EP2153471A2 - Transparent substrate with advanced electrode layer - Google Patents

Transparent substrate with advanced electrode layer

Info

Publication number
EP2153471A2
EP2153471A2 EP08805722A EP08805722A EP2153471A2 EP 2153471 A2 EP2153471 A2 EP 2153471A2 EP 08805722 A EP08805722 A EP 08805722A EP 08805722 A EP08805722 A EP 08805722A EP 2153471 A2 EP2153471 A2 EP 2153471A2
Authority
EP
European Patent Office
Prior art keywords
layer
substrate
substrate according
interface layer
periodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08805722A
Other languages
German (de)
French (fr)
Inventor
Guillaume Counil
Michele Schiavoni
Fabrice Abbott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2153471A2 publication Critical patent/EP2153471A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
    • Y10T428/24529Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface and conforming component on an opposite nonplanar surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
    • Y10T428/24537Parallel ribs and/or grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
    • Y10T428/24545Containing metal or metal compound

Definitions

  • the invention relates to an improvement made to a transparent substrate, in particular glass, which is provided with an electrode.
  • This conductive substrate is more particularly intended to be part of solar cells. This includes using it as the "front face" of the solar cell, that is to say the one that will be directly exposed to solar radiation to convert into electricity.
  • the invention is particularly interested in solar cells of amorphous or microcrystalline Si type.
  • This type of product is generally marketed in the form of solar cells mounted in series between two rigid substrates, possibly transparent, whose front face is made of glass. This type of cell is described in the German application DE 10 2004 046 554.1
  • the invention therefore also relates to said modules.
  • solar modules are not sold per square meter, but the electric power delivered, each additional percentage of efficiency increases the electrical performance, and therefore the price, of a solar module of given dimensions, each percent of efficiency gained, for a given solar module technology, being mainly a function of a gain obtained in the transmission of light within the substrate associated with said cell.
  • French patent FR2832706 discloses a glass-function substrate provided with an electrode comprising at least one conductive transparent layer based on metal oxide (s). electrode having the particularity of having an RMS roughness varying from a few nanometers to a few tens of nanometers
  • this textured electrode substrate when positioned in the immediate vicinity of an element capable of collecting light (for example a photovoltaic cell, a solar collector) fulfills its function and guarantees the achievement of energy conversion efficiency.
  • an element capable of collecting light for example a photovoltaic cell, a solar collector
  • the inventors have found that the diffusion of the light source within the substrate to a functional layer of the element capable of collecting light can be further improved.
  • the object of the invention is therefore to find means for improving the photoelectric conversion efficiency of these modules, means having more specifically the "front” glasses provided with electrodes mentioned above. We will look for simple ways to implement on an industrial scale, not disrupting the structures and configurations known for this type of product.
  • the invention first of all relates to a glass-function substrate associated with a textured electrode having at least one conductive transparent layer based on metal oxide (s), said layer being covered by at least one layer functional element of an element capable of collecting light which is characterized in that the substrate is covered by an interface layer having a textured portion comprising a periodic or non-periodic repeating patterns in relief.
  • the electrode is known by the abbreviation T. C. O for "Transparent Conductive Oxide". It is widely used in the field of solar cells and electronics.
  • the functional layer is defined as any thin layer based on a material that allows the energetic conversion of light into electrical energy or thermal energy within an element capable of collecting light (for example solar cell or photovoltaic, a solar collector).
  • a material that allows the energetic conversion of light into electrical energy or thermal energy within an element capable of collecting light for example solar cell or photovoltaic, a solar collector.
  • the materials in question for solar cells can be classically amorphous silicon, microcrystalline silicon, CdTe-based layers (cadmium telluride).
  • the interface layer is situated on the rear face of the substrate and has a textured portion which comprises a repetition of periodic or non-periodic patterns in relief of pitch w, and of height h satisfying the following relations: w ⁇ , and preferably w ⁇ / 2, and more preferably w ⁇ / 4 and h ⁇ ⁇ / 4 and preferably h ⁇ ⁇ and more preferably h ⁇ 2 ⁇ , ⁇ belonging to the solar spectrum and being located at the maximum of energy conversion efficiency of the solar cell.
  • the interface layer is situated on the rear face of the substrate and has a textured portion which comprises a repetition of periodic or non-periodic patterns in relief of pitch w, and of height h satisfying the following relations: ⁇ / 4 ⁇ w ⁇ 2 ⁇ and h is between 20 nm and 1 ⁇ m and preferably between between 30 nm and 500 nm and more preferably h between 50 nm and 200 nm, with ⁇ being located at a wavelength in which the solar spectrum is important but the conversion efficiency of the cell n ' is not its optimal.
  • the conductive layer is deposited on the interface layer
  • the interface layer is situated on the front face of the substrate and has a textured portion which comprises a repetition of periodic or non-periodic patterns in relief of pitch w, and of height h satisfying the following relations: ⁇ / 4 ⁇ w ⁇ 2 ⁇ and h is between 20 nm and 1 ⁇ m and preferably between 30 nm and 500 nm and more preferably h between 50 nm and 200 nm, with ⁇ being situated at a wavelength in which the Solar spectrum is important but the conversion efficiency of the cell is not its optimum.
  • the interface layer has a refractive index close to that of the substrate
  • the interface layer has a refractive index n ⁇ Substrate if the interface layer is placed on the front face of the substrate
  • the interface layer has an index n such that ⁇ Substrat ⁇ n ⁇ n ⁇ co if the interface layer is placed between the substrate and the conductive layer the conductive layer is conforming with respect to the interface layer
  • the conductive layer has a roughness different from that of the interface layer
  • the interface layer is located on the rear face of the substrate and has a textured portion which comprises a repeating periodic or non-periodic patterns of pitch w substantially close to 300 nm for which it has a combined effect for antireflection for a first range of wavelengths and light trapping for a second wavelength range, the relief patterns comprise parallel lines the relief patterns comprise non-parallel lines and / or pads,
  • the textured surface is obtained by embossing a sol-gel or polymer layer
  • FIG. 1 is a sectional view of a solar cell incorporating a substrate according to the methods of the invention according to a first embodiment, the interface layer being positioned on the rear face of the substrate.
  • FIG. 2 is a sectional view of a solar cell incorporating a substrate according to the methods of the invention according to a second embodiment, the interface layer being positioned on the front face of the substrate.
  • FIG. 3 illustrates the energy conversion efficiencies E ( ⁇ ) of two typical photovoltaic cells (amorphous Si, and microcrystalline Si) as a function of the wavelength of the light.
  • FIG. 4 illustrates a first variant embodiment of the invention with an anti-reflective effect
  • FIG. 5 illustrates a second variant embodiment of the invention with a light trapping effect.
  • FIG. 6 illustrates, for different step values, the evolution of the optical path as a function of the wavelength.
  • an element capable of collecting light a solar or photovoltaic cell
  • a substrate object of the invention there is shown an element capable of collecting light (a solar or photovoltaic cell) incorporating a substrate object of the invention.
  • the transparent substrate 1 with glass function can for example be entirely of glass. It may also be a thermoplastic polymer such as a polyurethane or a polycarbonate or a polymethylmethacrylate.
  • the entire glass-function substrate consists of material (x) having the best possible transparency and preferably having a linear absorption. less than 0.01 mm 1 in the part of the spectrum useful for the application (solar module), generally the spectrum ranging from 380 to 1200 nm.
  • the substrate 1 according to the invention can have a total thickness ranging from 0.5 to 10 mm when used as a protective plate of a photovoltaic cell of various technologies (amorphous silicon, micro-crystalline silicon). In this case, it may be advantageous to subject this plate to a heat treatment (of the quenching type for example).
  • A defines the front face of the substrate directed towards the light rays (this is the external face), and B the rear face of the substrate directed towards the rest of the solar module layers (it is acts of the internal face).
  • an interface layer 2 is deposited on the B side of the substrate.
  • This interface layer 2 is obtained by spin coating, flow coating, spray coating, screen printing or any other liquid layer deposition technique. thin, and is based on a polymer or sol gel.
  • the sol-gel layers that can be used are generally liquid layers of inorganic oxide precursor such as SiO 2, Al 2 O 3, TiO 2, for example in solution in a water-alcohol mixture. These layers harden on drying, with or without auxiliary heating means.
  • precursors of SiO 2 are tetraethoxysilane (TEOS) or methyltriethoxysilane (MTEOS).
  • TEOS tetraethoxysilane
  • MTEOS methyltriethoxysilane
  • Organic functions can be included in these precursors and the silica finally obtained.
  • fluorinated silanes have been described in the document
  • PET poly (ethylene terephthalate)
  • polystyrene polyacrylates such as poly (methyl methacrylate), poly (butyl acrylate), poly (methacrylic acid), poly (2-hydroxyethyl methacrylate) and their copolymers,
  • polyurethane (meth) acrylates polyurethane (meth) acrylates, polyimides such as polymethylglutarimide,
  • polysiloxanes such as polyepoxysiloxanes
  • polybisbenzocyclobutenes ... alone or in copolymers or mixtures of several of them.
  • the said patterns are then produced on the surface of this interface layer 2 by either an embossing technique, or by a photolithography technique, or by any texturing technique (chemical etching, laser transfer ablation, ion exchange, photorefractive effect or electro-optical).
  • the embossing method consists in structuring a surface portion of the glass-function substrate by forming an array of patterns according to sub-millimetric characteristic dimensions, the surface structuring by plastic or viscoplastic deformation being performed by contact with a structured element called a mask and by exerting pressure, the structuring being effected by a continuous movement of the mask parallel to the surface of the product and / or by a continuous movement of said product parallel to the surface of the product.
  • the speed of the movement and the duration of the contact, under pressure, between the product and the mask are adjusted according to the nature of the surface to be structured in particular: its viscosity, its surface tension; and possibly depending on the type of desired patterns (most faithful reproduction of the pattern of the mask, or deliberately truncated ).
  • the mask pattern is not necessarily the negative of the replicated pattern.
  • the final pattern can be formed with several masks or by several passes.
  • the mask may have a plurality of areas with distinct patterns in size (width and height) and / or orientation and / or distance.
