EP2149715B1 - Position detection device for a fluid cylinder - Google Patents

Position detection device for a fluid cylinder Download PDF

Info

Publication number
EP2149715B1
EP2149715B1 EP09008292.6A EP09008292A EP2149715B1 EP 2149715 B1 EP2149715 B1 EP 2149715B1 EP 09008292 A EP09008292 A EP 09008292A EP 2149715 B1 EP2149715 B1 EP 2149715B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
measuring device
position measuring
piston rod
evaluation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09008292.6A
Other languages
German (de)
French (fr)
Other versions
EP2149715A2 (en
EP2149715A3 (en
Inventor
Alfred Dr.-Ing. Engler
Nejat Dr.-Ing. Mahdavi
Christian Dr.-Ing. Thürigen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Electronics and Drives GmbH
Original Assignee
Liebherr Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Elektronik GmbH filed Critical Liebherr Elektronik GmbH
Publication of EP2149715A2 publication Critical patent/EP2149715A2/en
Publication of EP2149715A3 publication Critical patent/EP2149715A3/en
Application granted granted Critical
Publication of EP2149715B1 publication Critical patent/EP2149715B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • F15B15/2853Position sensing, i.e. means for continuous measurement of position, e.g. LVDT using potentiometers

Definitions

  • the present invention relates to a position measuring device for a fluidic cylinder, in particular a hydraulic or pneumatic cylinder, which has a cylinder jacket and a longitudinally displaceably guided in the cylinder jacket piston rod.
  • Such position measuring devices for measuring the linear expansion of fluidic cylinders are used in a variety of technical fields whenever information about the linear expansion of the fluidic cylinder is required for precise positioning.
  • position measuring devices are used to determine the linear expansion of the fluidic cylinders of construction machinery to use z. B. in excavators, wheel loaders or cranes to allow precise positioning of the blade or the fork.
  • the linear expansions of all involved fluidic cylinders must be measured in order to be able to calculate the end position of the blade or the fork on the basis of the measured linear expansion and by suitable transformations.
  • fluidic cylinders are subjected to a pressurized fluid, in particular hydraulic oil or compressed air, whereby the piston rod is moved relative to the cylinder.
  • a pressurized fluid in particular hydraulic oil or compressed air
  • measuring systems are already known on a magnetostrictive basis.
  • a measuring element is integrated with corresponding magnetic properties in the piston rod, for which it must be drilled axially. This is very costly especially for very long cylinders with up to six meters and requires a lot of effort in terms of deep drilling technology.
  • the cable guide for the measuring electronics is arranged inside the cylinder, and thus in the high-pressure zone with up to 400 bar.
  • the DE 35 18 858 A1 discloses a two-tube shock absorber consisting mainly of a cylinder tube surrounded by a coaxial outer tube, a piston and a piston rod.
  • the cylinder tube and the piston rod are electrically isolated from each other, wherein the cylinder tube is electrically grounded.
  • a measuring circuit (OSC, IC 2 ) is provided, which is formed as a unit and connected to a connection plate for electrical connection to the piston rod.
  • the EP 0 358 366 A2 discloses a two-pipe cylinder, which consists mainly of a first cylinder tube, which is surrounded by a coaxial outer tube, a piston and a piston rod.
  • the cylinder tube and the piston rod are electrically isolated from each other, wherein the outer tube is electrically connected by a slip ring with the cylinder jacket.
  • Measuring circuit provided, which is connected by a contact elastically with the cylinder jacket, ie with the outer outer tube.
  • Object of the present invention is therefore to provide a position measuring device for fluidic cylinders available which provides a low accuracy and low design effort sufficient accuracy in the length measurement of a hydraulic cylinder.
  • the fluidic cylinder in this case has a cylinder jacket and a longitudinally displaceably guided in the cylinder jacket piston rod.
  • the position measuring device is a hydraulic cylinder or a pneumatic cylinder.
  • the position measuring device has an evaluation unit, which determines the position of the piston rod with respect to the cylinder jacket on the basis of the intrinsic capacitance of the cylinder jacket, piston rod and a dielectric fluid acting as a dielectric fluid certainly. Piston rod and cylinder jacket thereby represent the electrodes of the capacitor, while the fluid, with which the cylinder is acted upon, constitutes a dielectric fluid and acts as a dielectric.
  • the present invention enables a mechanically stable and vibration or shock resistant measuring device.
  • the position measuring device according to the invention for a fluidic cylinder is characterized in that the fluidic cylinder whose longitudinal extent is measured via the position measuring device according to the invention is articulated on at least one side via an electrical insulator to a machine construction. This prevents the fluidic cylinder, which is articulated on a machine construction, from being short-circuited by it, as this would prevent a position measurement.
  • the fluidic cylinder is thus electrically isolated from the metallic machine construction.
  • the fluidic cylinder is articulated on both sides via an electrical insulator to the machine construction.
  • the articulation advantageously takes place via an electrically insulated sliding ring, such as e.g. a plastic slip ring or ceramic seal ring.
  • slip rings have a high mechanical strength and at the same time have a high electrical resistance.
  • the proposed measuring method uses the intrinsic electrical properties of the cylinder to be measured (in this case especially the capacitive property of the cylinder) and detects the changes in these properties during the longitudinal expansion of the cylinder.
  • a fluidic cylinder behaves like a condenser, wherein the cylinder and the piston rod as electrodes of a cylindrical Condenser act while the plastic seal on the piston and the cylinder end cover and the fluid, in particular the hydraulic oil act as a dielectric.
  • the change of the capacitor area changes the intrinsic capacity of the fluidic cylinder. According to the invention, therefore, the length dimension of the fluidic cylinder can be determined by measuring this intrinsic capacity.
  • the advantage of the measuring method is that neither measuring element nor measuring electronics must be mounted in the cylinder and consequently no structural changes in the fluidic cylinder are required. It is therefore a very cost-effective and yet robust measuring method.
  • the evaluation unit determines the intrinsic capacity of the fluidic cylinder via an oscillator circuit with frequency evaluation, wherein the frequency evaluation advantageously takes place digitally.
  • the oscillator circuit may be an LC circuit, an RC circuit, or other oscillators such as a Martin or a modified Martin oscillator, in which the fluidic cylinder is used as a capacitor.
  • the capacity can be at a suitable frequency, z. B. 100 kH, and a suitable voltage level via a digital frequency evaluation are determined.
  • the evaluation determines the capacity of an AC voltage bridge or an AC voltage amplifier with voltage evaluation, advantageously a digital frequency evaluation takes place.
  • the evaluation by a circuit with switched-capacitor technology can be done with voltage evaluation, in which the cylinder is charged at a constant frequency to a reference voltage and discharged by an integrator.
  • the evaluation unit calculates the position of the piston rod as a linear function of the measured capacitance. It has been shown that the capacity represents a linear function of the travel of the piston rod in a relatively good approximation and vice versa. As a result of the linear approximation, this results in an extremely simple evaluation method, which nevertheless makes it possible to determine the position of the piston rod with respect to the cylinder with sufficient accuracy.
  • the evaluation unit calculates the position of the piston rod but based on a stored map as a function of the measured capacitance. It has been shown that the capacity, in particular in the middle region of the cylinder stroke, to a good approximation represents a linear function of the travel of the piston rod and vice versa. However, at the beginning and at the end of the cylinder stroke, the capacity is a non-linear function of the travel. A map stored in the transmitter provides precise calibration reached for the entire stroke. As a result, a position determination of the piston rod with respect to the cylinder with greater accuracy can be realized.
  • the evaluation unit further comprises a temperature compensation.
  • a falsification of the measurement results can be prevented by temperature fluctuations.
  • the evaluation unit additionally measures the conductivity of the cylinder.
  • the conductivity of the fluidic cylinder is advantageously measured between the piston rod and the cylinder jacket. In this way, a check of the functionality of the cylinder and / or a compensation of the measurement results can be implemented.
  • the evaluation unit therefore additionally measures the conductivity of the cylinder and compensates the errors caused by the conductivity in the measurement results for the capacitance.
  • the evaluation unit has a function for detecting sealing defects.
  • the evaluation unit can detect sealing errors by measuring the intrinsic capacitance and / or the conductivity of the fluidic cylinder according to the invention and z. B. send a warning signal to the central control of the machine.
  • the evaluation unit has a function for detecting the fluid state. Again, it can be concluded by measuring the intrinsic capacitance and / or the conductivity on the state of the fluid used, in particular on the state of the hydraulic oil. The measuring method according to the invention can accordingly report a reduction in the fluid or oil quality in good time.
  • the position measuring device can accordingly monitor the functionality of the cylinder and detect damage to the cylinder seals and the reduction of oil quality.
  • the evaluation unit has a memory in which the intrinsic capacitance of the capacitor formed by the cylinder jacket and the piston rod can be stored and / or stored for the two end positions of the piston rod. By comparing the stored values with the currently measured values at these fixed positions, the functionality of the cylinder and / or the position measuring device can be monitored.
  • the fluidic cylinder for which the position measuring device according to the invention is used, advantageously has electrical connections for connecting the Evaluation unit with the cylinder jacket and the piston rod on.
  • electrical connections for connecting the Evaluation unit with the cylinder jacket and the piston rod on.
  • the electrical connection for the piston rod is arranged in the region of the articulation of the piston rod and firmly connected thereto. This results in a particularly simple mechanical solution, but the two connections are moved against each other in a longitudinal expansion of the fluidic cylinder.
  • the electrical connection for the piston rod via a sliding contact.
  • the slider carrier is advantageously arranged on the cylinder jacket or on the cylinder end cover and is connected via a sliding contact with the piston rod in connection. Furthermore, the slider carrier can be fastened outside the cylinder.
  • the evaluation unit is fixedly mounted on one side of the cylinder while the measurement signals are sent wirelessly to a machine control.
  • the evaluation unit is attached directly to one side of the fluidic cylinder and electrically connected to the cylinder.
  • the other connection is connected to the cylinder by the metallic machine construction.
  • the power supply for the evaluation unit is advantageously carried out by a built-in evaluation in the battery.
  • the output signal of the evaluation unit is wirelessly transmitted, for example by radio to the machine control.
  • the frequency band 433 MHz or other frequency bands (such as WLAN, Bluetooth, etc.) can be used to transmit the measurement signal.
  • this embodiment offers significant benefits. In particular, the reliability of the measuring device is increased and the execution costs are reduced.
  • the present invention further comprises a fluidic cylinder for a position measuring device according to any one of the preceding claims.
  • a fluidic cylinder for a position measuring device according to any one of the preceding claims.
  • it is a hydraulic or pneumatic cylinder.
  • this fluidic cylinder has electrical connections for connecting the evaluation unit to the cylinder jacket and the piston rod.
  • isolators are advantageously provided for the articulation of the fluidic cylinder on a machine construction.
  • the present invention further comprises an evaluation unit for a position measuring device as described above.
  • the present invention further comprises a device, in particular a machine, a vehicle, an aircraft and / or a working device, with a fluidic cylinder and a position measuring device, as described above.
  • a device in particular a machine, a vehicle, an aircraft and / or a working device, with a fluidic cylinder and a position measuring device, as described above.
  • the present invention can be used in a variety of different applications to determine the linear expansion of a fluidic cylinder. In particular, it can be used in construction machinery such. As hydraulic excavators, crawler excavators or wheel loaders are used. Furthermore, the application in cranes is possible.
  • the fluidic cylinder is thereby moved on the basis of the data determined by the position measuring device by application of pressurized fluid and so precisely positioned.
  • the fluidic cylinder is thus a working cylinder, which serves for the movement of an element of the device, for which purpose it is acted on by a control unit with pressurized fluid.
  • the position measuring device according to the invention supplies data to the control unit, based on which the movement of the cylinder can be controlled.
  • the data from the position measuring device can also be used to detect unwanted changes in length of the cylinder due to malfunction and / or to allow automatic control of the cylinder.
  • the present invention further comprises a method for determining the position of the piston rod of a fluidic cylinder with respect to the cylinder jacket, in which the intrinsic capacitance of the capacitor formed by cylinder jacket and piston rod is measured and the position of the piston rod is calculated from the measured capacitance.
  • the measurement of the capacitance takes place via an oscillator circuit, furthermore advantageously by means of frequency evaluation.
  • the position of the piston rod is advantageously determined as a linear function of the measured capacitance.
  • the conductivity of the cylinder is measured and the functionality of the fluidic cylinder is further monitored by means of the measured conductivity.
  • sealing defects and / or the fluid condition in particular the oil condition in the case of hydraulic cylinders, are detected on the basis of the measured conductivity.
  • the measured position of the piston rod with respect to the cylinder jacket is fed to a control unit of a device.
  • the latter can pressurize the cylinder with pressurized fluid on the basis of this data.
  • the control of the cylinder is thus based on the data of the position measuring.
  • the data can be used to automate motion sequences and / or as a safety function to monitor unwanted cylinder length changes due to cylinder malfunction.
  • FIGS. 1a to 1d four embodiments of a fluidic cylinder according to the invention are shown. Like all fluidic cylinders, it has a cylinder jacket 1 and a piston rod 2 guided longitudinally displaceably, on which the piston 3 is arranged. This results in a piston chamber 11 and a cylinder chamber 12, which are acted upon for movement of the piston with a fluid, in particular with hydraulic oil or compressed air.
  • the cylinder jacket 1 and the piston rod 2 are made of metal, in particular of steel or of metallically coated materials and thus form the electrodes of a cylindrical capacitor.
  • a longitudinal expansion of the fluidic cylinder by a movement of the piston rod 2 relative to the cylinder jacket 1 now changes by the change of the capacitor area this intrinsic capacity of the fluidic cylinder.
  • the electrically non-conductive slip rings 13 electrically isolate the cylinder from the metallic machine construction.
  • the cylinder is a working cylinder, which moves an element of a working machine and whose movement is controlled by a machine control 40.
  • the machine control 40 controls the fluid flow to the two chambers 11 and 12 of the cylinder.
  • the linear expansion of the fluidic cylinder is now determined by measuring this intrinsic capacity of the fluidic cylinder according to the invention.
  • electrical connections 8 and 9 are provided for connecting the cylinder jacket 1 and the piston rod 2 to an evaluation unit 30.
  • the terminals 8 and 9 are in each case electrically conductively connected to the cylinder jacket 1 and the cylinder rod 2 in connection.
  • the evaluation unit 30 then delivers the measurement results to the machine controller 40. There, the measurement results are used to control and / or monitoring of the cylinder.
  • FIG. 1 a a first embodiment is shown, in which the terminal 8 is arranged to connect the evaluation unit with the piston rod 2 in the region of the Anlenkauges 7 on the piston rod 2.
  • FIG. 1b a second embodiment is shown, in which a sliding contact 10 is used to electrically contact the piston rod 2.
  • the sliding contact 10 is arranged in the embodiment on the cylinder end cover 5 of the fluidic cylinder and makes the contact with the piston rod 2 ago.
  • the sliding contact 10 is arranged in the interior of the cylinder chamber 12.
  • the sliding contact 10 according to Figure 1c also outside the cylinder space 12 z. B. may be arranged integrated on the outside of the cylinder end cover or in the cylinder end cover.
  • FIG. 1c a fourth embodiment is shown, in which the evaluation unit 30 is directly attached to one side of the fluidic cylinder and electrically connected to the cylinder.
  • the other terminal 9 of the evaluation unit 30 is connected to the cylinder by the metallic machine construction 50.
  • the power supply for the evaluation is done by a built-in evaluation in the battery.
  • the output signal of the evaluation unit is transmitted wirelessly and by radio by means of an antenna integrated in the evaluation unit to a machine control unit.
  • An advantage of the measuring method according to the invention is that the fluidic cylinder itself serves as a measuring element and therefore no additional measuring element must be provided. Also, no measuring electronics must be arranged in the cylinder. Accordingly, no design changes to the fluidic cylinder are required except for the arrangement of the two electrical connections.
  • the Verfahrwerg or the position of the piston rod is determined as a linear function of the capacity. It is therefore a very cost-effective and robust measuring device for determining the linear expansion of the fluidic cylinder, which nevertheless provides sufficient measurement accuracy.
  • a map is stored in the evaluation unit, via which the position of the cylinder rod can be determined based on the capacity. This results in an even more precise measurement and control especially in the peripheral areas.
  • the implementation is still simple and robust through the use of a map.
  • the evaluation unit comprises an evaluation, which has the capacity z. B. by means of an oscillator circuit (LC, RC or Martin oscillator or modified Martin oscillator) determined with a suitable frequency and a suitable voltage level via a digital frequency evaluation. The calculation of the travel distance from the capacity then takes place as described by means of a stored characteristic map. Furthermore, a temperature compensation is provided.
  • an oscillator circuit LC, RC or Martin oscillator or modified Martin oscillator
  • the evaluation can be realized by an AC voltage bridge or by an AC voltage amplifier, in which the cylinder is connected as a variable capacitor in coupling or feedback branch.
  • the evaluation can also be done by a circuit with switched-capacitor technology (switched-capacitor technique) in which the cylinder is charged at a constant frequency to a reference voltage and discharged by an integrator. At the output then creates a DC voltage, which is proportional to the cylinder capacity.
  • switched-capacitor technology switching-capacitor technique
  • the evaluation unit also has a function for monitoring the functionality of the cylinder. Damage to the cylinder seals as well as a reduction in fluid quality can be detected and reported in good time by measuring the cylinder conductivity.
  • the articulation of the fluidic cylinder on the metallic machine structure must be made electrically insulating.
  • This can be realized by the use of electrically insulating slip rings 13 for supporting the fluidic cylinders.
  • Such slip rings have a high mechanical stability and a high electrical resistance.
  • insulating gaskets made of pure plastic without graphite or metal particles can be used.
  • FIG. 3 is a circuit diagram of a capacitance-measuring arrangement of an embodiment of an evaluation unit according to the invention shown, in which the intrinsic capacitance Cs of the fluidic cylinder 20 is evaluated via a switched-capacitor technique.
  • the cylinder 20 is charged via the voltage source 21 with a constant frequency to a reference voltage Uin.
  • the cylinder 20 is then discharged via the integrator 25.
  • a DC voltage is generated which is proportional to the cylinder capacitance.
  • a low-impedance parallel resistor 23 was provided to the cylinder 20, which makes the circuit less susceptible to changes in conductivity of the cylinder.
  • the conductivity changes are shown schematically by the variable resistor 24.
  • a block 26 is provided for monitoring and / or compensation, in which the variable resistance of the cylinder is determined.
  • Block 26 monitors the cylinder function and detects seal failures. He also calculates the influence of external conductivities z. B. by external contamination on the capacitance measurement based on the determined parallel resistance.
  • the correction block 27 measurement errors related to the capacitance based on the changes in the conductivity of the cylinder 20 are corrected.
  • the output voltage Uout thus corresponds to the corrected capacity of the cylinder 20.
  • the measured capacitance is evaluated according to the invention to determine the linear expansion of the cylinder.
  • a map is stored, which serves the compensation of the partially non-linear behavior of the cylinder capacity.
  • the cylinder capacity for the final or initial position of the cylinder for automatic calibration of the measuring process can be stored.
  • the measurement data for the linear expansion of the cylinder are transferred according to the invention to a machine control of a working machine. There you can be used to control the cylinder. In this case, an automation of the control of the cylinder via the measurement signals can take place.
  • the data of the position measuring device according to the invention can be used to monitor the cylinders for unwanted changes in length due to malfunction.
  • the position measuring device delivers its data for this purpose to a safety device for monitoring the working machine.
  • data of the seal error and / or oil condition detection can be fed to the machine control. In particular, these data are thereby forwarded to an information system, in particular a driver information system and / or a maintenance management system of the work machine.
  • a measuring system which offers an excellent solution in terms of cost, construction and accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Actuator (AREA)

