EP2153902B1 - Electrostatic separator and heating system - Google Patents

Electrostatic separator and heating system Download PDF

Info

Publication number
EP2153902B1
EP2153902B1 EP20090167685 EP09167685A EP2153902B1 EP 2153902 B1 EP2153902 B1 EP 2153902B1 EP 20090167685 EP20090167685 EP 20090167685 EP 09167685 A EP09167685 A EP 09167685A EP 2153902 B1 EP2153902 B1 EP 2153902B1
Authority
EP
European Patent Office
Prior art keywords
electrode
heating
particle
electrostatic separator
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20090167685
Other languages
German (de)
French (fr)
Other versions
EP2153902A3 (en
EP2153902A2 (en
Inventor
Dietmar Steiner
David Schuetz
Tania Gonzalez-Baquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2153902A2 publication Critical patent/EP2153902A2/en
Publication of EP2153902A3 publication Critical patent/EP2153902A3/en
Application granted granted Critical
Publication of EP2153902B1 publication Critical patent/EP2153902B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/08Ionising electrode being a rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/12Cleaning the device by burning the trapped particles

Definitions

  • the invention relates to an electrostatic precipitator, in particular for an exhaust pipe of an exhaust gas purification system, according to the preamble of claim 1.
  • the invention relates to a heating system for generating energy by means of combustion of an energy carrier with an electrostatic precipitator according to claim 5.
  • emission control systems are used in biomass heating systems, where in addition to otherwise economic and environmental benefits increased emissions of pollutants in the exhaust gases can occur.
  • fine dust which consists essentially of different proportions of carbon, potassium and / or calcium compounds, as a pollutant content is a disadvantage in conventional biomass heating systems.
  • An emission control system which is used for biomass heating systems to reduce particulate matter emission.
  • the device described therein can be installed in a flue gas channel and for this purpose has a lid which can be placed gas-tight on an associated opening on a flue gas channel.
  • a spray electrode for example in the form of a rod, is held over an insulating holder.
  • a high-voltage transformer with rectifier function allows the construction of a high DC voltage between the wire and the lid, which is electrically connected to the furnace tube, so that it acts as a collector electrode.
  • Such an electrostatic filter with a spray electrode and a collector electrode is also known as an electrostatic precipitator.
  • This will be used for exhaust gas purification in one Exhaust pipe used a heating system.
  • a capacitor is formed by the spray, which runs approximately centrally through the exhaust pipe and therefore also referred to as the center electrode, and a peripheral surface of the exhaust pipe, which is also referred to as a cylindrical capacitor in a cylindrical tube-shaped design of the exhaust pipe.
  • the spray or center electrode generally has a circular cross section in the flow direction of the exhaust gas, wherein the diameter of the cross section or the radius of curvature is generally formed relatively small (for example, less than 0.4 mm).
  • a field extending transversely to the flow direction is formed by the center electrode and the collector electrode formed by the lateral surface with field lines from the center electrode to the collector electrode.
  • a high voltage is applied to the center electrode, for example in the range of 15 kV.
  • a corona discharge is formed, through which the particles flowing through the field in the exhaust gas are charged in a unipolar manner. Due to this charge, most of the particles migrate through the electrostatic Coulomb forces to the inner wall of the exhaust pipe, which serves as a collector electrode.
  • the particles are electrostatically charged by the corona discharge which forms along the surface of the electrode. This is done at the molecular level by the following process: Is the electrode z. B. compared to the exhaust pipe to negative high voltage, so a large number of gas molecules is negatively charged. They move in the electric field applied by the electrode and the exhaust pipe in the direction of the exhaust pipe. If these meet on their way through the exhaust pipe to electrically neutral particles, they stick to these and charge the previously neutral particles also negative. The charged particles flow driven by electrostatic deflection forces to the inner wall of the exhaust pipe. Here the particles stick, lose their charge and are safely removed from the exhaust stream. This is the core process of an electrostatic precipitator and, depending on the geometry, height of the corona current, electrode shape, etc., leads to deposition rates of up to more than 90%. This core process can be disturbed by the following effects:
  • Burning produces bipolar charged particles.
  • the distribution is symmetrical, that is, there are the same number of positively charged as negatively charged Particle.
  • the number of charged particles is reduced by approx. 10% per second due to coagulation, there are still more than 10% charged particles at the electrostatic precipitator (corresponding to about one to two seconds of particle flying time from the place of combustion).
  • the electrostatic precipitator corresponding to about one to two seconds of particle flying time from the place of combustion.
  • a disadvantage of the electrostatic precipitators according to the prior art is that it comes after a longer period of operation to a continuous degradation of the corona current at a constant high voltage. As a result, the charging efficiency of the electrode decreases, which in turn reduces the separation efficiency of the entire system.
  • An electrostatic exhaust filter which has a central spray electrode surrounded by a collector electrode.
  • a heating element is provided to burn the particles from the electrode.
  • the heating element is designed in particular as an electrical resistance.
  • the invention has for its object to provide an electrostatic precipitator, which overcomes this disadvantage and in particular prevents or reduces the deposition of particles on the electrode to increase the service life of the electrostatic precipitator.
  • the invention has for its object to provide a heating system with a separator according to the invention, which guarantees reliable exhaust gas purification.
  • the electrostatic precipitator according to the invention is characterized in that in the electrostatic precipitator, in particular for an exhaust pipe of an exhaust gas purification system, with a flow channel having a channel wall and a channel interior, through which flows a particle-containing exhaust gas in a flow direction, and in the channel interior substantially in Flow direction extending electrode, for forming an electric field between the electrode and the channel wall, further comprising at least one heatable Pumbleabweisesch is included, which prevents or reduces the possibility that deposit particles of the exhaust gas at the electrode, in particular permanently deposit, it is provided that the Electrode and the heatable Pumbleabweisestoff are formed as a common component as a directly heated electrode, wherein the electrode is formed as a current-flowable closed wire loop and means to their Ho chhards- and heating operation are provided.
  • the particle repelling agent effectively prevents or reduces at least deposition of particles on the electrode.
  • the particle repelling agent can effectively reduce the deposition of particulates on other components of the electrostatic precipitator.
  • the fact that the electrode is formed directly heated, can effectively prevent or reduce particle deposition.
  • the invention provides that the electrode is designed as a closed wire loop. In this way, a simple current-flowable electrode can be created, which can be heated by appropriate energization targeted. Due to the loop or loop-shaped formation also the effective area of the electrode is increased.
  • the wire loop extends in the channel interior substantially in the flow direction.
  • the invention provides that further means for high voltage and heating operation of the electrostatic precipitator are provided.
  • These funds can be appropriate Switching and / or control device, in particular electrical switching and or control devices comprise.
  • the means include isolating transformer means for realizing a high voltage supply and a low voltage supply separable from each other for the operation of the electrostatic precipitator.
  • the high voltage supply and the low voltage supply can be done simultaneously or alternately.
  • the electrode is formed as a wire, which combines the functions of a heating wire and an electrode.
  • electrical current can be passed through the wire, which heats the electrode, that is, the current-carrying portion or wire, so that particle deposition is prevented or at least reduced due to the thermophoresis described in more detail below, or a still existing deposit can be burned free ,
  • the directly heated electrode is formed at least partially of a suitable material and / or a suitable geometry in order to realize a higher electrical resistance for heating the electrode to a corresponding temperature.
  • a suitable material is, for example, a chromium-nickel steel or other material having an electrical resistance of about 1.12 ohm * mm 2 / m, or other suitable range, for example, depending on the geometry.
  • a suitable geometry of the electrode wire may be, for example, a wire having a length of about 0.5 m and a diameter in the range of about 0.3 to 0.4 mm. The geometry and or material may be selected to achieve an electrical resistance of about 5 to 10 ohms for the electrode.
  • the cross section of the wire may have any shape, for example circular.
  • the cross-section in the direction of the wire over the length vary, that is, the wire can be made thicker or thinner.
  • the cross section can be varied both in terms of cross-sectional area, as well as in terms of cross-sectional shape, for example from square to circular.
  • An embodiment of the electrostatic precipitator provides that the electrode is non-linearly extending to provide a larger active area of action in the flow channel.
  • Nonlinear in this case does not mean a straight line, but rather curved, bent, coiled, kinked or the like formed.
  • the electrode may be formed at least partially helically with a suitable pitch so that adjacent areas of the electrode do not interfere with each other negatively.
  • the electrode has, at least in sections, current-flowable lugs, such as projections, in order to provide a larger active area of action.
  • the electrode may be formed, for example, barbed wire or with nubs.
  • different particle repelling means may be provided, for example, mechanical Péroabweisesch comprising a vibrator or the like.
  • Another example of a different particle repelling agent may be a fluid injection device that mechanically minimizes permanent attachment of particulates to the separator or its components by injecting a fluid and the associated exposure of the fluid to particles.
  • an embodiment provides that a plurality of heatable Pumbleabweisesch are provided to heat the electrode for particle rejection, wherein a heating of the Pumbleabweisestoff separately or at least partially realized together.
  • the heating system according to the invention for generating energy by burning an energy source such as biomass is characterized in that it has a fine dust emitting heating system such as a biomass heating system for burning the energy carrier, wherein particle-containing exhaust gases, and an inventive electrostatic precipitator is provided.
  • An avoidance or reduction of fine dust deposits on the electrode is realized.
  • a directly heated electrode can be compared to a Indirect heating of the electrode, the high-voltage insulation between the electrode and heat conductor only as a mechanical stabilization used ceramic (10b) realize or otherwise completely avoided.
  • a loop or loop By forming a loop or loop, a shorter length of the electrode can be realized compared to a helical formation.
  • the active surface or the area of action of the electrode can be increased by the non-linear design of the electrode, which is also called center or spray electrode, possibly also with projections.
  • a surface in the particle-laden exhaust gas stream of a firewood plant or an internal combustion engine or the like is heated to about 100 K above the surrounding gas temperature, then the temperature gradient to the surroundings reliably prevents the deposition of especially small, distinctly submicron particles ( ⁇ 200 nm).
  • the charging efficiency of the spiral or loop electrode is not reduced in the locally low-particle volume surrounding it, since the mean free path of the ions, which charge the fine dust particles, is increased by the temperature increase.
  • the ceramic heating element including the electrode wound around it is burned free of the combustible, deposited soot particles. They represent the main constituent of particulate matter in burning firewood.
  • the system can also be mechanically freed of fine dust deposits by a vibrating device. Also for their activation, the shift of the current / voltage characteristic of the high voltage supply can be used.
  • Electrostatic precipitators are in the exhaust system a minimum flow resistance, which increases only very slowly with increasing load. They have a large absorption capacity for separated particulate matter. At slow flow velocities and sufficiently long separation distances, they have a deposition efficiency of 80-90% for submicron particles. Off o.a. Therefore, they are therefore a promising option for the emission control of a log wood plant, other biomass heating systems or oil burners.
  • the maintenance of the high voltage of the center electrode represents a technical difficulty in the execution of the electrostatic precipitator.
  • the electrode can be kept free or cleaned in particular by the following possibility of fine dust contamination:
  • Fig. 1 schematically shows a longitudinal cross section through an embodiment of an electrostatic precipitator 1 according to the invention, wherein the section extends approximately through the center of an exhaust pipe 2 and so is only a part of the electrostatic precipitator 1 is.
  • the electrostatic precipitator 1 is arranged in an exhaust pipe 2 (only partially shown) of an exhaust gas purification system not shown here and includes a flow channel 3.
  • the flow channel 3 is formed as a tubular portion of the exhaust pipe 2 and includes a channel wall 4 and a channel inside 5.
  • a particle-containing exhaust gas shown here by an arrow P flows into the flow direction likewise represented by the arrow P.
  • an electrode 6, which is also referred to as a center electrode, spray electrode or corona electrode, extends in the interior of the flow channel 3.
  • the flow channel 3 is preferably formed in cross-section in the flow direction P rotationally symmetrical about a central axis A.
  • the electrode 6 extends substantially along this central axis A.
  • the electrode 6 is fed via an electrode feed 7, which is covered with an insulator 8.
  • the electrode 6 forms a charging unit, in which particles can be charged electrically.
  • the electrode 6 forms with the channel wall 4, applying a high voltage, an electric field whose field lines extend substantially radially to the electrode 6 and the channel wall 4, substantially transversely, more precisely at right angles to the flow direction P.
  • a first particle repellent 9a is integrated in the insulator 8.
  • the first Prismabweisestoff 9 a is formed as a heating element for the insulator 8, which in the in Fig. 1 illustrated embodiment in the form of the insulator 8 penetrating heating wires is realized.
  • a second Prismabweisestoff 9 b is integrally formed with the electrode 6.
  • the second particle-repelling agent 9b is designed as a heatable particle-repelling agent, which is realized in the present case as a heating ceramic 10.
  • the heating ceramic 10 comprises a holder 10a and a rod-shaped heating element 10b.
  • the holder 10a and the heating element 10b are connected to each other.
  • the holder 10a and the heating element 10b are arranged L-shaped relative to one another.
  • Through the heating ceramic 10 extends a heating wire 11.
  • the holder 10a projects radially from the outside through the pipe wall 4 in the channel interior 3, approximately up to the central axis A.
  • the heating element 10b protrudes approximately along the central axis A against the flow direction P towards the insulator 8.
  • the electrode 6, which is fed via the electrode feed 7, is spirally wound around the heating element 10b, wherein the distances of the turns are formed approximately equidistant, preferably at a distance of about 10 mm. In this way, the effective area of the electrode 6 per channel section in the flow direction P is increased.
  • the heating ceramic (10) can ensure the heating process of the helical electrode 6.
  • the electrode 6 can be formed, for example, as a closed wire loop, that this is heated when energized by flowing current (transformer device necessary).
  • the heating ceramic (10) can be replaced by a holder without heating function. The holder then serves to stabilize the self-heating electrode (6).
  • a third Prismabweisestoff 9c is integrated with the heating ceramic 10, more precisely a projecting over the channel wall 4 to the outside part of the holder 10, formed.
  • the third Prismabweisestoff 9c is designed as a mechanical Prismabweisestoff, which is realized here by a vibrator 12.
  • the vibrator 12 generates vibrations, which are transmitted via the holder 10 a on to the heating element 10 b. As a result of the vibrations, particles adhering to the ceramic heater 10 and / or the electrode 6 are removed mechanically or prevented or reduced from adhering.
  • At least one particle-repelling agent 9 may be designed differently and / or one or two of the particle-repelling agents 9a, 9b, 9c may be dispensed with.
  • Another embodiment shows Fig. 2 ,
  • Fig. 2 schematically shows a longitudinal section through a further embodiment of an electrostatic precipitator 1 'according to the invention. Identical or similar parts are identified by the same reference numerals. A detailed description of already described components is eliminated.
  • the electrostatic precipitator 1 'after Fig. 2 is based on the same principle as the electrostatic precipitator 1 after Fig. 1 differs only by the execution of the second Prismabweisestoffs 9b, wherein for ease of illustration, the Prismabweisesch 9c is not shown explicitly, this as well as the first Prismabweisestoff 9a may also be omitted.
  • the electrostatic precipitator 1 ' is arranged in an exhaust pipe 2 (only partially shown) of an exhaust gas purification system not shown here and includes a flow channel 3.
  • the flow channel 3 is formed as a tubular portion of the exhaust pipe 2 and includes a channel wall 4 and a channel inside 5th für the flow channel 3 flows not shown here, particle-containing exhaust gas in the flow direction, also not shown.
  • the electrode 6, which in the present case is designed as a closed wire loop 6b and forms the second particle-repelling agent 9b and the electrode 6 in a common component-a directly heated electrode-extends inside the flow channel 3.
  • the electrode 6 is fed via an electrode feed 7, which is covered with the insulator 8.
  • the third particle-repelling agent 9c is in the schematic Fig. 2 not shown.
  • the third particle-repelling agent 9c may be as shown in FIG Fig. 1 be educated.
  • the particle-repelling agent 9c may be formed, for example, as a fluid injection device. This serves to liberate the spray electrode 6 and, if appropriate, further particle-laden parts from the particles by means of a jet or several jets.
  • the means 13 comprise a transformer device 14, which in Fig. 3 is described in more detail.
  • Fig. 3 shows a schematic representation of a power supply of the separator 1 and 1 'according to the invention. Shown is a (separation) transformer device 14, more specifically their windings, a primary winding 14a and a secondary winding 14b. Further, a high voltage module 15 is conductively connected to the secondary winding 14b.
  • the transformer device 14 with the windings 14a, 14b and the high voltage module 15 and the corresponding Lines 16 form, inter alia, the means for high voltage and heating operation 13 of the electrostatic precipitator 1,1 '.
  • the functionality is essentially the following:
  • the electrode 6 is at a high voltage level (about 12-25 kV).
  • the above-mentioned heating or heating function of the electrode 6 can be realized in several ways:
  • the electrode 6 is at a high voltage level (HV).
  • HV high voltage level
  • NV low-voltage heating supply
  • the isolation transformer device 14 is also used as a current transformer in high-voltage measurement technology.
  • the windings are potted, their insulation must protect each half of the value of the high voltage with respect to the iron core of the isolation transformer device 14.
  • a rapidly alternating operation can be carried out:
  • the electrode 6 is alternately at the HV level or at ground potential, a heating current flows through it.
  • An operating frequency depends on the geometry of the electrode 6 and the flow rate of the exhaust gas in the exhaust pipe and is typically between about 5 and 50 Hz.
  • a thermal mass of the electrode 6 smoothes its pulse-like heating.
  • the corresponding exhaust particles are charged accordingly by a pulsed corona current.
  • the switching from NV to HV level is carried out by a suitable switch, which is also included by the means for high voltage and heating operation of the electrostatic precipitator 1,1 '.
  • a slow, alternating operation can be carried out:
  • the electrode 6 is permanently at HV level during operation.
  • suitable operating intervals (after approx. 5 to 10 operating hours), which can be detected by a degradation of the voltage characteristic, the HV is switched off and the electrode 6 is set at the NV level via a suitable switch and kept for a predetermined time (approx 20 - 60 s) heated. Conveniently, this is best done with switched off combustion.
  • the heating takes place in each case up to an ignition temperature of the adhering soot (which may be, for example, about 600 ° C).
  • an ignition temperature of the adhering soot which may be, for example, about 600 ° C.
  • the electrode 6 is ready for use as a charging unit again.
  • This mode of operation is particularly suitable for heating systems that emit fine dust with a high (combustible) carbon content, for example in log burning stoves or pots.
  • the structural design of the HV switch is simpler for the last described mode of operation than in the previously mentioned modes of operation wherein the electrode 6 is not permanently protected by the thermophoresis from particulate matter contamination.

