EP2155612A2 - Method for producing carbon coated nanoparticles of a transition metal oxide - Google Patents

Method for producing carbon coated nanoparticles of a transition metal oxide

Info

Publication number
EP2155612A2
EP2155612A2 EP08805653A EP08805653A EP2155612A2 EP 2155612 A2 EP2155612 A2 EP 2155612A2 EP 08805653 A EP08805653 A EP 08805653A EP 08805653 A EP08805653 A EP 08805653A EP 2155612 A2 EP2155612 A2 EP 2155612A2
Authority
EP
European Patent Office
Prior art keywords
transition metal
nanoparticles
aqueous solution
manufacturing
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08805653A
Other languages
German (de)
French (fr)
Inventor
Christine Bogicevic
Fabienne Karolak
Gianguido Baldinozzi
Mickael DOLLÉ
Dominique Gosset
David Simeone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ecole Centrale de Paris ECP
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Ecole Centrale de Paris ECP
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, Ecole Centrale de Paris ECP, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2155612A2 publication Critical patent/EP2155612A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3676Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to the field of nanomaterials based on transition metal can be included in the composition of nuclear reactor elements. It relates in particular to a process for manufacturing nanoparticles of at least one carbon-coated transition metal oxide.
  • Transition metal carbides are particularly suitable materials for manufacturing some of the elements of next-generation nuclear reactors (particularly so-called Generation reactors).
  • transition metal oxide particles coated with amorphous carbon of medium size ranging from a few nanometers to a few hundred nanometers (called “oxide nanoparticles” in the following description). This reduction must be as complete as possible so that the nanocrystallites of transition metal carbides are as free as possible from any impurity.
  • the carbothermic reduction is most often carried out at a high temperature, which temperature must be higher as the crystallites of the nanoparticles of oxides are of medium size and / or initially contain a large quantity of impurities.
  • One of the aims of the invention is therefore to provide a process for manufacturing oxide nanoparticles of the smallest possible average size, such nanoparticles making it possible, after moderate carbothermic reduction, to obtain nanocrystallites of transition metal carbide. of a higher degree of purity and / or a smaller average size than the nanoparticles obtained by the best current processes, in particular of the sol-gel type.
  • the subject of the invention is therefore a process for producing nanoparticles of at least one transition metal oxide selected from Ti, Zr, Hf, V, Nb and Ta coated with amorphous carbon, the process comprising the following successive steps: (i) a liquid mixture containing as precursors at least one transition metal alkoxide, an alcohol, excess acetic acid with respect to the transition metal is prepared, and then diluted in water to to form an aqueous solution, the precursors being present in the aqueous solution in a molar ratio such that it prevents or sufficiently limits the formation of a sol so that the aqueous solution is lyophilizable and such as the transition metal, carbon and oxygen are present according to the stoichiometric ratio in which they are found in the nanoparticles,
  • the lyophilizate obtained in the preceding step is pyrolyzed under vacuum or under an inert atmosphere in order to obtain the nanoparticles.
  • the transition metal oxide nanoparticles are said to be “coated” with amorphous carbon in the sense that their surface is partially or totally covered with amorphous carbon.
  • Carbon is said to be “amorphous” because, essentially or mainly, it does not occur in the form of crystallites, although a short-range atomic order can exist locally.
  • the freeze-drying comprises spraying the aqueous solution in a liquid nitrogen bath in order to obtain frozen particles having the homogeneous composition of this solution, and then putting these particles under vacuum in order to remove the water therefrom. sublimation, whereby a powder is obtained which leads to the lyophilisate following its secondary desiccation.
  • the term "homogeneous composition” means a composition which is the same or essentially the same for any volume of micron size, preferably of nanometric size.
  • the spraying can be carried out with a wide variety of sprayers, for example with a nozzle sprayer or an ultrasonic sprayer.
  • the lyophilisate contain no element other than the transition metal, carbon, hydrogen or oxygen.
  • the alkoxide is advantageously chosen from isopropoxide and n-propoxide. Alkoxides comprising different transition metals may also be mixed to form nanoparticles containing a mixture of the corresponding oxides, for example a mixture of Ti oxides and Zr oxides.
  • the alcohol acts as a diluting agent for the alkoxide. It may be chosen from isopropanol (or 2-propanol) and propanol-1, these alcohols having carbon chains derived from the same family as those of the abovementioned preferred alkoxides.
  • Acetic acid is a chemical modifier that allows, within the metal alkoxide, the substitution of alkoxy groups with acetate groups.
  • it therefore provides a modified alkoxide which, compared to the starting alkoxide, has a lower reactivity with respect to water, which has the effect of preventing or limiting the spontaneous reaction of condensation (sol-gel reaction) of the alkoxide, a reaction that can lead to the formation of precipitates.
  • sol-gel reaction a sol can then begin to form by initiating the sol-gel reaction, this sol being within the meaning of the invention as it comprises oligomers and / or colloids suspended in the water.
  • acetic acid which also has the function of reducing the viscosity of the solution, is in excess relative to the alkoxide and alcohol.
  • acetic acid which also has the function of reducing the viscosity of the solution.
  • the precursors of the oxide nanoparticles namely the transition metal alkoxide, acetic acid, alcohol and possibly the carbon compound
  • the precursors of the oxide nanoparticles are for example in the form of a clear aqueous solution guarantees the homogeneous distribution of these precursors at the molecular level and consequently favors a homogeneous composition of the oxide nanoparticles.
  • oxide obtained according to the process of the invention There is theoretically no lower limit to the concentration of the solution, however, especially for economic reasons, it is generally preferable not to use a concentration too low for the solution, especially to limit costs implementation.
  • the term "average size" is used to define the average value of the diameter of the considered objects (oxide nanoparticles, transition metal carbide nanocrystallites, etc.) when they are substantially spherical, or the average value. major dimensions of these objects when they are not substantially spherical.
  • the aqueous solution can be sprayed in liquid nitrogen contained in a Dewar vessel and / or the spray is carried out using a sprayer having a spray nozzle having a calibrated orifice, for example a calibrated orifice of 0.51 mm, through which the aqueous solution is injected at a pressure of between 0.03 and 0.4 MPa, preferably at a pressure of 0.3 MPa, generally under the effect of a carrier gas which may be compressed air, or else a neutral industrial gas advantageously filtered, such as argon or nitrogen.
  • a carrier gas which may be compressed air, or else a neutral industrial gas advantageously filtered, such as argon or nitrogen.
  • a conical insert allows, by centrifugal effect, to press the aqueous solution on the inner wall of the nozzle before this solution is injected through the outlet orifice.
  • a liquid jet is generally obtained in the form of an axial hollow cone with a turbulence effect.
  • Lyophilization can be carried out in all types of conventional lyophilizer. In this step, the conditions used are not critical, the particles are, however, preferably maintained in the frozen state until the elimination of water, in particular to avoid interparticle agglomeration phenomena.
  • the conditions of this step ultimately lead to a substantial elimination of the water, in particular to avoid the creation of a porosity within the oxide nanoparticles during the pyrolysis of the water.
  • lyophilisate the freeze-drying is advantageously carried out between -200 ° C. and + 50 ° C., and more preferably between -20 ° C. and + 30 ° C., and at a pressure of between 0.1 Pa and 100 Pa and more preferably less than or equal to 10 Pa.
  • it can for lyophilization to take place efficiently and as quickly as possible, it can for example be conducted at a temperature of the order of -2O 0 C and under a pressure of 1 order. 0.1 Pa.
  • the freeze-drying step may advantageously comprise an adsorbed water removal step which consists in maintaining the lyophilizate under the pressure of freeze-drying, preferably at 0.1 Pa, and then raising the temperature to a value preferably between 30 ° C. and 100 ° C., more preferably equal to 30 ° C.
  • the lyophilizate obtained from the aqueous solution makes it possible to dispose the precursors in a form which has several characteristics: the freeze-dried product has a homogeneous composition throughout its volume due in particular to the fact that freeze-drying is a process which makes it possible to to eliminate the water without causing a concentration gradient in the solution, the lyophilisate is finely divided, which increases its reactivity, for example with respect to a heat treatment, and, on the other hand, has the advantage that it can be handled in the open air and makes it possible to obtain oxide nanoparticles of reduced average size.
  • the average size of the transition metal oxide crystallites (equivalent to the average size of the oxide nanoparticles) is generally between 10 and 100 nm, preferably between 10 and 50 nm, more preferably between 10 and 20 nm. .
  • the characteristics of the lyophilizate make, after pyrolysis, obtaining oxide nanoparticles with properties such that they can undergo the most complete carbothermic reduction possible to obtain nanocrystallites of transition metal carbide of medium size. reduced and high degree of purity, without this requiring the use of high temperatures.
  • the pyrolysis step of the lyophilizate be conducted i) under vacuum or under an inert atmosphere in order to avoid the formation of by-products such as oxycarbides and ii) at a temperature such that it allows crystallization oxide nanoparticles without leading by carbothermic reduction to unwanted carbide nanocrystallites at this stage of the manufacture of oxide nanoparticles.
  • This temperature is most often between 400 ° C. and 900 ° C., preferably between 400 ° C. and 600 ° C., more preferably still between 400 ° C. and 450 ° C.
  • the invention also relates to the application of the manufacturing process.
  • This carbothermic reduction can be in continuity with the process for manufacturing oxide nanoparticles in that the lyophilisate undergoes a single heat treatment which comprises both the pyrolysis (in order to form the oxide nanoparticles) followed directly by the reduction. carbothermal. It may also be successive in that the lyophilisate undergoes a first thermal treatment in an inert atmosphere which constitutes pyrolysis, then the oxide nanoparticles thus obtained subsequently undergo a second heat treatment which constitutes the carbothermic reduction.
  • the carbon, oxygen and transition metal element necessary for the formation of the oxide nanoparticles can be provided solely by the alkoxide, acetic acid and alcohol. These contributions can be determined beforehand by calculation from the precursor chemical formula and / or after ThermoGravimetric Analysis (ATG) precursors or oxide nanoparticles with respect to the carbon and oxygen inputs.
  • the carbon and / or oxygen element may be provided in a complementary manner with a precursor consisting of at least one carbon compound added to the aqueous solution.
  • This compound is within the aqueous solution that is chemically inert with respect to the alkoxide, and in particular it does not comprise an OH group (s) that can cause the hydrolysis of the alkoxide: it can therefore be chosen from a derivative cellulose meeting these criteria.
  • cellulose preferably methyl cellulose.
  • the process according to the invention is therefore flexible in that it makes it possible to obtain oxide nanoparticles having a large variety in the molar ratio of amorphous carbon to transition metal oxide, and thus to oxide nanoparticles in which the oxide of the metal transition has a wide variety of amorphous carbon coating rates.
  • This ratio is preferably between 1 and 4, even more preferably between 2 and 3.
  • the excess of acetic acid in the aqueous solution of the invention is such that the molar ratio between the amount of the amount of alcohol and the amount of alkoxide is between 20: 6: 1 and 3: 1: 1, even more preferably 16: 4: 1.
  • such molar ratio also makes it possible to limit the increase in viscosity after the possible addition of the carbon compound according to the invention.
  • the solution obtained was clear, thus marking the absence of the significant formation of a soil and a homogeneous composition. It was diluted in water to obtain 600 ml of concentrated aqueous solution.
  • the dry powder or freeze-dried product obtained in the preceding step was placed in a graphite nacelle and pyrolysed in a tubular furnace made of alumina (Adamel) under an argon flow U (Arcal, flow of 1.2 liters / minutes) by a increasing in temperature at a rate of 5 ° C./minutes until a temperature of 45 ° C. was reached which was maintained for 0.1 hour and then decreased at a rate of 5 ° C./minutes to room temperature. At the end of this pyrolysis, a black powder is obtained.
  • X-Ray Diffraction XRD
  • SEM Scanning Electron Microscopy
  • the lyophilizate obtained at the end of the freeze-drying step placed in a graphite boat was heat-treated in the above-mentioned alumina (Adamel) tubular furnace under argon flow with an increase in temperature at a rate of 5 °. C / minutes until reaching a temperature of 1300 0 C which was maintained for 2 hours, and then decreased at a rate of 5 ° C / minute to room temperature.
  • the carbothermic reduction is in this case in the continuity of the pyrolysis which led to the formation of oxide nanoparticles: the lyophilisate has therefore undergone a single heat treatment.
  • a measurement by ATG made it possible to determine the stoichiometric composition of the TiC and showed a residual oxygen content of less than 1% by mass as well as the presence of an excess of carbon (revealed by a mass gain of 30.4% instead of a theoretical value of 33.40%).
  • the knowledge of the value of this excess of carbon which constitutes an impurity can make it possible to readjust, possibly by successive tests, the quantity of carbon provided by the methylcellulose in order to reduce or render null the carbon content of the transition metal carbide.
  • TiO 2 titanium dioxide
  • Titanium dioxide nanoparticles (TiO 2) coated in which the molar ratio of carbon / Ti0 2 is from 0.05 were manufactured according to a procedure similar to that of Example 1, except that intakes carbon element have been adapted.
  • such nanoparticles are used as constituent materials for the electrodes of lithium batteries. They then generally have a coating rate such that the carbon / TiO 2 molar ratio is between 0.01 and 0.06, preferably between 0.02 and 0.05.
  • ZrO 2 zirconium dioxide
  • HfO 2 hafnium dioxide
  • Zirconium dioxide (ZrO 2 ) nanoparticles and hafnium dioxide nanoparticles (HfO 2 ) both coated with amorphous carbon was conducted under conditions similar to those of the previous examples.
  • They generally include increasing the temperature at a rate between 5 ° C / minute and 10 ° C / min, preferably 5 ° C / minute in order to reach a temperature between 1000 and 1600 0 C 0 C preferably at 1300 ° C. or 1400 ° C., which temperature is maintained for a period of between 2 and 6 hours, preferably 2 hours for TiC, 3 hours for ZrC and 5 hours for HfC.
  • the carbothermic reduction is carried out with a carrier gas comprising argon and more advantageously U or Arcal argon.
  • the process of the invention makes it possible to manufacture oxide nanoparticles of a reduced average size which make it possible to obtain nanocrystallites of transition metal carbide after moderate carbothermal reduction. a higher degree of purity and / or a smaller average size than the nanoparticles currently obtained by the sol-gel type processes. It is also simple to implement and in particular makes it easy to obtain oxide nanoparticles in which the transition metal oxide has a wide variety of amorphous carbon coating rates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

