts which are optionally supported, may be used.
- Typical metals include Na, Mg, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Mo, Rh, Cd, Sn, La, Pb, Bi, and rare earth metals.
- the support is typically laterite, bauxite, titanium dioxide, silica and/or aluminium oxide.
- the metal is preferably molybdenum, manganese, magnesium, iron and/or cadmium, the support being silica and/or alumina. Particularly preferably the metal is molybdenum, manganese and/or magnesium as oxide in a catalyst without support. No special catalysts are needed for the ketonization of metal salts of fatty acids (soaps), since the metal present in the soap promotes the ketonization reaction.
- the aldehydes and/or ketones in the feed are condensed to give hydroxy aldehyde, or hydroxy ketone, followed by cleavage of water yielding unsaturated aldehyde or unsaturated ketone with carbon number of at least C5, depending on feed.
- Feed comprising at least one component selected from the group consisting of saturated or unsaturated aldehydes, ketones, hydroxy aldehydes and mixtures hereof, preferably saturated aldehydes and ketones are used.
- the reaction is carried out in the presence of homogeneous or heterogeneous aldol condensation catalyst.
- Supported alkali metal catalysts like Na/SiO 2 are suitable heterogeneous catalysts and alkali or alkaline earth metal hydroxides, for instance NaOH, KOH or Ca(OH) 2 are suitable homogeneous catalysts.
- the reaction temperature ranges from 80 to 400 °C, preferably lower temperature is used with lower molecular weight feeds and higher temperatures with higher molecular weight feeds.
- solvents such as alcohols may be used.
- the amount of the homogeneous catalyst to be used in the reaction varies from 1 to 20 %, preferably from 1.5 to 19 %, by weight.
- reaction conditions of the aldol condensation may be adjusted to yield hydroxyaldehydes such as aldols as the reaction products, thus minimizing oligomerization based on the reaction of double bonds.
- Branched unsaturated aldehydes or ketones having carbon number of at least C5 are obtained.
- alcohols in the feed are condensed to substantially increase the carbon number of the hydrocarbon stream, thus yielding branched monofunctional and branched polyfunctional alcohols having carbon number of at least C5 respectively from monohydroxy and polyhydroxy alcohols.
- Feed comprising primary and/or secondary, saturated and/or unsaturated alcohols, preferably saturated alcohols is subjected to condensation in the presence of basic catalysts of the Guerbet reaction, selected from hydroxides and alkoxides of alkali and alkaline earth metals and metal oxides, in combination with a co-catalyst comprising metal salt.
- the amount of the basic catalyst varies from 1 to 20 %, preferably from 1.5 to 10 % by weight.
- Suitable co-catalysts include salts of chromium(III), manganese(II), iron(II), cobalt(II), lead(II) and palladium, stannic oxide and zinc oxide, the salts being salts soluble in water or alcohols, preferably sulphates and chlorides.
- the co-catalyst is used in amounts varying between 0.05 and 1 %, particularly preferably between 0.1 and 0.5 %, by weight.
- Hydroxides or alkoxides (alcoholates) of alkali metals, together with zinc oxide or palladium chloride serving as the co-catalyst are preferably used.
- the reaction is performed at 200 - 300 °C, preferably at 240 - 260 °C, under vapour pressure provided by the alcohols present in the reaction mixture. Water is liberated in the reaction, said water being continuously separated.
- the feedstock comprising saturated carboxylic acids and alpha olefins in a molar ratio of 1:1 are reacted at 100 - 300 °C, preferably at 130 - 260 °C under a vapor pressure provided by the reaction mixture, in the presence of an alkyl peroxide, peroxyester, diacylperoxide or peroxyketal catalyst.
- Alkyl peroxides such as ditertiary butyl peroxide catalysts are preferably used.
- the amount of the catalyst used in the reaction is from 1 to 20 %, preferably from 1.5 to 10 %, by weight.
- a branched carboxylic acid having carbon number of at least C5 is obtained as the reaction product.
- the carbon number of the condensation product depends on the carbon number of the feed molecules as well as the condensation reaction. Typical carbon numbers of condensation products via ketonization are sum of the feed carbon numbers minus one; the carbon numbers of the products via other condensation reactions are sum of the feed carbon numbers.
- the feed contains only 1-3 feedstock compounds of different hydrocarbon chain length; that is for example either only C8, or only C10, or only C12, or C8/C10 etc., or C8/C10/C12. etc.
- the feed for condensation is selected so that the carbon number of the condensation product is from C5 to C28.
- the above obtained saturated and/or unsaturated condensation product comprising monofunctional and/or polyfunctional compounds having carbon number of at least C5, preferably from C5 to C28, selected from ketones, aldehydes, alcohols and carboxylic acids and corresponding sulphur compounds, corresponding nitrogen compounds and combinations thereof is then subjected to combined hydrodefunctionalization and isomerization step (CHI) in the presence of a bifunctional molecular sieve catalyst comprising an acidic function molecular sieve and a hydrogenation metal on a binder.
- a binder means here carrier or support.
- a preferred catalyst in the combined hydrodefunctionalization and isomerization (CHI) step enables dewaxing by isomerizing n-paraffinic wax molecules to isoparaffins with boiling points in the desired range.
- CHI hydrodefunctionalization and isomerization
- the catalyst comprises a molecular sieve, hydrogenation/dehydrogenation metal and an optional binder.
- the molecular sieve is selected from crystalline silicoaluminophosphates and aluminosilicates, preferably comprising framework type selected from AEL, TON, and MTT.
- the molecular sieve may have one-dimensional channel system, comprising parallel pores without intersecting pores, with pore openings around 4 - 7 A, without crossing channels, which induce strong cracking activity.
- the crystalline molecular sieves contain at least one 10-ring channel and they are based on aluminosilicates (zeolites), or on silicoaluminophosphates (SAPO).
- suitable zeolites containing at least one 10-ring channel examples include ZSM-11, ZSM-22, ZSM-23, ZSM-48, EU-1 and examples of suitable silicoaluminophosphates containing at least one 10-ring channel include SAPO-11 and SAPO-41.
- Preferred catalysts include SAPO-11 and ZSM-23.
- SAPO-11 may be synthetized according to EP 0 985 010 .
- ZSM-23 may be synthetized according to WO 2004/080590 .
- the molecular sieves are typically composited with binder materials, resistant to high temperatures and suitable for employing under dewaxing conditions to form a finished catalyst, or it may be binderless (self-bound).