Description

Die vorliegende Erfindung betrifft eine Positionsmeßvorrichtung für einen fluidischen Zylinder, insbesondere einen Hydraulik- oder Pneumatikzylinder, welcher einen Zylindermantel und eine im Zylindermantel längsverschieblich geführte Kolbenstange aufweist.The present invention relates to a position measuring device for a fluidic cylinder, in particular a hydraulic or pneumatic cylinder, which has a cylinder jacket and a longitudinally displaceably guided in the cylinder jacket piston rod.

Solche Positionsmeßvorrichtungen zur Messung der Längenausdehnung von fluidischen Zylinder kommen dabei in einer Vielzahl von technischen Gebieten immer dann zum Einsatz, wenn Informationen zur Längenausdehnung des fluidischen Zylinders für eine präzise Positionierung benötigt werden. Insbesondere kommen solche Positionsmeßvorrichtungen dabei zur Bestimmung der Längenausdehnung der fluidischen Zylinder von Baumaschinen zum Einsatz, um z. B. bei Baggern, Radladern oder Kranen eine präzise Positionierung der Schaufel bzw. der Gabel zu ermöglichen. Hierbei müssen die Längenausdehnungen aller beteiligten fluidischen Zylinder gemessen werden, um anhand der gemessenen Längenausdehnung und durch geeignete Transformationen die Endlage der Schaufel bzw. der Gabel berechnen zu können.Such position measuring devices for measuring the linear expansion of fluidic cylinders are used in a variety of technical fields whenever information about the linear expansion of the fluidic cylinder is required for precise positioning. In particular, such position measuring devices are used to determine the linear expansion of the fluidic cylinders of construction machinery to use z. B. in excavators, wheel loaders or cranes to allow precise positioning of the blade or the fork. In this case, the linear expansions of all involved fluidic cylinders must be measured in order to be able to calculate the end position of the blade or the fork on the basis of the measured linear expansion and by suitable transformations.