The invention relates to a method for producing nanoparticles of at least one oxide of a transition metal selected from Ti, Zr, Hf, V, Nb and Ta, which are coated with amorphous carbon, wherein said method includes the following successive steps: (i) a liquid mixture containing as precursors at least one alkoxyde of the transition metal, an alcohol, and an acetic acid relative to the transition metal is prepared and diluted in water in order to form an aqueous solution, the precursors being present in the solution according to a molar ratio such that it prevents or sufficiently limits the formation of a sol so that the aqueous solution can be freeze-dried, and such that the transition metal, the carbon and the oxygen are present in a stoichiometric ratio according to which they are included in the nanoparticles; (ii) the aqueous solution is freeze-dried; (ii) the freeze-dried product obtained during the preceding step is submitted to pyrolysis under vacuum or in an inert atmosphere in order to obtain the nanoparticles. The invention also relates to the application of the method for producing transition metal carbide.

Description

PROCEDE DE FABRICATION DE NANOPARTICULES D'OXYDE DE METAL DE TRANSITION ENROBEES DE CARBONE. PROCESS FOR MANUFACTURING TRANSITION METAL OXIDE NANOPARTICLES COATED WITH CARBON.
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
La présente invention a trait au domaine des nanomatériaux à base de métal de transition pouvant rentrer dans la composition d'éléments des réacteurs nucléaires. Elle concerne en particulier un procédé de fabrication de nanoparticules d'au moins un oxyde de métal de transition enrobées de carbone .The present invention relates to the field of nanomaterials based on transition metal can be included in the composition of nuclear reactor elements. It relates in particular to a process for manufacturing nanoparticles of at least one carbon-coated transition metal oxide.
ETAT DE LA TECHNIQUESTATE OF THE ART
Les carbures de métaux de transition constituent des matériaux particulièrement adaptés pour fabriquer certains des éléments des réacteurs nucléaires de prochaine génération (en particulier les réacteurs dits de GénérationTransition metal carbides are particularly suitable materials for manufacturing some of the elements of next-generation nuclear reactors (particularly so-called Generation reactors).
IV) car ils sont fortement réfractaires, ont une bonne conductivité thermique, une faible absorption neutronique, une petite section efficace d'absorption et une bonne résistance sous irradiation.IV) because they are highly refractory, have good thermal conductivity, low neutron absorption, a small absorption cross section and good resistance under irradiation.
A contrario, ils présentent une fragilité préjudiciable à de telles applications.On the contrary, they have a fragility detrimental to such applications.
Il a été proposé de diminuer cette fragilité en réduisant la taille des cristallites de ces carbures jusqu'à une taille moyenne typiquement comprise entre quelques nanomètres et quelques centaines de nanomètres afin de former des nanocristallites .It has been proposed to reduce this fragility by reducing the size of the crystallites of these carbides to an average size typically between a few nanometers and a few hundred nanometers to form nanocrystallites.
Ces derniers peuvent être obtenus par réduction carbothermique de particules d'oxydes de métaux de transition enrobées de carbone amorphe d'une taille moyenne allant de quelques nanomètres à quelques centaines de nanomètres (appelées « nanoparticules d'oxydes » dans la suite de la description) . Cette réduction doit être la plus complète possible afin que les nanocristallites de carbures de métaux de transition soient autant que possible exempts de toute impureté .These can be obtained by carbothermic reduction of transition metal oxide particles coated with amorphous carbon of medium size. ranging from a few nanometers to a few hundred nanometers (called "oxide nanoparticles" in the following description). This reduction must be as complete as possible so that the nanocrystallites of transition metal carbides are as free as possible from any impurity.
Dans ce but, la réduction carbothermique est le plus souvent conduite à haute température, température qui doit être d'autant plus élevée que les cristallites des nanoparticules d'oxydes sont de taille moyenne importante et/ou contiennent initialement une quantité importante d' impuretés .For this purpose, the carbothermic reduction is most often carried out at a high temperature, which temperature must be higher as the crystallites of the nanoparticles of oxides are of medium size and / or initially contain a large quantity of impurities.
Or, même si l'utilisation d'une température très élevée permet effectivement d'obtenir des cristallites de carbures de métaux de transition présentant un bon degré de pureté, elle a pour inconvénient d'en augmenter fortement la taille moyenne, voire de conduire à former une poudre grossière .However, even if the use of a very high temperature makes it possible to obtain crystallites of transition metal carbides having a good degree of purity, it has the disadvantage of greatly increasing the average size, or even leading to form a coarse powder.
Il est donc souvent nécessaire dans une dernière étape de broyer cette poudre afin de tenter de réduire la taille moyenne des cristallites qui la composent. Ce broyage doit être réalisé sous atmosphère inerte (le plus souvent en boites à gants) afin d'éviter l'oxydation des carbures. Toutefois, il a pour inconvénient d'induire une pollution par les matériaux du broyeur et de ne conduire tout au mieux qu'à des cristallites de carbures de métaux de transition d'une taille moyenne micronique.It is therefore often necessary in a last step to grind this powder in an attempt to reduce the average size of the crystallites that compose it. This grinding must be carried out under an inert atmosphere (usually in glove boxes) in order to avoid the oxidation of carbides. However, it has the disadvantage of inducing pollution by the mill materials and at best only lead to crystallites of transition metal carbides of average micron size.
Afin de mener une réduction carbothermique à des températures moins élevées que celles des procédés existants, le document « Dollé et al., Journal of theIn order to carry out a carbothermic reduction at temperatures lower than those of the existing processes, the document "Dollé et al., Journal of the
European Ceramic Society, Vol. 27, N°4, 2007, p. 2061-2067 » propose une nouvelle voie de synthèse de nanoparticules d'oxydes de zirconium. La première étape de cette synthèse est une réaction de type sol-gel au cours de laquelle on dissout du saccharose dans de l'acide acétique, puis on ajoute du n-propoxide de zirconium afin de former un gel visqueux. Le séchage et la pyrolyse du gel ainsi obtenu conduisent ensuite à des nanoparticules d'oxyde d'une taille moyenne de 15 nm regroupées sous forme d'agglomérats d'une taille moyenne de 2 à 3 μm. Après une réduction carbothermique à 14000C de ces nanoparticules d'oxyde, on obtient des nanocristallites de carbure de zirconium qui, tout en étant d'une taille moyenne relativement réduite (de l'ordre de 93 nm) , contiennent néanmoins des impuretés. Au sens de la description qui suit, ces impuretés sont considérées comme étant en particulier constituées de carbone libre, d'oxygène dissous et d' oxycarbures .European Ceramic Society, Vol. 27, No. 4, 2007, p. 2061-2067 "proposes a new route of synthesis of nanoparticles of zirconium oxides. The first step of this synthesis is a sol-gel reaction in which sucrose is dissolved in acetic acid and then add zirconium n-propoxide to form a viscous gel. The drying and pyrolysis of the gel thus obtained then leads to oxide nanoparticles with an average size of 15 nm grouped in the form of agglomerates with an average size of 2 to 3 μm. After a carbothermic reduction at 1400 ° C. of these oxide nanoparticles, nanocrystallites of zirconium carbide are obtained which, while being of a relatively small average size (of the order of 93 nm), nevertheless contain impurities. For the purposes of the description which follows, these impurities are considered to consist in particular of free carbon, dissolved oxygen and oxycarbides.
Afin de tenter d'en augmenter le degré de pureté, ces nanocristallites de carbure de zirconium sont à leur tour chauffés à une température élevée de 16000C, ce qui a pour conséquence néfaste d'augmenter leur taille moyenne à 150 nm sans toutefois avoir réussi à éliminer totalement les impuretés .In an attempt to increase the degree of purity, these nanocrystallites of zirconium carbide are in turn heated to a high temperature of 1600 ° C., which has the detrimental consequence of increasing their average size to 150 nm without however having managed to totally eliminate impurities.
EXPOSE DE L'INVENTIONSUMMARY OF THE INVENTION
Un des buts de l'invention est donc de réaliser un procédé de fabrication de nanoparticules d'oxyde de la taille moyenne la plus réduite possible, de telles nanoparticules permettant d'obtenir après réduction carbothermique à température modérée des nanocristallites de carbure de métal de transition d'un degré de pureté plus élevé et/ou d'une taille moyenne plus réduite que les nanoparticules obtenues par les meilleurs procédés actuels, en particulier de type sol-gel. L'invention a donc pour objet un procédé de fabrication de nanoparticules d'au moins un oxyde de métal de transition choisi parmi Ti, Zr, Hf, V, Nb et Ta enrobées de carbone amorphe, le procédé comprenant les étapes successives suivantes : (i) un mélange liquide contenant en tant que précurseurs au moins un alkoxyde du métal de transition, un alcool, de l'acide acétique en excès vis à vis du métal de transition est préparé, puis il est dilué dans de l'eau afin de former une solution aqueuse, les précurseurs étant présents dans la solution aqueuse selon un rapport molaire tel qu'il prévient ou limite suffisamment la formation d'un sol pour que la solution aqueuse soit lyophilisable et tel que le métal de transition, le carbone et l'oxygène sont présents selon le rapport stœchiométrique dans lequel ils se trouvent dans les nanoparticules,One of the aims of the invention is therefore to provide a process for manufacturing oxide nanoparticles of the smallest possible average size, such nanoparticles making it possible, after moderate carbothermic reduction, to obtain nanocrystallites of transition metal carbide. of a higher degree of purity and / or a smaller average size than the nanoparticles obtained by the best current processes, in particular of the sol-gel type. The subject of the invention is therefore a process for producing nanoparticles of at least one transition metal oxide selected from Ti, Zr, Hf, V, Nb and Ta coated with amorphous carbon, the process comprising the following successive steps: (i) a liquid mixture containing as precursors at least one transition metal alkoxide, an alcohol, excess acetic acid with respect to the transition metal is prepared, and then diluted in water to to form an aqueous solution, the precursors being present in the aqueous solution in a molar ratio such that it prevents or sufficiently limits the formation of a sol so that the aqueous solution is lyophilizable and such as the transition metal, carbon and oxygen are present according to the stoichiometric ratio in which they are found in the nanoparticles,