Description

Die Erfindung betrifft einen elektrostatischen Abscheider, insbesondere für eine Abgasleitung einer Abgasreinigungsanlage, nach dem Oberbegriff des Patentanspruches 1.The invention relates to an electrostatic precipitator, in particular for an exhaust pipe of an exhaust gas purification system, according to the preamble of claim 1.

Weiter betrifft die Erfindung ein Heizungssystem zur Erzeugung von Energie mittels Verbrennen von einem Energieträger mit einem elektrostatischen Abscheider nach Anspruch 5.Furthermore, the invention relates to a heating system for generating energy by means of combustion of an energy carrier with an electrostatic precipitator according to claim 5.

Aufgrund der Emissionen von Heizungsanlagen und globaler Bemühungen, derartige Emissionen zu reduzieren - siehe zum Beispiel das Kyoto-Abkommen - werden bei Heizungsanlagen entsprechende Abgasreinigungsanlagen verwendet. Diese sollen insbesondere die schädlichen Stoffe und Partikel aus Abgasen herausfiltern, sodass das verbleibende, gereinigte Abgas bedenkenlos an die Umwelt abgegeben werden kann. Insbesondere werden derartige Abgasreinigungsanlagen bei Biomasse-Heizanlagen eingesetzt, bei denen neben ansonsten ökonomischen und ökologischen Vorteilen eine erhöhte Emission an Schadstoffen in den Abgasen auftreten kann. Gerade die relativ hohe Emission an Feinstaub, der im Wesentlichen aus verschiedenen Anteilen aus Kohlenstoff-, Kalium- und/oder Calcium-Verbindungen besteht, als ein Schadstoffanteil ist bei herkömmlichen Biomasse-Heizungsanlagen ein Nachteil.Due to emissions from heating systems and global efforts to reduce such emissions - see, for example, the Kyoto Protocol - heating systems use appropriate emission control systems. These are in particular to filter out the harmful substances and particles from exhaust gases, so that the remaining, purified exhaust gas can safely be released to the environment. In particular, such emission control systems are used in biomass heating systems, where in addition to otherwise economic and environmental benefits increased emissions of pollutants in the exhaust gases can occur. Especially the relatively high emission of fine dust, which consists essentially of different proportions of carbon, potassium and / or calcium compounds, as a pollutant content is a disadvantage in conventional biomass heating systems.