Um eine Längenausdehnung des Zylinders zu bewirken, werden fluidische Zylinder mit einem unter Druck stehenden Fluid, insbesondere mit Hydrauliköl oder Pressluft, beaufschlagt, wodurch die Kolbenstange gegenüber dem Zylinder bewegt wird. Zur Messung der Längenausdehnung von fluidischen Zylindern sind dabei bereits Meßsysteme auf magnetostriktiver Basis bekannt. Dabei wird ein Meßelement mit entsprechenden magnetischen Eigenschaften in die Kolbenstange integriert, wofür diese axial aufgebohrt werden muss. Dies ist insbesondere bei sehr langen Zylindern mit bis zu sechs Metern sehr kostspielig und erfordert viel Aufwand hinsichtlich der Tiefbohrtechnik. Zudem ist die Kabelführung für die Meßelektronik innerhalb der Zylinder angeordnet, und damit in der Hochdruckzone mit bis zu 400 bar.In order to cause a longitudinal expansion of the cylinder, fluidic cylinders are subjected to a pressurized fluid, in particular hydraulic oil or compressed air, whereby the piston rod is moved relative to the cylinder. To measure the linear expansion of fluidic cylinders measuring systems are already known on a magnetostrictive basis. In this case, a measuring element is integrated with corresponding magnetic properties in the piston rod, for which it must be drilled axially. This is very costly especially for very long cylinders with up to six meters and requires a lot of effort in terms of deep drilling technology. In addition, the cable guide for the measuring electronics is arranged inside the cylinder, and thus in the high-pressure zone with up to 400 bar.

Weiterhin ist aus DE 202 18 623 U1 eine Positionsmeßvorrichtung für fluidische Zylinder bekannt, bei welcher ein in der Kolbenstange eingetauchter elektrisch isolierter Metallstab und die Kolbenstange selbst einen Kondensator bilden, dessen Kapazität gemessen wird. Die Anbringung der Meßsonde in der Kolbenstange ist wiederum sehr kostspielig und erfordert viel Aufwand hinsichtlich der Tiefbohrtechnik. Zudem bestehen wiederum Schwierigkeiten bei der Kabelführung innerhalb der Zylinder, da diese wiederum in der Hochdruckzone verläuft.Furthermore, it is off DE 202 18 623 U1 a position measuring device for fluidic cylinders is known in which an electrically insulated metal rod immersed in the piston rod and the piston rod itself form a capacitor whose capacitance is measured. The attachment of the probe in the piston rod is again very expensive and requires much effort in terms of deep drilling technology. In addition, there are again difficulties in the cable management within the cylinder, as this in turn runs in the high pressure zone.

Die DE 35 18 858 A1 offenbart einen Zweirohr-Stoßdämpfer, bestehend hauptsächlich aus einem Zylinderrohr, welches von einem koaxialen Außenrohr umgeben ist, aus einem Kolben und einer Kolbenstange. Dabei sind das Zylinderrohr und die Kolbenstange elektrisch voneinander isoliert, wobei das Zylinderrohr elektrisch geerdet ist. Es ist hier eine Messschaltung (OSC, IC2) vorgesehen, die als eine Einheit ausgebildet und mit einer Anschlussplatte zur elektrischen Verbindung mit der Kolbenstange verbunden ist.The DE 35 18 858 A1 discloses a two-tube shock absorber consisting mainly of a cylinder tube surrounded by a coaxial outer tube, a piston and a piston rod. In this case, the cylinder tube and the piston rod are electrically isolated from each other, wherein the cylinder tube is electrically grounded. Here, a measuring circuit (OSC, IC 2 ) is provided, which is formed as a unit and connected to a connection plate for electrical connection to the piston rod.

Die EP 0 358 366 A2 offenbart einen Zweirohr-Zylinder, welcher hauptsächlich aus einem ersten Zylinderrohr, welches von einem koaxialen Außenrohr umgeben ist, einen Kolben und einer Kolbenstange besteht. Dabei sind das Zylinderrohr und die Kolbenstange elektrisch voneinander isoliert, wobei das Außenrohr durch einen Schleifring mit dem Zylindermantel elektrisch verbunden ist. Es ist hier auch eine Messschaltung vorgesehen, welche durch einen Kontakt elastisch mit dem Zylindermantel, d.h. mit dem äußeren Außenrohr, verbunden ist.The EP 0 358 366 A2 discloses a two-pipe cylinder, which consists mainly of a first cylinder tube, which is surrounded by a coaxial outer tube, a piston and a piston rod. In this case, the cylinder tube and the piston rod are electrically isolated from each other, wherein the outer tube is electrically connected by a slip ring with the cylinder jacket. It is also here Measuring circuit provided, which is connected by a contact elastically with the cylinder jacket, ie with the outer outer tube.

Aufgabe der vorliegenden Erfindung ist es daher, eine Positionsmeßvorrichtung für fluidische Zylinder zur Verfügung zu stellen, welche bei geringen Kosten und geringem konstruktiven Aufwand eine hinreichende Genauigkeit bei der Längenmessung eines Hydraulikzylinders bietet.Object of the present invention is therefore to provide a position measuring device for fluidic cylinders available which provides a low accuracy and low design effort sufficient accuracy in the length measurement of a hydraulic cylinder.

Diese Aufgabe wird von einer Positionsmeßvorrichtung für einen fluidischen Zylinder gemäß Anspruch 1 gelöst. Der fluidische Zylinder weist dabei einen Zylindermantel und eine im Zylindermantel längsverschieblich geführte Kolbenstange auf. Insbesondere handelt es sich dabei um einen Hydraulikzylinder oder einen pneumatischen Zylinder. Erfindungsgemäß weist die Positionsmeßvorrichtung eine Auswerteeinheit auf, welche die Position der Kolbenstange bezüglich des Zylindermantels anhand der intrinsischen Kapazität des von Zylindermantel, Kolbenstange und einem als Dielektrikum wirkenden dielektrischen Fluid gebildeten Kondensators bestimmt. Kolbenstange und Zylindermantel stellen dabei die Elektroden des Kondensators dar, während das Fluid, mit welchem der Zylinder beaufschlagt wird, ein dielektrisches Fluid darstellt und als Dielektrikum wirkt. Durch die Verwendung der intrinsischen Kapazität des von Zylindermantel, Kolbenstange und Dielektrikum gebildeten Kondensators kann auf die Verwendung zusätzlicher Meßsonden, wie sie im Stand der Technik zwingend notwendig waren, verzichtet werden. Hierdurch wird eine äußerst kostengünstige und einfach zu verwirklichende Positionsmeßvorrichtung zur Verfügung gestellt, welche dennoch eine Längenmessung des fluidischen Zylinders mit hinreichender Genauigkeit ermöglicht. Weiterhin ermöglicht die vorliegende Erfindung eine mechanisch stabile und schwingungs- bzw. schockfeste Messvorrichtung.This object is achieved by a position measuring device for a fluidic cylinder according to claim 1. The fluidic cylinder in this case has a cylinder jacket and a longitudinally displaceably guided in the cylinder jacket piston rod. In particular, it is a hydraulic cylinder or a pneumatic cylinder. According to the invention, the position measuring device has an evaluation unit, which determines the position of the piston rod with respect to the cylinder jacket on the basis of the intrinsic capacitance of the cylinder jacket, piston rod and a dielectric fluid acting as a dielectric fluid certainly. Piston rod and cylinder jacket thereby represent the electrodes of the capacitor, while the fluid, with which the cylinder is acted upon, constitutes a dielectric fluid and acts as a dielectric. By using the intrinsic capacitance of the capacitor formed by the cylinder jacket, piston rod and dielectric, it is possible to dispense with the use of additional measuring probes, as were absolutely necessary in the prior art. As a result, an extremely cost-effective and easy-to-realize position measuring device is provided, which still allows a length measurement of the fluidic cylinder with sufficient accuracy. Furthermore, the present invention enables a mechanically stable and vibration or shock resistant measuring device.

Die erfindungsgemäße Positionsmessvorrichtung für einen fluidischen Zylinder zeichnet sich dadurch aus, dass der fluidische Zylinder, dessen Längenausdehnung über die erfindungsgemäße Positionsmessvorrichtung gemessen wird, auf mindestens einer Seite über einen elektrischen Isolator an einer Maschinenkonstruktion angelenkt ist. Hierdurch wird verhindert, dass der auf einer Maschinenkonstruktion angelenkte fluidische Zylinder durch diese kurzgeschlossen wird, da dies eine Positionsmessung verhindern würde. Der fluidische Zylinder ist somit von der metallischen Maschinenkonstruktion elektrisch isoliert.The position measuring device according to the invention for a fluidic cylinder is characterized in that the fluidic cylinder whose longitudinal extent is measured via the position measuring device according to the invention is articulated on at least one side via an electrical insulator to a machine construction. This prevents the fluidic cylinder, which is articulated on a machine construction, from being short-circuited by it, as this would prevent a position measurement. The fluidic cylinder is thus electrically isolated from the metallic machine construction.

Vorteilhafterweise ist dabei der fluidische Zylinder auf beiden Seiten über einen elektrischen Isolator an der Maschinenkonstruktion angelenkt. Die Anlenkung erfolgt vorteilhafterweise über einen elektrisch isolierten Gleitring, wie z.B. einen Kunststoffgleitring oder keramischen Gleitring. Solche Gleitringe haben eine hohe mechanische Festigkeit und weisen gleichzeitig einen hohen elektrischen Widerstand auf.Advantageously, the fluidic cylinder is articulated on both sides via an electrical insulator to the machine construction. The articulation advantageously takes place via an electrically insulated sliding ring, such as e.g. a plastic slip ring or ceramic seal ring. Such slip rings have a high mechanical strength and at the same time have a high electrical resistance.

Das vorgeschlagene Meßverfahren nutzt dabei die intrinsischen elektrischen Eigenschaften des zu messenden Zylinders (hier speziell die kapazitive Eigenschaft des Zylinders) und erfaßt die Änderungen dieser Eigenschaften während der Längenausdehnung des Zylinders. Ein fluidischer Zylinder verhält sich dabei wie ein Kondensator, wobei der Zylinder und die Kolbenstange als Elektroden eines zylinderförmigen Kondensators fungieren, während die Kunststoffabdichtung am Kolben und am Zylinderabschlußdeckel sowie das Fluid, insbesondere das Hydrauliköl als Dielektrikum wirken. Bei einer Längenausdehnung des fluidischen Zylinders ändert sich durch die Änderung der Kondensatorfläche die intrinsische Kapazität des fluidischen Zylinders. Erfindungsgemäß kann daher durch Messung dieser intrinsischen Kapazität die Längenausdehnung des fluidischen Zylinders bestimmt werden.The proposed measuring method uses the intrinsic electrical properties of the cylinder to be measured (in this case especially the capacitive property of the cylinder) and detects the changes in these properties during the longitudinal expansion of the cylinder. A fluidic cylinder behaves like a condenser, wherein the cylinder and the piston rod as electrodes of a cylindrical Condenser act while the plastic seal on the piston and the cylinder end cover and the fluid, in particular the hydraulic oil act as a dielectric. With a longitudinal expansion of the fluidic cylinder, the change of the capacitor area changes the intrinsic capacity of the fluidic cylinder. According to the invention, therefore, the length dimension of the fluidic cylinder can be determined by measuring this intrinsic capacity.

Der Vorteil des Meßverfahrens liegt darin, dass weder Meßelement noch Meßelektronik im Zylinder angebracht werden müssen und folglich keine konstruktiven Änderungen im fluidischen Zylinder erforderlich sind. Es handelt sich damit um ein sehr kostengünstiges und dennoch robustes Meßverfahren.The advantage of the measuring method is that neither measuring element nor measuring electronics must be mounted in the cylinder and consequently no structural changes in the fluidic cylinder are required. It is therefore a very cost-effective and yet robust measuring method.