- the binder materials are usually inorganic oxides such as silica, alumina, silica-alumina, and binary combinations of silica with other metal oxides such as titania, magnesia, thoria, zirconia, and the like, and tertiary combinations of these oxides such as silica-alumina-thoria and silica-alumina magnesia.
- the amount of the molecular sieve in the finished catalyst is from 10 to 100 wt. %, preferably 15 to 80 wt. % based on the catalyst.
- the rest comprises binder.
- Said catalysts are bifunctional, i.e., they are loaded with at least one metal dehydrogenation/hydrogenation component, selected from Group 6 metals of the Periodic Table of Elements, Group 8 - 10 metals and mixtures thereof.
- Preferable metals are Groups 9-10 metals. Particularly preferable are Pt, Pd and mixtures thereof.
- the metal content in the catalyst varies from 0.1 to 30 wt. %, preferably from 0.2 to 20 wt. % based on catalyst.
- the metal component may be loaded using any suitable known methods, such as ion exchange and impregnation methods using decomposable metal salts.
- the condensed product is subjected to the combined hydrodefunctionalization and isomerization step under a pressure ranging from 0.1 to 15 MPa, preferably from 1 to 10 MPa, and particularly preferably from 2 to 8 MPa, at a temperature ranging between 100 and 500 °C, preferably between 200 and 400 °C, and particularly preferably between 300 and 400 °C, the flow rate WHSV being between 0.1 and 10 1/h, preferably between 0.1 to 5 1/h, and particularly preferably between 0.1 and 2 1/h, the hydrogen to liquid feed ratio being between 1 and 5000 Nl/l (normal liter per liter), preferably between 10 to 2000 Nl/l, and particularly preferably between 100 and 1300 N1/1, in the presence of the above described bifunctional molecular sieve catalyst.
- a fixed catalyst bed reactor, for instance the trickle-bed reactor is suitable for the reaction.
- the product obtained from the CHI step may be subjected to hydrofinishing in order to adjust product qualities to desired specifications.
- Hydrofinishing is a form of mild hydrotreating directed to saturating any olefins as well as to removing any remaining heteroatoms and colour bodies.
- the hydrofinishing is carried out in cascade with the previous step.
- the hydrofinishing is carried out at temperatures ranging from about 150 °C to 350 °C, preferably from 180 °C to 250 °C in the presence of a hydrofinishing catalyst.
- Total pressures are typically from 3 to 20 MPa (about 400 to 3000 psig).
- Weight hourly space velocity (WHSV) is typically from 0.1 to 5 1/h, preferably 0.5 to 3 1/h and hydrogen treat gas rates of from 1 to 2000 Nl/l.
- Hydrofinishing catalysts are suitably supported catalysts containing at least one metal selected from Group 6 metals of the Periodic Table of Elements, Groups 8 - 10 metals and mixtures thereof.
- Preferred metals include noble metals having a strong hydrogenation function, especially platinum, palladium and mixtures thereof. Mixtures of metals may also be present as bulk metal catalysts wherein the amount of metal is 30 wt. % or greater based on catalyst.
- Suitable supports include low acidic metal oxides such as silica, alumina, silica-alumina or titania, preferably alumina.
- the product is passed to a distillation and/or separation unit in which product components boiling over different temperature range and/or product components intended for different applications are separated from each other.
- the process according to the invention yields a branched and paraffinic hydrocarbon product, particularly suitable for diesel fuel, kerosene and gasoline pool, comprising saturated branched hydrocarbons typically having carbon number from C5 to C28.
- the product is produced from feed of biological origin by methods resulting in the lengthening of the carbon chain of the starting material molecules to levels necessary for diesel fuel, kerosene or gasoline (> C5).
- the product contains typically some short carbon-carbon side branches.
- the branched structure results in an exceptionally low cloud point and cold filter plugging point but still a good cetane number compared to the products obtained by the known methods.
- properties of the biodiesel product produced with the process according to the invention (1) are compared to those obtained by processes according to the state of the art (2-6). All products are 100 % diesel components. Table 2.
- the branched structure of the product obtained according to the present invention results in low freezing point because of the absence of crystalline waxes, particularly suitable also as kerosene fuel component.
- the branched, saturated hydrocarbon product contains paraffins more than 80 vol-%, preferably more than 99 vol-%.
- the branched, saturated hydrocarbon product contains n-paraffins less than 30 wt-%, preferably less than 15 wt-%.
- the branched, saturated hydrocarbon product contains aromatics less than 20 vol-%, preferably less than 10 vol-%, according to method IP-391.
- the obtained branched, saturated hydrocarbon product, based on biological starting materials, contains carbon 14 C isotope, which may be considered as an indication of the use of renewable raw materials.
- Typical 14 C isotope content (proportion) of the total carbon content in the product, which is completely of biological origin, is at least 100 %.
- Carbon 14 C isotope content is determined on the basis of radioactive carbon (carbon 14 C isotope) content in the atmosphere in 1950 (ASTM D 6866).
- the process according to the invention has several advantages.
- the product originates from feedstock based on renewable natural resources.
- Starting materials of the process of the invention are available all over the world, and moreover, the utilization of the process is not limited by significant initial investments in contrast for instance to the GTL technology where Fischer-Tropsch waxes are produced.
- the process of the invention comprises a combination of a condensation reaction step with a combined hydrodefunctionalization and isomerization step (CHI).
- CHI hydrodefunctionalization and isomerization step
- the process according to the invention utilizes renewable starting materials of biological origin containing heteroatoms, particularly for producing diesel fuel, kerosene and gasoline components.
- renewable starting materials of biological origin containing heteroatoms particularly for producing diesel fuel, kerosene and gasoline components.
- a completely new and renewable raw material source for high-quality branched paraffinic fuels is now provided.
- the obtained products are carbon dioxide neutral with respect to the use and disposal thereof, that is, they will not increase the carbon dioxide load of the atmosphere in contrast to products derived from fossil starting materials.
- branched, saturated hydrocarbon product suitable for biofuel component is obtained from renewable sources.
- These branched, saturated hydrocarbons can be used as gasoline, kerosene or diesel fuel compounds.
- Branching in the paraffinic carbon chain enhances low temperature properties, such as freezing point, cloud point, pour point and cold-filter plugging point.
- the extremely good low temperature properties make it possible to use the branched, saturated hydrocarbon product as diesel fuel or diesel fuel component also in arctic fuels.
- the branched, saturated hydrocarbon compound manufactured according to the invention is particularly designed for use in compression-ignition engines, where air is compressed until it is heated above the auto-ignition temperature of diesel fuel and then the fuel is injected as a high pressure spray, keeping the fuel-air mix within the flammable limits of diesel. Because there is no ignition source, a high cetane number and a low auto-ignition temperature are required of the diesel fuel.