Aus der EP 1 193 445 A2 ist eine Abgasreinigungsanlage bekannt, welche für Biomasse-Heizungsanlagen zur Verringerung von Feinstaubemission verwendet wird. Die dort beschriebene Vorrichtung ist in einen Rauchgaskanal einbaubar und weist hierzu einen Deckel auf, der gasdicht auf eine zugehörige Öffnung an einem Rauchgaskanal aufsetzbar ist. An der Innenseite des Deckels ist über eine isolierende Halterung eine Sprühelektrode, zum Beispiel in Form eines Stabes, gehalten. Ein Hochspannungs-Transformator mit Gleichrichterfunktion erlaubt den Aufbau einer hohen Gleichspannung zwischen dem Draht und dem Deckel, welcher elektrisch leitend mit dem Ofenrohr verbunden ist, sodass dieses als Kollektorelektrode wirkt.From the EP 1 193 445 A2 An emission control system is known, which is used for biomass heating systems to reduce particulate matter emission. The device described therein can be installed in a flue gas channel and for this purpose has a lid which can be placed gas-tight on an associated opening on a flue gas channel. On the inside of the lid, a spray electrode, for example in the form of a rod, is held over an insulating holder. A high-voltage transformer with rectifier function allows the construction of a high DC voltage between the wire and the lid, which is electrically connected to the furnace tube, so that it acts as a collector electrode.

Ein derartiger Elektrofilter mit Sprühelektrode und Kollektorelektrode ist auch als elektrostatischer Abscheider bekannt. Dieser wird zur Abgasreinigung in einer Abgasleitung einer Heizungsanlage eingesetzt. Dabei wird durch die Sprühelektrode, welche etwa mittig durch die Abgasleitung verläuft und deshalb auch als Mittelelektrode bezeichnet wird, und eine umgebende Mantelfläche der Abgasleitung ein Kondensator gebildet, der bei einer zylinderrohrförmigen Ausbildung der Abgasleitung auch als Zylinderkondensator bezeichnet wird. Die Sprüh- oder Mittelelektrode weist in der Regel einen kreisförmigen Querschnitt in Strömungsrichtung des Abgases auf, wobei der Durchmesser des Querschnitts oder auch der Krümmungsradius im Allgemeinen relativ klein ausgebildet ist (zum Beispiel kleiner als 0,4 mm). Um nun die Schadstoffe, genauer die nicht an die Umwelt abzugebenden Partikel, des Abgases aus dem Abgasstrom abzuscheiden, wird durch die Mittelelektrode und die durch die Mantelfläche gebildete Kollektorelektrode ein quer zur Strömungsrichtung verlaufendes Feld mit Feldlinien von der Mittelelektrode zur Kollektorelektrode gebildet. Hierzu wird an die Mittelelektrode eine Hochspannung angelegt, zum Beispiel in dem Bereich von 15 kV. Dadurch bildet sich eine Corona-Entladung aus, durch welche die in dem Abgas durch das Feld strömenden Partikel unipolar aufgeladen werden. Aufgrund dieser Aufladung wandern die meisten der Partikel durch die elektrostatischen Coulomb-Kräfte zur Innenwand der Abgasleitung, welche als Kollektorelektrode dient.Such an electrostatic filter with a spray electrode and a collector electrode is also known as an electrostatic precipitator. This will be used for exhaust gas purification in one Exhaust pipe used a heating system. In this case, a capacitor is formed by the spray, which runs approximately centrally through the exhaust pipe and therefore also referred to as the center electrode, and a peripheral surface of the exhaust pipe, which is also referred to as a cylindrical capacitor in a cylindrical tube-shaped design of the exhaust pipe. The spray or center electrode generally has a circular cross section in the flow direction of the exhaust gas, wherein the diameter of the cross section or the radius of curvature is generally formed relatively small (for example, less than 0.4 mm). In order to deposit the pollutants, more precisely the particles not to be emitted to the environment, of the exhaust gas from the exhaust gas flow, a field extending transversely to the flow direction is formed by the center electrode and the collector electrode formed by the lateral surface with field lines from the center electrode to the collector electrode. For this purpose, a high voltage is applied to the center electrode, for example in the range of 15 kV. As a result, a corona discharge is formed, through which the particles flowing through the field in the exhaust gas are charged in a unipolar manner. Due to this charge, most of the particles migrate through the electrostatic Coulomb forces to the inner wall of the exhaust pipe, which serves as a collector electrode.

Wie oben bereits erwähnt, werden die Partikel durch die entlang der Oberfläche der Elektrode sich ausbildende Corona-Entladung elektrostatisch aufgeladen. Dies geschieht auf molekularer Ebene durch folgenden Prozess: Liegt die Elektrode z. B. gegenüber dem Abgasrohr auf negativer Hochspannung, so wird eine große Anzahl von Gasmolekülen negativ aufgeladen. Sie bewegen sich im von der Elektrode sowie dem Abgasrohr aufgespannten elektrischen Feld in Richtung des Abgasrohres. Treffen diese auf ihrem Weg durch das Abgasrohr auf elektrisch neutrale Partikel, so bleiben sie an diesen haften und laden die bis dahin neutralen Partikel ebenfalls negativ auf. Die geladenen Partikel strömen getrieben durch elektrostatische Ablenkungskräfte zur Innenwand des Abgasrohres. Hier bleiben die Teilchen haften, verlieren ihre Ladung und werden sicher aus dem Abgasstrom entfernt. Dies ist der Kernprozess eines elektrostatischen Abscheiders und führt je nach Geometrie, Höhe des Corona-Stroms, Elektrodenform etc. zu Abscheideraten bis etwa über 90%. Dieser Kernprozess kann durch folgende Effekte gestört werden:As mentioned above, the particles are electrostatically charged by the corona discharge which forms along the surface of the electrode. This is done at the molecular level by the following process: Is the electrode z. B. compared to the exhaust pipe to negative high voltage, so a large number of gas molecules is negatively charged. They move in the electric field applied by the electrode and the exhaust pipe in the direction of the exhaust pipe. If these meet on their way through the exhaust pipe to electrically neutral particles, they stick to these and charge the previously neutral particles also negative. The charged particles flow driven by electrostatic deflection forces to the inner wall of the exhaust pipe. Here the particles stick, lose their charge and are safely removed from the exhaust stream. This is the core process of an electrostatic precipitator and, depending on the geometry, height of the corona current, electrode shape, etc., leads to deposition rates of up to more than 90%. This core process can be disturbed by the following effects:

Bei der Verbrennung entstehen bipolar geladene Partikel. Mittels Boltzmann-Verteilung kann der Anteil einfach bzw. mehrfach geladener Partikel abgeschätzt werden. Die Verteilung ist symmetrisch, d. h., es entstehen gleich viele positiv wie negativ geladene Partikel. Für Bedingungen, wie sie im Abgas von Biomasse-Heizungen vorliegen, tragen zwischen 15 und 20% der Partikel eine elektrische Elementarladung. Die Anzahl geladener Partikel wird durch Koagulation zwar um ca. 10% pro Sekunde reduziert, dennoch liegen am Ort des elektrostatischen Abscheiders (entspricht ca. ein bis zwei Sekunden Flugzeit der Partikel vom Ort der Verbrennung) noch über 10% geladener Partikel vor. Gelangen die geladenen Partikel nun in die Nähe der auf negativer Hochspannung liegenden Elektrode der Aufladeeinheit (Einheit Abgasrohr, Elektrode), so werden die negativen Partikel von der Elektrode weg in Richtung Abgasrohrinnenseite strömen. Die positiven Partikel strömen dagegen auf die Elektrode zu. Hiervon wird ein Teil beim Durchströmen der Aufladeeinheit neutralisiert bzw. negativ umgeladen, der Rest der Partikel gelangt jedoch zur Elektrode und lagert sich dort ab. Über die Betriebsdauer kommt es deshalb zu Funktionseinschränkungen des elektrostatischen Abweisers. Denn der auf der Elektrode abgelagerte Feinstaub verhindert lokal die Ausbildung der Corona. Dadurch verschlechtert sich die elektrische Aufladung der Partikel. Die Abscheideeffizienz des Systems wird degradiert. Zudem existiert in unmittelbarer Nähe der Corona (in einem Radius wenige Millimeter um die Elektrode) ein bipolares Ladungsgebiet. Elektrisch neutrale Partikel, welche dieses Gebiet durchströmen, können auch von einer negativen Elektrode positiv aufgeladen werden. Sie strömen dann auf die Elektrode zu. Ein Teil wird durch die Corona neutralisiert bzw. negativ umgeladen, ein kleiner Rest gelangt jedoch zur Elektrode und lagert sich ebenfalls dort ab.Burning produces bipolar charged particles. By means of Boltzmann distribution, the proportion of single or multiply charged particles can be estimated. The distribution is symmetrical, that is, there are the same number of positively charged as negatively charged Particle. For conditions such as those present in the exhaust gas of biomass heating systems, between 15 and 20% of the particles carry an elementary electric charge. Although the number of charged particles is reduced by approx. 10% per second due to coagulation, there are still more than 10% charged particles at the electrostatic precipitator (corresponding to about one to two seconds of particle flying time from the place of combustion). Now get the charged particles in the vicinity of the lying on negative high voltage electrode of the charger (unit exhaust pipe, electrode), the negative particles will flow away from the electrode towards the exhaust pipe inside. The positive particles, on the other hand, flow towards the electrode. Of this, a part is neutralized or negatively charged while flowing through the charger, but the rest of the particles reaches the electrode and deposits there. Over the service life it comes therefore to function restrictions of the electrostatic deflector. Because the fine dust deposited on the electrode locally prevents the formation of the corona. As a result, the electrical charge of the particles deteriorates. The deposition efficiency of the system is degraded. In addition, in the immediate vicinity of the corona (within a radius of a few millimeters around the electrode) there is a bipolar charge area. Electrically neutral particles which flow through this area can also be positively charged by a negative electrode. They then flow to the electrode. One part is neutralized or negatively charged by the corona, but a small remainder reaches the electrode and also deposits there.