  • Another possible method of manufacturing the network according to the invention comprises a photolithography. This method generally consists in first providing the transparent substrate with a first layer in which said raised patterns can be formed. This first layer is comparable to the sol-gel or polymer layer reported from the embossing process. It can also be of the same nature as this one, in particular silica. In a second step of the process, a second layer of a photoresist is deposited. This is hardened in defined locations, by exposure to targeted radiation. Thus is formed a mask, above the first layer to be etched, after removal of the uncured portions of the photoresist. Then, in the same manner as described above, in the optional step of the embossing process. Any residues of the photoresist can be removed.
  • Another method of manufacturing the network according to the invention comprises the transfer of a nanostructured layer.
  • a layer in adhesion on a first support is put in adhesion on a second, so as to constitute a device according to the invention.
  • the layer may be of plastics material or the like.
  • Another useful method is based on ion exchange, for example Na + ions by Ag + in a mineral glass.
  • a photorefractive effect according to which a modulated light induces a spatial modulation of the refraction index of the material (example: photorefractive crystal in barium titanate).
  • an electro-optical effect in which an electric field induces a spatial modulation of the refractive index of the material.
  • this process may not necessarily lead to perfect geometric shapes.
  • the pattern in the case of sharp-angled patterns, the pattern can be rounded without affecting the required performance.
  • a so-called "fly-eye" profile is produced, namely that the plurality of periodic or non-periodic reliefs has the following geometrical characteristics: the pitch w and the height h of the pattern satisfy the following relations: w ⁇ , and preferably w ⁇ / 2, and more preferably w ⁇ / 4 and h ⁇ ⁇ / 4 and preferably h ⁇ ⁇ and more preferably h
  • the patterns may, for example, be cone-shaped or pyramid-shaped polygonal in shape such as triangular or square or rectangular or hexagonal or octagonal, said patterns being convex, that is to say protruding from the general plane of the layer. interface or be concave, that is to say coming hollow in the mass of the interface layer. All of these patterns can extend on the surface and form parallel or non-parallel lines (in fact generate pads).
  • the material chosen to constitute the material of the interface layer has a refractive index substantially similar to or close to that of the material constituting the glass-function substrate (approximately 1.50).
  • TCO Transparent Conductive Oxide
  • tin oxide in particular fluorine or antimony
  • the precursors that can be used in the case of CVD deposition may be organo-metallic or tin halides associated with a fluorine precursor of the hydrofluoric acid or trifluoroacetic acid type
  • doped zinc oxide in particular with aluminum
  • the precursors that can be used, in the case of CVD deposition may be organometallic or zinc and aluminum halides
  • doped indium oxide, in particular with tin the precursors that can be used in the case of CVD deposition can be organo-metallic or tin and indium halides).
  • the conductive layer 3 has a resistance per square of at most 30 ohms / square, in particular at most 20 ohms / square, preferably at most 10 or 15 ohms / square. It is generally between 5 and 12 ohms / square.
  • the interface layer has an index n such that ⁇ n V erre ⁇ n ⁇ n ⁇ co if the interface layer is placed between the glass and the conductive layer 3 in TCO
  • a second anti-reflection effect is obtained between the conductive layer 3 and the functional layer 4.
  • the increase in transmission will be of the order from 3 to 4% - If the contact zone is not in conformity (that is to say that the conductive layer 3 has a different texturing (formation of grains for example) than that of the interface layer 2), this second texture can help light trapping and extend the path of light in the functional layer of the solar cell.
  • a structure is produced which diffuses or diffracts the light.
  • the textured portion of the interface layer 2 comprises a plurality of periodic or non-periodic reliefs that have the following geometrical characteristics: the pitch w, and the height h satisfy the following relations: ⁇ / 4 ⁇ w ⁇ 2 ⁇ and h is included between 20 nm and 1 ⁇ m and preferably between 30 nm and 500 nm and more preferably h between 50 nm and 200 nm.
  • the wavelength ⁇ which is chosen corresponds to a wavelength in which the solar spectrum is important but the conversion efficiency of the cell is not its optimum. In this way the wavelengths travel a longer distance in the solar cell and the probability of being converted is greater.
  • will be chosen between 550 and 750 nm (efficiency too low beyond this value).
  • ⁇ crystalline silicon see FIG. 3
  • will be chosen between 500 and 650 nm and between 800 and 1000 nm.
  • the patterns may, for example, be cone-shaped or pyramid-shaped polygonal in shape such as triangular or square or rectangular or hexagonal or octagonal, said patterns being convex, that is to say protruding from the general plane of the layer. interface or be concave, that is to say coming hollow in the mass of the interface layer.
  • TCO Transparent Conductive Oxide
  • doped tin oxide in particular fluorine or antimony
  • the precursors that can be used in the case of CVD deposition may be organo-metallic or tin halides associated with a fluorine precursor of the hydrofluoric acid or trifluoroacetic acid type
  • doped zinc oxide in particular with aluminum
  • the precursors that can be used, in the case of CVD deposition may be organometallic or zinc and aluminum halides
  • doped indium oxide, in particular with tin the precursors that can be used in the case of CVD deposition can be organo-metallic or tin and indium halides).
  • the conductive layer 3 has a resistance per square of at most 30 ohms / square, in particular at most 20 ohms / square, preferably at most 10 or 15 ohms / square. It is generally between 5 and 12 ohms / square.
  • the conductive layer 3 is covered by a functional layer 4 of a solar cell, there is a diffractive effect (the light rays are scattered or diffracted at the interface layer).
  • the conducting layer 3 conforms to the texturing coming from the interface layer and in addition has a certain intrinsic roughness, then, in this case, the interface zone between the conductive layer 3 and the functional layer 4 will present a dual-scale texturing, a first scale being given by the textured interface layer, the second scale from the intrinsic roughness of the conductive layer.
  • This double-scale roughness makes it possible to obtain an improved "light trapping" phenomenon.
  • the roughness is non-uniform, random. There are no regular patterns at the interface layer surface and the conductive layer, but varying sizes of protuberances and / or troughs at the surface of the layers, distributed randomly over any said surface. This roughness will already allow a diffusion of the light transmitted by the important substrate, and mainly "forwards", that is to say so as to diffuse the light, but mainly towards the inside of the solar cell .
  • between 550 and 750 nm
  • between 550 and 750 nm
  • will be chosen between 500 and 650 nm and between 800 and 1000 nm.
  • the functional layer 4 is covered by a conductive layer 5 to serve as a second electrode to the solar module.
  • This conductive layer 5 is made for example of silver by a vacuum sputtering technique (magnetron). Subsequently, this glass plate 1 provided with all the previously explained layers is fixed via a interlayer lamination 6 to a counter glass 7, thus conforming a solar cell or photovoltaic.
  • FIG. 2 shows another embodiment of the invention which differs from that illustrated in FIG. 1 simply by the position of the interface layer 2 relative to the substrate.
  • the interface layer 2 is on the face A of the substrate 1.
  • the interface layer has a refractive index n ⁇ n ve rre.It makes it possible to diffuse or diffract the incident light so that the light rays traveling through the substrate 1, then in the conductive layer 3, then the functional layer 4, at high angles of incidence, thereby increasing the phenomenon of light trapping. This scattering or diffraction of light is obtained for specific wavelengths.
  • Embossings having a pitch w and a height h which satisfy the following relations ⁇ / 4 ⁇ w ⁇ 2 ⁇ and h is between 20 nm and 1 ⁇ m and preferably between 30 nm and 500 nm and more preferably h are used. between 50 nm and 200 nm.
  • between 550 and 750 nm (efficiency too low beyond this value) for amorphous silicon.
  • will be chosen between 500 and 650 nm and between 800 and 1000 nm.
  • the substrate according to the invention finds its use in a solar cell.
  • a barrier layer can be applied at certain wavelengths, for example in ultraviolet light.
  • an anti-fouling layer such as a layer of TiO 2, in particular a layer which is the subject of the patent application EP 1087916, or a SiO 2 antifouling layer or Si oxycarbide or Si oxynitride or Si oxycarbonitride as described in WO 01/32578.
  • FIG. 4 illustrates an antireflection configuration in "fly-eye” according to the first variant embodiment.
  • An interface layer 2 is deposited on side B of a glass substrate 1.
  • This layer 2 is structured and has trapezoidal grooves.
  • the depth h of the pattern is 900 nm.
  • Table 1 below gives the reflection values between the glass substrate and the conductive layer 3, with the presence of the interface layer 2 and without this interface layer 2.
  • Table 1 Reflection at the glass / conductive layer interface in the presence of an interface layer 2 having an antireflection effect (structured layer in a fly eye) or in the absence of an interface layer.
  • the antireflection effect of the interface layer appears obvious, with a reflection that goes from about 2% to less than 0.1% for all angles of incidence.
  • Example 2 illustrates the second variant embodiment of the invention, namely the increase of the optical path.
  • An interface layer 2 is deposited on side B of a glass substrate 1.
  • This interface layer 2 is structured and has grooves having a sinusoidal profile. The pitch of the sinusoid is w and the height h.
  • a transparent conductive layer 3 forming a TCO, of thickness e, conformably follows the structuring of the textured interface layer 2. This results in an increase in the path of light in the functional layer 4. If a light ray is found in the functional layer 4 with an angle ⁇ relative to the normal to the cell, the optical path in the active medium will increase by a factor l / cos ( ⁇ ) with respect to a normal radius of the cell.
  • the increase in the optical path as a function of the wavelength ⁇ of the light is given below, for different steps w of textures.
  • the increase A (in%) of the optical path as a function of the wavelength of the light ⁇ in the layer is given below. functional 4 for different w steps of the texture.
  • the increase A (in%) was calculated by averaging over a range of angles of incidence in the air, between 0 ° and 50 °.
  • light trapping is particularly effective for ⁇ between 500 and 650 nm and between 750 and 900 nm, while the “light trapping” is less efficient around 700 nm, the wavelength at which this cell possesses an optimal conversion efficiency, making the phenomenon of light trapping less necessary.
  • Example 3 a structure is presented which has both an anti-reflective effect in "fly eye” and a “light trapping” effect.
  • this configuration not only is it possible to obtain a trapping of the light with increase of the optical path (light trapping), but an antireflection effect is obtained between the glass (medium 1) and the functional layer 4.
  • an increase in light transmission of the order of 4% is obtained (value obtained by averaging on incidence angles between 0 ° and 50 °).
  • this structure allows an optical path increase of the order of 20% for a second wavelength range between 600 and 750 nm.
  • this structure will have a double beneficial effect for a functional layer 4 of amorphous silicon type such as that of FIG. 3.
  • the structure induces an anti-reflective effect while for wavelengths between 600 and 750 nm, where the functional layer 4 is less effective, we obtain a "light trapping" effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The invention relates to a substrate having a glazing function and associated with a textured electrode, including at least one conducting transparent layer containing metal oxide(s), said layer being covered by at least one functional layer of an element capable of collecting light, characterised in that the substrate is covered with an interface layer having a textured portion including a repetition of periodical or non-periodical relief patterns.