Vorteilhafterweise bestimmt die Auswerteeinheit dabei die intrinsische Kapazität des fluidischen Zylinders über eine Oszillatorschaltung mit Frequenzauswertung, wobei die Frequenzauswertung vorteilhafterweise digital erfolgt. Bei der Oszillatorschaltung kann es sich dabei um eine LC-Schaltung, eine RC-Schaltung, oder aber auch andere Oszillatoren wie einen Martin- bzw. einen modifizierten Martin-Oszillator handeln, bei welcher der fluidische Zylinder als Kondensator eingesetzt wird. Die Kapazität kann dabei mit einer geeigneten Frequenz, z. B. 100 kH, und einem geeigneten Spannungspegel über eine digitale Frequenzauswertung bestimmt werden.Advantageously, the evaluation unit determines the intrinsic capacity of the fluidic cylinder via an oscillator circuit with frequency evaluation, wherein the frequency evaluation advantageously takes place digitally. The oscillator circuit may be an LC circuit, an RC circuit, or other oscillators such as a Martin or a modified Martin oscillator, in which the fluidic cylinder is used as a capacitor. The capacity can be at a suitable frequency, z. B. 100 kH, and a suitable voltage level via a digital frequency evaluation are determined.

Alternativ bestimmt die Auswerteeinheit die Kapazität über eine Wechselspannungsmessbrücke oder einen Wechselspannungsmessverstärker mit Spannungsauswertung, wobei vorteilhafterweise eine digitale Frequenzauswertung erfolgt.Alternatively, the evaluation determines the capacity of an AC voltage bridge or an AC voltage amplifier with voltage evaluation, advantageously a digital frequency evaluation takes place.

Weiterhin kann die Auswertung durch eine Schaltung mit Switched-Capacitor-Technik (geschaltete-Kondensator-Technik) mit Spannungsauswertung erfolgen, in der der Zylinder mit einer konstanten Frequenz auf eine Referenzspannung aufgeladen und durch einen Integrator entladen wird.Furthermore, the evaluation by a circuit with switched-capacitor technology (switched-capacitor technique) can be done with voltage evaluation, in which the cylinder is charged at a constant frequency to a reference voltage and discharged by an integrator.

In einer ersten Variante der vorliegenden Erfindung berechnet die Auswerteinheit die Position der Kolbenstange als lineare Funktion der gemessenen Kapazität. Es hat sich nämlich gezeigt, dass die Kapazität in relativ guter Näherung eine lineare Funktion des Verfahrwegs der Kolbenstange darstellt und umgekehrt. Durch die lineare Approximation ergibt sich damit eine äußerst einfache Auswertemethode, welche dennoch mit ausreichender Genauigkeit eine Positionsbestimmung der Kolbenstange bezüglich des Zylinders ermöglicht.In a first variant of the present invention, the evaluation unit calculates the position of the piston rod as a linear function of the measured capacitance. It has been shown that the capacity represents a linear function of the travel of the piston rod in a relatively good approximation and vice versa. As a result of the linear approximation, this results in an extremely simple evaluation method, which nevertheless makes it possible to determine the position of the piston rod with respect to the cylinder with sufficient accuracy.

Vorteilhafterweise berechnet die Auswerteinheit die Position der Kolbenstange aber anhand eines gespeicherten Kennfelds als Funktion der gemessenen Kapazität. Es hat sich nämlich gezeigt, dass die Kapazität insbesondere im mittleren Bereich des Zylinderhubs in guter Näherung eine lineare Funktion des Verfahrwegs der Kolbenstange darstellt und umgekehrt. Am Anfang und am Ende des Zylinderhubs stellt die Kapazität jedoch eine nichtlineare Funktion des Verfahrwegs dar. Mit Hilfe eines in der Auswerteelektronik gespeicherten Kennfelds wird eine präzise Kalibrierung für den ganzen Hubweg erreicht. Hierdurch wird eine Positionsbestimmung der Kolbenstange bezüglich des Zylinders mit größerer Genauigkeit realisierbar.Advantageously, the evaluation unit calculates the position of the piston rod but based on a stored map as a function of the measured capacitance. It has been shown that the capacity, in particular in the middle region of the cylinder stroke, to a good approximation represents a linear function of the travel of the piston rod and vice versa. However, at the beginning and at the end of the cylinder stroke, the capacity is a non-linear function of the travel. A map stored in the transmitter provides precise calibration reached for the entire stroke. As a result, a position determination of the piston rod with respect to the cylinder with greater accuracy can be realized.

Vorteilhafterweise umfasst die Auswerteinheit weiterhin eine Temperaturkompensation. Hierdurch kann eine Verfälschung der Meßergebnisse durch Temperaturschwankungen verhindert werden.Advantageously, the evaluation unit further comprises a temperature compensation. As a result, a falsification of the measurement results can be prevented by temperature fluctuations.

Weiterhin vorteilhafterweise mißt die Auswerteeinheit zusätzlich die Leitfähigkeit des Zylinders. Die Leitfähigkeit des fluidischen Zylinders wird dabei vorteilhafterweise zwischen der Kolbenstange und dem Zylindermantel gemessen. Hierdurch kann eine Überprüfung der Funktionsfähigkeit des Zylinders und/oder eine Kompensation der Meßergebnisse implementiert werden.Further advantageously, the evaluation unit additionally measures the conductivity of the cylinder. The conductivity of the fluidic cylinder is advantageously measured between the piston rod and the cylinder jacket. In this way, a check of the functionality of the cylinder and / or a compensation of the measurement results can be implemented.

Die Parallelleitfähigkeit der fluidischen Zylinder infolge der intern im Fluidkreislauf befindlichen Verschmutzungen, insbesondere der Metallpartikel, aber auch der externen umweltbedingten Verschmutzungen, beeinflusst die Ergebnisse der Kapazitätsmessung. Vorteilhafterweise mißt die Auswerteeinheit daher zusätzlich Leitfähigkeit des Zylinders und kompensiert die durch die Leitfähigkeit bewirkten Fehler in den Meßergebnissen zur Kapazität.The parallel conductivity of the fluidic cylinders as a result of the contaminants present internally in the fluid circuit, in particular the metal particles, but also the external environmental contaminants, influences the results of the capacitance measurement. Advantageously, the evaluation unit therefore additionally measures the conductivity of the cylinder and compensates the errors caused by the conductivity in the measurement results for the capacitance.

Vorteilhafterweise weist die Auswerteeinheit dabei eine Funktion zur Erkennung von Dichtungsfehlern auf. Die Auswerteeinheit kann dabei durch die Messung der intrinsischen Kapazität und/oder der Leitfähigkeit des erfindungsgemäßen fluidischen Zylinders Dichtungsfehler erkennen und z. B. ein Warnsignal an die zentrale Steuerung der Maschine senden.Advantageously, the evaluation unit has a function for detecting sealing defects. The evaluation unit can detect sealing errors by measuring the intrinsic capacitance and / or the conductivity of the fluidic cylinder according to the invention and z. B. send a warning signal to the central control of the machine.

Weiterhin vorteilhafterweise weist die Auswerteeinheit eine Funktion zur Erkennung des Fluidzustands auf. Auch hier kann durch die Messung der intrinsischen Kapazität und/oder der Leitfähigkeit auf den Zustand des verwendeten Fluids, insbesondere auf den Zustand des Hydrauliköls geschlossen werden. Das erfindungsgemäße Meßverfahren kann demgemäß eine Minderung der Fluid- bzw. Ölqualität rechtzeitig melden.Further advantageously, the evaluation unit has a function for detecting the fluid state. Again, it can be concluded by measuring the intrinsic capacitance and / or the conductivity on the state of the fluid used, in particular on the state of the hydraulic oil. The measuring method according to the invention can accordingly report a reduction in the fluid or oil quality in good time.

Die erfindungsgemäße Positionsmeßvorrichtung kann demgemäß die Funktionsfähigkeit des Zylinders überwachen und Schädigungen der Zylinderdichtungen sowie die Minderung der Ölqualität erkennen.The position measuring device according to the invention can accordingly monitor the functionality of the cylinder and detect damage to the cylinder seals and the reduction of oil quality.

Vorteilhafterweise weist die Auswerteinheit dabei einen Speicher auf, in welchen die intrinsische Kapazität des von Zylindermantel und Kolbenstange gebildeten Kondensators für die beiden Endpositionen der Kolbenstange speicherbar und/oder gespeichert ist. Durch einen Vergleich der gespeicherten Werte mit den aktuell gemessenen Werten bei diesen festen Positionen kann die Funktionsfähigkeit des Zylinders und/oder der Positionsmeßvorrichtung überwacht werden.Advantageously, the evaluation unit has a memory in which the intrinsic capacitance of the capacitor formed by the cylinder jacket and the piston rod can be stored and / or stored for the two end positions of the piston rod. By comparing the stored values with the currently measured values at these fixed positions, the functionality of the cylinder and / or the position measuring device can be monitored.

Um den Einfluss der parasitären Kapazitäten auszuschalten, wird vorteilhaferweise eine aktive Potentialausgleichsfläche eingesetzt, die dasselbe elektrische Potential wie der Zylinder hat. Dieser Aufbau führt zu optimaler Abschirmung von störenden Feldern.In order to eliminate the influence of the parasitic capacitances, it is advantageous to use an active equipotential bonding surface which has the same electrical potential as the cylinder. This construction leads to optimal shielding of interfering fields.

Der fluidische Zylinder, für welchen die erfindungsgemäße Positionsmeßvorrichtung eingesetzt wird, weist vorteilhafterweise elektrische Anschlüsse zur Verbindung der Auswerteeinheit mit dem Zylindermantel und der Kolbenstange auf. Dies sind die einzigen konstruktiven Änderungen, welche zur Umsetzung der vorliegenden Erfindung an einem handelsüblichen fluidischen Zylinders vorgenommen werden müssen. Dabei ist ein erster elektrischer Anschluß vorgesehen, welcher elektrisch leitend mit dem Zylindermantel in Verbindung steht und ein zweiter Anschluß, welcher elektrisch leitend mit der Kolbenstange in Verbindung steht. An diese beiden elektrischen Anschlüsse wird die Auswerteeinheit, welche z.B. als externes Gerät ausgeführt werden kann, angeschlossen.The fluidic cylinder, for which the position measuring device according to the invention is used, advantageously has electrical connections for connecting the Evaluation unit with the cylinder jacket and the piston rod on. These are the only design changes that must be made to implement the present invention on a commercial fluidic cylinder. In this case, a first electrical connection is provided which is electrically conductively connected to the cylinder jacket and a second connection, which is electrically connected to the piston rod in connection. At these two electrical connections, the evaluation unit, which can be performed, for example, as an external device connected.

In einer ersten Ausgestaltung der Erfindung ist dabei der elektrische Anschluss für die Kolbenstange im Bereich der Anlenkung der Kolbenstange angeordnet und mit dieser fest verbunden. Hierdurch ergibt sich eine besonders einfache mechanische Lösung, wobei die beiden Anschlüsse jedoch bei einer Längenausdehnung des fluidischen Zylinders gegeneinander bewegt werden.In a first embodiment of the invention, the electrical connection for the piston rod is arranged in the region of the articulation of the piston rod and firmly connected thereto. This results in a particularly simple mechanical solution, but the two connections are moved against each other in a longitudinal expansion of the fluidic cylinder.