Nachteilig an den elektrostatischen Abscheidern gemäß dem Stand der Technik ist, dass es nach einer längeren Betriebszeit zu einer kontinuierlichen Degradation des Corona-Stroms bei konstanter Hochspannung kommt. Dadurch sinkt die Aufladeeffizienz der Elektrode, was wiederum die Abscheideleistung des gesamten Systems verringert.A disadvantage of the electrostatic precipitators according to the prior art is that it comes after a longer period of operation to a continuous degradation of the corona current at a constant high voltage. As a result, the charging efficiency of the electrode decreases, which in turn reduces the separation efficiency of the entire system.

In FR 2 843 611 A1 ist ein Elektrostatischer Abgasfilter gezeigt, der eine zentrale Sprühelektrode aufweist, die von einer Kollektorelektrode umgeben ist. Zum Ablösen von Partikeln von der Elektrode ist ein Heizelement vorgesehen, um die Partikel von der Elektrode ab zu brennen. Das Heizelement ist dabei insbesondere als elektrischer Widerstand ausgebildet.In FR 2 843 611 A1 An electrostatic exhaust filter is shown which has a central spray electrode surrounded by a collector electrode. For detaching particles from the electrode, a heating element is provided to burn the particles from the electrode. The heating element is designed in particular as an electrical resistance.

Der Erfindung liegt die Aufgabe zugrunde, einen elektrostatischen Abscheider zu schaffen, der diesen Nachteil überwindet und der insbesondere eine Ablagerung von Partikeln auf der Elektrode verhindert oder reduziert, um die Funktionsdauer des elektrostatischen Abscheiders zu erhöhen.The invention has for its object to provide an electrostatic precipitator, which overcomes this disadvantage and in particular prevents or reduces the deposition of particles on the electrode to increase the service life of the electrostatic precipitator.

Weiter liegt der Erfindung die Aufgabe zugrunde, ein Heizungssystem mit einem erfindungsgemäßen Abscheider zu schaffen, das eine zuverlässige Abgasreinigung garantiert.Further, the invention has for its object to provide a heating system with a separator according to the invention, which guarantees reliable exhaust gas purification.

Erfindungsgemäß wird dies durch die Gegenstände mit den Merkmalen des Patentanspruches 1 und des Patentanspruchs 5 gelöst. Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.This is achieved by the objects with the features of claim 1 and of claim 5 according to the invention. Advantageous developments can be found in the dependent claims.

Der erfindungsgemäße elektrostatische Abscheider ist dadurch gekennzeichnet, dass bei dem elektrostatischen Abscheider, insbesondere für eine Abgasleitung einer Abgasreinigungsanlage, mit einem Strömungskanal mit einer Kanalwandung und einem Kanalinneren, durch welchen ein partikelbeinhaltendes Abgas in einer Strömungsrichtung strömt, und einer sich in dem Kanalinneren im Wesentlichen in Strömungsrichtung erstreckenden Elektrode, zur Bildung eines elektrischen Feldes zwischen Elektrode und der Kanalwandung, wobei weiter mindestens ein beheizbares Partikelabweisemittel umfasst ist, welches verhindert oder die Möglichkeit verringert, dass sich Partikel des Abgases an der Elektrode ablagern, insbesondere dauerhaft ablagern, vorgesehen ist, dass die Elektrode und das beheizbare Partikelabweisemittel als ein gemeinsames Bauteil als direktbeheizte Elektrode ausgebildet sind, wobei die Elektrode als stromdurchfließbare geschlossene Drahtschleife ausgebildet ist und Mittel zu ihrem Hochspannungs- und Heizbetrieb vorgesehen sind. Das Partikelabweisemittel verhindert oder reduziert wirksam zumindest ein Ablagern von Partikeln an der Elektrode. Darüber hinaus kann das Partikelabweisemittel das Ablagern von Partikeln an weiteren Komponenten des elektrostatischen Abscheiders wirksam reduzieren. Dadurch dass die Elektrode direkt beheizbar ausgebildet ist, lässt sich effektiv eine Partikelablagerung verhindern oder reduzieren. Die Erfindung sieht vor, dass die Elektrode als geschlossene Drahtschleife ausgebildet ist. Auf diese Weise kann eine einfach stromdurchfließbare Elektrode geschaffen werden, die sich durch entsprechende Bestromung gezielt erhitzen lässt. Durch die schleifen- oder auch schlaufenförmige Ausformung ist zudem die Wirkungsfläche der Elektrode erhöht. Die Drahtschleife erstreckt sich in dem Kanalinneren im Wesentlichen in Strömungsrichtung.The electrostatic precipitator according to the invention is characterized in that in the electrostatic precipitator, in particular for an exhaust pipe of an exhaust gas purification system, with a flow channel having a channel wall and a channel interior, through which flows a particle-containing exhaust gas in a flow direction, and in the channel interior substantially in Flow direction extending electrode, for forming an electric field between the electrode and the channel wall, further comprising at least one heatable Partikelabweisemittel is included, which prevents or reduces the possibility that deposit particles of the exhaust gas at the electrode, in particular permanently deposit, it is provided that the Electrode and the heatable Partikelabweisemittel are formed as a common component as a directly heated electrode, wherein the electrode is formed as a current-flowable closed wire loop and means to their Ho chspannungs- and heating operation are provided. The particle repelling agent effectively prevents or reduces at least deposition of particles on the electrode. In addition, the particle repelling agent can effectively reduce the deposition of particulates on other components of the electrostatic precipitator. The fact that the electrode is formed directly heated, can effectively prevent or reduce particle deposition. The invention provides that the electrode is designed as a closed wire loop. In this way, a simple current-flowable electrode can be created, which can be heated by appropriate energization targeted. Due to the loop or loop-shaped formation also the effective area of the electrode is increased. The wire loop extends in the channel interior substantially in the flow direction.

Die Erfindung sieht vor, dass weiter Mittel zum Hochspannungs- und Heizbetrieb des elektrostatischen Abscheiders vorgesehen sind. Diese Mittel können entsprechende Schalt- und/oder Steuereinrichtung, insbesondere elektrische Schalt- und oder Steuereinrichtungen umfassen.The invention provides that further means for high voltage and heating operation of the electrostatic precipitator are provided. These funds can be appropriate Switching and / or control device, in particular electrical switching and or control devices comprise.

So sieht zum Beispiel eine Ausführungsform der vorliegenden Erfindung vor, dass die Mittel eine Trenntransformatoreinrichtung umfassen, um eine Hochspannungsversorgung und eine Niederspannungsversorgung voneinander trennbar für den Betrieb des elektrostatischen Abscheiders zu realisieren. Die Hochspannungsversorgung und die Niederspannungsversorgung können dabei gleichzeitig oder alternierend erfolgen.For example, one embodiment of the present invention contemplates that the means include isolating transformer means for realizing a high voltage supply and a low voltage supply separable from each other for the operation of the electrostatic precipitator. The high voltage supply and the low voltage supply can be done simultaneously or alternately.

Die Elektrode ist als Draht ausgebildet, der die Funktionen eines Heizdrahts und einer Elektrode vereint. Hierzu kann durch den Draht elektrischer Strom geleitet werden, der die Elektrode, das heißt, den stromdurchflossenen Abschnitt oder Draht, so erwärmt, dass eine Partikelablagerung aufgrund der weiter unten näher beschriebenen Thermophorese verhindert oder zumindest reduziert ist, oder eine dennoch bestehende Ablagerung freigebrannt werden kann.The electrode is formed as a wire, which combines the functions of a heating wire and an electrode. For this purpose, electrical current can be passed through the wire, which heats the electrode, that is, the current-carrying portion or wire, so that particle deposition is prevented or at least reduced due to the thermophoresis described in more detail below, or a still existing deposit can be burned free ,

In einer Ausführungsform der vorliegenden Erfindung ist vorgesehen, dass die direktbeheizte Elektrode zumindest teilweise aus einem geeigneten Material und/oder einer geeigneten Geometrie ausgebildet ist, um einen höheren elektrischen Widerstand zur Erwärmung der Elektrode auf eine entsprechende Temperatur zu realisieren. Ein geeignetes Material ist beispielweise ein Chrom-Nickelstahl oder ein anderes Material mit einem elektrischen Widerstand von etwa 1,12 Ohm*mm2/m oder in einem anderen geeigneten Bereich, zum Beispiel in Abhängigkeit von der Geometrie. Eine geeignete Geometrie des Elektrodendrahtes kann beispielsweise ein Draht mit einer Länge von etwa 0,5 m und einem Durchmesser im Bereich von etwa 0,3 bis 0,4 mm sein. Die Geometrie und oder das Material können so ausgewählt sein, dass ein elektrischer Widerstand von etwa 5 bis 10 Ohm für die Elektrode erreicht werden. Der Querschnitt des Drahts kann eine beliebige Form aufweisen, beispielsweise kreisförmig. Zur gezielten Erwärmung des Drahts kann der Querschnitt in Richtung des Drahts über die Länge variieren, das heißt, der Draht kann dicker oder dünner ausgebildet werden. Der Querschnitt lässt sich dabei sowohl hinsichtlich der Querschnittsfläche variieren, wie auch hinsichtlich der Querschnittsform, beispielsweise von quadratisch in kreisförmig.In one embodiment of the present invention, it is provided that the directly heated electrode is formed at least partially of a suitable material and / or a suitable geometry in order to realize a higher electrical resistance for heating the electrode to a corresponding temperature. A suitable material is, for example, a chromium-nickel steel or other material having an electrical resistance of about 1.12 ohm * mm 2 / m, or other suitable range, for example, depending on the geometry. A suitable geometry of the electrode wire may be, for example, a wire having a length of about 0.5 m and a diameter in the range of about 0.3 to 0.4 mm. The geometry and or material may be selected to achieve an electrical resistance of about 5 to 10 ohms for the electrode. The cross section of the wire may have any shape, for example circular. For targeted heating of the wire, the cross-section in the direction of the wire over the length vary, that is, the wire can be made thicker or thinner. The cross section can be varied both in terms of cross-sectional area, as well as in terms of cross-sectional shape, for example from square to circular.

Ein Ausführungsbeispiel des elektrostatischen Abscheiders sieht vor, dass die Elektrode sich nichtlinear erstreckend ausgebildet ist, um in dem Strömungskanal eine größere aktive Wirkungsfläche bereitzustellen. Nichtlinear bedeutet vorliegend nicht als gerade Linie, sondern vielmehr gekrümmt, gebogen, gewendelt, geknickt oder dergleichen ausgebildet. Die Elektrode kann zumindest teilweise spiralförmig mit einer geeigneten Steigung ausgebildet sein, sodass sich benachbarte Bereiche der Elektrode nicht gegenseitig negativ beeinflussen. Der Abstand benachbarter Bereiche kann in einem Intervall von >= 1 mm bis <= 20 mm, bevorzugt in einem Intervall von >= 5 mm bis <=15 mm liegen und beträgt am meisten bevorzugt etwa 10 mm.An embodiment of the electrostatic precipitator provides that the electrode is non-linearly extending to provide a larger active area of action in the flow channel. Nonlinear in this case does not mean a straight line, but rather curved, bent, coiled, kinked or the like formed. The electrode may be formed at least partially helically with a suitable pitch so that adjacent areas of the electrode do not interfere with each other negatively. The spacing of adjacent regions may be in an interval of> = 1 mm to <= 20 mm, preferably in an interval of> = 5 mm to <= 15 mm, and is most preferably about 10 mm.