- cetane number of the branched, saturated hydrocarbon product is high, thus making the product suitable as cetane number improver.
- the cetane number gauges the ease with which the diesel fuel will auto-ignite when compressed. Higher cetane numbers indicate easier self-ignition and better engine operation.
- the high flash point of the branched, saturated diesel fuel product is important primarily from a fuel-handling standpoint. In the ethanol/mineral oil diesel or ethanol/plant oil diesel micro-emulsions, the flash point is remarkably lower. A too low flash point will cause fuel to be a fire hazard, subject to flashing, and possible continued ignition and explosion.
- the branched, saturated hydrocarbon product contains no sulphur.
- the catalysts and particulate filters can easily be adjusted to the sulphur-free hydrocarbon compound according to invention. Catalyst poisoning is reduced and catalyst service lifetime is significantly prolonged.
- composition of the branched, saturated hydrocarbon product produced according the invention resembles highly those of conventional diesel fuels, thus it can be used in compression-ignition (diesel) engines with no modifications, which is not the case with fatty acid methyl ester based bio-diesel compounds.
- the branched, saturated hydrocarbon product can be blended at any level with petroleum diesel and with fatty acid methyl ester based bio-diesel compounds. The latter may be advantageous if the lubricity of the product needs to be enhanced.
- a nonpolar and fully saturated hydrocarbon component, free of sulphur and other heteroatoms of the feedstock, is obtained in the combined hydrodefunctionization and isomerization (CHI) step.
- CHI hydrodefunctionization and isomerization
- the carbon chain is branched, thus improving low temperature properties, that is, the pour point is lowered, low-temperature fluidity enhanced and filterability at low temperatures is improved.
- Solid wax is converted to oily saturated hydrocarbon product, suitable as diesel fuel, gasoline or kerosene particularly at arctic conditions.
- Ethanol is most commonly used to power automobiles, though it may be used to power other vehicles, such as farm tractors and airplanes. Ethanol (E100) consumption in an engine is approximately 34 % higher than that of gasoline, because the energy per volume unit is 34 % lower. The fuel consumption by the biogasoline compound of the invention in therefore less than that of ethanol based biofuel.
- the products according to the invention can be blended to motor fuels in much higher proportions than Bio-Ethanol or RME. Therefore the need for 5.75 % minimum proportion of biofuels in all gasoline and diesel fuels is easily fulfilled.
- Palm oil was hydrolyzed. Double bonds of the fatty acids derived from palm oil feedstock were selectively prehydrogenated, and the saturated fatty acids were continuously ketonised at atmospheric pressure, in a tubular reactor using a MnO 2 catalyst. Temperature of the reactor was 370 °C, the weight hourly space velocity (WHSV) of total feed being about 0.8 1/h. A mixture of saturated ketones having carbon chain lengths of C 31 , C 33 and C 35 was obtained as the product.
- WHSV weight hourly space velocity
- Feed compound C35 ketone contains about 3.16 wt. % oxygen, compound C33 ketone 3.34 wt.% oxygen and compound C31 ketone 3.55 wt.% oxygen.
- palm ketone contains about 3.4 wt.% oxygen.
- the catalyst employed in the combined step was Pt/SAPO-11 on alumina binder. The process was carried out at a temperature of 365 °C and under a pressure of 4 MPa, using H 2 /HC ratio of 1250 Nl/l and WHSV of 0.8 1/h. The gas/gasoline/kerosene fraction was condensed from hydrogen flow.
- the fuel products contain mainly branched isoparaffins suitable for gasoline, kerosene and diesel pool.
- the physical properties of produced kerosene or gasoline faction are presented in Table 8 and the physical properties of produced diesel fractions are presented in Table 9.
- feed comprising branched C 32 alcohol, 2-tetradecyloktadecanol was subjected to combined hydrodefunctionalization and isomerization.
- Feed C32 alcohol contains about 3.43 wt.% oxygen.
- the catalyst employed in the CHI was Pt/ZSM-23 on alumina binder. The process was carried at a temperature of 366 °C and under a pressure of 4.2 MPa, using H 2 /HC ratio of 2000 Nl/l and WHSV 0.5 1/h.
- the gas/gasoline/kerosene fraction was condensed from hydrogen flow. Diesel, process oil (356 - 413 °C) and base oil (> 413 On) were distilled to separate fractions under reduced pressure.
- the fuel products contain mainly branched isoparaffins suitable for gasoline, kerosene and diesel pool.
- the physical properties of produced kerosene or gasoline faction are presented in Table 8 and the physical properties of produced diesel fractions are presented in Table 9.
- the free fatty acids were distilled from palm oil (PFAD).
- PFAD palm oil
- the feed containing both saturated and unsaturated fatty acids was continuously ketonised at atmospheric pressure, in a tubular reactor using a MnO 2 catalyst. Temperature of the reactor was 370 °C, the weight hourly space velocity (WHSV) of total feed being about 0.6 1/h.
- WHSV weight hourly space velocity
- Feed compound C35 ketone contains about 3.16 wt. % oxygen, compound C33 ketone 3.34 wt.% oxygen and compound C31 ketone 3.55 wt.% oxygen.
- unsaturated palm ketone contains about 3.4 wt.% oxygen.
- the process was carried out in the presence of Pt/SAPO-11 catalyst on alumina binder at a temperature of 356 °C and under a pressure of 3.9 MPa, using H 2 /HC ratio of 2000 Nl/l and WHSV 0.5 1/h.
- the gas/gasoline/kerosene fraction was condensed from hydrogen flow.
- the fuel products contain mainly branched isoparaffins suitable for gasoline, kerosene and diesel pool.
- the physical properties of produced kerosene or gasoline faction are presented in Table 8 and the physical properties of produced diesel fractions are presented in Table 9.
- a mixture of plant oils (linseed, soybean, and rapeseed oils) was pretreated by hydrolysis and distillation to obtain fatty acid fractions according to carbon numbers. Double bonds of the C18 acid fraction were selectively prehydrogenated, and the stearic acid was continuously ketonised at atmospheric pressure, in a tubular reactor using a MnO 2 on alumina catalyst. Temperature of the reactor was 360 °C, the WHSV of the feed being 0.9 1/h. Saturated C 35 ketone with 12 wt. % unconverted stearic acid was obtained as the product.