Alternativ erfolgt daher der elektrische Anschluss für die Kolbenstange über einen Schleifkontakt. Der Schleiferträger ist dabei vorteilhafterweise am Zylindermantel oder am Zylinderabschlußdeckel angeordnet und steht über einen Schleifkontakt mit der Kolbenstange in Verbindung. Weiterhin kann der Schleiferträger außerhalb des Zylinders befestigt werden.Alternatively, therefore, the electrical connection for the piston rod via a sliding contact. The slider carrier is advantageously arranged on the cylinder jacket or on the cylinder end cover and is connected via a sliding contact with the piston rod in connection. Furthermore, the slider carrier can be fastened outside the cylinder.

In einer weiteren Ausführung wird die Auswerteeinheit auf einer Seite des Zylinders fest montiert, während die Messsignale drahtlos an eine Maschinensteuerung gesendet werden. Dabei wird die Auswerteeinheit auf einer Seite des fluidischen Zylinders unmittelbar befestigt und elektrisch mit dem Zylinder verbunden. Der andere Anschluss wird durch die metallische Maschinenkonstruktion mit dem Zylinder verbunden. Die Stromversorgung für die Auswerteeinheit erfolgt vorteilhafterweise durch eine in der Auswerteeinheit eingebaute Batterie. Das Ausgangssignal der Auswerteeinheit wird drahtlos z.B. per Funk zur Maschinensteuerung übertragen. Zur Übertragung des Messsignals kann z.B. das Frequenzband 433 MHz oder andere Frequenzbänder (wie z. B. WLAN, Bluetooth,...) genutzt werden. Insbesondere in Baumaschinenbereich, in denen die Verkabelungen durch Steinschläge beschädigt werden können, bietet diese Ausführungsart erhebliche Vorteile. Insbesondere werden die Zuverlässigkeit der Messvorrichtung erhöht und die Ausführungskosten reduziert.In a further embodiment, the evaluation unit is fixedly mounted on one side of the cylinder while the measurement signals are sent wirelessly to a machine control. In this case, the evaluation unit is attached directly to one side of the fluidic cylinder and electrically connected to the cylinder. The other connection is connected to the cylinder by the metallic machine construction. The power supply for the evaluation unit is advantageously carried out by a built-in evaluation in the battery. The output signal of the evaluation unit is wirelessly transmitted, for example by radio to the machine control. For example, the frequency band 433 MHz or other frequency bands (such as WLAN, Bluetooth, etc.) can be used to transmit the measurement signal. Especially in construction machinery area where the wiring damaged by rockfalls can be, this embodiment offers significant benefits. In particular, the reliability of the measuring device is increased and the execution costs are reduced.

Die vorliegende Erfindung umfasst weiterhin einen fluidischen Zylinder für eine Positionsmeßvorrichtung nach einem der vorangegangenen Ansprüche. Insbesondere handelt es sich dabei um einen hydraulischen oder pneumatischen Zylinder. Insbesondere weist dieser fluidische Zylinder dabei elektrische Anschlüsse zur Verbindung der Auswerteeinheit mit dem Zylindermantel und der Kolbenstange auf. Weiterhin sind vorteilhafterweise Isolatoren zur Anlenkung des fluidischen Zylinders an einer Maschinenkonstruktion vorgesehen.The present invention further comprises a fluidic cylinder for a position measuring device according to any one of the preceding claims. In particular, it is a hydraulic or pneumatic cylinder. In particular, this fluidic cylinder has electrical connections for connecting the evaluation unit to the cylinder jacket and the piston rod. Furthermore, isolators are advantageously provided for the articulation of the fluidic cylinder on a machine construction.

Die vorliegende Erfindung umfasst weiterhin eine Auswerteeinheit für eine Positionsmeßvorrichtung, wie sie oben beschrieben wurde. Diese umfasst dabei die nötige Meß- und Auswerteelektronik zur Messung der Kapazität und zur Berechnung der Längenausdehnung des fluidischen Zylinders.The present invention further comprises an evaluation unit for a position measuring device as described above. This includes the necessary measuring and evaluation electronics for measuring the capacity and for calculating the linear expansion of the fluidic cylinder.

Die vorliegende Erfindung umfasst weiterhin eine Vorrichtung, insbesondere eine Maschine, ein Fahrzeug, ein Flugzeug und/oder ein Arbeitsgerät, mit einem fluidischen Zylinders und einer Positionsmeßvorrichtung, wie sie oben beschrieben wurden. Die vorliegende Erfindung kann dabei in einer Vielzahl von unterschiedlichen Anwendungsbereichen zum Einsatz kommen, um die Längenausdehnung eines fluidischen Zylinders zu bestimmen. Insbesondere kann sie dabei in Baumaschinen wie z. B. Hydraulikbaggern, Raupenbaggern oder Radladern eingesetzt werden. Weiterhin ist auch die Anwendung in Kranen möglich. Zudem ergeben sich Anwendungen im Bereich der Luftfahrttechnik, der Fertigungstechnik (z. B. Stahlwalzen, hydraulische Presse), Verpackungsmaschinen, Nahrungsproduktion, Kunststoffmaschinen, im Bereich Automotive (PKW, LKW, Agrarmaschinen), bei Prüf- und Testmaschinen und bei allen anderen Anwendungen, bei welchen die Längenausdehnung eines fluidischen Zylinders mit wenig konstruktivem Aufwand bestimmt werden soll.The present invention further comprises a device, in particular a machine, a vehicle, an aircraft and / or a working device, with a fluidic cylinder and a position measuring device, as described above. The present invention can be used in a variety of different applications to determine the linear expansion of a fluidic cylinder. In particular, it can be used in construction machinery such. As hydraulic excavators, crawler excavators or wheel loaders are used. Furthermore, the application in cranes is possible. In addition, applications in the field of aeronautical engineering, manufacturing technology (eg steel rollers, hydraulic press), packaging machines, food production, plastics machinery, in the field of automotive (cars, trucks, agricultural machinery), test and test machines and in all other applications, in which the linear expansion of a fluidic cylinder with little design effort to be determined.

Vorteilhafterweise wird dabei der fluidische Zylinder anhand der von der Positionsmeßvorrichtung ermittelten Daten durch Beaufschlagung mit unter Druck stehendem Fluid bewegt und so präzise positioniert. Bei dem fluidischen Zylinder handelt es sich damit um einen Arbeitszylinder, welcher der Bewegung eines Elementes der Vorrichtung dient, wofür er von einer Steuereinheit mit unter Druck stehendem Fluid beaufschlagt wird. Die erfindungsgemäße Positionsmeßvorrichtung liefert dabei Daten an die Steuereinheit, anhand welcher die Bewegung des Zylinders geregelt werden kann. Die Daten von der Positionsmeßvorrichtung können ebenfalls genutzt werden, um ungewollte Längenänderungen des Zylinders aufgrund von Funktionsstörungen zu erkennen und/oder um eine automatische Ansteuerung des Zylinders zu ermöglichen.Advantageously, the fluidic cylinder is thereby moved on the basis of the data determined by the position measuring device by application of pressurized fluid and so precisely positioned. The fluidic cylinder is thus a working cylinder, which serves for the movement of an element of the device, for which purpose it is acted on by a control unit with pressurized fluid. The position measuring device according to the invention supplies data to the control unit, based on which the movement of the cylinder can be controlled. The data from the position measuring device can also be used to detect unwanted changes in length of the cylinder due to malfunction and / or to allow automatic control of the cylinder.

Die vorliegende Erfindung umfasst weiterhin ein Verfahren zur Bestimmung der Position der Kolbenstange eines fluidischen Zylinders bezüglich des Zylindermantels, bei welchem die intrinsische Kapazität des von Zylindermantel und Kolbenstange gebildeten Kondensators gemessen und die Position der Kolbenstange aus der gemessenen Kapazität berechnet wird. Vorteilhafterweise erfolgt die Messung der Kapazität dabei über eine Oszillatorschaltung, weiterhin vorteilhafterweise mittels Frequenzauswertung. Die Position der Kolbenstange wird dabei vorteilhafterweise als lineare Funktion der gemessenen Kapazität bestimmt. Weiterhin vorteilhafterweise wird die Leitfähigkeit des Zylinders gemessen und mittels der gemessenen Leitfähigkeit weiterhin die Funktionsfähigkeit des fluidischen Zylinders überwacht. Insbesondere werden dabei Dichtungsfehler und/oder der Fluidzustand, insbesondere der Ölzustand bei Hydraulikzylindern, auf Grundlage der gemessenen Leitfähigkeit erkannt. Vorteilhafterweise wird die gemessene Position der Kolbenstange bezüglich des Zylindermantels einer Steuereinheit einer Vorrichtung zugeleitet. Diese kann den Zylinder anhand dieser Daten mit unter Druck stehendem Fluid beaufschlagen. Die Ansteuerung des Zylinders erfolgt also anhand der Daten der Positionsmeßvorrichtung. Weiterhin können die Daten zur Automatisierung von Bewegungsabläufen und/oder als Sicherheitsfunktion zur Überwachung von ungewollten Längenänderungen des Zylinders aufgrund von Zylinderfunktionsstörungen genutzt werden.The present invention further comprises a method for determining the position of the piston rod of a fluidic cylinder with respect to the cylinder jacket, in which the intrinsic capacitance of the capacitor formed by cylinder jacket and piston rod is measured and the position of the piston rod is calculated from the measured capacitance. Advantageously, the measurement of the capacitance takes place via an oscillator circuit, furthermore advantageously by means of frequency evaluation. The position of the piston rod is advantageously determined as a linear function of the measured capacitance. Furthermore advantageously, the conductivity of the cylinder is measured and the functionality of the fluidic cylinder is further monitored by means of the measured conductivity. In particular, sealing defects and / or the fluid condition, in particular the oil condition in the case of hydraulic cylinders, are detected on the basis of the measured conductivity. Advantageously, the measured position of the piston rod with respect to the cylinder jacket is fed to a control unit of a device. The latter can pressurize the cylinder with pressurized fluid on the basis of this data. The control of the cylinder is thus based on the data of the position measuring. Furthermore, the data can be used to automate motion sequences and / or as a safety function to monitor unwanted cylinder length changes due to cylinder malfunction.

Die vorliegende Erfindung wird nun anhand von Ausführungsbeispielen sowie Zeichnungen näher dargestellt. Dabei zeigen:

Figur 1 a:
eine Schnittansicht durch ein erstes Ausführungsbeispiel eines erfindungsgemäßen fluidischen Zylinders,
Figur 1b:
eine Schnittansicht durch ein zweites Ausführungsbeispiel eines erfindungsgemäßen fluidischen Zylinders,
Figur 1 c:
eine Schnittansicht durch ein drittes Ausführungsbeispiel eines erfindungsgemäßen fluidischen Zylinders,
Figur 1d:
eine Schnittansicht durch ein viertes Ausführungsbeispiel eines erfindungsgemäßen fluidischen Zylinders mit einer am Zylinder montierten Auswerteeinheit mit drahtloser Signalübertragung,
Figur 2:
ein Diagramm, welches die intrinsische Kapazität eines fluidischen Zylinders in Abhängigkeit vom Verfahrweg und deren lineare Approximation darstellt und
Figur 3:
ein Schaltplan einer Kapazitäts-Meßanordnung eines Ausführungsbeispiels einer erfindungsgemäßen Auswerteeinheit.
The present invention will now be described in more detail with reference to embodiments and drawings. Showing:
FIG. 1 a:
a sectional view through a first embodiment of a fluidic cylinder according to the invention,
FIG. 1b
a sectional view through a second embodiment of a fluidic cylinder according to the invention,
FIG. 1c:
a sectional view through a third embodiment of a fluidic cylinder according to the invention,
FIG. 1d:
3 shows a sectional view through a fourth exemplary embodiment of a fluidic cylinder according to the invention with an evaluation unit mounted on the cylinder with wireless signal transmission,
FIG. 2:
a diagram showing the intrinsic capacity of a fluidic cylinder as a function of the travel and its linear approximation, and
FIG. 3:
a circuit diagram of a capacitance-measuring arrangement of an embodiment of an evaluation unit according to the invention.