Noch ein weiteres Ausführungsbeispiel sieht vor, dass die Elektrode zumindest abschnittsweise stromdurchfließbare Ansätze wie Vorsprünge aufweist, um eine größere aktive Wirkungsfläche bereitzustellen. Die Elektrode kann beispielweise stacheldrahtförmig oder mit Noppen ausgebildet sein.Yet another embodiment provides that the electrode has, at least in sections, current-flowable lugs, such as projections, in order to provide a larger active area of action. The electrode may be formed, for example, barbed wire or with nubs.

Neben der direkt beheizbaren Elektrode können weitere, unterschiedliche Partikelabweisemittel vorgesehen sein, beispielsweise mechanische Partikelabweisemittel umfassend eine Rüttel-Einrichtung oder dergleichen. Ein anderes Beispiel eines unterschiedlichen Partikelabweisemittels kann eine Fluideindüsungseinrichtung sein, die ein dauerhaftes Anhaften von Partikeln an dem Abscheider oder dessen Komponenten durch Eindüsen eines Fluids und dem damit verbundenen Einwirken des Fluids auf Partikel mechanisch zumindest reduziert.In addition to the directly heatable electrode further, different particle repelling means may be provided, for example, mechanical Partikelabweisemittel comprising a vibrator or the like. Another example of a different particle repelling agent may be a fluid injection device that mechanically minimizes permanent attachment of particulates to the separator or its components by injecting a fluid and the associated exposure of the fluid to particles.

Auch sieht ein Ausführungsbeispiel vor, dass mehrere beheizbare Partikelabweisemittel vorgesehen sind, um die Elektrode für ein Partikelabweisen zu erwärmen, wobei eine Erwärmung der Partikelabweisemittel separat voneinander oder zumindest teilweise gemeinsam realisierbar ist.Also, an embodiment provides that a plurality of heatable Partikelabweisemittel are provided to heat the electrode for particle rejection, wherein a heating of the Partikelabweisemittel separately or at least partially realized together.

Das erfindungsgemäße Heizungssystem zur Erzeugung von Energie mittels Verbrennen von einem Energieträger wie Biomasse ist dadurch gekennzeichnet, dass dieses eine Feinstaub emittierenden Heizungsanlage wie eine Biomasse-Heizungsanlage zum Verbrennen des Energieträgers aufweist, wobei partikelbeinhaltende Abgase entstehen, und ein erfindungsgemäßer elektrostatischer Abscheider vorgesehen ist.The heating system according to the invention for generating energy by burning an energy source such as biomass is characterized in that it has a fine dust emitting heating system such as a biomass heating system for burning the energy carrier, wherein particle-containing exhaust gases, and an inventive electrostatic precipitator is provided.

Mit dem erfindungsgemäßen elektrostatischen Abscheider und dem erfindungsgemäßen Heizungssystem werden insbesondere die folgenden Vorteile realisiert:With the electrostatic precipitator according to the invention and the heating system according to the invention, the following advantages are realized in particular:

Eine Vermeidung bzw. Reduzierung von Feinstaubablagerungen auf der Elektrode wird realisiert. Insbesondere durch eine direktbeheizte Elektrode lässt sich gegenüber einer indirekten Beheizung der Elektrode die Hochspannungsisolierung zwischen Elektrode und Heizleiter nur noch als als mechanische Stabilisierung eingesetzte Keramik (10b) realisieren bzw. andernfalls gänzlich vermeiden. Durch die Ausbildung als Schlaufe oder Schleife lässt sich gegenüber einer spiralförmigen Ausbildung eine kürzere Länge der Elektrode realisieren. Durch die nichtlineare Ausbildung der Elektrode, die auch Mittel- oder Sprühelektrode genannt wird, ggf. auch mit Anformungen, lässt sich dagegen die aktive Oberfläche oder die Wirkungsfläche der Elektrode vergrößern. Beim Betrieb mit hohen Feinstaubkonzentrationen wie beim Verbrennungsstart, beispielsweise von Scheitholzanlagen, kann durch Erhitzen des Systems deren Feinstaub-Kontamination erfolgreich durch Thermophorese verhindert werden. Wird eine Oberfläche im Partikel beladenen Abgasstrom einer Scheitholzanlage oder auch eines Verbrennungsmotors oder dergleichen auf ca. 100 K über der umgebenden Gastemperatur erwärmt, so wird durch den Temperaturgradienten zur Umgebung das Ablagern vor allem kleiner, deutlich submikroner Partikel (<200nm) zuverlässig verhindert. Die Aufladeeffizienz der Spiral- oder Schlaufenelektrode wird im sie umgebenden lokal partikelarmen Volumen nicht reduziert, da die mittlere freie Weglänge der Ionen, welche die Feinstaubpartikel aufladen, durch die Temperatursteigerung erhöht wird. Eine beispielhafte Leistungsberechnung ergibt nach den bekannten Formeln dQ/dt = α * A*ΔT, für α = 30 W/m2*K, ΔT=100 K und A=6,3 E-4 m2 entsprechend dQ/dt = 2 W, unter Berücksichtigung von Strahlung mit Toleranzen etwa dQ/dt = 4 W. Zum Freibrennen der Elektrode wird bei einem ΔT=400K eine Leistung von weniger als etwa 20 W benötigt.An avoidance or reduction of fine dust deposits on the electrode is realized. In particular, by a directly heated electrode can be compared to a Indirect heating of the electrode, the high-voltage insulation between the electrode and heat conductor only as a mechanical stabilization used ceramic (10b) realize or otherwise completely avoided. By forming a loop or loop, a shorter length of the electrode can be realized compared to a helical formation. On the other hand, the active surface or the area of action of the electrode can be increased by the non-linear design of the electrode, which is also called center or spray electrode, possibly also with projections. When operating with high concentrations of fine dust, such as at the start of combustion, for example of firewood, heating of the system can successfully prevent its fine dust contamination by thermophoresis. If a surface in the particle-laden exhaust gas stream of a firewood plant or an internal combustion engine or the like is heated to about 100 K above the surrounding gas temperature, then the temperature gradient to the surroundings reliably prevents the deposition of especially small, distinctly submicron particles (<200 nm). The charging efficiency of the spiral or loop electrode is not reduced in the locally low-particle volume surrounding it, since the mean free path of the ions, which charge the fine dust particles, is increased by the temperature increase. An exemplary power calculation results according to the known formulas dQ / dt = α * A * ΔT, for α = 30 W / m 2 * K, ΔT = 100 K and A = 6.3 E-4 m 2 corresponding to dQ / dt = 2 W, taking into account radiation with tolerances about dQ / dt = 4 W. To burn the electrode, a power of less than about 20 W is needed at a ΔT = 400K.

Erste Abschätzungen zeigen, dass für die Bedingungen, welche zum Beispiel im Abgasrohr einer Scheitholzanlage direkt am Kesselausgang vorliegen (220°C, Strömungsgeschwindigkeit 0,5 - 1,5 m/s), für die Beheizung des isolierenden keramischen Heizelementes (Durchmesser 4 mm, Länge 60 mm) ca. 5 - 10 W Heizleistung über eine elektrische Widerstandsheizung genügen. Sollte es trotz Thermophorese nach einem längeren Zeitraum zu Partikelablagerungen auf der Sprühelektrode kommen, so kann dies durch Verschiebung der Strom-Spannungskennlinie der Hochspannungsversorgung über einen vorher eingestellten Maximalwert hinaus detektiert werden. Die elektronische Steuerungseinheit des elektrostatischen Abscheiders heizt dann das keramische Heizelement kurzzeitig auf über 600°C hoch. Ab dieser Temperatur wird das keramische Heizelement einschließlich der um sie geschlungenen Elektrode von den brennbaren, niedergeschlagenen Rußpartikeln freigebrannt. Sie stellen bei der Scheitholzverbrennung den Hauptbestandteil des Feinstaubes dar. Zusätzlich oder alternativ kann das System auch durch eine Rütteleinrichtung mechanisch von Feinstaublagerungen befreit werden. Auch zu deren Aktivierung kann die Verschiebung der Strom-/Spannungskennlinie der Hochspannungsversorgung herangezogen werden.Initial estimates show that for the conditions which are present, for example, in the exhaust pipe of a firewood installation directly at the boiler outlet (220 ° C., flow rate 0.5-1.5 m / s), for the heating of the insulating ceramic heating element (diameter 4 mm, Length 60 mm) approx. 5 - 10 W heating power via an electrical resistance heater is sufficient. Should there be particle deposits on the spray electrode despite thermophoresis after an extended period of time, this can be detected by shifting the current-voltage characteristic of the high-voltage supply above a previously set maximum value. The electronic control unit of the electrostatic precipitator then heats the ceramic heating element briefly above 600 ° C high. From this temperature, the ceramic heating element including the electrode wound around it is burned free of the combustible, deposited soot particles. They represent the main constituent of particulate matter in burning firewood. In addition or as an alternative, the system can also be mechanically freed of fine dust deposits by a vibrating device. Also for their activation, the shift of the current / voltage characteristic of the high voltage supply can be used.