- a mixture of ketone having carbon chain length of C 35 with 12 wt.% of residual stearic acid was obtained by incomplete conversion in ketonization. Ketonisation was performed as described in above. The feed was subjected to combined hydrodefunctionalization and isomerization to test the influence of fatty acid to isomerization. C35 ketone contains about 3.16 wt.% oxygen, and stearic acid contains 11.25 wt.% oxygen, thus the feed contains totally 4.1 wt.% oxygen.
- the catalyst employed in the combined step was Pt/ZSM-23 on alumina binder.
- the CHI process was carried out at a temperature of 363 °C and under a pressure of 4.0 MPa, using H 2 /HC ratio of 2000 Nl/l and WHSV 0.5 1/h.
- the gas/gasoline/kerosene fraction was condensed from hydrogen flow.
- Diesel, process oil (356 - 413 °C) and base oil (> 413 C) were distilled to separate fractions under reduced pressure.
- the process conditions and product distribution are presented in Table 6. Hydrocarbon distribution is calculated from organic phase, and water is calculated from fed ketone and fatty acid. Table 6.
- the fuel products contain mainly branched isoparaffins suitable for gasoline, kerosene and diesel pool.
- the physical properties of produced kerosene or gasoline faction are presented in Table 8 and the physical properties of produced diesel fractions are presented in Table 9.
- Palm oil was hydrolyzed. Double bonds of the fatty acids derived from palm oil feedstock were selectively prehydrogenated, and the saturated fatty acids were continuously ketonised at atmospheric pressure, in a tubular reactor using a MnO 2 catalyst. Temperature of the reactor was 370 °C, the weight hourly space velocity (WHSV) of total feed being about 0.8 1/h. A mixture of saturated ketones having carbon chain lengths of C 31 , C 33 and C 35 was obtained as the product.
- WHSV weight hourly space velocity
- Feed obtained by ketonization according the above process was subjected to combined hydrodefunctionalization and isomerization.
- Feed compound C35 ketone contains about 3.16 wt. % oxygen, compound C33 ketone 3.34 wt.% oxygen and compound C31 ketone 3.55 wt.% oxygen.
- palm ketone contains about 3.4 wt.% oxygen.
- the CHI step was carried out in the presence of a Pt/ZSM-23 catalyst on alumina binder, at a temperature of 345 °C and under a pressure of 4 MPa, using hydrogen to hydrocarbon (H 2 /HC) ratio of 950 Nl/l and weight hourly space velocity (WHSV) of 1.1 1/h.
- H 2 /HC hydrogen to hydrocarbon
- WHSV weight hourly space velocity
- the fuel products contain mainly branched isoparaffins suitable for gasoline, kerosene and diesel pool.
- the catalyst selected for CHI in example 5 produces the highest yield of fuel components when compared to examples 1-4. Table 8 .
- Gasoline produced according to the invention Method Analysis Example 1 Example 2 Example 3 Example 4 Example 5 EN ISO 12185 Density@15 °C, kg/m3 747 738 743 747 713 ASTM D 3120 S, mg/kg 1 1 1 ⁇ 1 1.8 ASTM D 2887 10%,°C 144 (C9) 123 (C8) 136 (C8) 139 (C8) 98 (C7) 90%,°C 255 230 235 234 190 95 %,°C 272 (C15) 247 (C 14) 260 (C14) 274 (C15) 209 (C11) GC-PIONA Paraffins 96.19 97.4 92.59 89.19 97.7 wt.-% n-Paraffines 14.8 18.3
- the lighter cut is condensed from hydrogen feed in normal pressure, and in example 5 it is distilled from total liquid product. It was surprisingly found that the branched saturated hydrocarbons especially in condensed phase are suitable as kerosene compounds and that diesel fractions obtained by the process of invention have extremely good cold properties. In all examples the cutting points of different fractions may be varied, therefore in addition to gasoline and diesel fractions also kerosene may be produced. Table 9.
- Example 1 Example 2
- Example 3 Example 4
- Example 5 EN ISO 12185 Density@ 15°C, kg/m3 782 780 780 782 745 ASTM D 445 kV40, cSt 3.0 2.8 2.4 2.5 2.5 ASTM D 5773/ D5771 Cloud Point, °C -37 -35 -36 -36 -45 EN 116 Cold Filter -44 ⁇ -45 -45 -39 ⁇ -45 Plug Point, °C IQT cetane number 77 77 83 84 79 ASTM D 2887 10%,°C 221 210 189 190 202 90 %, °C 343 338 336 321 342 95 %, °C 357 351 352 341 351 EN 12916 Monoaromatics % 1.1 0.8 0.9 2.0 0.1 Diaromatics % 0.2 0.2 ⁇ 0.1 0.4 ⁇ 0.1 Triaromatics % ⁇ 0.10 ⁇ 0.10 ⁇ 0.10 ⁇ 0.10
- kerosene is obtained as middle cut between gasoline and diesel fractions.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Claims (9)
- Procédé de production d'hydrocarbures en C5 à C28 saturés, caractérisé en ce que le procédé comprend les étapes dans lesquelles une charge d'alimentation dérivée d'une matière première d'origine biologique est soumise à une étape de condensation choisie parmi la cétonisation, la condensation d'aldol, la condensation d'alcool et les réactions radicalaires, et le produit de condensation saturé et/ou insaturé obtenu est soumis ensuite à une étape combinée d'hydrodéfonctionnalisation et d'isomérisation en présence d'un catalyseur bifonctionnel comprenant au moins un tamis moléculaire choisi parmi les aluminosilicates et les silicoaluminophosphates et au moins un métal choisi parmi les métaux des groupes 6 et 8 à 10 du tableau périodique des éléments, et
la cétonisation est réalisée sous pression de 0 à 10 MPa, à la température de 10 à 500 °C, en présence d'un catalyseur d'oxyde de métal sur support et la charge d'alimentation est choisie parmi les esters d'acide gras, les anhydrides d'acide gras, les alcools gras, les aldéhydes gras, les cires naturelles, les sels métalliques d'acides gras, les acides dicarboxyliques et les polyols,
la condensation d'aldol est réalisée en présence d'un catalyseur de métal alcalin sur support ou d'un catalyseur d'hydroxyde de métal alcalin ou d'un catalyseur d'hydroxyde de métal alcalino-terreux à une température de 80 à 400 °C et la charge d'alimentation est choisie parmi les aldéhydes, les cétones et les hydroxyaldéhydes,
la condensation d'alcool est réalisée en présence d'un catalyseur choisi parmi les hydroxydes et les alcoxydes de métaux alcalins et alcalino-terreux et les oxydes métalliques, en combinaison avec un co-catalyseur comprenant un métal à une température de 200 à 300 °C et l'alimentation est choisie parmi les alcools primaires et/ou secondaires, saturés et/ou insaturés, et
la réaction radicalaire est réalisée à une température de 100 à 300 °C en présence d'un catalyseur de peroxyde d'alkyle, peroxyester, peroxyde de diacyle ou peroxycétal et la charge d'alimentation est choisie parmi les acides carboxyliques saturés et les alphaoléfines selon un rapport molaire de 1:1. - Procédé selon la revendication 1, caractérisé en ce que l'étape combinée d'hydrodéfonctionnalisation et d'isomérisation est réalisée sous pression de 0,1 à 15 MPa, à la température de 100 à 500 °C.