In Figuren 1a bis 1d sind vier Ausführungsbeispiele eines erfindungsgemäßen fluidischen Zylinders gezeigt. Wie alle fluidische Zylinder weist dieser dabei einen Zylindermantel 1 und eine darin längsverschieblich geführte Kolbenstange 2 auf, an welcher der Kolben 3 angeordnet ist. Hierdurch ergeben sich ein Kolbenraum 11 und ein Zylinderraum 12, welche zur Bewegung des Kolbens mit einem Fluid, insbesondere mit Hydrauliköl oder Druckluft, beaufschlagt werden. Der Zylindermantel 1 und die Kolbenstange 2 sind dabei aus Metall, insbesondere aus Stahl oder aus metallisch beschichteten Materialien gefertigt und bilden so die Elektroden eines zylinderförmigen Kondensators. Die Kunststoffabdichtung 4 zwischen Kolben 3 und Zylindermantel 1 und die Kunststoffabdichtung 6 zwischen Kolbenstange 2 und Zylinderabschlußdeckel 5 sowie das dielektrische Fluid in den Kammern 11 und 12, dienen dabei als Dielektrikum. Eine Längenausdehnung des fluidischen Zylinders durch eine Bewegung der Kolbenstange 2 relativ zum Zylindermantel 1 ändert nun durch die Änderung der Kondensatorfläche diese intrinsische Kapazität des fluidischen Zylinders. Die elektrisch nichtleitenden Gleitringe 13 isolieren den Zylinder elektrisch von der metallischen Maschinenkonstruktion ab.In FIGS. 1a to 1d four embodiments of a fluidic cylinder according to the invention are shown. Like all fluidic cylinders, it has a cylinder jacket 1 and a piston rod 2 guided longitudinally displaceably, on which the piston 3 is arranged. This results in a piston chamber 11 and a cylinder chamber 12, which are acted upon for movement of the piston with a fluid, in particular with hydraulic oil or compressed air. The cylinder jacket 1 and the piston rod 2 are made of metal, in particular of steel or of metallically coated materials and thus form the electrodes of a cylindrical capacitor. The plastic seal 4 between the piston 3 and the cylinder jacket 1 and the plastic seal 6 between the piston rod 2 and cylinder end cover 5 and the dielectric fluid in the chambers 11 and 12, serve as a dielectric. A longitudinal expansion of the fluidic cylinder by a movement of the piston rod 2 relative to the cylinder jacket 1 now changes by the change of the capacitor area this intrinsic capacity of the fluidic cylinder. The electrically non-conductive slip rings 13 electrically isolate the cylinder from the metallic machine construction.

Bei dem Zylinder handelt es sich um einen Arbeitszylinder, welcher ein Element einer Arbeitsmaschine bewegt und dessen Bewegung von einer Maschinensteuerung 40 angesteuert wird. Die Maschinensteuerung 40 steuert hierfür den FluidFluß zu den beiden Kammern 11 und 12 des Zylinders.The cylinder is a working cylinder, which moves an element of a working machine and whose movement is controlled by a machine control 40. For this purpose, the machine control 40 controls the fluid flow to the two chambers 11 and 12 of the cylinder.

Erfindungsgemäß wird nun durch die Messung dieser intrinsischen Kapazität des erfindungsgemäßen fluidischen Zylinders die Längenausdehnung des fluidischen Zylinders ermittelt. Hierfür sind elektrische Anschlüsse 8 und 9 zur Verbindung des Zylindermantels 1 und der Kolbenstange 2 mit einer Auswerteeinheit 30 vorgesehen. Die Anschlüsse 8 und 9 stehen dabei jeweils elektrisch leitend mit dem Zylindermantel 1 bzw. der Zylinderstange 2 in Verbindung. Die Auswerteeinheit 30 liefert die Meßergebnisse dann an die Maschinensteuerung 40. Dort werden die Meßergebnisse zur Ansteuerung und/oder Überwachung des Zylinders herangezogen.According to the invention, the linear expansion of the fluidic cylinder is now determined by measuring this intrinsic capacity of the fluidic cylinder according to the invention. For this purpose, electrical connections 8 and 9 are provided for connecting the cylinder jacket 1 and the piston rod 2 to an evaluation unit 30. The terminals 8 and 9 are in each case electrically conductively connected to the cylinder jacket 1 and the cylinder rod 2 in connection. The evaluation unit 30 then delivers the measurement results to the machine controller 40. There, the measurement results are used to control and / or monitoring of the cylinder.

In Figur 1 a ist dabei ein erstes Ausführungsbeispiel gezeigt, in welchem der Anschluß 8 zur Verbindung der Auswerteeinheit mit der Kolbenstange 2 im Bereich des Anlenkauges 7 an der Kolbenstange 2 angeordnet ist. In Figur 1b ist dagegen ein zweites Ausführungsbeispiel angezeigt, bei welchem ein Schleifkontakt 10 verwendet wird, um die Kolbenstange 2 elektrisch zu kontaktieren. Der Schleifkontakt 10 ist dabei im Ausführungsbeispiel am Zylinderabschlußdeckel 5 des fluidischen Zylinders angeordnet und stellt den Kontakt mit der Kolbenstange 2 her. In Figur 1 b ist der Schleifkontakt 10 dabei im inneren des Zylinderraums 12 angeordnet. Alternativ könnte der Schleifkontakt 10 gemäß Figur 1c auch außerhalb des Zylinderrraums 12 z. B. auf der Außenseite des Zylinderabschlußdeckels oder in den Zylinderabschlußdeckel integriert angeordnet sein.In FIG. 1 a, a first embodiment is shown, in which the terminal 8 is arranged to connect the evaluation unit with the piston rod 2 in the region of the Anlenkauges 7 on the piston rod 2. In FIG. 1b On the other hand, a second embodiment is shown, in which a sliding contact 10 is used to electrically contact the piston rod 2. The sliding contact 10 is arranged in the embodiment on the cylinder end cover 5 of the fluidic cylinder and makes the contact with the piston rod 2 ago. In FIG. 1 b, the sliding contact 10 is arranged in the interior of the cylinder chamber 12. Alternatively, the sliding contact 10 according to Figure 1c also outside the cylinder space 12 z. B. may be arranged integrated on the outside of the cylinder end cover or in the cylinder end cover.

In Figur 1c ist ein viertes Ausführungsbeispiel dargestellt, in dem die Auswerteeinheit 30 auf einer Seite des fluidischen Zylinders unmittelbar befestigt und elektrisch an den Zylinder angeschlossen wird. Der andere Anschluss 9 der Auswerteeinheit 30 wird durch die metallische Maschinenkonstruktion 50 mit dem Zylinder verbunden. Die Stromversorgung für die Auswerteeinheit erfolgt durch eine in der Auswerteeinheit eingebaute Batterie. Das Ausgangssignal der Auswerteeinheit wird drahtlos und per Funk mittels einer in der Auswerteeinheit integrierten Antenne zu einem Maschinensteuergerät übertragen.In Figure 1c a fourth embodiment is shown, in which the evaluation unit 30 is directly attached to one side of the fluidic cylinder and electrically connected to the cylinder. The other terminal 9 of the evaluation unit 30 is connected to the cylinder by the metallic machine construction 50. The power supply for the evaluation is done by a built-in evaluation in the battery. The output signal of the evaluation unit is transmitted wirelessly and by radio by means of an antenna integrated in the evaluation unit to a machine control unit.

Ein Vorteil des erfindungsgemäßen Meßverfahrens liegt darin, dass der fluidische Zylinder selbst als Meßelement dient und demnach kein zusätzliches Meßelement vorgesehen werden muss. Auch muß keine Meßelektronik im Zylinder angeordnet werden. Bis auf die Anordnung der beiden elektrischen Anschlüsse sind demnach keine konstruktiven Änderungen am fluidischen Zylinders erforderlich.An advantage of the measuring method according to the invention is that the fluidic cylinder itself serves as a measuring element and therefore no additional measuring element must be provided. Also, no measuring electronics must be arranged in the cylinder. Accordingly, no design changes to the fluidic cylinder are required except for the arrangement of the two electrical connections.

Bei einer Längenausdehnung des fluidischen Zylinders ändert sich dessen intrinsische Kapazität, da sich die Kondensatorfläche des von Zylindermantel 1 und Kolbenstange 2 gebildeten zylinderförmigen Kondensators ändert. Diese Änderung der Kapazität wird mittels der erfindungsgemäßen Auswerteeinheit gemessen und ausgewertet. Die Abhängigkeit der Zylinderkapazität von der Längenausdehnung ist dabei in Figur 2 dargestellt. Die Meßkurve entspricht dabei in sehr guter Näherung einer linearen Abhängigkeit zwischen Kapazität und Verfahrweg.In the case of a longitudinal expansion of the fluidic cylinder, its intrinsic capacity changes, since the condenser surface of the cylindrical capacitor formed by cylinder jacket 1 and piston rod 2 changes. This change in capacity is measured and evaluated by means of the evaluation unit according to the invention. The dependence of the cylinder capacity on the linear expansion is in FIG. 2 shown. The trace corresponds to a very good approximation of a linear dependence between capacity and travel.

Dementsprechend wird in einer ersten Variante der vorliegenden Erfindung der Verfahrwerg bzw. die Position der Kolbenstange als eine lineare Funktion der Kapazität bestimmt. Es handelt sich demnach um ein sehr kostengünstige und robuste Meßvorrichtung zur Bestimmung der Längenausdehnung des fluidischen Zylinders, welches dennoch eine ausreichende Meßgenauigkeit bietet.Accordingly, in a first variant of the present invention, the Verfahrwerg or the position of the piston rod is determined as a linear function of the capacity. It is therefore a very cost-effective and robust measuring device for determining the linear expansion of the fluidic cylinder, which nevertheless provides sufficient measurement accuracy.

Da jedoch gerade an den Enden des Hubweges des Zylinders Abweichungen von dem linearen Zusammenhang bestehen, ist in einer alternativen Ausführung der vorliegenden Erfindung ein Kennfeld in der Auswerteeinheit abgelegt, über welches die Position der Zylinderstange anhand der Kapazität bestimmt werden kann. So ergibt sich gerade in den Randbereichen eine noch präzisere Messung und Ansteuerung. Die Implementierung beleibt durch die Verwendung eines Kennfeldes dennoch einfach und robust.However, since there are deviations from the linear relationship just at the ends of the stroke of the cylinder, in an alternative embodiment of the present invention, a map is stored in the evaluation unit, via which the position of the cylinder rod can be determined based on the capacity. This results in an even more precise measurement and control especially in the peripheral areas. The implementation is still simple and robust through the use of a map.