Description

SUBSTRAT TRANSPARENT MUNI D'UNE COUCHE ELECTRODE TRANSPARENT SUBSTRATE WITH ELECTRODE LAYER
PERFECTIONNEEIMPROVED
L'invention se rapporte à un perfectionnement apporté à un substrat transparent, notamment en verre, qui est muni d'une électrode. Ce substrat conducteur est plus particulièrement destiné à faire partie de cellules solaires. Il s'agit notamment de l'utiliser comme « face avant » de cellule solaire, c'est-à-dire celle qui va se trouver directement exposée aux rayonnements solaires à convertir en électricité.The invention relates to an improvement made to a transparent substrate, in particular glass, which is provided with an electrode. This conductive substrate is more particularly intended to be part of solar cells. This includes using it as the "front face" of the solar cell, that is to say the one that will be directly exposed to solar radiation to convert into electricity.
L'invention s'intéresse notamment aux cellules solaires de type Si amorphe ou micro cristallin. On en rappelle brièvement la structure : On commercialise généralement ce type de produit sous forme de cellules solaires montées en série entre deux substrats rigides éventuellement transparents dont la face avant est en verre. Ce type de cellule est décrit dans la demande allemande DE 10 2004 046 554.1The invention is particularly interested in solar cells of amorphous or microcrystalline Si type. We briefly recall the structure: This type of product is generally marketed in the form of solar cells mounted in series between two rigid substrates, possibly transparent, whose front face is made of glass. This type of cell is described in the German application DE 10 2004 046 554.1
C'est l'ensemble des substrats, du polymère et des cellules solaires que l'on désigne et que l'on vend sous le nom de « module solaire ».It is the set of substrates, polymer and solar cells that we designate and that we sell under the name of "solar module".
L'invention a donc aussi pour objet lesdits modules. Quand on sait que les modules solaires ne sont pas vendus au mètre carré, mais à la puissance électrique délivrée, chaque pourcent de rendement supplémentaire accroît la performance électrique, et donc le prix, d'un module solaire de dimensions données, chaque pourcent de rendement gagné, pour une technologie donnée de modules solaires, étant surtout fonction d'un gain obtenu dans la transmission de lumière au sein du substrat associé à ladite cellule.The invention therefore also relates to said modules. When we know that solar modules are not sold per square meter, but the electric power delivered, each additional percentage of efficiency increases the electrical performance, and therefore the price, of a solar module of given dimensions, each percent of efficiency gained, for a given solar module technology, being mainly a function of a gain obtained in the transmission of light within the substrate associated with said cell.
On connaît par le brevet français FR2832706 un substrat à fonction verrière muni d'une électrode comprenant au moins une couche transparente conductrice à base d'oxyde(s) métallique(s), cette électrode ayant la particularité de présenter une rugosité RMS variant de quelques nanomètres à quelques dizaines de nanomètresFrench patent FR2832706 discloses a glass-function substrate provided with an electrode comprising at least one conductive transparent layer based on metal oxide (s). electrode having the particularity of having an RMS roughness varying from a few nanometers to a few tens of nanometers
Bien que ce substrat à électrode texturée, lorsqu'il est positionné au voisinage immédiat d'un élément capable de collecter de la lumière (par exemple une cellule photovoltaïque, un collecteur solaire) remplisse sa fonction et garantisse l'obtention de rendement de conversion énergétique intéressant, les inventeurs se sont aperçus que l'on pouvait encore améliorer la diffusion de la source de lumière au sein du substrat en direction d'une couche fonctionnelle de l'élément capable de collecter de la lumière.Although this textured electrode substrate, when positioned in the immediate vicinity of an element capable of collecting light (for example a photovoltaic cell, a solar collector) fulfills its function and guarantees the achievement of energy conversion efficiency. Interestingly, the inventors have found that the diffusion of the light source within the substrate to a functional layer of the element capable of collecting light can be further improved.
L'invention a alors pour but de rechercher des moyens pour améliorer le rendement de conversion photoélectrique de ces modules, moyens ayant plus spécifiquement trait aux verres « avant » munis d'électrodes mentionnés plus haut. On recherchera les moyens simples à mettre en œuvre à l'échelle industrielle, ne bouleversant pas les structures et configurations connues pour ce type de produit.The object of the invention is therefore to find means for improving the photoelectric conversion efficiency of these modules, means having more specifically the "front" glasses provided with electrodes mentioned above. We will look for simple ways to implement on an industrial scale, not disrupting the structures and configurations known for this type of product.
L'invention à tout d'abord pour objet un substrat à fonction verrière associé à une électrode texturée présentant comprenant au moins une couche transparente conductrice à base d'oxyde(s) métallique (s), ladite couche étant recouverte par au moins une couche fonctionnelle d'un élément capable de collecter de la lumière qui se caractérise en ce que le substrat est recouvert par une couche d'interface présentant une partie texturée comportant une répétition périodique ou non périodiques de motifs en relief. Au sens de l'invention, l'électrode est connue sous l'abréviation anglaise T. C. O pour «Transparent Conductive Oxide». Elle est largement utilisée dans le domaine des cellules solaires et de l'électronique.The invention first of all relates to a glass-function substrate associated with a textured electrode having at least one conductive transparent layer based on metal oxide (s), said layer being covered by at least one layer functional element of an element capable of collecting light which is characterized in that the substrate is covered by an interface layer having a textured portion comprising a periodic or non-periodic repeating patterns in relief. For the purposes of the invention, the electrode is known by the abbreviation T. C. O for "Transparent Conductive Oxide". It is widely used in the field of solar cells and electronics.
Au sens de l'invention, on définit comme couche fonctionnelle toute couche mince à base d'un matériau permettant la conversion énergétique de la lumière en énergie électrique ou énergie thermique au sein d'un élément capable de collecter de la lumière (par exemple une cellule solaire ou photovoltaïque, un collecteur solaire). Les matériaux en question pour les cellules solaires peuvent être classiquement du silicium amorphe, du silicium micro cristallin, des couches à base de CdTe (cadmium telluride).For the purposes of the invention, the functional layer is defined as any thin layer based on a material that allows the energetic conversion of light into electrical energy or thermal energy within an element capable of collecting light (for example solar cell or photovoltaic, a solar collector). The materials in question for solar cells can be classically amorphous silicon, microcrystalline silicon, CdTe-based layers (cadmium telluride).
Si cette texturation de surface présente des spécifications particulières, on obtiendra plutôt un effet anti reflet entre les deux milieux entourant la couche d'interface.If this surface texturing has particular specifications, we will rather obtain an anti-reflection effect between the two environments surrounding the interface layer.
Par ailleurs, grâce à la texturation de surface au niveau de la couche d'interface, on obtient entre la couche d'interface et les matériaux qui l'encadrent, une diffusion accrue de la lumière incidente, qui « oblige » celle-ci à avoir une trajectoire beaucoup plus longue à travers la cellule solaire.Moreover, thanks to the surface texturing at the level of the interface layer, there is obtained between the interface layer and the materials which surround it, an increased diffusion of the incident light, which "forces" it to have a much longer trajectory through the solar cell.
En allongeant ainsi le trajet optique, on multiplie les chances d'absorption de la lumière par les éléments actifs de la cellule, et en final on augmente le taux de conversion photoélectrique de la cellule solaire. On piège ainsi mieux la lumière.By thus lengthening the optical path, we increase the chances of absorption of light by the active elements of the cell, and finally we increase the photoelectric conversion rate of the solar cell. This traps light better.
Dans des modes de réalisation préférés de l'invention, on peut éventuellement avoir recours en outre à l'une et/ ou à l'autre des dispositions suivantes :In preferred embodiments of the invention, one or more of the following may also be used:
- la couche d'interface est située en face arrière du substrat et présente une partie texturée qui comporte une répétition de motifs périodiques ou non périodiques en relief de pas w, et de hauteur h satisfaisant les relations suivantes : w < λ, et de préférence w < λ/2, et de manière plus préférentielle w < λ/4 et h ≥ λ/4 et de préférence h ≥ λ et de manière plus préférentielle h ≥ 2λ, λ appartenant au spectre solaire et étant située au maximum de l'efficacité de conversion énergétique de la cellule solaire.the interface layer is situated on the rear face of the substrate and has a textured portion which comprises a repetition of periodic or non-periodic patterns in relief of pitch w, and of height h satisfying the following relations: w <λ, and preferably w <λ / 2, and more preferably w <λ / 4 and h ≥ λ / 4 and preferably h ≥ λ and more preferably h ≥ 2λ, λ belonging to the solar spectrum and being located at the maximum of energy conversion efficiency of the solar cell.
- La couche d'interface est située en face arrière du substrat et présente une partie texturée qui comporte une répétition de motifs périodiques ou non périodiques en relief de pas w, et de hauteur h satisfaisant les relations suivantes : λ/4 < w < 2λ et h est comprise entre 20 nm et 1 μm et de préférence comprise entre 30 nm et 500 nm et de manière plus préférentielle h comprise entre 50 nm et 200 nm, avec λ étant située au niveau d'une longueur d'onde dans laquelle le spectre solaire est important mais le rendement de conversion de la cellule n'est pas son optimal.The interface layer is situated on the rear face of the substrate and has a textured portion which comprises a repetition of periodic or non-periodic patterns in relief of pitch w, and of height h satisfying the following relations: λ / 4 <w <2λ and h is between 20 nm and 1 μm and preferably between between 30 nm and 500 nm and more preferably h between 50 nm and 200 nm, with λ being located at a wavelength in which the solar spectrum is important but the conversion efficiency of the cell n ' is not its optimal.
- la couche conductrice est déposée sur la couche d'interface,the conductive layer is deposited on the interface layer,
- la couche d'interface est située en face avant du substrat et présente une partie texturée qui comporte une répétition de motifs périodiques ou non périodiques en relief de pas w, et de hauteur h satisfaisant les relations suivantes : λ/4 < w < 2λ et h est comprise entre 20 nm et 1 μm et de préférence comprise entre 30 nm et 500 nm et de manière plus préférentielle h comprise entre 50 nm et 200 nm, avec λ étant située au niveau d'une longueur d'onde dans laquelle le spectre solaire est important mais le rendement de conversion de la cellule n'est pas son optimal.the interface layer is situated on the front face of the substrate and has a textured portion which comprises a repetition of periodic or non-periodic patterns in relief of pitch w, and of height h satisfying the following relations: λ / 4 <w <2λ and h is between 20 nm and 1 μm and preferably between 30 nm and 500 nm and more preferably h between 50 nm and 200 nm, with λ being situated at a wavelength in which the Solar spectrum is important but the conversion efficiency of the cell is not its optimum.
- La couche d'interface a un indice de réfraction proche à celui du substrat- The interface layer has a refractive index close to that of the substrate
- La couche d'interface a un indice de réfraction n < Substrat si la couche d'interface est placée en face avant du substrat- The interface layer has a refractive index n <Substrate if the interface layer is placed on the front face of the substrate
- La couche d'interface a un indice n tel que < Substrat≤ n≤ nτco si la couche d'interface est placée entre le substrat et la couche conductrice la couche conductrice est conforme par rapport à la couche d'interface- The interface layer has an index n such that <Substrat≤ n≤ nτco if the interface layer is placed between the substrate and the conductive layer the conductive layer is conforming with respect to the interface layer
- la couche conductrice présente une rugosité différente de celle de la couche d'interface la couche d'interface est située en face arrière du substrat et présente une partie texturée qui comporte une répétition de motifs périodiques ou non périodiques de pas w sensiblement voisin de 300 nm pour lesquels il présente un effet combiné d 'antireflet pour une première plage de longueurs d'onde et de light trapping pour une seconde plage de longueurs d'onde, les motifs en relief comprennent des lignes parallèles les motifs en relief comprennent des lignes non parallèles et/ ou des plots,- The conductive layer has a roughness different from that of the interface layer The interface layer is located on the rear face of the substrate and has a textured portion which comprises a repeating periodic or non-periodic patterns of pitch w substantially close to 300 nm for which it has a combined effect for antireflection for a first range of wavelengths and light trapping for a second wavelength range, the relief patterns comprise parallel lines the relief patterns comprise non-parallel lines and / or pads,
- la surface texturée est obtenue par embossage d'une couche sol-gel ou polymèrethe textured surface is obtained by embossing a sol-gel or polymer layer
- la surface texturée est obtenue par une technique de photolithographie D'autres caractéristiques, détails, avantages de la présente invention apparaîtront mieux à la lecture de la description qui va suivre, faite à titre illustratif et nullement limitatif, en référence à des figures annexées sur lesquelles :the textured surface is obtained by a photolithography technique. Other features, details, advantages of the present invention will appear better on reading the description which follows, made by way of illustration and in no way limiting, with reference to the appended figures on FIG. which:
- la figure 1 est une vue en coupe d'une cellule solaire incorporant un substrat selon les modalités de l'invention selon un premier mode de réalisation, la couche d'interface étant positionnée en face arrière du substrat.- Figure 1 is a sectional view of a solar cell incorporating a substrate according to the methods of the invention according to a first embodiment, the interface layer being positioned on the rear face of the substrate.
- la figure 2 est une vue en coupe d'une cellule solaire incorporant un substrat selon les modalités de l'invention selon un deuxième mode de réalisation, la couche d'interface étant positionné en face avant du substrat.- Figure 2 is a sectional view of a solar cell incorporating a substrate according to the methods of the invention according to a second embodiment, the interface layer being positioned on the front face of the substrate.
- La figure 3 illustre les efficacités de conversion énergétique E(λ) de deux cellules photovoltaïques typiques (Si amorphe, et Si micro cristallin) en fonction de la longueur d'onde de la lumièreFIG. 3 illustrates the energy conversion efficiencies E (λ) of two typical photovoltaic cells (amorphous Si, and microcrystalline Si) as a function of the wavelength of the light.
- La figure 4 illustre une première variante de réalisation de l'invention avec un effet antireflet,FIG. 4 illustrates a first variant embodiment of the invention with an anti-reflective effect,
- La figure 5 illustre une deuxième variante de réalisation de l'invention avec un effet de « light trapping » - La figure 6 illustre, pour différentes valeurs de pas, l'évolution du chemin optique en fonction de la longueur d'onde. Sur la figure 1 , on a représenté un élément capable de collecter de la lumière (une cellule solaire ou photovoltaïque) incorporant un substrat objet de l'invention.FIG. 5 illustrates a second variant embodiment of the invention with a light trapping effect. FIG. 6 illustrates, for different step values, the evolution of the optical path as a function of the wavelength. In Figure 1, there is shown an element capable of collecting light (a solar or photovoltaic cell) incorporating a substrate object of the invention.
Le substrat 1 transparent à fonction verrière peut par exemple être entièrement en verre. Il peut également être en un polymère thermoplastique tel qu'un polyuréthane ou un polycarbonate ou un polyméthacrylate de méthyle.The transparent substrate 1 with glass function can for example be entirely of glass. It may also be a thermoplastic polymer such as a polyurethane or a polycarbonate or a polymethylmethacrylate.
L'essentiel de la masse (c'est-à-dire pour au moins 98 % en masse), voire la totalité du substrat à fonction verrière est constituée de matériau(x) présentant la meilleure transparence possible et ayant de préférence une absorption linéique inférieure à 0,01 mm 1 dans la partie du spectre utile à l'application (module solaire), généralement le spectre allant de 380 à 1200 nm.Most of the mass (that is to say at least 98% by weight), or even the entire glass-function substrate consists of material (x) having the best possible transparency and preferably having a linear absorption. less than 0.01 mm 1 in the part of the spectrum useful for the application (solar module), generally the spectrum ranging from 380 to 1200 nm.
Le substrat 1 selon l'invention peut avoir une épaisseur totale allant de 0,5 à 10 mm lorsqu'on l'utilise comme plaque protectrice d'une cellule photovoltaïque de diverses technologies (silicium amorphe, silicium micro cristallin). Dans ce cas, il peut être avantageux de faire subir à cette plaque un traitement thermique (du type trempe par exemple). De manière conventionnelle, on définit par A la face avant du substrat dirigée vers les rayons lumineux (il s'agit de la face externe), et par B la face arrière du substrat dirigée vers le reste des couches du module solaire (il s'agit de la face interne).The substrate 1 according to the invention can have a total thickness ranging from 0.5 to 10 mm when used as a protective plate of a photovoltaic cell of various technologies (amorphous silicon, micro-crystalline silicon). In this case, it may be advantageous to subject this plate to a heat treatment (of the quenching type for example). In a conventional manner, A defines the front face of the substrate directed towards the light rays (this is the external face), and B the rear face of the substrate directed towards the rest of the solar module layers (it is acts of the internal face).
Sur la face B du substrat, on dépose une couche d'interface 2. Cette couche d'interface 2 est obtenue par une technique de spin coating, flow coating, spray coating, de sérigraphie ou toute autre technique de dépôt par voie liquide de couche mince, et est à base d'un polymère ou en sol gel.On the B side of the substrate, an interface layer 2 is deposited. This interface layer 2 is obtained by spin coating, flow coating, spray coating, screen printing or any other liquid layer deposition technique. thin, and is based on a polymer or sol gel.
Les couches sol-gel utilisables sont en général des couches liquides de précurseur d'oxyde minéral tel que Siθ2, AI2O3, Tiθ2 ..., par exemple en solution dans un mélange eau-alcool. Ces couches durcissent en séchant, avec ou sans moyen auxiliaire de chauffage.The sol-gel layers that can be used are generally liquid layers of inorganic oxide precursor such as SiO 2, Al 2 O 3, TiO 2, for example in solution in a water-alcohol mixture. These layers harden on drying, with or without auxiliary heating means.
Citons comme précurseur de Siθ2 le tétraéthoxysilane (TEOS) ou le méthyltriéthoxysilane (MTEOS). Des fonctions organiques peuvent être incluses dans ces précurseurs et la silice finalement obtenue. Par exemple des silanes fluorés ont été décrits dans le documentExamples of precursors of SiO 2 are tetraethoxysilane (TEOS) or methyltriethoxysilane (MTEOS). Organic functions can be included in these precursors and the silica finally obtained. For example, fluorinated silanes have been described in the document
EP 799 873 pour obtenir un revêtement hydrophobe.EP 799,873 to obtain a hydrophobic coating.
Parmi les polymères peuvent être citésAmong the polymers can be cited
- le poly (téréphtalate d'éthylène) (PET),poly (ethylene terephthalate) (PET),
- le polystyrène, - les polyacrylates tels que poly(méthacrylate de méthyle), poly(acrylate de butyle), poly (acide méthacrylique), poly(méthacrylate de 2-hydroxyéthyle) et leur copolymères,polystyrene, polyacrylates such as poly (methyl methacrylate), poly (butyl acrylate), poly (methacrylic acid), poly (2-hydroxyethyl methacrylate) and their copolymers,
- les polyépoxy(méth)acrylates,polyepoxy (meth) acrylates,
- les polyuréthane(méth)acrylates, - les polyimides tels que polyméthylglutarimide,polyurethane (meth) acrylates, polyimides such as polymethylglutarimide,
- les polysiloxanes tels que polyépoxysiloxanes,polysiloxanes, such as polyepoxysiloxanes,
- les poly (éthers vinyliques),poly (vinyl ethers),
- les polybisbenzocyclobutènes ... seuls ou en copolymères ou mélanges de plusieurs d'entre eux. On réalise ensuite à la surface de cette couche d'interface 2 lesdits motifs soit par une technique d'embossage, soit par une technique de photolithographie, soit par toute technique de texturation (attaque chimique, ablation laser transfert, échange ionique, effet photoréfractif ou electrooptique) . Le procédé d'embossage consiste à structurer une portion de surface du substrat à fonction verrière en formant un réseau de motifs selon des dimensions caractéristiques submillimétriques, la structuration de surface par déformation plastique ou viscoplastique étant réalisée par contact avec un élément structuré appelé masque et en exerçant une pression, la structuration s 'effectuant par un mouvement continu du masque parallèlement à la surface du produit et/ ou par un mouvement continu dudit produit parallèlement à la surface du produit. La vitesse du mouvement et la durée du contact, sous pression, entre le produit et le masque sont ajustés en fonction de la nature de la surface à structurer en particulier : - de sa viscosité, de sa tension de surface ; et éventuellement en fonction du type de motifs souhaités (reproduction la plus fidèle du motif du masque, ou volontairement tronquée...).polybisbenzocyclobutenes ... alone or in copolymers or mixtures of several of them. The said patterns are then produced on the surface of this interface layer 2 by either an embossing technique, or by a photolithography technique, or by any texturing technique (chemical etching, laser transfer ablation, ion exchange, photorefractive effect or electro-optical). The embossing method consists in structuring a surface portion of the glass-function substrate by forming an array of patterns according to sub-millimetric characteristic dimensions, the surface structuring by plastic or viscoplastic deformation being performed by contact with a structured element called a mask and by exerting pressure, the structuring being effected by a continuous movement of the mask parallel to the surface of the product and / or by a continuous movement of said product parallel to the surface of the product. The speed of the movement and the duration of the contact, under pressure, between the product and the mask are adjusted according to the nature of the surface to be structured in particular: its viscosity, its surface tension; and possibly depending on the type of desired patterns (most faithful reproduction of the pattern of the mask, or deliberately truncated ...).
Le motif du masque n'est pas nécessairement le négatif du motif répliqué. Ainsi, le motif final peut être formé avec plusieurs masques ou par plusieurs passages.The mask pattern is not necessarily the negative of the replicated pattern. Thus, the final pattern can be formed with several masks or by several passes.
Le masque peut présenter plusieurs zones avec des motifs distincts par leur taille (largeur comme hauteur) et/ ou leur orientation et /ou leur distance. Un autre procédé possible de fabrication du réseau selon l'invention comprend une photolithographie. Ce procédé consiste généralement à munir d'abord le substrat transparent d'une première couche dans laquelle pourront être formés lesdits motifs en relief. Cette première couche est comparable à la couche sol-gel ou polymère rapportée du procédé d'embossage. Elle peut d'ailleurs être de la même nature que celle-ci, notamment en silice. Dans une deuxième étape du procédé, on dépose une deuxième couche d'une résine photosensible. Celle-ci est durcie en des localisations définies, par exposition à un rayonnement ciblé. Ainsi est constitué un masque, au-dessus de la première couche à graver, après élimination des parties non durcies de la résine photosensible. Puis on grave, de la même manière que décrit ci-dessus relativement à l'étape facultative du procédé par embossage. D'éventuels résidus de la résine photosensible peuvent être éliminés.The mask may have a plurality of areas with distinct patterns in size (width and height) and / or orientation and / or distance. Another possible method of manufacturing the network according to the invention comprises a photolithography. This method generally consists in first providing the transparent substrate with a first layer in which said raised patterns can be formed. This first layer is comparable to the sol-gel or polymer layer reported from the embossing process. It can also be of the same nature as this one, in particular silica. In a second step of the process, a second layer of a photoresist is deposited. This is hardened in defined locations, by exposure to targeted radiation. Thus is formed a mask, above the first layer to be etched, after removal of the uncured portions of the photoresist. Then, in the same manner as described above, in the optional step of the embossing process. Any residues of the photoresist can be removed.
Un autre procédé de fabrication du réseau selon l'invention comprend le transfert d'une couche nanostructurée. Une couche en adhésion sur un premier support est mise en adhésion sur un second, de manière à constituer un dispositif selon l'invention. La couche peut être en matière plastique ou similaire.Another method of manufacturing the network according to the invention comprises the transfer of a nanostructured layer. A layer in adhesion on a first support is put in adhesion on a second, so as to constitute a device according to the invention. The layer may be of plastics material or the like.
Un autre procédé utilisable repose sur un échange ionique, par exemple d'ions Na+ par des Ag+ dans un verre minéral. Enfin, on peut utiliser un effet photoréfractif, selon lequel une lumière modulée induit une modulation spatiale de l'indice de réfraction du matériau (exemple : cristal photoréfractif en titanate de Baryum). On peut également utiliser un effet électrooptique selon lequel un champ électrique induit une modulation spatiale de l'indice de réfraction du matériau.Another useful method is based on ion exchange, for example Na + ions by Ag + in a mineral glass. Finally, it is possible to use a photorefractive effect, according to which a modulated light induces a spatial modulation of the refraction index of the material (example: photorefractive crystal in barium titanate). It is also possible to use an electro-optical effect in which an electric field induces a spatial modulation of the refractive index of the material.
Suivant la forme de la structuration visée, ce procédé peut ne pas forcément mener à des formes géométriques parfaites. Notamment, dans le cas de motifs à angles vifs, le motif peut s'arrondir sans nuire aux performances requises.Depending on the shape of the desired structure, this process may not necessarily lead to perfect geometric shapes. In particular, in the case of sharp-angled patterns, the pattern can be rounded without affecting the required performance.
Selon une première variante de réalisation, on réalise un profil dit en « œil de mouche » à savoir que la pluralité de reliefs périodiques ou non périodiques présente les caractéristiques géométriques suivantes : le pas w et la hauteur h du motif satisfont les relations suivantes : - w < λ, et de préférence w < λ/2, et de manière plus préférentielle w < λ/4 et h ≥ λ/4 et de préférence h ≥ λ et de manière plus préférentielle hAccording to a first variant embodiment, a so-called "fly-eye" profile is produced, namely that the plurality of periodic or non-periodic reliefs has the following geometrical characteristics: the pitch w and the height h of the pattern satisfy the following relations: w <λ, and preferably w <λ / 2, and more preferably w <λ / 4 and h ≥ λ / 4 and preferably h ≥ λ and more preferably h
≥ 2λ≥ 2λ