- Procédé selon la revendication 1 ou 2, caractérisé en ce que dans l'étape combinée d'hydrodéfonctionnalisation et d'isomérisation, la vitesse d'écoulement WHSV est de 0,1 à 10 1/h et le rapport d'alimentation d'hydrogène au liquide est de 1 à 5000 Nl/l.
- Procédé selon la revendication 2 ou 3, caractérisé en ce que le catalyseur bifonctionnel comprend au moins un tamis moléculaire choisi parmi les zéolites et les silicoaluminophosphates, au moins un métal choisi parmi les métaux du groupe 9 ou 10 du tableau périodique des éléments et un liant.
- Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'après l'étape combinée d'hydrodéfonctionnalisation et d'isomérisation, une étape d'hydrofinissage facultative est réalisée, et le produit passe dans une unité de distillation et/ou séparation dans laquelle les composants du produit ayant des points d'ébullition sur une plage de températures différentes sont séparés les uns des autres.
- Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la charge d'alimentation est choisie dans le groupe constitué par :a) les graisses végétales, les huiles végétales, les cires végétales ; les graisses animales, les huiles animales, les cires animales, les graisses de poisson, les huiles de poisson, les cires de poisson, etb) les acides gras ou les acides gras libres obtenus à partir de graisses végétales, d'huiles végétales, de cires végétales ; de graisses animales, d'huiles animales, de cires animales ; de graisse de poisson, d'huiles de poisson, de cires de poisson et des mélanges de ceux-ci par hydrolyse, transestérification ou pyrolyse, etc) les esters obtenus à partir de graisses végétales, d'huiles végétales, de cires végétales ; de graisses animales, d'huiles animales, de cires animales ; de graisse de poisson, d'huiles de poisson, de cires de poisson et des mélanges de ceux-ci par transestérification, etd) les sels métalliques d'acides gras obtenus à partir de graisses végétales, d'huiles végétales, de cires végétales ; de graisses animales, d'huiles animales, de cires animales ; de graisse de poisson, d'huiles de poisson, de cires de poisson et des mélanges de ceux-ci par saponification, ete) les anhydrides d'acides gras de graisses végétales, d'huiles végétales, de cires végétales ; de graisses animales, d'huiles animales, de cires animales ; de graisse de poisson, d'huiles de poisson, de cires de poisson et des mélanges de ceux-ci, etf) les esters obtenus par estérification d'acides gras libres d'origine végétale, animale et de poisson avec des alcools, etg) les alcools ou aldéhydes gras obtenus sous forme de produits de réduction d'acides gras à partir de graisses végétales, d'huiles végétales, de cires végétales ; de graisses animales, d'huiles animales, de cires animales ; de graisse de poisson, d'huiles de poisson, de cires de poisson et des mélanges de ceux-ci, eth) les graisses et les huiles de grade alimentaire recyclées, et les graisses, les huiles et les cires obtenues par génie génétique,i) les acides dicarboxyliques ou les polyols comprenant les diols, les hydroxycétones, les hydroxyaldéhydes et les acides hydroxycarboxyliques, etj) des mélanges desdites matières premières.
- Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que du carburant diesel est obtenu comme produit.
- Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que du kérosène est obtenu comme produit.
- Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que du gazole est obtenu comme produit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08775468T PL2155838T3 (pl) | 2007-06-11 | 2008-06-10 | Sposób wytwarzania węglowodorów rozgałęzionych |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20075434A FI121308B (fi) | 2007-06-11 | 2007-06-11 | Prosessi haaroittuneiden hiilivetyjen valmistamiseksi |
PCT/FI2008/050343 WO2008152199A1 (fr) | 2007-06-11 | 2008-06-10 | Procédé de production d'hydrocarbures ramifiés |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2155838A1 EP2155838A1 (fr) | 2010-02-24 |
EP2155838A4 EP2155838A4 (fr) | 2013-05-01 |
EP2155838B1 true EP2155838B1 (fr) | 2014-09-24 |
Family
ID=38212405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08775468.5A Active EP2155838B1 (fr) | 2007-06-11 | 2008-06-10 | Procédé de production d'hydrocarbures ramifiés |
Country Status (14)
Country | Link |
---|---|
EP (1) | EP2155838B1 (fr) |
JP (1) | JP5616784B2 (fr) |
KR (1) | KR101557304B1 (fr) |
CN (1) | CN101679876B (fr) |
BR (1) | BRPI0812567B1 (fr) |
CA (1) | CA2688449C (fr) |
DK (1) | DK2155838T3 (fr) |
ES (1) | ES2512568T3 (fr) |
FI (1) | FI121308B (fr) |
PL (1) | PL2155838T3 (fr) |
PT (1) | PT2155838E (fr) |
RU (1) | RU2456330C2 (fr) |
WO (1) | WO2008152199A1 (fr) |
ZA (1) | ZA200908397B (fr) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020141256A1 (fr) | 2018-12-31 | 2020-07-09 | Neste Oyj | Procédé de production d'huile de base renouvelable et composants de carburant renouvelable |
WO2020141254A1 (fr) | 2018-12-31 | 2020-07-09 | Neste Oyj | Processus de production catalytique de propanol |
WO2020141255A1 (fr) | 2018-12-31 | 2020-07-09 | Neste Oyj | Procédé de production intégrée de combustibles et de produits chimiques renouvelables |
WO2021058876A1 (fr) | 2019-09-26 | 2021-04-01 | Neste Oyj | Production d'alcène renouvelable impliquant une métathèse |
WO2021058875A1 (fr) | 2019-09-26 | 2021-04-01 | Neste Oyj | Métathèse impliquant la production d'huile de base renouvelable |
WO2021123496A1 (fr) | 2019-12-20 | 2021-06-24 | Neste Oyj | Système et procédé d'installation de production intégrée flexible |
WO2022043611A1 (fr) | 2020-08-31 | 2022-03-03 | Neste Oyj | Composition hydrocarbonée intermédiaire à indice d'octane amélioré |
US11279665B2 (en) | 2018-12-31 | 2022-03-22 | Neste Oyj | Process for producing renewable products |
WO2022129675A1 (fr) | 2020-12-18 | 2022-06-23 | Neste Oyj | Procédé de production d'alcools |
WO2024003466A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Composant hydrocarbure |