Die Auswerteeinheit umfasst dabei eine Auswerteelektronik, welche die Kapazität z. B. mittels einer Oszillatorschaltung (LC, RC oder Martin-Oszillator bzw. modifizierter Martin-Oszillator) mit geeigneter Frequenz und einem geeigneten Spannungspegel über eine digitale Frequenzauswertung ermittelt. Die Berechnung des Verfahrwegs aus der Kapazität erfolgt dann wie beschrieben mittels gespeichertem Kennfeld. Weiterhin ist eine Temperaturkompensation vorgesehen.The evaluation unit comprises an evaluation, which has the capacity z. B. by means of an oscillator circuit (LC, RC or Martin oscillator or modified Martin oscillator) determined with a suitable frequency and a suitable voltage level via a digital frequency evaluation. The calculation of the travel distance from the capacity then takes place as described by means of a stored characteristic map. Furthermore, a temperature compensation is provided.

Weiterhin kann die Auswertung durch eine Wechselspannungsmessbrücke oder durch eine Wechselspannungsmessverstärker realisiert werden, in dem der Zylinder als variabler Kondensator in Koppel- oder Rückkopplungszweig angeschlossen wird.Furthermore, the evaluation can be realized by an AC voltage bridge or by an AC voltage amplifier, in which the cylinder is connected as a variable capacitor in coupling or feedback branch.

Die Auswertung kann auch durch eine Schaltung mit Switched-Capacitor-Technik (geschalteter-Kondensator-Technik) erfolgen, in der der Zylinder mit einer konstanten Frequenz auf eine Referenzspannung aufgeladen und durch einen Integrator entladen wird. Am Ausgang entsteht dann eine Gleichspannung, die proportional zu der Zylinderkapazität ist.The evaluation can also be done by a circuit with switched-capacitor technology (switched-capacitor technique) in which the cylinder is charged at a constant frequency to a reference voltage and discharged by an integrator. At the output then creates a DC voltage, which is proportional to the cylinder capacity.

Die Auswerteeinheit weist weiterhin eine Funktion zur Überwachung der Funktionsfähigkeit des Zylinders auf. Dabei können Beschädigungen der Zylinderdichtungen sowie ein Minderung der Fluidqualität rechtzeitig anhand der Messung der Zylinderleitfähigkeit erkannt und gemeldet werden.The evaluation unit also has a function for monitoring the functionality of the cylinder. Damage to the cylinder seals as well as a reduction in fluid quality can be detected and reported in good time by measuring the cylinder conductivity.

Um den fluidischen Zylinder nicht durch eine metallische Maschinenkonstruktion kurzzuschließen, muss die Anlenkung des fluidischen Zylinders an der metallischen Maschinenkonstruktion elektrisch isolierend ausgeführt sein. Dies kann durch die Verwendung von elektrisch isolierenden Gleitringen 13 zur Lagerung der fluidischen Zylinder realisiert werden. Solche Gleitringe weisen eine hohe mechanische Stabilität und einen hohen elektrischen Widerstand auf. Dabei können z.B isolierende Dichtungen (aus reinem Kunststoff ohne Graphit- oder Metallpartikel) eingesetzt werden.In order not to short the fluidic cylinder by a metallic machine design, the articulation of the fluidic cylinder on the metallic machine structure must be made electrically insulating. This can be realized by the use of electrically insulating slip rings 13 for supporting the fluidic cylinders. Such slip rings have a high mechanical stability and a high electrical resistance. For example, insulating gaskets (made of pure plastic without graphite or metal particles) can be used.

In Figur 3 ist ein Schaltplan einer Kapazitäts-Meßanordnung eines Ausführungsbeispiels einer erfindungsgemäßen Auswerteeinheit dargestellt, bei welcher die intrinsische Kapazität Cs des fluidischen Zylinders 20 über eine Switched-Capacitor-Technik ausgewertet wird. Dabei wird der Zylinder 20 über die Spannungsquelle 21 mit einer konstanten Frequenz auf eine Referenzspannung Uin aufgeladen. Durch Umschalten mit dem Schalter 22 wird der Zylinder 20 dann über den Integrator 25 entladen. Am Ausgang des Integrators entsteht eine Gleichspannung, welche proportional zur Zylinderkapazität ist. Dabei wurde ein niederohmiger Parallelwiderstand 23 zu dem Zylinder 20 vorgesehen, welcher die Schaltung unempfindlicher gegen Leitfähigkeitsänderungen des Zylinders macht.In FIG. 3 is a circuit diagram of a capacitance-measuring arrangement of an embodiment of an evaluation unit according to the invention shown, in which the intrinsic capacitance Cs of the fluidic cylinder 20 is evaluated via a switched-capacitor technique. In this case, the cylinder 20 is charged via the voltage source 21 with a constant frequency to a reference voltage Uin. By switching over with the switch 22, the cylinder 20 is then discharged via the integrator 25. At the output of the integrator, a DC voltage is generated which is proportional to the cylinder capacitance. In this case, a low-impedance parallel resistor 23 was provided to the cylinder 20, which makes the circuit less susceptible to changes in conductivity of the cylinder.

Die Leitfähigkeitsänderungen sind schematisch durch den veränderlichen Widerstand 24 dargestellt. Dabei ist ein Block 26 zur Überwachung und/oder Kompensation vorgesehen, in welchem der veränderliche Widerstand des Zylinders bestimmt wird. Der Block 26 überwacht die Zylinderfunktion und detektiert Dichtungsfehler. Zudem berechnet er den Einfluß von externen Leitfähigkeiten z. B. durch externe Verschmutzungen auf die Kapazitätsmessung anhand des ermittelten Parallelwiderstands. Im Korrekturblock 27 werden Meßfehler bezüglich der Kapazität, welche auf den Leitfähigkeitsänderungen des Zylinders 20 beruhen, korrigiert. Die Ausgangsspannung Uout entspricht damit der korrigierten Kapazität des Zylinders 20.The conductivity changes are shown schematically by the variable resistor 24. In this case, a block 26 is provided for monitoring and / or compensation, in which the variable resistance of the cylinder is determined. Block 26 monitors the cylinder function and detects seal failures. He also calculates the influence of external conductivities z. B. by external contamination on the capacitance measurement based on the determined parallel resistance. In the correction block 27, measurement errors related to the capacitance based on the changes in the conductivity of the cylinder 20 are corrected. The output voltage Uout thus corresponds to the corrected capacity of the cylinder 20.

Die gemessene Kapazität wird erfindungsgemäß ausgewertet, um die Längenausdehnung des Zylinders zu bestimmen. Vorteilhafterweise ist dabei in der Auswerteeinheit ein Kennfeld abgespeichert, welches der Kompensation des teilweise nicht linearen Verhaltens der Zylinderkapazität dient. Zudem kann vorteilhafterweise die Zylinderkapazität für die End- bzw. Anfangsposition des Zylinders zur automatischen Kalibrierung des Meßvorgangs gespeichert werden.The measured capacitance is evaluated according to the invention to determine the linear expansion of the cylinder. Advantageously, it is in the evaluation unit a map is stored, which serves the compensation of the partially non-linear behavior of the cylinder capacity. In addition, advantageously, the cylinder capacity for the final or initial position of the cylinder for automatic calibration of the measuring process can be stored.

Die Meßdaten zur Längenausdehnung des Zylinders werden erfindungsgemäß einer Maschinensteuerung einer Arbeitsmaschine übergeben. Dort können Sie zur Ansteuerung des Zylinders herangezogen werden. Dabei kann eine Automatisierung der Ansteuerung des Zylinders über die Meßsignale erfolgen. Alternativ oder zusätzlich können die Daten der erfindungsgemäßen Positionsmeßvorrichtung genutzt werden, um die Zylinder auf ungewollte Längenänderungen aufgrund von Funktionsstörungen zu überwachen. Die Positionsmeßvorrichtung liefert ihre Daten hierzu an eine Sicherheitseinrichtung zur Überwachung der Arbeitsmaschine. Weiterhin können Daten der Dichtungsfehler- und/oder Ölzustandserkennung der Maschinensteuerung zugeleitet werden. Insbesondere werden diese Daten dabei einem Informationssystem zugeleitet, insbesondere einem Fahrerinformationssystem und/oder einem Maintainance-Managementsystem der Arbeitsmaschine.The measurement data for the linear expansion of the cylinder are transferred according to the invention to a machine control of a working machine. There you can be used to control the cylinder. In this case, an automation of the control of the cylinder via the measurement signals can take place. Alternatively or additionally, the data of the position measuring device according to the invention can be used to monitor the cylinders for unwanted changes in length due to malfunction. The position measuring device delivers its data for this purpose to a safety device for monitoring the working machine. Furthermore, data of the seal error and / or oil condition detection can be fed to the machine control. In particular, these data are thereby forwarded to an information system, in particular a driver information system and / or a maintenance management system of the work machine.

Neben der Verwendung in Baumaschinen, insbesondere zur Längenbestimmung der zur Bewegung des Auslegers bzw. des Stiels eingesetzten Hydraulikzylinder, ergeben sich für die erfindungsgemäße Positionsmeßvorrichtung eine Vielzahl von weiteren Anwendungsbereichen. Dabei wird ein Meßsystem zur Verfügung gestellt, welches eine hervorragende Lösung hinsichtlich der Kosten, der Konstruktion und der Genauigkeit bietet.In addition to the use in construction machines, in particular for determining the length of the hydraulic cylinder used for the movement of the arm or the handle, resulting in a variety of other applications for the position measuring device according to the invention. In this case, a measuring system is provided, which offers an excellent solution in terms of cost, construction and accuracy.