Dans cette configuration λ appartient au spectre solaire et plus particulièrement est située au maximum de l'efficacité de la cellule solaire, notamment λ = 500 nm pour le silicium amorphe (cf. figure 3), et λ= 700 nm pour le silicium micro cristallin (cf. figure 3).In this configuration λ belongs to the solar spectrum and more particularly is located at the maximum of the efficiency of the solar cell, in particular λ = 500 nm for the amorphous silicon (cf Figure 3), and λ = 700 nm for the micro-crystalline silicon. (see Figure 3).
Les motifs peuvent par exemple avoir la forme de cône ou de pyramide à base polygonale comme triangulaire ou carrée ou rectangulaire ou hexagonale ou octogonale, lesdits motifs pouvant être convexes, c'est-à-dire venant en excroissance par rapport au plan général de couche d'interface ou être concaves, c'est-à-dire venant en creux dans la masse de la couche d'interface. L'ensemble de ces motifs peuvent s'étendre en surface et former des lignes parallèles ou non parallèles (en fait générer des plots).The patterns may, for example, be cone-shaped or pyramid-shaped polygonal in shape such as triangular or square or rectangular or hexagonal or octagonal, said patterns being convex, that is to say protruding from the general plane of the layer. interface or be concave, that is to say coming hollow in the mass of the interface layer. All of these patterns can extend on the surface and form parallel or non-parallel lines (in fact generate pads).
Le matériau choisi pour constituer le matériau de la couche d'interface possède un indice de réfraction sensiblement voisin ou proche de celui du matériau constituant le substrat à fonction verrière (environ 1.50).The material chosen to constitute the material of the interface layer has a refractive index substantially similar to or close to that of the material constituting the glass-function substrate (approximately 1.50).
Sur cette couche d'interface 2, on dépose une couche conductrice 3 dite TCO pour « Transparent Conductive Oxide ». Elle peut être choisie parmi les matériaux suivants : oxyde d'étain dopé, notamment en fluor ou à l'antimoine (les précurseurs utilisables en cas de dépôt par CVD peuvent être des organo-métalliques ou halogénures d'étain associés avec un précurseur de fluor du type acide fluorhydrique ou acide trifluoracétique), l'oxyde de zinc dopé, notamment à l'aluminium (les précurseurs utilisables, en cas de dépôt par CVD, peuvent être des organo-métalliques ou halogénures de zinc et d'aluminium), ou encore l'oxyde d'indium dopé, notamment à l'étain (les précurseurs utilisables en cas de dépôt par CVD peuvent être des organo-métalliques ou halogénures d'étain et d'indium).On this interface layer 2, there is deposited a conductive layer 3 called TCO for "Transparent Conductive Oxide". It may be chosen from the following materials: doped tin oxide, in particular fluorine or antimony (the precursors that can be used in the case of CVD deposition may be organo-metallic or tin halides associated with a fluorine precursor of the hydrofluoric acid or trifluoroacetic acid type), doped zinc oxide, in particular with aluminum (the precursors that can be used, in the case of CVD deposition, may be organometallic or zinc and aluminum halides), or doped indium oxide, in particular with tin (the precursors that can be used in the case of CVD deposition can be organo-metallic or tin and indium halides).
La couche conductrice 3 présente résistance par carré d'au plus 30 ohms/carré, notamment d'au plus 20 ohms/carré, de préférence d'au plus 10 ou 15 ohms/carré. Elle est généralement comprise entre 5 et 12 ohms /carré.The conductive layer 3 has a resistance per square of at most 30 ohms / square, in particular at most 20 ohms / square, preferably at most 10 or 15 ohms / square. It is generally between 5 and 12 ohms / square.
On peut remarquer que la couche d'interface a un indice n tel que < nVerre≤ n≤ nτco si la couche d'interface est placée entre le verre et la couche conductrice 3 en TCOIt may be noted that the interface layer has an index n such that <n V erre≤ n≤ nτco if the interface layer is placed between the glass and the conductive layer 3 in TCO
On obtiendra de cette façon un effet anti-reflet entre le substrat à fonction verrière 1 (à base de verre) et la couche conductrice 3. Il s'ensuit une augmentation de la transmission de l'ordre de 2 à 3 %, pour un TCO d'indice classique voisin de 2.0 La couche conductrice 3 est recouverte par une couche fonctionnelle 4 d'une cellule solaire. En fonction de la nature de la zone de contact entre la couche conductrice 3 et la couche fonctionnelle 4, on peut obtenir différentes propriétés optiques au sein de la cellule solaire :In this way, an antireflection effect will be obtained between the glass-based substrate 1 (glass-based) and the conductive layer 3. This results in an increase of the transmission of the order of 2 to 3%, TCO of conventional index close to 2.0 The conductive layer 3 is covered by a functional layer 4 of a solar cell. Depending on the nature of the contact zone between the conductive layer 3 and the functional layer 4, different optical properties can be obtained within the solar cell:
Si la zone de contact est conforme (la couche conductrice 3 a suivi de manière conforme la géométrie de la couche d'interfaceIf the contact zone is compliant (conductive layer 3 has followed in a manner consistent with the geometry of the interface layer
2 provenant des reliefs), on obtient un second effet anti reflet entre la couche conductrice 3 et la couche fonctionnelle 4. Pour un TCO d'indice 2 et une couche fonctionnelle d'indice 3 l'augmentation de la transmission sera de l'ordre de 3 à 4 % - Si la zone de contact n'est pas conforme (à savoir que la couche conductrice 3 possède une texturation différente (formation de grains par exemple) de celle de la couche d'interface 2), cette deuxième texture peut aider au « light trapping » (capture de lumière) et permet d'allonger le parcours de la lumière dans la couche fonctionnelle de la cellule solaire.2 from the reliefs), a second anti-reflection effect is obtained between the conductive layer 3 and the functional layer 4. For a TCO of index 2 and a functional layer of index 3, the increase in transmission will be of the order from 3 to 4% - If the contact zone is not in conformity (that is to say that the conductive layer 3 has a different texturing (formation of grains for example) than that of the interface layer 2), this second texture can help light trapping and extend the path of light in the functional layer of the solar cell.
Selon une deuxième variante de réalisation, on réalise une structure qui diffuse ou diffracte la lumière. La partie texturée de la couche d'interface 2 comporte une pluralité de reliefs périodiques ou non périodiques qui présentent les caractéristiques géométriques suivantes : le pas w, et la hauteur h satisfont les relations suivantes : λ/4 < w < 2λ et h est comprise entre 20 nm et 1 μm et de préférence comprise entre 30 nm et 500 nm et de manière plus préférentielle h comprise entre 50 nm et 200 nm .According to a second variant embodiment, a structure is produced which diffuses or diffracts the light. The textured portion of the interface layer 2 comprises a plurality of periodic or non-periodic reliefs that have the following geometrical characteristics: the pitch w, and the height h satisfy the following relations: λ / 4 <w <2λ and h is included between 20 nm and 1 μm and preferably between 30 nm and 500 nm and more preferably h between 50 nm and 200 nm.
Dans cette configuration la longueur d'onde λ qui est choisie correspond à une longueur d'onde dans laquelle le spectre solaire est important mais le rendement de conversion de la cellule n'est pas son optimal. De cette façon les longueurs d'onde parcourent une distance plus longue dans la cellule solaire et la probabilité d'être convertie est plus grande. On choisira des longueurs d'onde pour lesquelles l'efficacité de conversion n'est pas trop faible, (si on prend des λ pour laquelle l'efficacité de conversion est trop faible, le fait d'allonger le parcours optique comportera une importante augmentation relative mais une faible augmentation absolue. A titre d'exemple pour des cellules solaires à base de silicium amorphe (cf. figure 3), on choisira λ entre 550 et 750 nm (efficacité trop faible au-delà de cette valeur). Pour du silicium μcristallin (cf figure 3), on choisira λ entre 500 et 650 nm et entre 800 et 1000 nmIn this configuration the wavelength λ which is chosen corresponds to a wavelength in which the solar spectrum is important but the conversion efficiency of the cell is not its optimum. In this way the wavelengths travel a longer distance in the solar cell and the probability of being converted is greater. We will choose wavelengths for which the conversion efficiency is not too low, (if we take λ for which the conversion efficiency is too low, the extension of the optical path will have a large relative increase but a small absolute increase. For example, for solar cells based on amorphous silicon (see FIG. 3), λ will be chosen between 550 and 750 nm (efficiency too low beyond this value). For μcrystalline silicon (see FIG. 3), λ will be chosen between 500 and 650 nm and between 800 and 1000 nm.
Les motifs peuvent par exemple avoir la forme de cône ou de pyramide à base polygonale comme triangulaire ou carrée ou rectangulaire ou hexagonale ou octogonale, lesdits motifs pouvant être convexes, c'est-à-dire venant en excroissance par rapport au plan général de couche d'interface ou être concaves, c'est-à-dire venant en creux dans la masse de la couche d'interface.The patterns may, for example, be cone-shaped or pyramid-shaped polygonal in shape such as triangular or square or rectangular or hexagonal or octagonal, said patterns being convex, that is to say protruding from the general plane of the layer. interface or be concave, that is to say coming hollow in the mass of the interface layer.
L'ensemble de ces motifs peuvent s'étendre en surface et former des lignes parallèles ou non parallèles (en fait générer des plots). Sur cette couche d'interface, on dépose une couche conductrice 3 dite en TCO (Transparent Conductive Oxide). Elle peut être choisie parmi les matériaux suivants : oxyde d'étain dopé, notamment en fluor ou à l'antimoine (les précurseurs utilisables en cas de dépôt par CVD peuvent être des organo-métalliques ou halogénures d'étain associés avec un précurseur de fluor du type acide fluorhydrique ou acide trifluoracétique), l'oxyde de zinc dopé, notamment à l'aluminium (les précurseurs utilisables, en cas de dépôt par CVD, peuvent être des organo-métalliques ou halogénures de zinc et d'aluminium), ou encore l'oxyde d'indium dopé, notamment à l'étain (les précurseurs utilisables en cas de dépôt par CVD peuvent être des organo-métalliques ou halogénures d'étain et d'indium).All of these patterns can extend on the surface and form parallel or non-parallel lines (in fact generate pads). On this interface layer is deposited a conductive layer 3 called TCO (Transparent Conductive Oxide). It may be chosen from the following materials: doped tin oxide, in particular fluorine or antimony (the precursors that can be used in the case of CVD deposition may be organo-metallic or tin halides associated with a fluorine precursor of the hydrofluoric acid or trifluoroacetic acid type), doped zinc oxide, in particular with aluminum (the precursors that can be used, in the case of CVD deposition, may be organometallic or zinc and aluminum halides), or doped indium oxide, in particular with tin (the precursors that can be used in the case of CVD deposition can be organo-metallic or tin and indium halides).
La couche conductrice 3 présente résistance par carré d'au plus 30 ohms/carré, notamment d'au plus 20 ohms/carré, de préférence d'au plus 10 ou 15 ohms/carré. Elle est généralement comprise entre 5 et 12 ohms/carré. La couche conductrice 3 est recouverte par une couche fonctionnelle 4 d'une cellule solaire, il se produit un effet diffractant (les rayons lumineux sont diffusés ou diffractés au niveau de la couche d'interface). Si la couche conductrice 3 suit de manière conforme la texturation provenant de la couche d'interface et en plus présente une certaine rugosité intrinsèque, alors, dans ce cas, la zone d'interface entre la couche conductrice 3 et la couche fonctionnelle 4 présentera une texturation à double échelle, une première échelle étant donnée par la couche d'interface texturée, la deuxième échelle provenant de la rugosité intrinsèque de la couche conductrice. Cette rugosité à double échelle permet d'obtenir un phénomène de « light trapping » amélioré.The conductive layer 3 has a resistance per square of at most 30 ohms / square, in particular at most 20 ohms / square, preferably at most 10 or 15 ohms / square. It is generally between 5 and 12 ohms / square. The conductive layer 3 is covered by a functional layer 4 of a solar cell, there is a diffractive effect (the light rays are scattered or diffracted at the interface layer). If the conducting layer 3 conforms to the texturing coming from the interface layer and in addition has a certain intrinsic roughness, then, in this case, the interface zone between the conductive layer 3 and the functional layer 4 will present a dual-scale texturing, a first scale being given by the textured interface layer, the second scale from the intrinsic roughness of the conductive layer. This double-scale roughness makes it possible to obtain an improved "light trapping" phenomenon.
Pour certains modes la rugosité est non uniforme, aléatoire. Il n'y a pas de motifs réguliers à la surface de couche d'interface et de la couche conductrice, mais des tailles variables d'excroissance et/ou de creux à la surface des couches, réparti(e)s au hasard sur toute ladite surface. Cette rugosité va déjà permettre une diffusion de la lumière transmise par le substrat importante, et majoritairement « vers l'avant », c'est-à-dire de façon à faire diffuser la lumière, mais majoritairement vers l'intérieur de la cellule solaire.For some modes the roughness is non-uniform, random. There are no regular patterns at the interface layer surface and the conductive layer, but varying sizes of protuberances and / or troughs at the surface of the layers, distributed randomly over any said surface. This roughness will already allow a diffusion of the light transmitted by the important substrate, and mainly "forwards", that is to say so as to diffuse the light, but mainly towards the inside of the solar cell .
Le but est, là encore, de « piéger » au mieux les rayons solaires incidents dans des longueurs d'onde spécifique λ comprise entre 550 et 750 nm pour des cellules à base de silicium amorphe, on choisira λ entre 550 et 750 nm, et pour du silicium microcristallin (cf. figure 3), on choisira λ entre 500 et 650 nm et entre 800 et 1000 nm.The goal is, again, to "trap" at best the incident solar rays in specific wavelengths λ between 550 and 750 nm for amorphous silicon-based cells, we choose λ between 550 and 750 nm, and for microcrystalline silicon (see FIG. 3), λ will be chosen between 500 and 650 nm and between 800 and 1000 nm.