(ii) la solution aqueuse est soumise à une lyophilisation,(ii) the aqueous solution is subjected to lyophilization,
(iii) le lyophilisât obtenu à l'étape précédente est pyrolyse sous vide ou sous atmosphère inerte afin d'obtenir les nanoparticules .(iii) the lyophilizate obtained in the preceding step is pyrolyzed under vacuum or under an inert atmosphere in order to obtain the nanoparticles.
Au sens de l'invention, les nanoparticules d'oxyde de métal de transition sont dites « enrobées » de carbone amorphe en ce sens que leur surface est recouverte partiellement ou totalement de carbone amorphe. Le carbone est quant à lui dit « amorphe » car, essentiellement ou en majorité, il ne se présente pas sous forme de cristallites, bien qu'un ordre atomique à courte distance puisse localement exister. Préférentiellement , la lyophilisation comprend la pulvérisation de la solution aqueuse dans un bain d' azote liquide afin d'obtenir des particules congelées ayant la composition homogène de cette solution, puis la mise sous dépression de ces particules afin d'en éliminer l'eau par sublimation, ce par quoi on obtient une poudre qui conduit au lyophilisât suite à sa dessiccation secondaire. Au sens de l'invention, on entend par « composition homogène » définir une composition qui est la même ou essentiellement la même pour tout volume de taille micronique, de préférence de taille nanométrique . La pulvérisation peut être réalisée avec une grande variété de pulvérisateurs, par exemple avec un pulvérisateur à buse ou un pulvérisateur à ultra-sons.For the purposes of the invention, the transition metal oxide nanoparticles are said to be "coated" with amorphous carbon in the sense that their surface is partially or totally covered with amorphous carbon. Carbon is said to be "amorphous" because, essentially or mainly, it does not occur in the form of crystallites, although a short-range atomic order can exist locally. Preferably, the freeze-drying comprises spraying the aqueous solution in a liquid nitrogen bath in order to obtain frozen particles having the homogeneous composition of this solution, and then putting these particles under vacuum in order to remove the water therefrom. sublimation, whereby a powder is obtained which leads to the lyophilisate following its secondary desiccation. For the purposes of the invention, the term "homogeneous composition" means a composition which is the same or essentially the same for any volume of micron size, preferably of nanometric size. The spraying can be carried out with a wide variety of sprayers, for example with a nozzle sprayer or an ultrasonic sprayer.
Pour obtenir des nanoparticules d'oxydes présentant le degré de pureté le plus élevé possible, il est préférable que le lyophilisât ne contienne pas d' autre élément que le métal de transition, le carbone, l'hydrogène ou l'oxygène. A cet effet, l'alkoxyde est avantageusement choisi parmi 1' isopropoxyde et le n-propoxyde. Des alkoxydes comprenant des métaux de transition différents peuvent également être mélangés afin de former des nanoparticules contenant un mélange des oxydes correspondants, par exemple un mélange d'oxydes de Ti et d'oxydes de Zr. L'alcool a notamment un rôle d'agent diluant de l'alkoxyde. Il peut être choisi parmi l' isopropanol (ou propanol-2) et le propanol-1, ces alcools possédant des chaînes carbonées issues de la même famille que celle des alkoxydes préférés précités. L'acide acétique est quant à lui un modificateur chimique qui permet, au sein de l'alkoxyde de métal, la substitution de groupements alkoxy par des groupements acétates. Avantageusement, il permet donc de disposer d'un alkoxyde modifié qui, par rapport à l'alkoxyde de départ, présente une réactivité moindre vis à vis de l'eau, ce qui a pour effet d'empêcher ou de limiter la réaction spontanée de condensation (réaction sol-gel) de l'alkoxyde, réaction qui peut mener à la formation de précipités . Lorsque cette réaction n'est que limitée, un sol peut alors commencer à se former par amorce de la réaction sol-gel, ce sol étant au sens de l'invention tel qu'il comprend des oligomères et/ou des colloïdes en suspension dans l'eau.To obtain oxide nanoparticles having the highest degree of purity possible, it is preferable that the lyophilisate contain no element other than the transition metal, carbon, hydrogen or oxygen. For this purpose, the alkoxide is advantageously chosen from isopropoxide and n-propoxide. Alkoxides comprising different transition metals may also be mixed to form nanoparticles containing a mixture of the corresponding oxides, for example a mixture of Ti oxides and Zr oxides. In particular, the alcohol acts as a diluting agent for the alkoxide. It may be chosen from isopropanol (or 2-propanol) and propanol-1, these alcohols having carbon chains derived from the same family as those of the abovementioned preferred alkoxides. Acetic acid is a chemical modifier that allows, within the metal alkoxide, the substitution of alkoxy groups with acetate groups. Advantageously, it therefore provides a modified alkoxide which, compared to the starting alkoxide, has a lower reactivity with respect to water, which has the effect of preventing or limiting the spontaneous reaction of condensation (sol-gel reaction) of the alkoxide, a reaction that can lead to the formation of precipitates. When this reaction is only limited, a sol can then begin to form by initiating the sol-gel reaction, this sol being within the meaning of the invention as it comprises oligomers and / or colloids suspended in the water.
De plus, afin d'éviter ou de limiter la formation d'un sol, conduisant en particulier à une solution aqueuse d'une viscosité si élevée qu'elle ne pourrait être lyophilisée et/ou à une solution aqueuse de composition peu homogène, l'acide acétique, qui a aussi pour fonction de diminuer la viscosité de la solution, est en excès par rapport à l'alkoxyde et à l'alcool. L'homme du métier peut par exemple considérer qu'une solution aqueuse selon l'invention qui répond à ces critères est une solution limpide. Ceci constitue un des points essentiels du procédé de l'invention, car le fait que les précurseurs des nanoparticules d'oxyde (à savoir l'alkoxyde de métal de transition, l'acide acétique, l'alcool et éventuellement le composé carboné) sont par exemple sous forme d'une solution aqueuse limpide garantit la répartition homogène de ces précurseurs au niveau moléculaire et par suite favorise une composition homogène des nanoparticules d'oxyde. En règle générale, il est indiqué d'utiliser une solution aqueuse de concentration la plus faible possible, dans la mesure où, toutes choses égales par ailleurs, une diminution de la concentration de la solution induit une diminution de la taille moyenne des nanoparticules d'oxyde obtenues selon le procédé de l'invention. Il n'existe en théorie pas de limite inférieure à la concentration de la solution, toutefois, notamment pour des raisons d'ordre économique, il est en général préférable de ne pas utiliser une concentration trop faible pour la solution, notamment pour limiter les coûts de mise en œuvre.In addition, in order to avoid or limit the formation of a soil, leading in particular to an aqueous solution of a viscosity so high that it could not be freeze-dried and / or an aqueous solution of inhomogeneous composition, acetic acid, which also has the function of reducing the viscosity of the solution, is in excess relative to the alkoxide and alcohol. The skilled person may for example consider that an aqueous solution according to the invention that meets these criteria is a clear solution. This is one of the essential points of the process of the invention, since the precursors of the oxide nanoparticles (namely the transition metal alkoxide, acetic acid, alcohol and possibly the carbon compound) are for example in the form of a clear aqueous solution guarantees the homogeneous distribution of these precursors at the molecular level and consequently favors a homogeneous composition of the oxide nanoparticles. As a general rule, it is advisable to use an aqueous solution of the lowest possible concentration, insofar as, all things being equal, a decrease in the concentration of the solution induces a decrease in the average size of the nanoparticles. oxide obtained according to the process of the invention. There is theoretically no lower limit to the concentration of the solution, however, especially for economic reasons, it is generally preferable not to use a concentration too low for the solution, especially to limit costs implementation.
Ainsi, prëférentiellement , la concentration du métal de transition dans la solution aqueuse est inférieure ou égale à 0,1 moles/litre, encore plus préférentiellement comprise entre 0,001 et 0,1 moles/litre, encore plus préférentiellement comprise entre 0,01 et 0,1 moles/litre.Thus, preferably, the concentration of the transition metal in the aqueous solution is less than or equal to 0.1 moles / liter, even more preferably between 0.001 and 0.1 moles / liter, even more preferably between 0.01 and 0 , 1 moles / liter.
De telles valeurs de concentrations ont en particulier pour avantage de prévenir ou limiter l'agrégation d'éventuelles particules présentes sous forme d'un sol. Elles permettent également de disposer d'une solution aqueuse facilement lyophilisable à l'aide des lyophilisateurs usuels car alors le point triple de la solution n'est pas trop éloigné de celui de l ' eau pure .In particular, such concentration values have the advantage of preventing or limiting the aggregation of any particles present in the form of a sol. They also make it possible to have an easily lyophilizable aqueous solution using the usual freeze-dryers, since then the triple point of the solution is not too far from that of pure water.