Claims (15)

  1. A position measuring device for a fluidic cylinder (20) which consists of a cylinder jacket (1) and a piston rod (2) longitudinally shiftably guided in the cylinder jacket (1), wherein the position measuring device includes an evaluation unit (30) which determines the position of the piston rod (2) with respect to the cylinder jacket (1) with reference to the intrinsic capacitance of the capacitor formed by cylinder jacket (1), piston rod (2) and a dielectric fluid acting as a dielectric, wherein the fluidic cylinder (20) on at least one side is articulated to a machine construction via an electric insulator.
  2. The position measuring device according to claim 1, characterized in that the fluidic cylinder (20) preferably is connected to the machine construction on both sides, wherein the electric insulator in particular is a plastic sliding ring, a ceramic and/or a ceramic-coated sliding ring (13).
  3. The position measuring device according to claim 1 or 2, wherein the evaluation unit (30) determines the capacitance via an oscillator circuit with frequency evaluation, wherein the frequency evaluation advantageously is effected digitally or wherein the evaluation unit (30) determines the capacitance via an AC voltage measurement bridge or an AC voltage measurement amplifier with voltage evaluation, wherein advantageously a digital frequency evaluation is effected.
  4. The position measuring device according to any of the preceding claims, wherein the evaluation unit (30) determines the capacitance via a circuit with switched-capacitor technique, wherein advantageously a digital voltage evaluation is effected.
  5. The position measuring device according to any of the preceding claims, wherein the evaluation unit calculates the position of the piston rod (2) with reference to a stored characteristic map as a function of the measured capacitance.
  6. The position measuring device according to any of the preceding claims, wherein the evaluation unit comprises a temperature compensation.
  7. The position measuring device according to any of the preceding claims, wherein the evaluation unit (30) additionally measures the conductivity of the cylinder (20) and advantageously compensates the influence of the cylinder conductivity on the measurement results.
  8. The position measuring device according to any of the preceding claims, wherein the evaluation unit (30) includes a function for detecting sealing errors and/or a function for detecting the oil condition.
  9. The position measuring device according to any of the preceding claims, wherein the evaluation unit comprises a memory in which the intrinsic capacitance of the capacitor formed by cylinder jacket (1) and piston rod (2) is storable and/or stored for the two end positions of the piston rod (2).
  10. The position measuring device according to any of the preceding claims with an active potential equalization surface which has the same electric potential as the cylinder (20).
  11. The position measuring device according to any of the preceding claims with a fluidic cylinder (20) which includes electric terminals for connecting the evaluation unit (30) with the cylinder jacket (1) and the piston rod (2), wherein advantageously the electric terminal (9) for the piston rod (2) is arranged in the vicinity of the pivotal attachment of the piston rod (2) and is firmly connected with the same or the electric connection (9) for the piston rod is effected via a sliding contact (10).
  12. The position measuring device according to any of the preceding claims, wherein the evaluation unit (30) is firmly mounted on one side of the cylinder (20) and sends the measurement signals to a machine controller (40) by wireless transmission, wherein the evaluation unit (30) advantageously includes a built-in energy supply, in particular a battery and/or an integrated antenna.
  13. A fluidic cylinder (20) or evaluation unit (30) with a position measuring device according to any of the preceding claims.
  14. An apparatus, in particular a machine, vehicle, aircraft and/or implement, with a fluidic cylinder (20) and a position measuring device according to any of the preceding claims.
  15. The apparatus according to claim 14, wherein the fluidic cylinder (20) is moved and precisely positioned with reference to the data determined by the position measuring device by supplying the same with pressurized fluid.
EP09008292.6A 2008-07-31 2009-06-24 Position detection device for a fluid cylinder Active EP2149715B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202008010230U DE202008010230U1 (en) 2008-07-31 2008-07-31 Position measuring device for a fluidic cylinder

Publications (3)

Publication Number Publication Date
EP2149715A2 EP2149715A2 (en) 2010-02-03
EP2149715A3 EP2149715A3 (en) 2012-11-07
EP2149715B1 true EP2149715B1 (en) 2017-06-07

Family

ID=41314654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09008292.6A Active EP2149715B1 (en) 2008-07-31 2009-06-24 Position detection device for a fluid cylinder

Country Status (3)

Country Link
US (1) US8117908B2 (en)
EP (1) EP2149715B1 (en)
DE (1) DE202008010230U1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111480060A (en) * 2017-12-22 2020-07-31 恩德莱斯和豪瑟尔欧洲两合公司 Method for providing a calibrated pressure transducer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034749A1 (en) * 2010-08-19 2012-02-23 Schaeffler Technologies Gmbh & Co. Kg Device for monitoring a rotating machine part
DE102011008381A1 (en) * 2011-01-12 2012-07-12 Liebherr-Elektronik Gmbh Piston-cylinder unit with device for position determination
US9217405B2 (en) * 2011-06-22 2015-12-22 Ford Global Technologies, Llc System and method for lubricating a fuel pump
JP6083736B2 (en) * 2013-01-11 2017-02-22 株式会社やまびこ Boom sprayer and boom lifting device
DE102013001121A1 (en) * 2013-01-23 2014-07-24 Liebherr-Elektronik Gmbh Method for determining the piston position of a piston-cylinder unit and piston-cylinder unit
DE102013014753B4 (en) * 2013-09-06 2021-03-18 Lisa Dräxlmaier GmbH Device for processing several components of a pallet with secondary locking, and method
DE102013018342A1 (en) 2013-10-31 2015-04-30 Liebherr-Elektronik Gmbh Piston-cylinder unit with evaluation unit for determining the position of the piston
CN105547127B (en) * 2015-12-07 2018-04-27 天津大学 Displacement sensor for torso model data acquisition
CN105534523B (en) * 2015-12-07 2018-04-24 天津大学 Thoracic cavity outline data harvester for torso model electrical impedance tomography
JP1561824S (en) * 2016-03-25 2017-01-23
FR3064322B1 (en) * 2017-03-23 2022-08-12 Valeo Embrayages CONTROL DEVICE COMPRISING A CYLINDER
DE102018117775A1 (en) 2018-07-23 2020-01-23 Stabilus Gmbh Length measurement on piston-cylinder arrangements
WO2023033779A1 (en) * 2021-09-02 2023-03-09 Skvorchevsky Alexander Electro-hydraulic servo drive and a method of controlling the position of its rod with a piston

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928796A (en) * 1973-11-30 1975-12-23 Int Lead Zinc Res Capacitive displacement transducer
US3948359A (en) * 1975-04-14 1976-04-06 General Motors Corporation Vehicle hydraulic shock absorber and indicating system
DE3331170C1 (en) * 1983-06-15 1984-12-13 Boge Gmbh, 5208 Eitorf Device for determining the path of a piston of hydraulic, pneumatic or hydropneumatic units
ES8502782A1 (en) * 1983-09-24 1985-01-16 Boge Gmbh Arrangement for determining the travel of a piston
JPS60252833A (en) * 1984-05-28 1985-12-13 Nissan Motor Co Ltd Shock absorber
US4788489A (en) * 1985-07-12 1988-11-29 Nissan Motor Co., Ltd. Position sensor for use in variable height automotive suspension or the like
US5387004A (en) * 1988-04-16 1995-02-07 Volkswagen Ag Coupling rod for jointed attachment of a U-shape stabilizer arm
EP0358366A3 (en) * 1988-08-20 1991-06-19 Atsugi Motor Parts Co. Ltd. Electrostatic capacity-type displacement sensor
US4949573A (en) * 1989-11-13 1990-08-21 Lord Corporation Velocity transducer for vehicle suspension system
US5396973A (en) * 1991-11-15 1995-03-14 Lord Corporation Variable shock absorber with integrated controller, actuator and sensors
US5585733A (en) * 1992-09-10 1996-12-17 David Sarnoff Research Center Capacitive sensor and method of measuring changes in capacitance
US5510986A (en) * 1994-03-14 1996-04-23 Trw Inc. Method and apparatus for controlling an active suspension system
US5901633A (en) * 1996-11-27 1999-05-11 Case Corporation Method and apparatus for sensing piston position using a dipstick assembly
US6662099B2 (en) * 2001-05-22 2003-12-09 Massachusetts Institute Of Technology Wireless roadway monitoring system
DE20218623U1 (en) 2002-11-30 2003-02-13 FESTO AG & Co., 73734 Esslingen Position measuring device for fluid cylinders with a piston rod electrically connected to the cylinder housing
JP4228927B2 (en) * 2004-02-04 2009-02-25 株式会社デンソー Acceleration sensor module
US7548075B2 (en) * 2004-08-31 2009-06-16 Koninklijke Philips Electronics N.V. Proximity sensor for X-ray apparatus
WO2007011402A2 (en) * 2004-10-26 2007-01-25 Georgia Tech Research Corporation Displacement sensor
US7443174B2 (en) * 2006-04-06 2008-10-28 Freescale Semiconductor, Inc. Electric field reciprocal displacement sensors
DE202007001420U1 (en) * 2007-01-31 2007-04-12 Festo Ag & Co Position measuring device for a fluidic cylinder comprises a longitudinal channel in a cylinder housing for receiving a sensor support which lies on a housing end region and is supported on a pressure spring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111480060A (en) * 2017-12-22 2020-07-31 恩德莱斯和豪瑟尔欧洲两合公司 Method for providing a calibrated pressure transducer
CN111480060B (en) * 2017-12-22 2022-06-17 恩德莱斯和豪瑟尔欧洲两合公司 Method for providing a calibrated pressure transducer
US11662265B2 (en) 2017-12-22 2023-05-30 Endress+Hauser SE+Co. KG Method for providing calibrated pressure transducers

Also Published As

Publication number Publication date
EP2149715A2 (en) 2010-02-03
US8117908B2 (en) 2012-02-21
US20100089144A1 (en) 2010-04-15
EP2149715A3 (en) 2012-11-07
DE202008010230U1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
EP2149715B1 (en) Position detection device for a fluid cylinder
EP2476916B1 (en) Piston-cylinder unit with device for position tracking
DE3331170C1 (en) Device for determining the path of a piston of hydraulic, pneumatic or hydropneumatic units
DE102013106703A1 (en) Air spring with integrated level measuring device in the bellows
DE102015114205A1 (en) Path measuring method for a magnetic sensor and sensor
DE202009004673U1 (en) Piston-cylinder unit
EP2876308B1 (en) Cylinder-piston unit with evaluation unit for determining the position of the piston
WO2013098322A2 (en) Method for determining a position of a piston in a piston pressure accumulator by means of inductive sensors and suitably designed piston pressure accumulator
WO2020064504A1 (en) Rolling element having a sensor for use in a rolling-element bearing
DE19512374C2 (en) Inclination sensor
DE102012100335B4 (en) Pressure vessel with a piston movable therein and a device for determining the position of the piston in the pressure vessel
EP2759715B1 (en) Method for determining the piston position in a piston-cylinder unit and piston-cylinder unit
DE102019103905B4 (en) Mechanical component with a force measuring device and method for measuring a force
EP3461662A1 (en) Damping device
WO2013098311A2 (en) Method for determining a position of a piston in a piston pressure accumulator by resistance measurement and suitably designed piston pressure accumulator
DE102015218554A1 (en) Linearwegmessvorrichtung for a compression travel of a Teleskopfedereinheit and corresponding Teleskopfedereinheit
EP2203650B1 (en) Measuring device and steering cylinder therewith
DE10329045B4 (en) Means for determining at least one end position of a drive member, in particular a fluid-operated linear or rotary drive
WO2019105621A2 (en) Flexible product
EP3783230B1 (en) Piston-cylinder unit with radially installed piston position sensing unit
EP3563144B1 (en) Method of operating a capacitive rain sensor of a vehicle
DE20218623U1 (en) Position measuring device for fluid cylinders with a piston rod electrically connected to the cylinder housing
DE102016124485A1 (en) Operating device with a first and a second capacitive measuring unit, motor vehicle, and method for operating an operating device
EP3410090B1 (en) Operating device for operating at least one device of a motor vehicle, where a reset device is used to return the control element to a neutral position, motor vehicle and method
EP3985800A1 (en) Antenna arrangement for an electrical apparatus, method for manufacturing an antenna arrangement for an electrical apparatus, electrical apparatus, system comprising at least one electrical apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F15B 15/28 20060101AFI20120928BHEP

17P Request for examination filed

Effective date: 20130506

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 899458

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014031

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170607

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170908

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014031

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170624

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170624

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

26N No opposition filed

Effective date: 20180308

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230623

Year of fee payment: 15

Ref country code: DE

Payment date: 20230627

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230622

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230629

Year of fee payment: 15