La couche fonctionnelle 4 est recouverte par une couche conductrice 5 devant servir de seconde électrode au module solaire. Cette couche conductrice 5 est réalisée par exemple en argent par une technique de pulvérisation sous vide (magnétron). Par la suite, cette plaque de verre 1 munie de l'ensemble des couches précédemment explicitées est fixée par l'intermédiaire d'un intercalaire de feuilletage 6 à un contre- verre 7, conformant ainsi une cellule solaire ou photovoltaïque.The functional layer 4 is covered by a conductive layer 5 to serve as a second electrode to the solar module. This conductive layer 5 is made for example of silver by a vacuum sputtering technique (magnetron). Subsequently, this glass plate 1 provided with all the previously explained layers is fixed via a interlayer lamination 6 to a counter glass 7, thus conforming a solar cell or photovoltaic.
On a représenté en figure 2 un autre mode de réalisation de l'invention qui diffère de celui illustré en figure 1 simplement par la position de la couche d'interface 2 par rapport au substrat.FIG. 2 shows another embodiment of the invention which differs from that illustrated in FIG. 1 simply by the position of the interface layer 2 relative to the substrate.
Selon ce mode de réalisation, la couche d'interface 2 se trouve en face A du substrat 1. Dans ce cas, La couche d'interface a un indice de réfraction n < nverre.Elle permet de diffuser ou diffracter la lumière incidente de façon à ce que les rayons lumineux cheminant au travers du substrat 1 , puis dans la couche conductrice 3, puis la couche fonctionnelle 4, selon des angles élevés d'incidence, permettant ainsi d'augmenter le phénomène de light trapping. Cette diffusion ou diffraction de la lumière est obtenue pour des longueurs d'onde spécifiques.According to this embodiment, the interface layer 2 is on the face A of the substrate 1. In this case, the interface layer has a refractive index n <n ve rre.It makes it possible to diffuse or diffract the incident light so that the light rays traveling through the substrate 1, then in the conductive layer 3, then the functional layer 4, at high angles of incidence, thereby increasing the phenomenon of light trapping. This scattering or diffraction of light is obtained for specific wavelengths.
On utilisera des reliefs ayant un pas w et une hauteur h qui satisfont les relations suivantes λ/4 < w < 2λ et h est comprise entre 20 nm et 1 μm et de préférence comprise entre 30 nm et 500 nm et de manière plus préférentielle h comprise entre 50 nm et 200 nm . On choisira λ entre 550 et 750 nm (efficacité trop faible au-delà de cette valeur) pour du Silicium amorphe. Pour du silicium microcristallin (cf. figure 3), on choisira λ entre 500 et 650 nm et entre 800 et 1000 nm.Embossings having a pitch w and a height h which satisfy the following relations λ / 4 <w <2λ and h is between 20 nm and 1 μm and preferably between 30 nm and 500 nm and more preferably h are used. between 50 nm and 200 nm. We choose λ between 550 and 750 nm (efficiency too low beyond this value) for amorphous silicon. For microcrystalline silicon (see FIG. 3), λ will be chosen between 500 and 650 nm and between 800 and 1000 nm.
Le substrat selon l'invention trouve son utilisation au sein d'une cellule solaire. Suivant l'application visée, il est possible d'appliquer sur la face de la plaque la mieux appropriée au moins une couche conférant à celle-ci une propriété particulière. Notamment, on peut appliquer une couche faisant barrière à certaines longueurs d'ondes, par exemple dans les ultra- violets. On peut également appliquer sur la plaque, de préférence au moins du coté directement dans l'air ambiant, une couche an ti- salissure comme une couche de TiO 2, notamment une couche faisant l'objet de la demande de brevet EP 1087916, ou une couche anti-salissure en Siθ2 ou oxycarbure de Si ou oxynitrure de Si ou oxycarbonitrure de Si comme décrit dans WO 01 /32578.The substrate according to the invention finds its use in a solar cell. Depending on the intended application, it is possible to apply on the face of the most appropriate plate at least one layer conferring on it a particular property. In particular, a barrier layer can be applied at certain wavelengths, for example in ultraviolet light. It is also possible to apply to the plate, preferably at least on the side directly in the ambient air, an anti-fouling layer such as a layer of TiO 2, in particular a layer which is the subject of the patent application EP 1087916, or a SiO 2 antifouling layer or Si oxycarbide or Si oxynitride or Si oxycarbonitride as described in WO 01/32578.
Exemple 1 .Example 1
On se reportera à la figure 4 qui illustre une configuration antireflet en « oeil de mouche » selon la première variante réalisation.Reference is made to FIG. 4 which illustrates an antireflection configuration in "fly-eye" according to the first variant embodiment.
Une couche d'interface 2 est déposée en face B d'un substrat 1 en verre. Cette couche 2 est structurée et présente des sillons à base trapézoïdale. Les bases des trapèzes ont une largeur de w= 135 nm et p= 15 nm. Les sillons sont espacés entre eux d'une distance p= 15nm. La profondeur h du motif est de 900 nm.An interface layer 2 is deposited on side B of a glass substrate 1. This layer 2 is structured and has trapezoidal grooves. The bases of the trapezoids have a width of w = 135 nm and p = 15 nm. The grooves are spaced from each other by a distance p = 15 nm. The depth h of the pattern is 900 nm.
Sur cette couche d'interface 2 est déposée une couche conductrice transparente 3.On this interface layer 2 is deposited a transparent conductive layer 3.
On donne dans le tableau 1 ci-dessous les valeurs de réflexion entre le substrat en verre et la couche conductrice 3, avec présence de la couche d'interface 2 et sans cette couche d'interface 2. Les indices de réflexion sont respectivement : n= 1.52 pour le verre 1 , n= 1.52 pour la couche d'interface 2 structurée, n=2.01 pour la couche conductrice (TCO) 3. La réflexion a été calculée pour 3 angles d'incidences θ : 0°, 30°, 42° (ce dernier angle étant l'angle de réflexion interne totale dans le verre) et pour une longueur d'onde λ = 450 nm (idéale pour une cellule de type silicium amorphe)Table 1 below gives the reflection values between the glass substrate and the conductive layer 3, with the presence of the interface layer 2 and without this interface layer 2. The reflection indices are respectively: = 1.52 for the glass 1, n = 1.52 for the structured interface layer 2, n = 2.01 for the conductive layer (TCO) 3. The reflection was calculated for 3 angles of incidence θ: 0 °, 30 °, 42 ° (this last angle being the total internal reflection angle in the glass) and for a wavelength λ = 450 nm (ideal for an amorphous silicon type cell)
Tableau 1 : Réflexion à l'interface verre/ couche conductrice en présence d'une couche d'interface 2 ayant un effet antireflet (couche structurée en œil de mouche) ou en l'absence de couche d'interface. Table 1: Reflection at the glass / conductive layer interface in the presence of an interface layer 2 having an antireflection effect (structured layer in a fly eye) or in the absence of an interface layer.
L'effet antireflet de la couche d'interface apparaît évident, avec une réflexion qui passe d'environ 2% à moins de 0.1% pour tous les angles d'incidences.The antireflection effect of the interface layer appears obvious, with a reflection that goes from about 2% to less than 0.1% for all angles of incidence.
Exemple 2.Example 2
L'exemple 2 illustre la deuxième variante de réalisation de l'invention à savoir l'augmentation du chemin optique. On pourra se reporter aux figures 5 et 6. Une couche d'interface 2 est déposée en face B d'un substrat 1 en verre. Cette couche d'interface 2 est structurée et présente des sillons ayant un profil sinusoïdal. Le pas de la sinusoïde est w et la hauteur h. Sur cette couche d'interface 2 est déposée une couche conductrice 3 transparente formant un TCO, d'épaisseur e, suit de manière conforme la structuration de la couche d'interface 2 texturée. On obtient ainsi une augmentation du parcours de la lumière dans la couche fonctionnelle 4. Si un rayon lumineux se retrouve dans la couche fonctionnelle 4 avec un angle θ par rapport à la normale à la cellule, le chemin optique dans le milieu actif augmentera d'un facteur l /cos(θ) par rapport à un rayon normal à la cellule.Example 2 illustrates the second variant embodiment of the invention, namely the increase of the optical path. Reference can be made to FIGS. 5 and 6. An interface layer 2 is deposited on side B of a glass substrate 1. This interface layer 2 is structured and has grooves having a sinusoidal profile. The pitch of the sinusoid is w and the height h. On this interface layer 2 is deposited a transparent conductive layer 3 forming a TCO, of thickness e, conformably follows the structuring of the textured interface layer 2. This results in an increase in the path of light in the functional layer 4. If a light ray is found in the functional layer 4 with an angle θ relative to the normal to the cell, the optical path in the active medium will increase by a factor l / cos (θ) with respect to a normal radius of the cell.
On donne ci-après l'augmentation du chemin optique en fonction de la longueur d'onde λ de la lumière, pour différents pas w de textures. La hauteur h a été fixée à h= 200 nm, ainsi que l'épaisseur e = 600 nm.The increase in the optical path as a function of the wavelength λ of the light is given below, for different steps w of textures. The height h was set at h = 200 nm and the thickness e = 600 nm.
On donne ci-après l'augmentation A (en %) du chemin optique en fonction de la longueur d'onde de la lumière λ dans la couche fonctionnelle 4 pour différents pas w de la texture. Les indices sont n= 1.52 pour les milieux 1 et 2 (verre et couche d'interface texturée), n=2.0 pour le milieu 3 (TCO) et n=3 pour le milieu 4 (couche fonctionnelle 4). L'augmentation A (en %) a été calculée en moyennant sur une plage d'angles d'incidence dans l'air, entre 0° et 50°.The increase A (in%) of the optical path as a function of the wavelength of the light λ in the layer is given below. functional 4 for different w steps of the texture. The indices are n = 1.52 for media 1 and 2 (glass and textured interface layer), n = 2.0 for media 3 (TCO) and n = 3 for media 4 (functional layer 4). The increase A (in%) was calculated by averaging over a range of angles of incidence in the air, between 0 ° and 50 °.
Les résultats sont résumés sur la figure 6. On observe une augmentation du chemin optique due à la diffraction/ diffusion de la lumière sur les couches structurées. L'augmentation du chemin optique « light trapping » varie avec la longueur d'onde de la lumière. En particulier une texture avec w=300nm est particulièrement efficace pour une cellule de type silicium amorphe comme celle de la Fig. 3. En effet « le light trapping » est particulièrement efficace pour λ entre 600 et 750 nm. Par ailleurs une texture avec w= 400nm apparaît particulièrement efficace pour une cellule de type silicium microcristallin comme celle de la Fig. 3. En effet « le light trapping » est particulièrement efficace pour λ entre 500 et 650 nm et entre 750 et 900 nm, alors que le « light trapping » est moins efficace autour de 700 nm, longueur d'onde à laquelle cette cellule possède un rendement de conversion optimal, rendant le phénomène de « light trapping moins nécessaire.The results are summarized in FIG. 6. An increase in the optical path due to the diffraction / scattering of light on the structured layers is observed. The increase of the optical path "light trapping" varies with the wavelength of the light. In particular, a texture with w = 300 nm is particularly effective for an amorphous silicon type cell such as that of FIG. 3. Indeed "light trapping" is particularly effective for λ between 600 and 750 nm. Moreover, a texture with w = 400 nm appears particularly effective for a microcrystalline silicon cell such as that of FIG. 3. Indeed "light trapping" is particularly effective for λ between 500 and 650 nm and between 750 and 900 nm, while the "light trapping" is less efficient around 700 nm, the wavelength at which this cell possesses an optimal conversion efficiency, making the phenomenon of light trapping less necessary.
Exemple 3.Example 3
Enfin dans l'exemple 3 on présente une structure qui présente à la fois un effet antireflet en « œil de mouche » et un effet « light trapping » .Finally, in Example 3, a structure is presented which has both an anti-reflective effect in "fly eye" and a "light trapping" effect.
Dans cet exemple 3, nous reprenons la géométrie de l'exemple 2 et en particulier le cas avec w= 300nm. Dans cette configuration, non seulement il est possible d'obtenir un piégeage de la lumière avec augmentation du chemin optique (light trapping), mais un effet antireflet est obtenu entre le verre (milieu 1) et la couche fonctionnelle 4. En calculant la transmission lumineuse entre le milieu 1 (verre) et la couche fonctionnelle 4 pour une première plage de longueurs d'onde entre λ=400 et 600 nm pour une telle structure, on obtient une augmentation de la transmission lumineuse de l'ordre de 4% (valeur obtenue en moyennant sur des angles d'incidence entre 0° et 50°). Par ailleurs, nous avons déjà vu (cf. Fig. 6) que cette structure permet une augmentation du chemin optique de l'ordre de 20% pour une seconde plage de longueurs d'ondes entre 600 et 750 nm. Il s'ensuit que cette structure aura un double effet bénéfique pour une couche fonctionnelle 4 de type silicium amorphe comme celui de la figure 3. Pour des longueurs d'ondes entre 400 et 600 nm, pour lesquelles la couche fonctionnelle 4 est très efficace, la structure induit un effet antireflet alors que pour des longueurs d'onde entre 600 et 750 nm, où la couche fonctionnelle 4 est moins efficace, on obtiendra un effet de « light trapping. » In this example 3, we take the geometry of Example 2 and in particular the case with w = 300 nm. In this configuration, not only is it possible to obtain a trapping of the light with increase of the optical path (light trapping), but an antireflection effect is obtained between the glass (medium 1) and the functional layer 4. By calculating the transmission between the middle 1 (glass) and the functional layer 4 for a first range of wavelengths between λ = 400 and 600 nm for such a structure, an increase in light transmission of the order of 4% is obtained (value obtained by averaging on incidence angles between 0 ° and 50 °). Moreover, we have already seen (see Fig. 6) that this structure allows an optical path increase of the order of 20% for a second wavelength range between 600 and 750 nm. It follows that this structure will have a double beneficial effect for a functional layer 4 of amorphous silicon type such as that of FIG. 3. For wavelengths between 400 and 600 nm, for which the functional layer 4 is very efficient, the structure induces an anti-reflective effect while for wavelengths between 600 and 750 nm, where the functional layer 4 is less effective, we obtain a "light trapping" effect. "