Toujours dans le but de diminuer au mieux la taille moyenne des nanoparticules d'oxyde, les particules congelées obtenues lors de la lyophilisation peuvent avoir une taille moyenne comprise entre 0,1 μm et 10 μm, préférentiellement inférieure à 2 μm, et encore plus préférentiellement comprise entre 0,5 μm et 1 μm.Still with the aim of minimizing the average size of the oxide nanoparticles, the frozen particles obtained during lyophilization can have an average size of between 0.1 μm and 10 μm, preferably less than 2 μm, and even more preferentially between 0.5 μm and 1 μm.
Dans la présente description, on entend par « taille moyenne » définir la valeur moyenne du diamètre des objets considérés (nanoparticules d'oxyde, nanocristallites de carbure de métal de transition, ...) lorsqu'ils sont substantiellement sphériques, ou la valeur moyenne des dimensions principales de ces objets lorsqu'ils ne sont pas substantiellement sphériques.In the present description, the term "average size" is used to define the average value of the diameter of the considered objects (oxide nanoparticles, transition metal carbide nanocrystallites, etc.) when they are substantially spherical, or the average value. major dimensions of these objects when they are not substantially spherical.
Afin d'atteindre le but précité, préférentiellement, la solution aqueuse peut être pulvérisée dans de l'azote liquide contenu dans un récipient de type vase Dewar et/ou la pulvérisation est effectuée à l'aide d'un pulvérisateur comportant une buse de pulvérisation possédant un orifice calibré, par exemple un orifice calibré de 0,51 mm, au travers duquel on injecte la solution aqueuse à une pression comprise entre 0,03 et 0,4 MPa, préférentiellement à une pression de 0,3 MPa, généralement sous l'effet d'un gaz vecteur qui peut être de l'air comprimé, ou bien encore un gaz industriel neutre avantageusement filtré, tel que de l'argon ou de l'azote.In order to achieve the above purpose, preferably, the aqueous solution can be sprayed in liquid nitrogen contained in a Dewar vessel and / or the spray is carried out using a sprayer having a spray nozzle having a calibrated orifice, for example a calibrated orifice of 0.51 mm, through which the aqueous solution is injected at a pressure of between 0.03 and 0.4 MPa, preferably at a pressure of 0.3 MPa, generally under the effect of a carrier gas which may be compressed air, or else a neutral industrial gas advantageously filtered, such as argon or nitrogen.
Selon un mode de réalisation préférentiel, on peut assurer au sein de la buse de pulvérisation, une rotation de la solution aqueuse au moyen d'un insert conique rainure. Un tel insert conique permet, par effet centrifuge, de plaquer la solution aqueuse sur la paroi interne de la buse avant que cette solution soit injectée par l'orifice de sortie. On obtient ainsi en général un jet liquide se présentant sous la forme d'un cône creux axial à effet de turbulence. La lyophilisation peut être conduite dans tous types de lyophilisateur usuel. Dans cette étape, les conditions mises en œuvre ne sont pas déterminantes, les particules étant toutefois maintenues de préférence à l'état congelé jusqu'à l'élimination de l'eau, notamment pour éviter des phénomènes d'agglomération interparticulaire .According to a preferred embodiment, one can ensure within the spray nozzle, a rotation of the aqueous solution by means of a conical groove insert. Such a conical insert allows, by centrifugal effect, to press the aqueous solution on the inner wall of the nozzle before this solution is injected through the outlet orifice. In this way, a liquid jet is generally obtained in the form of an axial hollow cone with a turbulence effect. Lyophilization can be carried out in all types of conventional lyophilizer. In this step, the conditions used are not critical, the particles are, however, preferably maintained in the frozen state until the elimination of water, in particular to avoid interparticle agglomeration phenomena.
Il est par ailleurs préférable, le plus souvent, que les conditions de cette étape conduisent in fine à une élimination substantielle de l'eau, notamment pour éviter la création d'une porosité au sein des nanoparticules d'oxyde au cours de la pyrolyse du lyophilisât. Pour ce faire, la lyophilisation est avantageusement conduite entre -2000C et +5O0C, et plus préférentiellement entre -2O0C et +300C, et à une pression comprise entre 0,1 Pa et 100 Pa et plus préférentiellement inférieure ou égale à 10 Pa. Ainsi, pour que la lyophilisation ait lieu de façon efficace et le plus rapidement possible, elle peut par exemple être conduite à une température de l'ordre de -2O0C et sous une pression de 1 ' ordre de 0,1 Pa . L'étape de lyophilisation peut avantageusement comprendre une étape d'élimination d'eau adsorbée qui consiste à maintenir le lyophilisât sous la pression de la lyophilisation, préférentiellement à 0,1 Pa, puis à élever la température jusqu'à une valeur préférentiellement comprise entre 3O0C et 1000C, plus préférentiellement égale à 300C.It is also preferable, more often than not, that the conditions of this step ultimately lead to a substantial elimination of the water, in particular to avoid the creation of a porosity within the oxide nanoparticles during the pyrolysis of the water. lyophilisate. For this purpose, the freeze-drying is advantageously carried out between -200 ° C. and + 50 ° C., and more preferably between -20 ° C. and + 30 ° C., and at a pressure of between 0.1 Pa and 100 Pa and more preferably less than or equal to 10 Pa. Thus, for lyophilization to take place efficiently and as quickly as possible, it can for example be conducted at a temperature of the order of -2O 0 C and under a pressure of 1 order. 0.1 Pa. The freeze-drying step may advantageously comprise an adsorbed water removal step which consists in maintaining the lyophilizate under the pressure of freeze-drying, preferably at 0.1 Pa, and then raising the temperature to a value preferably between 30 ° C. and 100 ° C., more preferably equal to 30 ° C.
Le lyophilisât obtenu à partir de la solution aqueuse permet de disposer des précurseurs sous une forme qui présente plusieurs caractéristiques : le lyophilisât présente une composition homogène dans l'ensemble de son volume dû en particulier au fait que la lyophilisation est un processus qui permet d'éliminer l'eau sans que cela engendre un gradient de concentration dans la solution, - le lyophilisât est finement divisé, ce qui augmente sa réactivité par exemple vis-à-vis d'un traitement thermique, et présente d'autre part l'avantage qu'il est manipulable à l'air libre et permet l'obtention de nanoparticules d'oxyde de taille moyenne réduite.The lyophilizate obtained from the aqueous solution makes it possible to dispose the precursors in a form which has several characteristics: the freeze-dried product has a homogeneous composition throughout its volume due in particular to the fact that freeze-drying is a process which makes it possible to to eliminate the water without causing a concentration gradient in the solution, the lyophilisate is finely divided, which increases its reactivity, for example with respect to a heat treatment, and, on the other hand, has the advantage that it can be handled in the open air and makes it possible to obtain oxide nanoparticles of reduced average size.
Ainsi, la taille moyenne des cristallites d'oxyde de métal de transition (assimilée à la taille moyenne des nanoparticules d'oxyde) est généralement comprise entre 10 et 100 nm, préférentiellement entre 10 et 50 nm, encore plus préférentiellement entre 10 et 20 nm.Thus, the average size of the transition metal oxide crystallites (equivalent to the average size of the oxide nanoparticles) is generally between 10 and 100 nm, preferably between 10 and 50 nm, more preferably between 10 and 20 nm. .
Avantageusement, les caractéristiques du lyophilisât font, qu'après pyrolyse, on obtient des nanoparticules d'oxyde aux propriétés telles qu'elles peuvent subir une réduction carbothermique la plus complète possible afin d'obtenir des nanocristallites de carbure de métal de transition de taille moyenne réduite et de haut degré de pureté, et ce sans que cela nécessite l'emploi de températures élevées .Advantageously, the characteristics of the lyophilizate make, after pyrolysis, obtaining oxide nanoparticles with properties such that they can undergo the most complete carbothermic reduction possible to obtain nanocrystallites of transition metal carbide of medium size. reduced and high degree of purity, without this requiring the use of high temperatures.
Il est par ailleurs essentiel que l'étape de pyrolyse du lyophilisât soit menée i) sous vide ou sous atmosphère inerte afin d'éviter la formation de sous-produits tels que des oxycarbures et ii) à une température telle qu'elle permet la cristallisation des nanoparticules d'oxyde sans pour autant conduire par réduction carbothermique à des nanocristallites de carbure non désirés a ce stade de la fabrication des nanoparticules d'oxyde. Cette température est le plus souvent comprise entre 4000C et 9000C, préférentiellement entre 4000C et 6000C, encore plus préférentiellement entre 4000C et 4500C. L'invention concerne également l'application du procédé de fabrication de nanoparticules d'oxydes pour l'obtention d'un carbure du métal de transition sous forme de nanocristallites en soumettant, ultérieurement ou dans la continuité dudit procédé, les nanoparticules à une réduction carbothermique. Cette réduction carbothermique peut être dans la continuité du procédé de fabrication de nanoparticules d'oxyde en ce sens que le lyophilisât subit un seul traitement thermique qui comprend à la fois la pyrolyse (afin de former les nanoparticules d'oxyde) suivie directement par la réduction carbothermique. Elle peut être également successive en ce sens que le lyophilisât subit un premier traitement thermique sous atmosphère inerte qui constitue la pyrolyse, puis les nanoparticules d'oxyde ainsi obtenues subissent ultérieurement un deuxième traitement thermique qui constitue la réduction carbothermique.It is also essential that the pyrolysis step of the lyophilizate be conducted i) under vacuum or under an inert atmosphere in order to avoid the formation of by-products such as oxycarbides and ii) at a temperature such that it allows crystallization oxide nanoparticles without leading by carbothermic reduction to unwanted carbide nanocrystallites at this stage of the manufacture of oxide nanoparticles. This temperature is most often between 400 ° C. and 900 ° C., preferably between 400 ° C. and 600 ° C., more preferably still between 400 ° C. and 450 ° C. The invention also relates to the application of the manufacturing process. of nanoparticles of oxides for obtaining a transition metal carbide in the form of nanocrystallites by subjecting the nanoparticles to a carbothermic reduction, subsequently or in continuity with said process. This carbothermic reduction can be in continuity with the process for manufacturing oxide nanoparticles in that the lyophilisate undergoes a single heat treatment which comprises both the pyrolysis (in order to form the oxide nanoparticles) followed directly by the reduction. carbothermal. It may also be successive in that the lyophilisate undergoes a first thermal treatment in an inert atmosphere which constitutes pyrolysis, then the oxide nanoparticles thus obtained subsequently undergo a second heat treatment which constitutes the carbothermic reduction.