WO2024003465A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Procédé de production de composants de carburant de transport liquide |
WO2024003462A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Procédé de production d'un composant de carburant de transport liquide |
WO2024003469A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Procédé de production d'un composant de carburant de transport de liquide |
WO2024003467A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Procédé de production d'un composant de carburant de transport liquide |
US12122971B2 (en) | 2020-08-31 | 2024-10-22 | Neste Oyj | Octane enhanced intermediate hydrocarbon composition |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8003834B2 (en) | 2007-09-20 | 2011-08-23 | Uop Llc | Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks |
US7982075B2 (en) | 2007-09-20 | 2011-07-19 | Uop Llc | Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption |
US7982077B2 (en) | 2007-09-20 | 2011-07-19 | Uop Llc | Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen |
US7982078B2 (en) | 2007-09-20 | 2011-07-19 | Uop Llc | Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen |
US7999143B2 (en) | 2007-09-20 | 2011-08-16 | Uop Llc | Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption |
US7982076B2 (en) | 2007-09-20 | 2011-07-19 | Uop Llc | Production of diesel fuel from biorenewable feedstocks |
US7915460B2 (en) | 2007-09-20 | 2011-03-29 | Uop Llc | Production of diesel fuel from biorenewable feedstocks with heat integration |
US7999142B2 (en) | 2007-09-20 | 2011-08-16 | Uop Llc | Production of diesel fuel from biorenewable feedstocks |
US8742183B2 (en) | 2007-12-21 | 2014-06-03 | Uop Llc | Production of aviation fuel from biorenewable feedstocks |
WO2009095711A1 (fr) * | 2008-02-01 | 2009-08-06 | Johnson Matthey Plc | Processus de conversion d'acides gras et de leurs dérivés |
US8193399B2 (en) | 2008-03-17 | 2012-06-05 | Uop Llc | Production of diesel fuel and aviation fuel from renewable feedstocks |
US8039682B2 (en) | 2008-03-17 | 2011-10-18 | Uop Llc | Production of aviation fuel from renewable feedstocks |
US8058492B2 (en) | 2008-03-17 | 2011-11-15 | Uop Llc | Controlling production of transportation fuels from renewable feedstocks |
US8198492B2 (en) | 2008-03-17 | 2012-06-12 | Uop Llc | Production of transportation fuel from renewable feedstocks |
US8193400B2 (en) | 2008-03-17 | 2012-06-05 | Uop Llc | Production of diesel fuel from renewable feedstocks |
US8329967B2 (en) | 2008-04-06 | 2012-12-11 | Uop Llc | Production of blended fuel from renewable feedstocks |
NZ588357A (en) | 2008-04-06 | 2012-02-24 | Uop Llc | Fuel and fuel blending components from biomass derived pyrolysis oil |
US8329968B2 (en) | 2008-04-06 | 2012-12-11 | Uop Llc | Production of blended gasoline aviation and diesel fuels from renewable feedstocks |
US8324438B2 (en) | 2008-04-06 | 2012-12-04 | Uop Llc | Production of blended gasoline and blended aviation fuel from renewable feedstocks |
US8304592B2 (en) | 2008-06-24 | 2012-11-06 | Uop Llc | Production of paraffinic fuel from renewable feedstocks |
US8766025B2 (en) | 2008-06-24 | 2014-07-01 | Uop Llc | Production of paraffinic fuel from renewable feedstocks |
US8697924B2 (en) * | 2008-09-05 | 2014-04-15 | Shell Oil Company | Liquid fuel compositions |
US7982079B2 (en) | 2008-09-11 | 2011-07-19 | Uop Llc | Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing |
US8921627B2 (en) | 2008-12-12 | 2014-12-30 | Uop Llc | Production of diesel fuel from biorenewable feedstocks using non-flashing quench liquid |
US8471079B2 (en) | 2008-12-16 | 2013-06-25 | Uop Llc | Production of fuel from co-processing multiple renewable feedstocks |
US8314274B2 (en) | 2008-12-17 | 2012-11-20 | Uop Llc | Controlling cold flow properties of transportation fuels from renewable feedstocks |
US8283506B2 (en) | 2008-12-17 | 2012-10-09 | Uop Llc | Production of fuel from renewable feedstocks using a finishing reactor |
DK2440328T3 (en) | 2009-06-12 | 2016-11-28 | Albemarle Europe Sprl | SAPO molecular sieve and preparation and uses thereof |
US8471081B2 (en) * | 2009-12-28 | 2013-06-25 | Uop Llc | Production of diesel fuel from crude tall oil |
FI125931B (fi) | 2010-05-25 | 2016-04-15 | Upm Kymmene Corp | Menetelmä ja laitteisto hiilivetyjen valmistamiseksi |
FI125632B (fi) | 2010-05-25 | 2015-12-31 | Upm Kymmene Corp | Menetelmä ja laite hiilivetyjen tuottamiseksi |
US8900443B2 (en) | 2011-04-07 | 2014-12-02 | Uop Llc | Method for multi-staged hydroprocessing using quench liquid |
CN103059900B (zh) * | 2011-10-19 | 2015-09-23 | 中国石油化工股份有限公司 | 一种制备喷气燃料的方法 |
CN103289824B (zh) * | 2012-02-24 | 2018-01-05 | 中国石油天然气股份有限公司 | 油脂的转化过程 |
US8779208B2 (en) | 2012-05-18 | 2014-07-15 | Eastman Chemical Company | Process for reducing emissions of volatile organic compounds from the ketonization of carboxylic acids |
US9382491B2 (en) | 2012-07-03 | 2016-07-05 | Sartec Corporation | Hydrocarbon synthesis methods, apparatus, and systems |
WO2014008355A1 (fr) * | 2012-07-03 | 2014-01-09 | Mcneff Clayton V | Procédés, appareil et systèmes de synthèse d'hydrocarbures |
US9221725B2 (en) | 2012-07-18 | 2015-12-29 | Exxonmobil Research And Engineering Company | Production of lubricant base oils from biomass |
US20140187827A1 (en) * | 2012-12-28 | 2014-07-03 | Exxonmobil Research And Engineering Company | Blending of dewaxed biofuels with mineral-based kero(jet) distillate cuts to provide on-spec jet fuels |
FI126331B (en) | 2013-04-02 | 2016-10-14 | Upm Kymmene Corp | Renewable hydrocarbon composition |
FI126330B (en) * | 2013-04-02 | 2016-10-14 | Upm Kymmene Corp | Renewable hydrocarbon composition |
RO130351B1 (ro) * | 2013-11-21 | 2017-09-29 | Institutul Naţional De Cercetare-Dezvoltare Pentru Chimie Şi Petrochimie - Icechim | Procedeu de obţinere a biocombustibilului pentru aviaţie din biomasă microalgală |
US9469583B2 (en) * | 2014-01-03 | 2016-10-18 | Neste Oyj | Composition comprising paraffin fractions obtained from biological raw materials and method of producing same |