Claims

REVENDICATIONS
1. Substrat (1) à fonction verrière associé à une électrode texturée comprenant au moins une couche transparente conductrice (3) à base d'oxyde(s) métallique(s), ladite couche étant recouverte par au moins une couche fonctionnelle (4) d'un élément capable de collecter de la lumière caractérisé en ce que le substrat (1) est recouvert par une couche d'interface (2) présentant une partie texturée comportant une répétition de motifs périodiques ou non périodiques en relief1. A substrate (1) with a glass function associated with a textured electrode comprising at least one conductive transparent layer (3) based on metal oxide (s), said layer being covered by at least one functional layer (4) an element capable of collecting light, characterized in that the substrate (1) is covered by an interface layer (2) having a textured part comprising a repetition of periodic or non-periodic patterns in relief
2. Substrat selon la revendication 1 , caractérisé en ce que la couche d'interface (2) est située en face arrière du substrat (1) et présente une partie texturée qui comporte une répétition de motifs périodiques ou non périodiques en relief de pas w, et de hauteur h satisfaisant les relations suivantes : w < λ, et de préférence w < λ/2, et de manière plus préférentielle w < λ/4 et h ≥ λ/4 et de préférence h ≥ λ et de manière plus préférentielle h ≥ 2λ , λ appartenant au spectre solaire et étant située au maximum de l'efficacité de conversion énergétique d'une cellule solaire. 2. Substrate according to claim 1, characterized in that the interface layer (2) is located on the rear face of the substrate (1) and has a textured portion which comprises a repetition of periodic or non-periodic patterns in relief of pitch w , and of height h satisfying the following relations: w <λ, and preferably w <λ / 2, and more preferably w <λ / 4 and h ≥ λ / 4 and preferably h ≥ λ and more preferably h ≥ 2λ, λ belonging to the solar spectrum and being located at the maximum of the energy conversion efficiency of a solar cell.
3. Substrat selon la revendication 1 , caractérisé en ce que la couche d'interface (2) est située en face arrière du substrat (1) et présente une partie texturée qui comporte une répétition de motifs périodiques ou non périodiques en relief de pas w, et de hauteur h satisfaisant les relations suivantes : λ/4 < w < 2λ et h est comprise entre 20 nm et 1 μm et de préférence comprise entre 30 nm et 500 nm et de manière plus préférentielle h comprise entre 50 nm et 200 nm, avec λ étant située au niveau d'une longueur d'onde dans laquelle le spectre solaire est important mais le rendement de conversion d'une cellule n'est pas son optimal. 3. Substrate according to claim 1, characterized in that the interface layer (2) is located on the rear face of the substrate (1) and has a textured portion which comprises a repeating periodic or non-periodic patterns in relief of pitch w , and of height h satisfying the following relations: λ / 4 <w <2λ and h is between 20 nm and 1 μm and preferably between 30 nm and 500 nm and more preferably h between 50 nm and 200 nm , with λ being located at a wavelength in which the solar spectrum is important but the conversion efficiency of a cell is not its optimum.
4. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche conductrice (3) est déposée sur la couche d'interface (2). 4. Substrate according to any one of the preceding claims, characterized in that the conductive layer (3) is deposited on the interface layer (2).
5. Substrat selon la revendication 1 , caractérisé en ce que la couche d'interface (2) est située en face avant du substrat (1) et présente une partie texturée qui comporte une répétition de motifs périodiques ou non périodiques en relief de pas w, et de hauteur h satisfaisant les relations suivantes : λ/4 < w < 2λ et h est comprise entre 20 nm et 1 μm et de préférence comprise entre 30 nm et 500 nm et de manière plus préférentielle h comprise entre 50 nm et 200 nm, avec λ étant située au niveau d'une longueur d'onde dans laquelle le spectre solaire est important mais le rendement de conversion d'une cellule n'est pas son optimal.5. Substrate according to claim 1, characterized in that the interface layer (2) is located on the front face of the substrate (1) and has a textured portion which comprises a repetition of periodic or non-periodic patterns in relief of pitch w , and of height h satisfying the following relations: λ / 4 <w <2λ and h is between 20 nm and 1 μm and preferably between 30 nm and 500 nm and more preferably h between 50 nm and 200 nm , with λ being located at a wavelength in which the solar spectrum is important but the conversion efficiency of a cell is not its optimum.
6. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche conductrice (3) est conforme par rapport à la couche d'interface (2).6. Substrate according to any one of the preceding claims, characterized in that the conductive layer (3) is consistent with respect to the interface layer (2).
7. Substrat selon l'une des revendications 1 à 5, caractérisé en ce que la couche conductrice (3) présente une rugosité différente de celle de la couche d'interface.7. Substrate according to one of claims 1 to 5, characterized in that the conductive layer (3) has a roughness different from that of the interface layer.
8. Substrat selon l'une des revendications 1 à 4, caractérisé en ce que la couche d interface (2) a un indice de réfraction proche à celui du substrat. 8. Substrate according to one of claims 1 to 4, characterized in that the interface layer (2) has a refractive index close to that of the substrate.
9. Substrat selon la revendication 5, caractérisé en ce que la couche d'interface (2) a un indice de réfraction n < nsubstrat9. Substrate according to claim 5, characterized in that the interface layer (2) has a refractive index n <n su bstrat
10. Substrat selon l'une des revendications 1 à 4, caractérisé en ce que la couche d'interface (2) a un indice de réfraction n tel que < nSubstrat≤ n≤ nrco si la couche d'interface est placée entre le substrat et la couche conductrice10. Substrate according to one of claims 1 to 4, characterized in that the interface layer (2) has a refractive index n such that <n S ubstrat≤ n≤ nrco if the interface layer is placed between the substrate and the conductive layer
1 1. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que les motifs en relief comprennent des lignes parallèles.1. The substrate according to any one of the preceding claims, characterized in that the relief patterns comprise parallel lines.
12. Substrat selon l'une des revendications 1 à 10, caractérisé en ce que les motifs en relief comprennent des lignes non parallèles et/ ou des plots. 12. Substrate according to one of claims 1 to 10, characterized in that the raised patterns comprise non-parallel lines and / or pads.
13. Substrat selon l'une des revendications précédentes, caractérisé en ce qu'il est associé à un module solaire, la face texturée étant dirigée vers le matériau actif du module solaire.13. Substrate according to one of the preceding claims, characterized in that it is associated with a solar module, the textured face being directed to the active material of the solar module.
14. Substrat selon l'une des revendications précédentes, caractérisé en ce que la couche d'interface (2) est située en face arrière du substrat (1) et présente une partie texturée qui comporte une répétition de motifs périodiques ou non périodiques de pas w sensiblement voisin de 300 nm pour lesquels il présente un effet combiné d 'antireflet pour une première plage de longueurs d'onde et de light trapping pour une seconde plage de longueurs d'onde.Substrate according to one of the preceding claims, characterized in that the interface layer (2) is situated on the rear face of the substrate (1) and has a textured part which comprises a repetition of periodic or non-periodic step patterns. w substantially close to 300 nm for which it has a combined effect of antireflection for a first range of wavelengths and light trapping for a second wavelength range.
15. Procédé d'élaboration d'un substrat selon l'une des revendications 1 à 14, caractérisé en ce que la surface texturée est obtenue par embossage d'une couche sol-gel ou polymère.15. Process for producing a substrate according to one of claims 1 to 14, characterized in that the textured surface is obtained by embossing a sol-gel or polymer layer.
16. Procédé d'élaboration d'un substrat selon l'une des revendications 1 à 14, caractérisé en ce que la surface texturée est obtenue par une technique de photolithographie.16. Process for producing a substrate according to one of claims 1 to 14, characterized in that the textured surface is obtained by a photolithography technique.
17. Utilisation du substrat selon l'une des revendications 1 à 14 dans une cellule solaire.17. Use of the substrate according to one of claims 1 to 14 in a solar cell.
18. Cellule solaire caractérisée en ce qu'elle comprend le substrat selon l'une des revendications 1 à 14. 18. Solar cell characterized in that it comprises the substrate according to one of claims 1 to 14.
EP08805722A 2007-05-04 2008-04-28 Transparent substrate with advanced electrode layer Withdrawn EP2153471A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754875A FR2915834B1 (en) 2007-05-04 2007-05-04 TRANSPARENT SUBSTRATE WITH IMPROVED ELECTRODE LAYER
PCT/FR2008/050768 WO2008148978A2 (en) 2007-05-04 2008-04-28 Transparent substrate with advanced electrode layer