Elektrostatische Abscheider stellen im Abgassystem einen minimalen Strömungswiderstand dar, welcher sich auch bei steigender Beladung nur sehr langsam erhöht. Sie weisen eine große Aufnahme-Kapazität für abgeschiedenen Feinstaub auf. Bei langsamen Strömungsgeschwindigkeiten und genügend langen Abscheidestrecken verfügen sie für submikrone Partikel über eine Abscheideeffizienz von 80 - 90%. Aus o.a. Gründen sind sie deshalb eine aussichtsreiche Option für die Abgasreinigung einer Scheitholzanlage, anderen Biomasse-Heizanlagen oder Ölbrennern. Das Aufrechterhalten der Hochspannung der Mittelelektrode stellt eine technische Schwierigkeit bei der Ausführung des elektrostatischen Abscheiders dar. Die Elektrode kann insbesondere durch die folgende Möglichkeit von Feinstaubkontaminationen freigehalten bzw. abgereinigt werden:Electrostatic precipitators are in the exhaust system a minimum flow resistance, which increases only very slowly with increasing load. They have a large absorption capacity for separated particulate matter. At slow flow velocities and sufficiently long separation distances, they have a deposition efficiency of 80-90% for submicron particles. Off o.a. Therefore, they are therefore a promising option for the emission control of a log wood plant, other biomass heating systems or oil burners. The maintenance of the high voltage of the center electrode represents a technical difficulty in the execution of the electrostatic precipitator. The electrode can be kept free or cleaned in particular by the following possibility of fine dust contamination:

Thermophorese durch direkte Beheizung:

  • Durch den Einsatz einer (direkt) beheizten Sprühelektrode vergrößert sich der Einsatzbereich des hier beschriebenen elektrostatischen Abscheiders. So kann die Degradation der Sprühelektrode deutlich - auch permanent- vermieden werden. Auch findet keine Kondensation von Wasserdampf auf der Elektrode statt. Bei einer Benetzung der Elektrode mit Wasser ist die Durchschlagsfestigkeit nicht mehr gegeben. Während ein Betrieb eines elektrostatischen Abscheiders gemäß dem Stand der Technik bei Temperaturen in der Nähe des Abgaskondensationspunktes und darunter nicht möglich ist, kann mit dem erfindungsgemäßen Abscheider zur kontinuierlichen Elektrodenheizung die Elektrode von Kondensat freigehalten werden. So kann der elektrostatische Abscheider oder auch Filter in Anlagen mit niedrigen Abgastemperaturen (z. B. bei einer Brennwerttechnik oder bei einem Einsatzort in einem größeren Abstand zur Anlage, beim Anfahren der Anlage) eingesetzt werden.
Thermophoresis by direct heating:
  • The use of a (directly) heated spray electrode increases the range of application of the electrostatic precipitator described here. Thus, the degradation of the spray can be significantly - even permanently avoided. There is also no condensation of water vapor on the electrode. When wetting the electrode with water, the dielectric strength is no longer present. While operation of an electrostatic precipitator according to the prior art at temperatures in the vicinity of the exhaust gas condensation point and below is not possible, the electrode can be kept free of condensate with the inventive separator for continuous electrode heating. Thus, the electrostatic precipitator or even filters can be used in systems with low exhaust gas temperatures (eg in a condensing boiler technology or at a place of use at a greater distance to the system when starting up the system).

Die Zeichnungen stellen mehrere Ausführungsbeispiele der Erfindung dar und zeigen in den Figuren:

Fig. 1
schematisch einen Längsquerschnitt durch eine Ausführungsform eines erfindungsgemäßen elektrostatischen Abscheiders,
Fig. 2
schematisch einen Längsschnitt durch eine weitere Ausführungsform eines erfindungsgemäßen elektrostatischen Abscheiders und
Fig. 3
eine schematische Darstellung einer Leistungsversorgung des erfindungsgemäßen Abscheiders.
The drawings illustrate several embodiments of the invention and show in the figures:
Fig. 1
FIG. 2 schematically shows a longitudinal cross section through an embodiment of an electrostatic precipitator according to the invention, FIG.
Fig. 2
schematically a longitudinal section through a further embodiment of an electrostatic precipitator according to the invention and
Fig. 3
a schematic representation of a power supply of the separator according to the invention.

Fig. 1 zeigt schematisch einen Längsquerschnitt durch eine Ausführungsform eines erfindungsgemäßen elektrostatischen Abscheiders 1, wobei der Schnitt etwa durch die Mitte einer Abgasleitung 2 verläuft und so nur ein Teil des elektrostatischen Abscheiders 1 darstellt ist. Der elektrostatische Abscheider 1 ist in einer Abgasleitung 2 (nur teilweise dargestellt) einer hier nicht dargestellten Abgasreinigungsanlage angeordnet und umfasst einen Strömungskanal 3. Der Strömungskanal 3 ist als rohrförmiger Abschnitt der Abgasleitung 2 ausgebildet und umfasst eine Kanalwandung 4 und ein Kanalinneres 5. Durch den Strömungskanal 3 strömt ein hier durch einen Pfeil P dargestelltes, partikelbeinhaltendes Abgas in die ebenfalls durch den Pfeil P dargestellte Strömungsrichtung. Im Inneren des Strömungskanals 3 erstreckt sich in Strömungsrichtung P eine Elektrode 6, die auch als Mittelelektrode, Sprühelektrode oder Coronaelektrode bezeichnet wird. Der Strömungskanal 3 ist bevorzugt im Querschnitt in Strömungsrichtung P rotationssymmetrisch um eine Mittelachse A ausgebildet. Die Elektrode 6 erstreckt sich im Wesentlichen entlang dieser Mittelachse A. Gespeist wird die Elektrode 6 über eine Elektrodenzuführung 7, welche mit einem Isolator 8 ummantelt ist. Zusammen mit der Kanalwandung 4 bildet die Elektrode 6 eine Aufladeeinheit, in welcher Partikel elektrisch aufgeladen werden können. Hierzu bildet die Elektrode 6 mit der Kanalwandung 4 unter Anlegen einer Hochspannung ein elektrisches Feld aus, dessen Feldlininen im Wesentlichen radial zu der Elektrode 6 bzw. der Kanalwandung 4 verlaufen, im Wesentlichen quer, genauer rechtwinklig, zur Strömungsrichtung P. Fig. 1 schematically shows a longitudinal cross section through an embodiment of an electrostatic precipitator 1 according to the invention, wherein the section extends approximately through the center of an exhaust pipe 2 and so is only a part of the electrostatic precipitator 1 is. The electrostatic precipitator 1 is arranged in an exhaust pipe 2 (only partially shown) of an exhaust gas purification system not shown here and includes a flow channel 3. The flow channel 3 is formed as a tubular portion of the exhaust pipe 2 and includes a channel wall 4 and a channel inside 5. Through the flow channel 3, a particle-containing exhaust gas shown here by an arrow P flows into the flow direction likewise represented by the arrow P. In the flow direction P, an electrode 6, which is also referred to as a center electrode, spray electrode or corona electrode, extends in the interior of the flow channel 3. The flow channel 3 is preferably formed in cross-section in the flow direction P rotationally symmetrical about a central axis A. The electrode 6 extends substantially along this central axis A. The electrode 6 is fed via an electrode feed 7, which is covered with an insulator 8. Together with the channel wall 4, the electrode 6 forms a charging unit, in which particles can be charged electrically. For this purpose, the electrode 6 forms with the channel wall 4, applying a high voltage, an electric field whose field lines extend substantially radially to the electrode 6 and the channel wall 4, substantially transversely, more precisely at right angles to the flow direction P.

Der elektrostatische Abscheider 1 in einer nur teilweise dargestellten Abgasleitung 2 umfasst in der dargestellten Ausführungsform in Fig. 1 mehrere Partikelabweisemittel 9. Ein erstes Partikelabweisemittel 9a ist in dem Isolator 8 integriert. Das erste Partikelabweisemittel 9a ist als Heizelement für den Isolator 8 ausgebildet, das in dem in Fig. 1 dargestellten Ausführungsbeispiel in Form von den Isolator 8 durchdringenden Heizdrähten realisiert ist.The electrostatic precipitator 1 in an exhaust pipe 2 shown only partially comprises in the illustrated embodiment in Fig. 1 a plurality of particle repelling means 9. A first particle repellent 9a is integrated in the insulator 8. The first Partikelabweisemittel 9 a is formed as a heating element for the insulator 8, which in the in Fig. 1 illustrated embodiment in the form of the insulator 8 penetrating heating wires is realized.

Ein zweites Partikelabweisemittel 9b ist integriert mit der Elektrode 6 ausgebildet. Das zweite Partikelabweisemittel 9b ist als beheizbares Partikelabweisemittel ausgebildet, welches vorliegend als Heizkeramik 10 realisiert ist. Die Heizkeramik 10 umfasst eine Halterung 10a und ein stabförmiges Heizelement 10b. Die Halterung 10a und das Heizelement 10b sind miteinander verbunden. Bevorzugt sind die Halterung 10a und das Heizelement 10b L-förmig zueinander angeordnet. Durch die Heizkeramik 10 verläuft ein Heizdraht 11. Die Halterung 10a ragt radial von außen durch die Rohrwandung 4 in das Kanalinnere 3 herein, etwa bis zur Mittelachse A. Von dort ragt das Heizelement 10b etwa entlang der Mittelachse A entgegen der Strömungsrichtung P in Richtung Isolator 8. Die Elektrode 6, welche über die Elektrodenzuführung 7 gespeist wird, ist spiralförmig um das Heizelement 10b gewickelt, wobei die Abstände der Windungen etwa äquidistant ausgebildet sind, bevorzugt in einem Abstand von etwa 10 mm. Auf diese Weise ist die Wirkungsfläche der Elektrode 6 pro Kanalabschnitt in Strömungsrichtung P vergrößert. Die Heizkeramik (10) kann den Erwärmungsprozess der spiralförmig ausgebildeten Elektrode 6 gewährleisten. Alternativ kann die Elektrode 6 so ausgebildet werden, z.B. als geschlossene Drahtschleife, dass diese sich bei Bestromung durch fließenden Strom (Transformatoreinrichtung notwendig) erhitzt. In diesem Fall kann die Heizkeramik (10) durch eine Halterung ohne Heizfunktion ersetzt werden. Die Halterung dient dann zur Stabilisierung der selbstheizenden Elektrode (6).A second Partikelabweisemittel 9 b is integrally formed with the electrode 6. The second particle-repelling agent 9b is designed as a heatable particle-repelling agent, which is realized in the present case as a heating ceramic 10. The heating ceramic 10 comprises a holder 10a and a rod-shaped heating element 10b. The holder 10a and the heating element 10b are connected to each other. Preferably, the holder 10a and the heating element 10b are arranged L-shaped relative to one another. Through the heating ceramic 10 extends a heating wire 11. The holder 10a projects radially from the outside through the pipe wall 4 in the channel interior 3, approximately up to the central axis A. From there the heating element 10b protrudes approximately along the central axis A against the flow direction P towards the insulator 8. The electrode 6, which is fed via the electrode feed 7, is spirally wound around the heating element 10b, wherein the distances of the turns are formed approximately equidistant, preferably at a distance of about 10 mm. In this way, the effective area of the electrode 6 per channel section in the flow direction P is increased. The heating ceramic (10) can ensure the heating process of the helical electrode 6. Alternatively, the electrode 6 can be formed, for example, as a closed wire loop, that this is heated when energized by flowing current (transformer device necessary). In this case, the heating ceramic (10) can be replaced by a holder without heating function. The holder then serves to stabilize the self-heating electrode (6).