Avantageusement, l'élément carbone, oxygène et métal de transition nécessaire à la formation des nanoparticules d'oxyde peut être apporté uniquement par l'alkoxyde, l'acide acétique et l'alcool. Ces apports pourront être déterminés préalablement par calcul à partir de la formule chimique des précurseurs et/ou après Analyse ThermoGravimétrique (ATG) des précurseurs ou des nanoparticules d'oxyde en ce qui concerne les apports en carbone et oxygène. Toutefois, dans un mode de réalisation préféré, l'élément carbone et/ou oxygène peut être apporté à titre complémentaire par un précurseur constitué d'au moins un composé carboné ajouté à la solution aqueuse. Ce composé est au sein de la solution aqueuse inerte chimiquement vis à vis de l'alkoxyde, et en particulier il ne comporte pas de groupement (s) OH pouvant provoquer l'hydrolyse de l'alkoxyde : il peut donc être choisi parmi un dérivé de la cellulose répondant à ces critères.Advantageously, the carbon, oxygen and transition metal element necessary for the formation of the oxide nanoparticles can be provided solely by the alkoxide, acetic acid and alcohol. These contributions can be determined beforehand by calculation from the precursor chemical formula and / or after ThermoGravimetric Analysis (ATG) precursors or oxide nanoparticles with respect to the carbon and oxygen inputs. However, in a preferred embodiment, the carbon and / or oxygen element may be provided in a complementary manner with a precursor consisting of at least one carbon compound added to the aqueous solution. This compound is within the aqueous solution that is chemically inert with respect to the alkoxide, and in particular it does not comprise an OH group (s) that can cause the hydrolysis of the alkoxide: it can therefore be chosen from a derivative cellulose meeting these criteria.
Par exemple, à titre préférentiel il s'agit de la mêthyl cellulose.For example, preferentially it is methyl cellulose.
Le procédé selon l'invention est donc souple en ce sens qu'il permet d'obtenir des nanoparticules d'oxyde présentant une grande variété dans le rapport molaire carbone amorphe/oxyde de métal de transition, donc des nanoparticules d'oxyde dans lesquelles l'oxyde du métal de transition présente une grande variété de taux d'enrobage par le carbone amorphe. Ce rapport est préfèrentiellement compris entre 1 et 4 , encore plus préférentiellement entre 2 et 3. Selon un mode de réalisation préféré, l'excès d'acide acétique dans la solution aqueuse de 1 ' invention est telle que le rapport molaire entre la quantité d'acide acétique, la quantité d'alcool et la quantité d'alkoxyde est compris entre 20 : 6 : 1 et 3 : 1 : 1, encore plus préférentiellement égal à 16 : 4 : 1. Il a par ailleurs été constaté qu'un tel rapport molaire permet également de limiter l'accroissement de viscosité après l'ajout éventuel du composé carboné selon l'invention.The process according to the invention is therefore flexible in that it makes it possible to obtain oxide nanoparticles having a large variety in the molar ratio of amorphous carbon to transition metal oxide, and thus to oxide nanoparticles in which the oxide of the metal transition has a wide variety of amorphous carbon coating rates. This ratio is preferably between 1 and 4, even more preferably between 2 and 3. According to a preferred embodiment, the excess of acetic acid in the aqueous solution of the invention is such that the molar ratio between the amount of the amount of alcohol and the amount of alkoxide is between 20: 6: 1 and 3: 1: 1, even more preferably 16: 4: 1. such molar ratio also makes it possible to limit the increase in viscosity after the possible addition of the carbon compound according to the invention.
A titre préférentiel, la solution aqueuse de l'invention présente un pH compris entre 3 et 10 et plus préférentiellement compris entre 3 et 5 afin de ne pas trop abaisser son point de congélation et favoriser ainsi sa lyophilisation.Preferably, the aqueous solution of the invention has a pH of between 3 and 10 and more preferably between 3 and 5 so as not to lower its freezing point and thus promote its lyophilization.
DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION
D'autres objets, caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit, donnée à titre illustratif et non limitatif. Les exemples qui suivent illustrent selon l'invention le procédé de fabrication de nanoparticules de dioxyde de divers métaux de transition, présentant différents taux d'enrobage, puis l'utilisation de ces nanoparticules afin d'obtenir les carbures correspondants. 1 - Fabrication de nanoparticules de dioxyde de titane (TiO2) enrobées dans lesquelles le rapport molaire carbone/TiQ2 est d'environ 3.Other objects, features and advantages of the invention will appear better on reading the description which follows, given by way of illustration and not limitation. The examples which follow illustrate, according to the invention, the process for manufacturing nanoparticles of dioxide of various transition metals, having different coating levels, then the use of these nanoparticles in order to obtain the corresponding carbides. 1 - Manufacture of coated titanium dioxide nanoparticles (TiO 2 ) in which the carbon / TiO 2 molar ratio is about 3.
Un volume de 2,27 ml d1 isopropoxyde de titane (IsopTi) correspondant à 0,59 g de TiO2 a été ajouté à 2,27 ml d' isopropanol (propanol-2) et 6,81 ml d'acide acétique glacial (100 %) . Les rapports molaires 16 (acide) / 4A volume of 2.27 ml of 1 titanium isopropoxide (IsopTi) corresponding to 0.59 g of TiO 2 was added to 2.27 ml isopropanol (2-propanol) and 6.81 ml of glacial acetic acid (100%). The molar ratios 16 (acid) / 4
(alcool) / 1 (isopropoxyde) et volumiques 3 (acide) / 1(alcohol) / 1 (isopropoxide) and volume 3 (acid) / 1
(alcool) / 1 (isopropoxyde) ont ainsi été réalisés. On ajoute ce mélange liquide à 200 ml d'une solution aqueuse où l'on a préalablement dissous 1,0790 g de méthylcellulose(alcohol) / 1 (isopropoxide) were thus made. This liquid mixture is added to 200 ml of an aqueous solution in which 1.0790 g of methylcellulose has previously been dissolved.
(MC) correspondant a 0,1802 g de carbone (vérification préalable par ATG) .(MC) corresponding to 0.1802 g of carbon (prior verification by ATG).
La solution obtenue était limpide, marquant ainsi l'absence de la formation significative d'un sol et une composition homogène. Elle a été diluée dans de l'eau pour obtenir 600 ml de solution aqueuse concentrée àThe solution obtained was clear, thus marking the absence of the significant formation of a soil and a homogeneous composition. It was diluted in water to obtain 600 ml of concentrated aqueous solution.
0,03 moles/litre de Ti.0.03 moles / liter of Ti.
Cette solution aqueuse a été alors nébulisée (nébuliseur Spraying Systems Emani Co, buse de diamètre 0,51 mm) afin de former des gouttelettes d'une taille moyenne deThis aqueous solution was then nebulized (Spraying Systems Emani Co nebulizer, 0.51 mm diameter nozzle) in order to form droplets of an average size of
1 μm projetées dans de l'azote liquide pour obtenir des particules de glace correspondantes.1 μm projected into liquid nitrogen to obtain corresponding ice particles.
Ces particules ont été introduites dans un lyophilisateur (lyophilisateur commercial Alpha 2-4 ChristThese particles were introduced into a freeze-dryer (commercial freeze-dryer Alpha 2-4 Christ
LSC) à la température de l'azote liquide. La pression de l'enceinte du lyophilisateur a été ensuite réduite à 0,1 Pa, et l'enceinte du lyophilisateur a été maintenue sous cette pression réduite et à -2O0C pendant 48 heures. On a ensuite porté pendant 3 heures l'enceinte à +3O0C, en maintenant la pression à 0,1 Pa.LSC) at the temperature of the liquid nitrogen. The pressure of the chamber of the lyophilizer was then reduced to 0.1 Pa, and the chamber of the lyophilizer was kept under this reduced pressure and at -20 ° C. for 48 hours. The enclosure was then heated for 3 hours at + 30 ° C., keeping the pressure at 0.1 Pa.
Ce maintien sous dépression à -200C pendant 48 heures et à +3O0C pendant 3 heures induit une élimination de l'eau par sublimation puis désorption, ce par quoi on obtient, à l'issue de ce traitement, 16 g de particules se présentant sous forme d'une poudre sèche.This holding under vacuum at -20 ° C. for 48 hours and at + 30 ° C. for 3 hours induces elimination of the water by sublimation and then desorption, by which, after this treatment, 16 g of particles in the form of a dry powder.
La poudre sèche ou lyophilisât obtenu à l'étape précédente a été placé dans une nacelle en graphite et pyrolyse dans un four tubulaire en alumine (Adamel) sous flux d'argon U (Arcal, flux de 1,2 litres/minutes) par une augmentation en température selon une vitesse de 5°C/minutes jusqu'à atteindre une température de 45O0C qui a été maintenue pendant 0,1 heure, puis diminuée selon une vitesse de 5°C/minutes jusqu'à la température ambiante. A l'issue de cette pyrolyse, une poudre noire est obtenue. L'analyse par Diffraction des Rayons X (DRX) et Microscopie Electronique à Balayage (MEB) indique que cette poudre est composée de nanoparticules de dioxyde de titane TiO2 de structure tétragonale (appelé également anatase) se présentant sous forme de nanocristallites d'une taille moyenne de 16 nm. La présence de carbone enrobant ces nanoparticules a été quantifiée par ATG sous air. Dans les proportions d'IsopTi, d'alcool, d'acide acétique et de MC utilisés, le rapport molaire carbone/Ti02 réalisé était ainsi égal à 3,04 ; sachant que le rapport molaire carbone/Ti02 idéal est égal à 3 afin de mener la réduction complète du dioxyde de titane selon la réaction de réduction carbothermique : TiO2(S) + 3C(s) -> TiC(s) + 2CO(g)The dry powder or freeze-dried product obtained in the preceding step was placed in a graphite nacelle and pyrolysed in a tubular furnace made of alumina (Adamel) under an argon flow U (Arcal, flow of 1.2 liters / minutes) by a increasing in temperature at a rate of 5 ° C./minutes until a temperature of 45 ° C. was reached which was maintained for 0.1 hour and then decreased at a rate of 5 ° C./minutes to room temperature. At the end of this pyrolysis, a black powder is obtained. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis indicate that this powder is composed of TiO 2 titanium dioxide nanoparticles of tetragonal structure (also called anatase) in the form of nanocrystallites of a average size of 16 nm. The presence of carbon coating these nanoparticles has been quantified by ATG under air. In the proportions of IsopTi, alcohol, acetic acid and MC used, the carbon / TiO 2 molar ratio produced was thus equal to 3.04; knowing that the molar ratio of carbon / Ti0 ideal 2 is equal to 3 in order to create the complete reduction of the titanium dioxide according to the carbothermal reduction reaction: TiO 2 (S) + 3C (s) -> TiC (s) + 2CO ( boy Wut)