Publications (1)

Publication Number Publication Date
EP2153471A2 true EP2153471A2 (en) 2010-02-17

Family

ID=39281154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08805722A Withdrawn EP2153471A2 (en) 2007-05-04 2008-04-28 Transparent substrate with advanced electrode layer

Country Status (9)

Country Link
US (1) US20100116332A1 (en)
EP (1) EP2153471A2 (en)
JP (1) JP2010526430A (en)
KR (1) KR20100016182A (en)
CN (1) CN101681937A (en)
BR (1) BRPI0810891A2 (en)
FR (1) FR2915834B1 (en)
MX (1) MX2009011912A (en)
WO (1) WO2008148978A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2919429B1 (en) * 2007-07-27 2009-10-09 Saint Gobain FRONT PANEL SUBSTRATE OF PHOTOVOLTAIC CELL AND USE OF A SUBSTRATE FOR A FRONT PANEL OF PHOTOVOLTAIC CELL
JP5160565B2 (en) * 2007-12-05 2013-03-13 株式会社カネカ Integrated thin film photoelectric conversion device and manufacturing method thereof
EP2190024A1 (en) * 2008-11-19 2010-05-26 Université de Neuchâtel Photoelectric device with multiple junctions and method of manufacturing same
DE102009006719A1 (en) * 2009-01-29 2010-08-12 Schott Ag Thin film solar cell
WO2010090142A1 (en) * 2009-02-03 2010-08-12 株式会社カネカ Substrate with transparent conductive film and thin film photoelectric conversion device
DE102009029944A1 (en) * 2009-06-19 2010-12-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solar cell and process for its production
JP5548400B2 (en) * 2009-07-02 2014-07-16 株式会社カネカ Thin film photoelectric conversion device and manufacturing method thereof
FR2948230B1 (en) 2009-07-16 2011-10-21 Saint Gobain TEXTURED TRANSPARENT PLATE AND METHOD OF MANUFACTURING SUCH PLATE
JP2011029289A (en) * 2009-07-22 2011-02-10 Toray Eng Co Ltd Substrate provided with thin film, and solar cell using the substrate
MX2012004141A (en) 2009-10-08 2012-09-07 Solarexcel B V Optical structure with a flat apex.
JP5659551B2 (en) * 2010-04-28 2015-01-28 ソニー株式会社 Transparent conductive element, input device, and display device
JP2012044147A (en) * 2010-06-11 2012-03-01 Moser Baer India Ltd Antireflection barrier layer in photoelectric device
DE102010030301A1 (en) * 2010-06-21 2011-12-22 Solayer Gmbh Substrate with superficially structured surface electrode
DE102010049976B4 (en) * 2010-10-18 2017-02-02 Universität Stuttgart Solar cell with textured electrode layer and method for producing such
DE102010051606A1 (en) * 2010-11-16 2012-05-16 Schott Solar Ag Glass pane for thin-film solar module production
KR20120053403A (en) * 2010-11-17 2012-05-25 삼성전자주식회사 Thin film solar cell and manufacturing method thereof
JP5071563B2 (en) * 2011-01-19 2012-11-14 ソニー株式会社 Transparent conductive element, input device, and display device
KR101143477B1 (en) * 2011-01-28 2012-05-22 (재)나노소자특화팹센터 Organic solar cell and method of fabricating the same
FR2971060B1 (en) * 2011-01-31 2013-08-09 Saint Gobain TRANSPARENT ELEMENT WITH DIFFUSE REFLECTION
JP5494771B2 (en) * 2011-09-30 2014-05-21 ダイキン工業株式会社 Condensing film, solar cell module, and transfer mold
KR101421026B1 (en) * 2012-06-12 2014-07-22 코닝정밀소재 주식회사 Light extraction layer substrate for oled and method of fabricating thereof
DE102012214253A1 (en) * 2012-08-10 2014-06-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laser-based method and processing table for metallizing the rear side of a semiconductor device
CN103646998B (en) * 2013-12-16 2016-08-17 陕西师范大学 Strengthen the texture transversion malposition method that silicon-film solar-cell light absorbs
KR101441607B1 (en) * 2014-02-13 2014-09-24 인천대학교 산학협력단 High Efficiency Photoelectric Element and Method for Preparing the Same
CN104867995B (en) * 2015-04-27 2017-03-01 电子科技大学 Two-dimensional Cosine wavy surface light trapping structure and the solar film battery based on this structure
US10439062B2 (en) * 2016-09-09 2019-10-08 Infineon Technologies Ag Metallization layers for semiconductor devices and methods of forming thereof
US10937915B2 (en) 2016-10-28 2021-03-02 Tesla, Inc. Obscuring, color matching, and camouflaging solar panels
WO2019111191A1 (en) * 2017-12-06 2019-06-13 Tata Steel Limited Hybrid transparent conducting electrode
FR3089683B1 (en) * 2018-12-10 2020-12-11 Commissariat Energie Atomique optronic device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497974A (en) * 1982-11-22 1985-02-05 Exxon Research & Engineering Co. Realization of a thin film solar cell with a detached reflector
JPS59152673A (en) * 1983-02-19 1984-08-31 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
JPS61241983A (en) * 1985-04-18 1986-10-28 Sanyo Electric Co Ltd Photovoltaic device
JPS62198169A (en) * 1986-02-25 1987-09-01 Fuji Electric Corp Res & Dev Ltd Solar cell
JPS63143875A (en) * 1986-12-08 1988-06-16 Hitachi Ltd Solar cell
US4808462A (en) * 1987-05-22 1989-02-28 Glasstech Solar, Inc. Solar cell substrate
AUPN679295A0 (en) * 1995-11-23 1995-12-14 Unisearch Limited Conformal films for light-trapping in thin silicon solar cells
JP3286577B2 (en) * 1997-09-10 2002-05-27 株式会社日野樹脂 Solar cell module
JP3490909B2 (en) * 1998-10-12 2004-01-26 シャープ株式会社 Photoelectric conversion device and method of manufacturing the same
US6335479B1 (en) * 1998-10-13 2002-01-01 Dai Nippon Printing Co., Ltd. Protective sheet for solar battery module, method of fabricating the same and solar battery module
JP3776606B2 (en) * 1998-11-06 2006-05-17 三洋電機株式会社 Method for producing transparent electrode substrate
AUPR719801A0 (en) * 2001-08-23 2001-09-13 Pacific Solar Pty Limited Glass beads coating process
EP1443527A4 (en) * 2001-10-19 2007-09-12 Asahi Glass Co Ltd Substrate with transparent conductive oxide film and production method therefor, and photoelectric conversion element
JP2004172496A (en) * 2002-11-21 2004-06-17 Tdk Corp Photoelectric converting element and method for manufacturing photoelectric converting element
US6958207B1 (en) * 2002-12-07 2005-10-25 Niyaz Khusnatdinov Method for producing large area antireflective microtextured surfaces
JP4606775B2 (en) * 2004-05-25 2011-01-05 電源開発株式会社 Concave oxide film structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008148978A2 *

Also Published As

Publication number Publication date
US20100116332A1 (en) 2010-05-13
WO2008148978A2 (en) 2008-12-11
FR2915834B1 (en) 2009-12-18
WO2008148978A3 (en) 2009-02-19
CN101681937A (en) 2010-03-24
MX2009011912A (en) 2009-11-18
BRPI0810891A2 (en) 2014-10-29
JP2010526430A (en) 2010-07-29
FR2915834A1 (en) 2008-11-07
KR20100016182A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
EP2153471A2 (en) Transparent substrate with advanced electrode layer
EP1448490B1 (en) Transparent substrate comprising an electrode
EP1449017B1 (en) Textured transparent plate with high light transmission
EP2227829B2 (en) Improvements to elements capable of collecting light
WO2010084290A1 (en) Substrate en verre transparent glass substrate and method for producing such a substrate
WO2007077373A1 (en) Transparent substrate provided with an antireflective coating
JP3706835B2 (en) Thin film photoelectric converter
FR2891269A1 (en) TRANSPARENT SUBSTRATE WITH ELECTRODE
WO2008141158A9 (en) Substrate surface structures and processes for forming the same
JP6046619B2 (en) Thin film solar cell and manufacturing method thereof
JP2013529845A (en) Substrate provided with transparent conductive oxide film and method for manufacturing the same
EP2454757A2 (en) Textured transparent plate and method for manufacturing such a plate
JP5582488B2 (en) Thin film solar cell substrate and thin film solar cell using the same
US20120192933A1 (en) Light-trapping layer for thin-film silicon solar cells
FR2939788A1 (en) Glass substrate for a photovoltaic module, comprises a transparent coating to form an electrode, where the transparent coating is a doped transparent metal oxide having a wavelength of maximum efficiency of an absorber
EP2842170A1 (en) Method for producing a textured reflector for a thin-film photovoltaic cell, and resulting textured reflector
WO2020043973A1 (en) Textured glass panel and insulation for a greenhouse
WO2019081520A1 (en) Energy storage device
EP3666879A1 (en) Photobioreactor
BE1019244A3 (en) TRANSPARENT CONDUCTIVE SUBSTRATE FOR OPTOELECTRONIC DEVICES.
EP3666741A1 (en) Diffusing and conductive anti-reflective surface
WO2011107554A2 (en) Transparent conductive substrate for optoelectronic devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091204

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ABBOTT, FABRICE

Inventor name: SCHIAVONI, MICHELE

Inventor name: COUNIL, GUILLAUME

17Q First examination report despatched

Effective date: 20100322

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131104