Ein drittes Partikelabweisemittel 9c ist integriert mit der Heizkeramik 10, genauer einem über die Kanalwandung 4 nach außen hervorragenden Teil der Halterung 10, ausgebildet. Das dritte Partikelabweisemittel 9c ist als mechanisches Partikelabweisemittel ausgebildet, welches hier durch eine Rütteleinrichtung 12 realisiert ist. Die Rütteleinrichtung 12 erzeugt Schwingungen, welche über die Halterung 10a weiter zu dem Heizelement 10b übertragen werden. Durch die Schwingungen werden an der Heizkeramik 10 und/oder an der Elektrode 6 anhaftende Partikel mechanisch entfernt oder ein Anhaften verhindert oder reduziert.A third Partikelabweisemittel 9c is integrated with the heating ceramic 10, more precisely a projecting over the channel wall 4 to the outside part of the holder 10, formed. The third Partikelabweisemittel 9c is designed as a mechanical Partikelabweisemittel, which is realized here by a vibrator 12. The vibrator 12 generates vibrations, which are transmitted via the holder 10 a on to the heating element 10 b. As a result of the vibrations, particles adhering to the ceramic heater 10 and / or the electrode 6 are removed mechanically or prevented or reduced from adhering.

In einer anderen Ausführungsform kann mindestens ein Partikelabweisemittel 9 unterschiedlich ausgeführt sein und/oder auf eines oder zwei der Partikelabweisemittel 9a, 9b, 9c verzichtet werden. Eine andere Ausführungsform zeigt Fig. 2.In another embodiment, at least one particle-repelling agent 9 may be designed differently and / or one or two of the particle-repelling agents 9a, 9b, 9c may be dispensed with. Another embodiment shows Fig. 2 ,

Fig. 2 zeigt schematisch einen Längsschnitt durch eine weitere Ausführungsform eines erfindungsgemäßen elektrostatischen Abscheiders 1'. Gleiche oder ähnliche Teile werden mit gleichen Bezugszeichen gekennzeichnet. Eine detaillierte Beschreibung bereits beschriebener Bauteile entfällt. Fig. 2 schematically shows a longitudinal section through a further embodiment of an electrostatic precipitator 1 'according to the invention. Identical or similar parts are identified by the same reference numerals. A detailed description of already described components is eliminated.

Der elektrostatische Abscheider 1' nach Fig. 2 ist vom Prinzip gleich aufgebaut wie der elektrostatische Abscheider 1 nach Fig. 1, unterscheidet sich lediglich durch die Ausführung des zweiten Partikelabweisemittels 9b, wobei zur einfacheren Darstellung das Partikelabweisemittel 9c nicht explizit dargestellt ist, wobei dieses genauso wie das erste Partikelabweisemittel 9a auch entfallen kann. Der elektrostatische Abscheider 1' ist in einer Abgasleitung 2 (nur teilweise dargestellt) einer hier nicht weiter dargestellten Abgasreinigungsanlage angeordnet und umfasst einen Strömungskanal 3. Der Strömungskanal 3 ist als rohrförmiger Abschnitt der Abgasleitung 2 ausgebildet und umfasst eine Kanalwandung 4 und ein Kanalinneres 5. Durch den Strömungskanal 3 strömt ein hier nicht dargestelltes, partikelbeinhaltendes Abgas in die ebenfalls nicht dargestellte Strömungsrichtung. Im Inneren des Strömungskanals 3 erstreckt sich in Strömungsrichtung die Elektrode 6, die vorliegend als geschlossene Drahtschleife 6b ausgebildet ist und das zweite Partikelabweisemittel 9b und die Elektrode 6 in einem gemeinsamen Bauteil - einer direktbeheizten Elektrode - ausbildet. Gespeist wird die Elektrode 6 über eine Elektrodenzuführung 7, welche mit dem Isolator 8 ummantelt ist.The electrostatic precipitator 1 'after Fig. 2 is based on the same principle as the electrostatic precipitator 1 after Fig. 1 differs only by the execution of the second Partikelabweisemittels 9b, wherein for ease of illustration, the Partikelabweisemittel 9c is not shown explicitly, this as well as the first Partikelabweisemittel 9a may also be omitted. The electrostatic precipitator 1 'is arranged in an exhaust pipe 2 (only partially shown) of an exhaust gas purification system not shown here and includes a flow channel 3. The flow channel 3 is formed as a tubular portion of the exhaust pipe 2 and includes a channel wall 4 and a channel inside 5th Durch the flow channel 3 flows not shown here, particle-containing exhaust gas in the flow direction, also not shown. In the flow direction, the electrode 6, which in the present case is designed as a closed wire loop 6b and forms the second particle-repelling agent 9b and the electrode 6 in a common component-a directly heated electrode-extends inside the flow channel 3. The electrode 6 is fed via an electrode feed 7, which is covered with the insulator 8.

Zur besseren Darstellbarkeit ist das dritte Partikelabweisemittel 9c in der schematischen Fig. 2 nicht dargestellt. Das dritte Partikelabweisemittel 9c kann wie in Fig. 1 ausgebildet sein. Alternativ und/oder zusätzlich kann das Partikelabweisemittel 9c zum Beispiel als Fluideindüsungseinrichtung ausgebildet sein. Diese dient dazu, die Sprühelektrode 6 und ggf. weitere partikelbehaftete Teile mittels eines Strahls oder mehrerer Strahlen von den Partikeln zu befreien.For better illustration, the third particle-repelling agent 9c is in the schematic Fig. 2 not shown. The third particle-repelling agent 9c may be as shown in FIG Fig. 1 be educated. Alternatively and / or additionally, the particle-repelling agent 9c may be formed, for example, as a fluid injection device. This serves to liberate the spray electrode 6 and, if appropriate, further particle-laden parts from the particles by means of a jet or several jets.

Um den elektrostatischen Abscheider 1' entsprechend zu betreiben, sodass das als beheizbare Drahtschleife ausgebildete zweite Partikelabweisemittel 9b sowohl eine Heizfunktion als auch eine Spannungsfunktion durchführt, sind Mittel zum Hochspannungs- und Heizbetrieb 13 vorgesehen. Die Mittel 13 umfassen eine Transformatoreinrichtung 14, die in Fig. 3 näher beschrieben ist.In order to operate the electrostatic precipitator 1 'accordingly, so that the second particle-deflecting means 9b designed as a heatable wire loop performs both a heating function and a voltage function, means for high-voltage and heating operation 13 are provided. The means 13 comprise a transformer device 14, which in Fig. 3 is described in more detail.

Fig. 3 zeigt eine schematische Darstellung einer Leistungsversorgung des erfindungsgemäßen Abscheiders 1 bzw. 1'. Dargestellt ist eine (Trenn) Transformatoreinrichtung 14, genauer deren Wicklungen, eine Primärwicklung 14a und einer Sekundärwicklung 14b. Weiter ist ein Hochspannungsmodul 15 leitend mit der Sekundärwicklung 14b verbunden. Die Transformatoreinrichtung 14 mit den Wicklungen 14a, 14b und dem Hochspannungsmodul 15 sowie den entsprechenden Leitungen 16 bilden u.a. die Mittel zum Hochspannungs- und Heizbetrieb 13 des elektrostatischen Abscheiders 1,1'. Die Funktionsweise ist im Wesentlichen Folgende: Fig. 3 shows a schematic representation of a power supply of the separator 1 and 1 'according to the invention. Shown is a (separation) transformer device 14, more specifically their windings, a primary winding 14a and a secondary winding 14b. Further, a high voltage module 15 is conductively connected to the secondary winding 14b. The transformer device 14 with the windings 14a, 14b and the high voltage module 15 and the corresponding Lines 16 form, inter alia, the means for high voltage and heating operation 13 of the electrostatic precipitator 1,1 '. The functionality is essentially the following:

Die Elektrode 6 liegt auf einem Hochspannungs-Niveau (etwa 12 - 25 kV). Die zuvor aufgeführte Beheizung oder Heizfunktion der Elektrode 6 lässt sich auf mehrere Weisen realisieren:The electrode 6 is at a high voltage level (about 12-25 kV). The above-mentioned heating or heating function of the electrode 6 can be realized in several ways:

Es kann ein gleichzeitiger Hochspannungs- und Heizbetrieb durchgeführt werden: Hierzu liegt die Elektrode 6 auf einem Hochspannungs-Niveau (HV). Eine Niederspannungs-Heizungsversorgung (NV) zur Realisierung der Heizfunktion erfolgt galvanisch völlig getrennt von einem Erdniveau. Dieses wird durch die Trenntransformatoreinrichtung 14, wie sie etwa auch in der Hochspannungsmesstechnik als Stromwandler eingesetzt wird, realisiert. Zur Vermeidung von HV-Überschlägen sind die Wicklungen vergossen, ihre Isolation muss jeweils die Hälfte des Wertes der Hochspannung gegenüber dem Eisenkern der Trenntransformatoreinrichtung 14 absichern.It can be carried out a simultaneous high voltage and heating operation: For this purpose, the electrode 6 is at a high voltage level (HV). A low-voltage heating supply (NV) for the realization of the heating function is galvanically completely separated from a ground level. This is realized by the isolation transformer device 14, as it is also used as a current transformer in high-voltage measurement technology. To avoid HV flashovers, the windings are potted, their insulation must protect each half of the value of the high voltage with respect to the iron core of the isolation transformer device 14.

Weiter kann ein schnell alternierender Betrieb durchgeführt werden: Hierzu liegt die Elektrode 6 abwechselnd auf HV-Niveau oder wird auf Erdpotenzial von einem Heizstrom durchflossen. Eine Betriebsfrequenz hängt von der Geometrie der Elektrode 6 und der Strömungsgeschwindigkeit des Abgases in dem Abgasrohr ab und liegt typischerweise etwa zwischen 5 und 50 Hz. Eine thermische Masse der Elektrode 6 glättet dabei deren pulsartige Beheizung. Die entsprechenden Abgaspartikel werden entsprechend von einem gepulsten Corona-Strom aufgeladen. Die Umschaltung von NV- auf HV-Niveau erfolgt durch einen geeigneten Schalter, der ebenfalls von den Mitteln zum Hochspannungs- und Heizbetrieb des elektrostatischen Abscheiders 1,1' umfasst ist.Furthermore, a rapidly alternating operation can be carried out: For this purpose, the electrode 6 is alternately at the HV level or at ground potential, a heating current flows through it. An operating frequency depends on the geometry of the electrode 6 and the flow rate of the exhaust gas in the exhaust pipe and is typically between about 5 and 50 Hz. A thermal mass of the electrode 6 smoothes its pulse-like heating. The corresponding exhaust particles are charged accordingly by a pulsed corona current. The switching from NV to HV level is carried out by a suitable switch, which is also included by the means for high voltage and heating operation of the electrostatic precipitator 1,1 '.