2 - Fabrication de nanocristallites de carbure de titane TiC.2 - Manufacture of nanocrystallites of titanium carbide TiC.
Le lyophilisât obtenu à la fin de l'étape de la lyophilisation placé dans une nacelle en graphite a subi un traitement thermique dans le four tubulaire en alumine (Adamel) précité sous flux d'argon avec une augmentation de température selon une vitesse de 5°C/minutes jusqu'à atteindre une température de 13000C qui a été maintenue pendant 2 heures, pour être ensuite diminuée selon une vitesse de 5°C/minutes jusqu'à la température ambiante. La réduction carbothermique est dans ce cas dans la continuité de la pyrolyse qui a conduit à la formation de nanoparticules d'oxyde : le lyophilisât n'a donc subi qu'un seul traitement thermique. On aboutit ainsi à la formation de carbure de titane TiC nanométrique de structure cubique à faces centrées présentant un paramètre de maille de 4,326 Â (très proche de la valeur théorique de 4,327 Â) , et une taille moyenne de cristallites de 65 nm déterminée par des analyses DRX et MEB.The lyophilizate obtained at the end of the freeze-drying step placed in a graphite boat was heat-treated in the above-mentioned alumina (Adamel) tubular furnace under argon flow with an increase in temperature at a rate of 5 °. C / minutes until reaching a temperature of 1300 0 C which was maintained for 2 hours, and then decreased at a rate of 5 ° C / minute to room temperature. The carbothermic reduction is in this case in the continuity of the pyrolysis which led to the formation of oxide nanoparticles: the lyophilisate has therefore undergone a single heat treatment. This results in the formation of nanometric titanium carbide TiC of face-centered cubic structure having a mesh parameter of 4.326 Å. (very close to the theoretical value of 4.327 Å), and an average crystallite size of 65 nm determined by XRD and SEM analyzes.
Une mesure par ATG a permis de déterminer la composition stœchiométrique du TiC et montré une teneur résiduelle en oxygène inférieure à 1 % en masse ainsi que la présence d'un excès de carbone (révélé par un gain en masse de 30,4 % au lieu d'une valeur théorique de 33,40 %) . La connaissance de la valeur de cet excès de carbone qui constitue une impureté peut permettre de réajuster, éventuellement par essais successifs, la quantité de carbone apportée par la méthylcellulose afin de réduire voire rendre nulle la teneur en carbone du carbure de métal de transition.A measurement by ATG made it possible to determine the stoichiometric composition of the TiC and showed a residual oxygen content of less than 1% by mass as well as the presence of an excess of carbon (revealed by a mass gain of 30.4% instead of a theoretical value of 33.40%). The knowledge of the value of this excess of carbon which constitutes an impurity can make it possible to readjust, possibly by successive tests, the quantity of carbon provided by the methylcellulose in order to reduce or render null the carbon content of the transition metal carbide.
3 - Fabrication de nanoparticules de dioxyde de titane (TiO2) enrobées dans lesquelles le rapport molaire carbone/TiQ2 est de 0,05.3 - Manufacture of coated nanoparticles of titanium dioxide (TiO 2 ) in which the carbon / TiO 2 molar ratio is 0.05.
Des nanoparticules de dioxyde de titane (TiO2) enrobées dans lesquelles le rapport molaire carbone/Ti02 est de 0,05 ont été fabriquées selon un mode opératoire similaire à celui de l'exemple 1, si ce n'est que les apports en élément carbone ont été adaptés. De telles nanoparticules trouvent en particulier leur application en tant que matériau constitutif des électrodes des batteries au lithium. Elles présentent alors généralement un taux d'enrobage tel que le rapport molaire carbone/Ti02 est compris entre 0,01 et 0,06, préférentiellement entre 0,02 et 0,05.Titanium dioxide nanoparticles (TiO 2) coated in which the molar ratio of carbon / Ti0 2 is from 0.05 were manufactured according to a procedure similar to that of Example 1, except that intakes carbon element have been adapted. In particular, such nanoparticles are used as constituent materials for the electrodes of lithium batteries. They then generally have a coating rate such that the carbon / TiO 2 molar ratio is between 0.01 and 0.06, preferably between 0.02 and 0.05.
4 - Fabrication de nanoparticules de dioxyde de zirconium (ZrO2) ou de dioxyde de hafnium (HfO2) enrobées et des carbures de zirconium et de hafnium.4 - Manufacture of coated nanoparticles of zirconium dioxide (ZrO 2 ) or hafnium dioxide (HfO 2 ) and zirconium and hafnium carbides.
La fabrication de nanoparticules de dioxyde de zirconium (ZrO2) et de nanoparticules dioxyde de hafnium (HfO2) toutes deux enrobées de carbone amorphe a été menée suivant des conditions similaires à celles des exemples précédents .Zirconium dioxide (ZrO 2 ) nanoparticles and hafnium dioxide nanoparticles (HfO 2 ) both coated with amorphous carbon was conducted under conditions similar to those of the previous examples.
Il en a été de même pour la réduction carbothermique proprement dite : un lyophilisât obtenu selon des conditions similaires à celles des exemples précédents a subi un traitement thermique à 14000C pendant respectivement 3 heures et 5 heures afin de produire ces cristallites de ZrC et HfC d'une taille moyenne respective de 40 nm et 30 nm. Les conditions d'obtention du carbure de métal de transition à partir des nanoparticules d'oxyde qui se forment à environ 4500C durant l'augmentation en température devant aboutir à la réduction carbothermique peuvent néanmoins quelque peu varier selon le métal de transition considéré. Elles comprennent généralement l'augmentation de la température selon une vitesse comprise entre 5°C/minutes et 10°C/minutes, préférentiellement de 5°C/minutes, afin d'aboutir à une température comprise entre 10000C et 16000C, préférentiellement égale à 13000C ou 14000C, température qui est maintenue pendant une durée comprise entre 2 et 6 heures, préférentiellement égale à 2 heures pour le TiC, 3 heures pour le ZrC et 5 heures pour le HfC.It was the same for the carbothermic reduction proper: a lyophilisate obtained under conditions similar to those of the previous examples was subjected to heat treatment at 1400 0 C for respectively 3 hours and 5 hours in order to produce these crystallites of ZrC and HfC an average size of 40 nm and 30 nm respectively. The conditions for obtaining the transition metal carbide from the oxide nanoparticles that form at about 450 ° C. during the increase in temperature that will lead to the carbothermal reduction may nevertheless vary somewhat depending on the transition metal in question. They generally include increasing the temperature at a rate between 5 ° C / minute and 10 ° C / min, preferably 5 ° C / minute in order to reach a temperature between 1000 and 1600 0 C 0 C preferably at 1300 ° C. or 1400 ° C., which temperature is maintained for a period of between 2 and 6 hours, preferably 2 hours for TiC, 3 hours for ZrC and 5 hours for HfC.
L'homme du métier peut affiner ces conditions par essais successifs afin d'obtenir la réduction carbothermique la plus complète possible et une taille moyenne de nanocristallites aussi petite que possible qui peut être dans le cadre de l'invention comprise entre 30 et 100 nm, préférentiellement entre 30 et 70 nm, encore plus préférentiellement entre 30 et 40 nm. Avantageusement, la réduction carbothermique est menée avec un gaz vecteur comprenant de l'argon et plus avantageusement de l'argon U ou Arcal .Those skilled in the art can refine these conditions by successive tests in order to obtain the most complete carbothermic reduction possible and an average size of nanocrystallites as small as possible which can be within the scope of the invention of between 30 and 100 nm, preferably between 30 and 70 nm, more preferably between 30 and 40 nm. Advantageously, the carbothermic reduction is carried out with a carrier gas comprising argon and more advantageously U or Arcal argon.
Les exemples qui précèdent portent sur la fabrication de nanoparticules d'oxyde et de carbures comprenant du titane, du zirconium et de l'hafnium. A l'aide de ses connaissances générales, ils peuvent aisément être transposés par l'homme du métier afin de réaliser l'invention pour les autres métaux de transition que sont le vanadium, le niobium et le tantale.The foregoing examples relate to the manufacture of oxide and carbide nanoparticles comprising titanium, zirconium and hafnium. With the help of his General knowledge, they can easily be transposed by those skilled in the art to achieve the invention for the other transition metals that are vanadium, niobium and tantalum.
II ressort clairement de la description ci-dessus que le procédé de l'invention permet de fabriquer des nanoparticules d'oxyde d'une taille moyenne réduite qui permettent d'obtenir après réduction carbothermique à température modérée des nanocristallites de carbure de métal de transition d'un degré de pureté plus élevé et/ou d'une taille moyenne plus réduite que les nanoparticules obtenues actuellement par les procédés de type sol-gel. Il est également simple à mettre en œuvre et permet en particulier d'obtenir aisément des nanoparticules d'oxyde dans lesquelles l'oxyde du métal de transition présente une grande variété de taux d'enrobage par le carbone amorphe. It is clear from the description above that the process of the invention makes it possible to manufacture oxide nanoparticles of a reduced average size which make it possible to obtain nanocrystallites of transition metal carbide after moderate carbothermal reduction. a higher degree of purity and / or a smaller average size than the nanoparticles currently obtained by the sol-gel type processes. It is also simple to implement and in particular makes it easy to obtain oxide nanoparticles in which the transition metal oxide has a wide variety of amorphous carbon coating rates.