PL224139B1 (pl) * | 2014-08-01 | 2016-11-30 | Ekobenz Spółka Z Ograniczoną Odpowiedzialnością | Mieszanka paliwowa szczególnie do silników z zapłonem iskrowym |
EP3012310B8 (fr) * | 2014-10-24 | 2018-11-14 | Neste Oyj | Procédé pour des étapes de cétonisation de matière biologique |
RU2592849C2 (ru) * | 2014-12-26 | 2016-07-27 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) | Катализатор и способ получения алифатических углеводородов из рапсового масла |
EP3095839A1 (fr) | 2015-05-20 | 2016-11-23 | Total Marketing Services | Procédé pour la production de fluides hydrocarbonés biodégradables par hydrogénation |
RU2757215C2 (ru) * | 2016-11-08 | 2021-10-12 | Родиа Операсьон | Способ декарбоксилирующей кетонизации жирных кислот или производных жирных кислот |
US10239812B2 (en) | 2017-04-27 | 2019-03-26 | Sartec Corporation | Systems and methods for synthesis of phenolics and ketones |
MY201083A (en) * | 2017-06-19 | 2024-02-03 | Neste Oyj | Production of renewable base oil and diesel by pre-fractionation of fatty acids |
US10544381B2 (en) | 2018-02-07 | 2020-01-28 | Sartec Corporation | Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid |
US10696923B2 (en) | 2018-02-07 | 2020-06-30 | Sartec Corporation | Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids |
FR3092333B1 (fr) | 2019-01-31 | 2021-01-08 | Total Marketing Services | Composition de carburant à base d’hydrocarbures paraffiniques |
FR3092334B1 (fr) * | 2019-01-31 | 2022-06-17 | Total Marketing Services | Utilisation d’une composition de carburant à base d’hydrocarbures paraffiniques pour nettoyer les parties internes des moteurs diesels |
FI130743B1 (en) | 2022-04-07 | 2024-02-26 | Neste Oyj | Process for the production of renewable hydrocarbons |
FI130744B1 (fi) | 2022-04-07 | 2024-02-26 | Neste Oyj | Menetelmä vetykäsittelykatalyytin deaktivoinnin vähentämiseksi |
FI130997B1 (en) | 2022-12-21 | 2024-07-22 | Neste Oyj | Catalyst composition with redox-active carrier for simultaneous removal of oxygen and nitrogen |
US20240218261A1 (en) * | 2022-12-31 | 2024-07-04 | Chevron U.S.A. Inc. | Fixed Bed Lipid Conversion With Catalyst Regeneration |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3501546A (en) * | 1968-03-14 | 1970-03-17 | Ethyl Corp | Preparation of paraffinic hydrocarbons from acyclic,monohydric,primary alkanols and aldehydes having up to 24 carbon atoms with a catalyst consisting of palladium dispersed on titanium dioxide |
US20030136706A1 (en) * | 2001-10-25 | 2003-07-24 | Mcdaniel Stacey | Sulfur removal process |
US7279018B2 (en) * | 2002-09-06 | 2007-10-09 | Fortum Oyj | Fuel composition for a diesel engine |
US7232935B2 (en) * | 2002-09-06 | 2007-06-19 | Fortum Oyj | Process for producing a hydrocarbon component of biological origin |
BRPI0609771A2 (pt) * | 2005-03-21 | 2011-10-18 | Univ Ben Gurion | processo para produzir uma composição de combustìvel lìquida, composição de combustìvel diesel, e, composição de combustìvel misturada |
US20060264684A1 (en) * | 2005-05-19 | 2006-11-23 | Petri John A | Production of diesel fuel from biorenewable feedstocks |
CA2631402C (fr) * | 2005-12-12 | 2011-11-22 | Neste Oil Oyj | Procede de production d'un hydrocarbure ramifie a partir d'un circuit d'alimentation comprenant un alcool |
DK2270118T3 (da) * | 2005-12-12 | 2019-11-18 | Neste Oyj | Fremgangsmåde til fremstilling af en carbonhydridkomponent |
AU2006325185B2 (en) * | 2005-12-12 | 2011-03-31 | Neste Oil Oyj | Process for producing a branched hydrocarbon component |
US7850841B2 (en) * | 2005-12-12 | 2010-12-14 | Neste Oil Oyj | Process for producing a branched hydrocarbon base oil from a feedstock containing aldehyde and/or ketone |
-
2007
- 2007-06-11 FI FI20075434A patent/FI121308B/fi active IP Right Grant
-
2008
- 2008-06-10 CN CN200880019947XA patent/CN101679876B/zh active Active
- 2008-06-10 KR KR1020107000422A patent/KR101557304B1/ko active IP Right Grant
- 2008-06-10 CA CA2688449A patent/CA2688449C/fr active Active
- 2008-06-10 WO PCT/FI2008/050343 patent/WO2008152199A1/fr active Application Filing
- 2008-06-10 ES ES08775468.5T patent/ES2512568T3/es active Active
- 2008-06-10 PL PL08775468T patent/PL2155838T3/pl unknown
- 2008-06-10 JP JP2010511670A patent/JP5616784B2/ja active Active
- 2008-06-10 PT PT87754685T patent/PT2155838E/pt unknown
- 2008-06-10 BR BRPI0812567-8A patent/BRPI0812567B1/pt active IP Right Grant
- 2008-06-10 DK DK08775468.5T patent/DK2155838T3/da active
- 2008-06-10 EP EP08775468.5A patent/EP2155838B1/fr active Active
- 2008-06-10 RU RU2009148753/04A patent/RU2456330C2/ru active
-
2009
- 2009-11-26 ZA ZA200908397A patent/ZA200908397B/xx unknown
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11643606B2 (en) | 2018-12-31 | 2023-05-09 | Neste Oyj | Method for producing renewable base oil and renewable fuel components |
WO2020141254A1 (fr) | 2018-12-31 | 2020-07-09 | Neste Oyj | Processus de production catalytique de propanol |
WO2020141255A1 (fr) | 2018-12-31 | 2020-07-09 | Neste Oyj | Procédé de production intégrée de combustibles et de produits chimiques renouvelables |
WO2020141256A1 (fr) | 2018-12-31 | 2020-07-09 | Neste Oyj | Procédé de production d'huile de base renouvelable et composants de carburant renouvelable |
US11279665B2 (en) | 2018-12-31 | 2022-03-22 | Neste Oyj | Process for producing renewable products |
WO2021058876A1 (fr) | 2019-09-26 | 2021-04-01 | Neste Oyj | Production d'alcène renouvelable impliquant une métathèse |
WO2021058875A1 (fr) | 2019-09-26 | 2021-04-01 | Neste Oyj | Métathèse impliquant la production d'huile de base renouvelable |
US11795124B2 (en) | 2019-09-26 | 2023-10-24 | Neste Oyj | Renewable alkene production engaging metathesis |
US11643616B2 (en) | 2019-09-26 | 2023-05-09 | Neste Oyj | Renewable base oil production engaging metathesis |
WO2021123496A1 (fr) | 2019-12-20 | 2021-06-24 | Neste Oyj | Système et procédé d'installation de production intégrée flexible |