Weiter kann ein langsamer, alternierender Betrieb durchgeführt werden: Hierbei liegt die Elektrode 6 während des Betriebs permanent auf HV-Niveau. In geeigneten Betriebsintervallen (nach ca. 5 - 10 Betriebsstunden), die durch eine Degradation der Spannungs-Kennlinie detektiert werden können, wird die HV abgestellt und die Elektrode 6 wird über einen geeigneten Schalter auf NV-Niveau gelegt und für eine vorgegebene Zeit (etwa 20 - 60 s) beheizt. Zweckmäßigerweise geschieht dies am besten bei abgeschalteter Verbrennung.Furthermore, a slow, alternating operation can be carried out: In this case, the electrode 6 is permanently at HV level during operation. At suitable operating intervals (after approx. 5 to 10 operating hours), which can be detected by a degradation of the voltage characteristic, the HV is switched off and the electrode 6 is set at the NV level via a suitable switch and kept for a predetermined time (approx 20 - 60 s) heated. Conveniently, this is best done with switched off combustion.

Die Beheizung erfolgt jeweils bis zu einer Zündtemperatur des anhaftenden Rußes (welche zum Beispiel etwa bei 600°C liegen kann). Hierfür ist bei entsprechenden Eigenschaften der Elektrode 6 (zum Beispiel bei einer Elektrodenlänge l=0,5 m, einem Elektrodendurchmesser D= 0,3-0,4 m, Elektrodenmaterial: Chrom-Nickelstahl) eine Heizleistung von etwa ca. 20 - 30 W erforderlich. Nach einer thermischen Regeneration ist die Elektrode 6 wieder für den Einsatz als Aufladeeinheit betriebsbereit. Diese Betriebsweise ist vor allem bei Heizanlagen, welche Feinstaub mit hohem (brennbaren) Kohlenstoffanteil emittieren, geeignet, zum Beispiel bei Scheitholzöfen oder Scheitkesseln. Die bauliche Ausführung des HV-Schalters ist für die letzte beschriebene Betriebsweise einfacher als bei den zuvor aufgeführten Betriebsweisen, wobei die Elektrode 6 nicht permanent durch die Thermophorese vor Feinstaubkontamination geschützt ist.The heating takes place in each case up to an ignition temperature of the adhering soot (which may be, for example, about 600 ° C). For this is with appropriate characteristics the electrode 6 (for example, at an electrode length l = 0.5 m, an electrode diameter D = 0.3-0.4 m, electrode material: chrome-nickel steel) a heating power of about 20-30 W required. After a thermal regeneration, the electrode 6 is ready for use as a charging unit again. This mode of operation is particularly suitable for heating systems that emit fine dust with a high (combustible) carbon content, for example in log burning stoves or pots. The structural design of the HV switch is simpler for the last described mode of operation than in the previously mentioned modes of operation wherein the electrode 6 is not permanently protected by the thermophoresis from particulate matter contamination.

Claims (5)

  1. Electrostatic separator (1, 1'), in particular for an exhaust gas line (2) of an exhaust gas purification system, with
    a flow duct (3) with a duct wall (4) and with a duct interior (5), through which a particle-containing exhaust gas (P) flows in a flow direction,
    and an electrode (6), extending essentially in the flow direction (P) in the duct interior (5), for generating an electrical field between the electrode (6) and the duct wall (4),
    there being comprised, further, at least one heatable particle repulsion means (9) which prevents particles of the exhaust gas (P) from being deposited on the electrode (6),
    characterized in that the electrode (6) and the heatable particle repulsion means (9b) are designed, as a common component, as a directly heated electrode, the electrode (6) being designed as a current-carrying closed wire loop, and means for its high-voltage and heating operation 13 being provided.
  2. Electrostatic separator (1, 1') according to Claim 1,
    characterized in that the directly heated electrode (6) is formed at least partially from a nickel chromium steel and has a length of about 0.5 m and a diameter of about 0.3 mm to 0.4 mm, in order to implement an electrical resistance of about 5 Ohm to 10 Ohm in order to heat the electrode (6) to a corresponding temperature.
  3. Electrostatic separator (1, 1') according to Claim 1 or 2,
    characterized in that one or more heatable particle repulsion means (9, 9b) are provided in order to heat the electrode (9) for particle repulsion.
  4. Electrostatic separator (1, 1') according to one of Claims 1 to 3,
    characterized in that the means for the high-voltage and heating operation of the electrostatic separator (1, 1') comprise an (isolating) transformer device (13), in order to implement a high-voltage supply and a low-voltage supply separately from one another for the operation of the electrostatic separator (1, 1').
  5. Heating system for the generation of energy by means of the combustion of an energy carrier, such as biomass, with a fine-dust-emitting heating installation, such as a biomass heating installation, for the combustion of the energy carrier, particle-containing exhaust gases arising, and with an electrostatic separator (1, 1') according to one of the preceding Claims 1 to 4.
EP20090167685 2008-08-14 2009-08-12 Electrostatic separator and heating system Active EP2153902B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008037763A DE102008037763A1 (en) 2008-08-14 2008-08-14 Electrostatic separator and heating system

Publications (3)

Publication Number Publication Date
EP2153902A2 EP2153902A2 (en) 2010-02-17
EP2153902A3 EP2153902A3 (en) 2013-11-13
EP2153902B1 true EP2153902B1 (en) 2014-12-31

Family

ID=41137024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090167685 Active EP2153902B1 (en) 2008-08-14 2009-08-12 Electrostatic separator and heating system

Country Status (2)

Country Link
EP (1) EP2153902B1 (en)
DE (1) DE102008037763A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013100798A1 (en) * 2013-01-28 2014-07-31 Emitec Gesellschaft Für Emissionstechnologie Mbh Apparatus and method for treating a particulate exhaust gas
CN108758909A (en) * 2018-06-20 2018-11-06 苏州百创达环保科技有限公司 A kind of automation dust purification device suitable for open urban public place
CN116337703B (en) * 2023-05-25 2023-08-01 江苏中能电力设备有限公司 Measuring device for detecting smoke emission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB850275A (en) * 1955-10-17 1960-10-05 Holger Lueder Electrostatic precipitators
DD263927A1 (en) * 1987-08-26 1989-01-18 Univ Berlin Humboldt AC VOLTAGE FILTER FOR THE SEPARATION OF LUBRICANTS FROM STERLING GASES
DE8804328U1 (en) * 1988-03-30 1988-07-07 Mueller, Johannes A., Dipl.-Wirtsch.-Ing., 7980 Ravensburg, De
DE3820740A1 (en) * 1988-06-18 1989-12-21 Bosch Gmbh Robert COAGULATOR FOR DEVICES FOR PURIFYING EXHAUST GAS FOSSILER FUELS
CH695113A5 (en) 2000-10-02 2005-12-15 Empa Device for flue gas purification in small furnaces.
FR2843611B1 (en) * 2002-08-14 2004-09-17 Faurecia Sys Echappement ELECTROFILTER WITH CENTRAL COLLECTION
DE102008015616A1 (en) * 2008-03-26 2009-10-08 Robert Bosch Gmbh Electrostatic separator with particle repellent and heating system

Also Published As

Publication number Publication date
DE102008037763A1 (en) 2010-03-04
EP2153902A3 (en) 2013-11-13
EP2153902A2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
EP2478194B1 (en) Apparatus for purifying exhaust gases with two honeycomb bodies to generate an electric potential
EP2105206B1 (en) Electrostatic precipitator with particle removing means and heating system
EP0537219B1 (en) Process and device for cleaning exhaust gases
DE3020402A1 (en) METHOD AND DEVICE FOR REMOVING ALKALINE FROM A HOT GAS BY IONIZATION
EP0299197A2 (en) Electrostatic filter for cleaning gases
EP1930081B1 (en) Optimised electrostatic separator
EP2892653B1 (en) Method for collecting fine particles from flue gases, and a corresponding device and arrangement
EP2153902B1 (en) Electrostatic separator and heating system
AT505295B1 (en) firing unit
EP2256411B1 (en) Exhaust gas line for a heating device or a combustion machine
WO2014114408A1 (en) Device and method for treating an exhaust gas containing particles
EP2251088B1 (en) Electrostatic separator and heating system
EP0526552B1 (en) Process and device for removing particles from exhaust gases
EP0256325B1 (en) Filter for eliminating soot particles, especially from a diesel engine exhaust
DE102009036957A1 (en) Electrostatic separator and heating system
DE3323926C2 (en) Device for purifying gases
EP2062649B1 (en) Electrostatic separator with particulate rejection means, heating system and method for operation
EP0715894B1 (en) Electrostatic filter unit
DE102007028134B3 (en) Electrostatic separator and heating system
DE102007061366A1 (en) Electrostatic separator with safety device
DE102020125579A1 (en) Electrostatic separator, pipe section and plant producing airborne dust
EP2266702A1 (en) Electrostatic separator for cleaning waste gas with an electrical restriction field
DE102008038236B4 (en) An electrostatic precipitator and heating system comprising an electrode particle repellent comprising a bimetal
DE202012100052U1 (en) Arrangement of a heatable electrode in a chimney or an exhaust duct
EP2612000B1 (en) Device having an annular electrode for reducing soot particles in the exhaust gas of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B03C 3/41 20060101AFI20131004BHEP

Ipc: B03C 3/74 20060101ALI20131004BHEP

17P Request for examination filed

Effective date: 20140513

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140915

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 704052

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010423

Country of ref document: DE

Effective date: 20150219

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010423

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211025

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220822

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220824

Year of fee payment: 14

Ref country code: IT

Payment date: 20220831

Year of fee payment: 14

Ref country code: GB

Payment date: 20220824

Year of fee payment: 14

Ref country code: AT

Payment date: 20220818

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220822

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220824

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009010423

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 704052

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230812