Claims

REVENDICATIONS
1) Procédé de fabrication de nanoparticules d'au moins un oxyde de métal de transition choisi parmi Ti, Zr, Hf, V, Nb et Ta enrobées de carbone amorphe, ledit procédé comprenant les étapes successives suivantes :1) A process for producing nanoparticles of at least one transition metal oxide selected from Ti, Zr, Hf, V, Nb and Ta coated with amorphous carbon, said process comprising the following successive steps:
(i) un mélange liquide contenant en tant que précurseurs au moins un alkoxyde dudit métal de transition, un alcool, de l'acide acétique en excès vis a vis dudit métal de transition est préparé, puis il est dilué dans de l'eau afin de former une solution aqueuse, lesdits précurseurs étant présents dans ladite solution aqueuse selon un rapport molaire tel qu' il prévient ou limite suffisamment la formation d'un sol pour que ladite solution aqueuse soit lyophilisable et tel que ledit métal de transition, le carbone et l'oxygène sont présents selon le rapport stœchiométrique dans lequel ils se trouvent dans lesdites nanoparticules,(i) a liquid mixture containing as precursors at least one alkoxide of said transition metal, an alcohol, excess acetic acid with respect to said transition metal is prepared, and then diluted in water to to form an aqueous solution, said precursors being present in said aqueous solution in a molar ratio such that it prevents or sufficiently limits the formation of a sol so that said aqueous solution is lyophilizable and such that said transition metal, carbon and oxygen are present according to the stoichiometric ratio in which they are found in said nanoparticles,
(ii) ladite solution aqueuse est soumise à une lyophilisation,(ii) said aqueous solution is subjected to lyophilization,
(iii) le lyophilisât obtenu à l'étape précédente est pyrolyse sous vide ou sous atmosphère inerte afin d'obtenir lesdites nanoparticules.(iii) the lyophilizate obtained in the preceding step is pyrolyzed under vacuum or under an inert atmosphere in order to obtain said nanoparticles.
2) Procédé de fabrication de nanoparticules selon la revendication 1, dans lequel ledit rapport molaire est ajusté par ajout à la solution aqueuse d'au moins un composé carboné inerte chimiquement vis à vis de l' alkoxyde.2) A method of manufacturing nanoparticles according to claim 1, wherein said molar ratio is adjusted by adding to the aqueous solution of at least one carbonaceous compound chemically inert with respect to the alkoxide.
3) Procédé de fabrication de nanoparticules selon la revendication 2, dans lequel ledit composé carboné est choisi parmi un dérivé de la cellulose tel que la méthyl cellulose.3) A method of manufacturing nanoparticles according to claim 2, wherein said carbon compound is selected from a cellulose derivative such as methyl cellulose.
4) Procédé de fabrication de nanoparticules selon l'une quelconque des revendications précédentes, dans lequel ledit alkoxyde est choisi parmi l' isopropoxyde et le n- propoxyde .4) A method of manufacturing nanoparticles according to any one of the preceding claims, wherein said alkoxide is selected from isopropoxide and n-propoxide.
5) Procédé de fabrication de nanoparticules selon l'une quelconque des revendications précédentes, dans lequel ledit alcool est choisi parmi le propanol-1 et le propanol-2.5) A method of manufacturing nanoparticles according to any one of the preceding claims, wherein said alcohol is selected from propanol-1 and propanol-2.
6) Procédé de fabrication de nanoparticules selon l'une quelconque des revendications précédentes, dans lequel la concentration du métal de transition dans la solution aqueuse est inférieure ou égale à 0,1 moles/litre, encore plus préfèrentiellement comprise entre 0,001 et 0,1 moles/litre, encore plus préférentiellement comprise entre 0,01 et 0,1 moles/litre.6) A method of manufacturing nanoparticles according to any one of the preceding claims, wherein the concentration of the transition metal in the aqueous solution is less than or equal to 0.1 moles / liter, more preferably between 0.001 and 0.1 moles / liter, even more preferably between 0.01 and 0.1 moles / liter.
7) Procédé de fabrication de nanoparticules selon l'une quelconque des revendications précédentes, dans lequel le rapport molaire entre la quantité d'acide acétique, la quantité d'alcool et la quantité d' alkoxyde est compris entre 20 : 6 : 1 et 3 : 1 : 1, encore plus préférentiellement égal à 16 : 4 : 1.7) A method of manufacturing nanoparticles according to any one of the preceding claims, wherein the molar ratio between the amount of acetic acid, the amount of alcohol and the amount of alkoxide is between 20: 6: 1 and 3 : 1: 1, even more preferably equal to 16: 4: 1.
8) Procédé de fabrication de nanoparticules selon l'une quelconque des revendications précédentes, dans lequel ladite lyophilisation est conduite entre -2000C et +500C, et plus préférentiellement entre -200C et +300C, et à une pression comprise entre 0,1 Pa et 100 Pa et plus préférentiellement inférieure ou égale à 10 Pa. 9) Procédé de fabrication de nanoparticules selon la revendication 8, dans lequel ladite lyophilisation comprend une étape d'élimination d'eau adsorbée qui consiste à maintenir le lyophilisât sous la pression de la lyophilisation, préférentiellement à 0,1 Pa, puis à élever la température jusqu'à une valeur préférentiellement comprise entre 3O0C et 1000C, plus préférentiellement égale à 300C.8) A method of manufacturing nanoparticles according to any one of the preceding claims, wherein said lyophilization is conducted between -200 0 C and +50 0 C, and more preferably between -20 0 C and +30 0 C, and at pressure between 0.1 Pa and 100 Pa and more preferably less than or equal to 10 Pa. 9) A method of manufacturing nanoparticles according to claim 8, wherein said lyophilization comprises an adsorbed water removal step which consists in maintaining the lyophilizate under the pressure of freeze-drying, preferably at 0.1 Pa, then raising the temperature up to a value preferably between 30 ° C. and 100 ° C., more preferably equal to 30 ° C.
10) Procédé de fabrication de nanoparticules selon l'une quelconque des revendications précédentes, dans lequel au cours de l'étape (iii) , le lyophilisât est pyrolyse à une température comprise entre 4000C et 9000C, préférentiellement entre 4000C et 6000C, encore plus préférentiellement entre 4000C et 4500C.10) A method of manufacturing nanoparticles according to any one of the preceding claims, wherein during step (iii), the lyophilizate is pyrolyzed at a temperature between 400 0 C and 900 0 C, preferably between 400 0 C and 600 ° C., even more preferentially between 400 ° C. and 450 ° C.
11) Procédé de fabrication de nanoparticules selon l'une quelconque des revendications précédentes, dans lequel la taille moyenne desdites nanoparticules est comprise entre 10 et 100 nm, préférentiellement entre 10 et 50 nm, encore plus préférentiellement entre 10 et 20 nm.11) A method of manufacturing nanoparticles according to any one of the preceding claims, wherein the average size of said nanoparticles is between 10 and 100 nm, preferably between 10 and 50 nm, more preferably between 10 and 20 nm.
12) Application du procédé de fabrication selon l'une quelconque des revendications précédentes, à l'obtention d'un carbure dudit métal de transition sous forme de nanocristallites en soumettant, ultérieurement ou dans la continuité dudit procédé, lesdites nanoparticules à une réduction carbothermique .12) Application of the manufacturing method according to any one of the preceding claims, for obtaining a carbide of said transition metal in the form of nanocrystallites by subjecting, subsequently or in the continuity of said process, said nanoparticles to a carbothermal reduction.
13) Application selon la revendication 12, dans laquelle lesdits nanocristallites sont d'une taille moyenne comprise entre 30 et 100 nm, préférentiellement entre 30 et 70 nm, encore plus préférentiellement entre 30 et 40 nm. 14) Application selon la revendication 12 ou 13, dans laquelle ladite réduction carbothermique comprend l'augmentation de la température selon une vitesse comprise entre 5 et 10°C/minutes, préférentiellement de 5°C/minutes, afin d'aboutir à une température comprise entre 10000C et 16000C, préférentiellement égale à 13000C ou 14000C suivant le carbure désiré, température qui est maintenue pendant une durée comprise entre 2 et 6 heures, préférentiellement égale à 2 heures pour le TiC, 3 heures pour le ZrC et 5 heures pour le HfC.13) Application according to claim 12, wherein said nanocrystallites are of an average size between 30 and 100 nm, preferably between 30 and 70 nm, more preferably between 30 and 40 nm. 14) Application according to claim 12 or 13, wherein said carbothermal reduction comprises increasing the temperature at a speed of between 5 and 10 ° C / min, preferably 5 ° C / min, in order to achieve a temperature between 1000 0 C and 1600 0 C, preferably equal to 1300 0 C or 1400 0 C depending on the desired carbide, which temperature is maintained for a period of between 2 and 6 hours, preferably equal to 2 hours for TiC, 3 hours for the ZrC and 5 hours for the HfC.
15) Application selon l'une quelconque des revendications 12 à 14, dans laquelle ladite réduction carbothermique est effectuée en présence d'un gaz vecteur comprenant de l'argon . 15) Application according to any one of claims 12 to 14, wherein said carbothermal reduction is carried out in the presence of a carrier gas comprising argon.
EP08805653A 2007-06-06 2008-06-06 Method for producing carbon coated nanoparticles of a transition metal oxide Withdrawn EP2155612A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0704031A FR2917080B1 (en) 2007-06-06 2007-06-06 METHOD FOR MANUFACTURING CARBON-COATED TRANSITION METAL OXIDE NANOPARTICLES
PCT/FR2008/000765 WO2009004187A2 (en) 2007-06-06 2008-06-06 Method for producing carbon coated nanoparticles of a transition metal oxide