US11959034B2 (en) | 2019-12-20 | 2024-04-16 | Neste Oyj | Flexible integrated production plant system and method |
WO2022043611A1 (fr) | 2020-08-31 | 2022-03-03 | Neste Oyj | Composition hydrocarbonée intermédiaire à indice d'octane amélioré |
US12122971B2 (en) | 2020-08-31 | 2024-10-22 | Neste Oyj | Octane enhanced intermediate hydrocarbon composition |
WO2022129675A1 (fr) | 2020-12-18 | 2022-06-23 | Neste Oyj | Procédé de production d'alcools |
WO2024003466A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Composant hydrocarbure |
WO2024003463A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Composant de carburant d'aviation |
WO2024003465A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Procédé de production de composants de carburant de transport liquide |
WO2024003462A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Procédé de production d'un composant de carburant de transport liquide |
WO2024003468A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Procédé de production de composants de carburant de transport de liquide |
WO2024003464A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Composant d'essence |
WO2024003469A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Procédé de production d'un composant de carburant de transport de liquide |
WO2024003467A1 (fr) | 2022-06-30 | 2024-01-04 | Neste Oyj | Procédé de production d'un composant de carburant de transport liquide |
Also Published As
Publication number | Publication date |
---|---|
DK2155838T3 (da) | 2014-12-15 |
PL2155838T3 (pl) | 2015-03-31 |
EP2155838A1 (fr) | 2010-02-24 |
FI121308B (fi) | 2010-09-30 |
CN101679876A (zh) | 2010-03-24 |
WO2008152199A1 (fr) | 2008-12-18 |
FI20075434A (fi) | 2008-12-12 |
CN101679876B (zh) | 2013-05-22 |
FI20075434A0 (fi) | 2007-06-11 |
KR20100036307A (ko) | 2010-04-07 |
CA2688449A1 (fr) | 2008-12-18 |
RU2456330C2 (ru) | 2012-07-20 |
KR101557304B1 (ko) | 2015-10-06 |
EP2155838A4 (fr) | 2013-05-01 |
JP2010529274A (ja) | 2010-08-26 |
ES2512568T3 (es) | 2014-10-24 |
JP5616784B2 (ja) | 2014-10-29 |
BRPI0812567B1 (pt) | 2017-07-04 |
ZA200908397B (en) | 2010-08-25 |
PT2155838E (pt) | 2014-10-08 |
RU2009148753A (ru) | 2011-07-20 |
BRPI0812567A2 (pt) | 2015-02-10 |
CA2688449C (fr) | 2014-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2155838B1 (fr) | Procédé de production d'hydrocarbures ramifiés | |
US8143469B2 (en) | Process for producing branched hydrocarbons | |
US9469818B2 (en) | Hydrocarbon composition useful as a fuel and fuel oil containing a petroleum component and a component of a biological origin | |
CA2740753C (fr) | Desoxygenation de materiaux d'origine biologique | |
EP1795576B1 (fr) | Procédé de préparation d'hydrocarbures | |
US8329970B2 (en) | Deoxygenation of materials of biological origin | |
US8048290B2 (en) | Process for producing branched hydrocarbons | |
Sotelo-Boyás et al. | Hydroconversion of triglycerides into green liquid fuels | |
US7459597B2 (en) | Process for the manufacture of hydrocarbons | |
RU2462499C2 (ru) | Способ получения разветвленных углеводородов | |
NZ590189A (en) | Process for the manufacture of hydrocarbons from fatty acids of biological origin | |
CA3121293C (fr) | Compositions de carburant diesel comprenant un ameliorant de lubrifiance | |
EP2333032B1 (fr) | Methode pour la preparation d'une composition d'hydrocarbures capable comme carburant et combustible | |
Bellussi et al. | The Hydrogenation of Vegetable Oil to Jet and Diesel Fuels in a Complex Refining Scenario | |
RU2558948C2 (ru) | Способ получения дизельного топлива из возобновляемого сырья растительного происхождения (варианты) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20091119 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20130405 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10G 45/64 20060101ALI20130328BHEP Ipc: C07C 1/32 20060101ALI20130328BHEP Ipc: C10G 3/00 20060101AFI20130328BHEP Ipc: C07C 1/207 20060101ALI20130328BHEP |
|
17Q | First examination report despatched |
Effective date: 20131122 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140422 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20140930 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 688671 Country of ref document: AT Kind code of ref document: T Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2512568 Country of ref document: ES Kind code of ref document: T3 Effective date: 20141024 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: HEPP WENGER RYFFEL AG, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008034574 Country of ref document: DE Effective date: 20141106 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20141211 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141224 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141225 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 688671 Country of ref document: AT Kind code of ref document: T Effective date: 20140924 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008034574 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150610 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150610 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080610 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230707 Year of fee payment: 16 Ref country code: CH Payment date: 20230702 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240515 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240502 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240507 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240612 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240513 Year of fee payment: 17 Ref country code: FR Payment date: 20240524 Year of fee payment: 17 Ref country code: FI Payment date: 20240612 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240515 Year of fee payment: 17 Ref country code: PT Payment date: 20240523 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240510 Year of fee payment: 17 |