Publications (1)

Publication Number Publication Date
EP2155612A2 true EP2155612A2 (en) 2010-02-24

Family

ID=38983483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08805653A Withdrawn EP2155612A2 (en) 2007-06-06 2008-06-06 Method for producing carbon coated nanoparticles of a transition metal oxide

Country Status (10)

Country Link
US (1) US8337799B2 (en)
EP (1) EP2155612A2 (en)
JP (1) JP2010528967A (en)
KR (1) KR101427247B1 (en)
CN (1) CN101743201B (en)
BR (1) BRPI0811962A2 (en)
CA (1) CA2690121C (en)
FR (1) FR2917080B1 (en)
RU (1) RU2485052C2 (en)
WO (1) WO2009004187A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017752A1 (en) * 2010-08-02 2012-02-09 昭和電工株式会社 Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
US8932513B2 (en) 2011-06-10 2015-01-13 South Dakota Board Of Regents Process of making titanium carbide (TiC) nano-fibrous felts
CN103570066A (en) * 2013-11-13 2014-02-12 沈阳大学 Preparation method of zirconium oxide nanometer powder
US10471469B2 (en) 2014-06-19 2019-11-12 University Of Massachusetts High aspect ratio nanostructures and methods of preparation
CN106660822B (en) * 2014-09-22 2019-05-03 积水化学工业株式会社 Carbon is coated vanadium dioxide particle
US9725803B2 (en) 2015-07-02 2017-08-08 Goodrich Corporation Method of forming borides in carbon composites
US9970497B2 (en) 2015-12-18 2018-05-15 Goodrich Corporation Systems and methods for carbon-carbon materials incorporating yttrium and zirconium compounds
US9919973B1 (en) * 2017-03-31 2018-03-20 The Florida International University Board Of Trustees Synthesis of high temperature ceramic powders
US10786803B2 (en) 2018-04-23 2020-09-29 King Abdulaziz University Multi-walled carbon nanotube nanocomposite for hydrogen production
CN110104648B (en) * 2019-05-10 2022-11-01 东华大学 High-entropy carbide nano powder and preparation method thereof
CN116021020A (en) * 2022-12-16 2023-04-28 辽宁省轻工科学研究院有限公司 Thermal spraying sealing powder and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301790A (en) * 1964-09-24 1967-01-31 Grace W R & Co Metal oxide-carbon organosol process and product
US3516935A (en) * 1967-04-10 1970-06-23 Bell Telephone Labor Inc Compacted body and method of formation
US3551533A (en) * 1967-04-10 1970-12-29 Bell Telephone Labor Inc Method of forming particulate material
JPS58213620A (en) * 1983-05-20 1983-12-12 Asahi Glass Co Ltd Production of formed metal carbide
US4622215A (en) * 1985-03-12 1986-11-11 The United States Of America As Represented By The United States Department Of Energy Process for preparing fine grain titanium carbide powder
US4948573A (en) * 1986-12-02 1990-08-14 Alcan International Limited Process for producing silicon carbide and metal carbides
JPH0243943A (en) * 1988-04-12 1990-02-14 Mitsuboshi:Kk Preparation of ultrafine powder
JPH02204319A (en) * 1989-02-03 1990-08-14 Japan Atom Energy Res Inst Production of superfine powder of high-melting-point carbide
JPH0742113B2 (en) * 1993-04-13 1995-05-10 工業技術院長 Method for producing titanium oxide colloid
IL119719A0 (en) * 1996-11-29 1997-02-18 Yeda Res & Dev Inorganic fullerene-like structures of metal chalcogenides
RU2149076C1 (en) * 1998-09-25 2000-05-20 Институт химии твердого тела Уральского Отделения РАН Method for making powders of refractory titanium base compounds
CA2320661A1 (en) * 2000-09-26 2002-03-26 Hydro-Quebec New process for synthesizing limpo4 materials with olivine structure
JP2002126537A (en) * 2000-10-19 2002-05-08 Nard Inst Ltd Metal oxide-based photocatalyst and production of the same
DE102004048230A1 (en) * 2004-10-04 2006-04-06 Institut für Neue Materialien Gemeinnützige GmbH Process for the preparation of nanoparticles with customized surface chemistry and corresponding colloids
WO2006041170A1 (en) * 2004-10-15 2006-04-20 Ngk Insulators, Ltd. Method for producing porous structure
ITFI20040252A1 (en) * 2004-12-06 2005-03-06 Colorobbia Italiana Spa PROCESS FOR THE PREPARATION OF TI02 DISPERSIONS IN THE FORM OF NANOPARTICLES, AND DISPERSIONS OBTAINABLE WITH THIS PROCESS
JP2007084351A (en) * 2005-09-20 2007-04-05 Tdk Corp METHOD FOR PRODUCING TiC AND TiCN

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009004187A2 *

Also Published As

Publication number Publication date
KR101427247B1 (en) 2014-08-06
RU2009148871A (en) 2011-07-20
BRPI0811962A2 (en) 2014-11-11
US8337799B2 (en) 2012-12-25
RU2485052C2 (en) 2013-06-20
FR2917080A1 (en) 2008-12-12
WO2009004187A2 (en) 2009-01-08
WO2009004187A3 (en) 2009-03-12
JP2010528967A (en) 2010-08-26
FR2917080B1 (en) 2009-09-04
KR20100062989A (en) 2010-06-10
CN101743201B (en) 2012-12-26
CA2690121A1 (en) 2009-01-08
CN101743201A (en) 2010-06-16
CA2690121C (en) 2014-02-04
US20100202956A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
CA2690121C (en) Method for producing carbon coated nanoparticles of a transition metal oxide
JP5388452B2 (en) Antibacterial and antifungal powders produced by flame spray pyrolysis
EP1802783B1 (en) Coating method
EP2121175B1 (en) Synthesis of nanoparticles by laser hydrolysis
Mahan et al. Hot-wire chemical vapor deposition of crystalline tungsten oxide nanoparticles at high density
FR2900351A1 (en) PROCESS FOR PREPARING A NANOPOROUS LAYER OF NANOPARTICLES AND THE LAYER THUS OBTAINED
EP1554765B1 (en) Particle comprising a graphite core coated with at least a continuous or discontinuous coating, method for obtaining same and uses thereof
CN110255626B (en) Method for preparing surface-active onion-shaped carbon nanospheres based on vapor deposition
Liu et al. Heterostructured MXene-derived oxides as superior photocatalysts for MB degradation
Zhou et al. Synthesis and characterization of nanostructured t′-YSZ spherical feedstocks for atmospheric plasma spraying
Shukla et al. Dimensional constraints favour high temperature anatase phase stability in TiO2 nanorods
Yu et al. Design and preparation of continuous titanium carbide fibers via simple precursor route
FR2677352A1 (en) TRANSPARENT CERAMICS AND METHOD OF MANUFACTURING SAME
Castro et al. Structure, wettability and photocatalytic activity of CO2 laser sintered TiO2/multi-walled carbon nanotube coatings
Dimitrakopoulou et al. Understanding the growth of amorphous SiO2 nanofibers and crystalline binary nanoparticles produced by laser ablation
FR3010715A1 (en) LOW PERMEABLE COATING SUBSTRATE FOR SILICON SOLIDIFICATION
Lu et al. Synthesis and characterization of PbS nanoparticles in ethanolic solution stabilized by hydroxypropyl cellulose
Xiuli et al. Preparation of Copper Oxide/TiO2 Composite Films by Mechanical Ball Milling and Investigated Photocatalytic Activity
Karak et al. Structural and optical properties of alumina templated undoped and Co-doped zinc oxide nanoparticles
Meng-Ke et al. Photoluminescence properties of silicon nanowires and carbon nanotube-silicon nanowire composite arrays
EP2396277A1 (en) Nanocomposites, method for producing same, and use thereof in devices for protecting against electromagnetic waves
Maley et al. Chemical reactions and applications of the reductive surface of porous silicon
Sasaki et al. Comparison of Pt/TiO2 nanocomposite films prepared by sputtering and pulsed laser deposition
Rodríguez-González et al. Silver nanoparticles incorporated into Na2Ti6O13 microfibers
Choi et al. Synthesis of Bimetallic Nanoparticles and Their Application to Growth of Multiwalled Carbon Nanotube Forest

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100107

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

Owner name: ECOLE CENTRALE DE PARIS - ECP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Owner name: ECOLE CENTRALE DE PARIS - ECP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GOSSET, DOMINIQUE

Inventor name: SIMEONE, DAVID

Inventor name: BOGICEVIC, CHRISTINE

Inventor name: KAROLAK, FABIENNE

Inventor name: BALDINOZZI, GIANGUIDO

Inventor name: DOLLE, MICKAEL

17Q First examination report despatched

Effective date: 20120223

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170103