EP2148059B1 - Cooling system, in particular for a motor vehicle - Google Patents
Cooling system, in particular for a motor vehicle Download PDFInfo
- Publication number
- EP2148059B1 EP2148059B1 EP20090009331 EP09009331A EP2148059B1 EP 2148059 B1 EP2148059 B1 EP 2148059B1 EP 20090009331 EP20090009331 EP 20090009331 EP 09009331 A EP09009331 A EP 09009331A EP 2148059 B1 EP2148059 B1 EP 2148059B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling medium
- pump
- cooling
- valve
- working medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/164—Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/60—Operating parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/06—Retarder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/167—Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
Definitions
- the present invention relates to a cooling system, in particular for use in a motor vehicle for cooling units and / or a drive motor, in particular of the motor vehicle by means of a cooling medium pump.
- Cooling systems such as vehicle cooling systems, are known. These include a cooling medium circuit for removing heat by means of a cooling medium, for example water or a water mixture, wherein the cooling medium is continuously circulated by means of a cooling medium pump in the cooling medium circuit.
- a cooling medium for example water or a water mixture
- the coolant pump is in constant drive connection with the drive motor of the vehicle and thus driven in dependence on the rotational speed of the drive motor
- cooling medium pumps driven by an electric motor have recently been proposed. This has the advantage that the cooling medium pump can be driven independently of the speed of the drive motor.
- Another known way to be able to control the speed of the cooling medium pump, but not completely independent of the speed of the drive motor provides to arrange a switchable magnetic coupling in the drive connection between the drive motor and the cooling medium pump. This makes it possible to rotate the cooling medium pump, if necessary, at a lower speed than the engine rotates. Such a need exists whenever, in an operating condition, a relatively small cooling capacity of the cooling system is required, the prime mover rotates at a comparatively high speed, and an energy saving can be achieved by reducing the rotational speed of the cooling medium pump.
- Disadvantages of the known embodiments with a magnetic coupling in the drive connection between the prime mover and the cooling medium pump are the limited switching frequency due to wear of the coupling and the susceptibility of the coupling.
- a particular problem is the heat development in the coupling.
- the present invention has for its object to provide a cooling system, in particular for a motor vehicle, which is improved in terms of the aforementioned problems.
- a cooling system with a switchable and advantageously controllable in their speed cooling medium pump is to be specified, which is less prone to occurring in continuous operation heat loads.
- the coolant pump should be of little effort and inexpensive to manufacture and bring a
- a cooling system for example of a motor vehicle, comprises a cooling medium circuit in which a cooling medium for cooling units and / or a drive motor of the motor vehicle is circulated by means of a cooling medium pump.
- the cooling medium pump has a pump impeller for conveying the cooling medium.
- a hydrodynamic coupling is provided, comprising a primary wheel and a secondary wheel, which together form a toroidal, over a Hämediumzu- and working medium drainable and emptied working space to transfer torque hydrodynamically from the primary to the secondary wheel, the pump impeller rotatably coupled to the secondary is.
- the cooling medium pump is a rotary pump and comprises an inlet channel for supplying and an outlet channel for discharging cooling medium.
- the degree of filling and thus the power transmission of the hydrodynamic coupling are essentially dependent on the rotational speed of the pump impeller, adjusted the delivery volume flow or discharge pressure of the cooling medium pump.
- a corresponding dependency can also be achieved if the working medium inlet and / or outlet is / are connected to the outlet of the cooling medium pump.
- the cooling medium pump replaced in this case a filling control device for adjusting a degree of filling in the hydrodynamic coupling.
- the flow-conducting connection in each case represent a line or be formed in the form of axial and / or radial bores, which are introduced into the primary, secondary, pump impeller and / or in a pump housing.
- a flow-conducting connection can also be formed by said components, for example by limiting a cavity such as, for example, an annular gap.
- a multiplicity of flow-conducting connections can be provided.
- the valve for variable adjustment of a working medium volume flow can be arranged.
- the valve can also be designed as a variable throttle.
- the valve may be an uncontrolled valve, that is to say be free of a control connection with a control or regulating device which generates control signals for actuating the valve.
- the switching of the valve then takes place, for example, by tapping off a temperature, a pressure, a flow or any other variable or a corresponding size difference, preferably a drive train cooled by the cooling system or its surroundings.
- the valve may be designed such that it can be actuated directly from the working medium.
- the opening cross section of the valve is varied as a function of the temperature and / or the pressure of the working medium at the valve or, in particular, the pressure in the working space and / or a relative overlay pressure.
- the detection of the temperature and / or the pressure takes place substantially at the same point as the change in the flow cross-section or the admission of the valve with the working medium.
- the valve can be designed, for example, as a temperature regulating valve (thermostat, bimetal) or pressure switching valve, which varies the flow cross section for the cooling medium and thus the degree of filling and the power transmission of the hydrodynamic coupling directly or indirectly depending on temperature or pressure.
- Pressure switching valves open, for example, above a predetermined pressure and vary the flow cross section also proportional to the applied pressure.
- valve may be externally actuated - for example by a control device.
- mentioned or other variables can serve as input variables of the control device, as a function of which the control device actuates the valve,
- the adjustment of the power or the torque of the cooling medium pump by means of the hydrodynamic coupling can be done in addition to the variation of the opening cross-section of the arranged in the flow-conducting connections valves and thus on the degree of filling of the working space on the influence of the formable in the working space of the hydrodynamic coupling Krelslaufströmung.
- the circulation flow can be disturbed or released by introducing a throttle element more or less, so that at maximum disruption of the circulation flow results in a minimum transmissible by the hydrodynamic coupling torque, and when removing the Drosselalementes a maximum torque is transferable.
- the transmission of the power is also variable between the two limits.
- the coupling can be designed as a constant-filled hydrodynamic coupling, that is, the degree of filling of working fluid in the working space is not selectively varied. This does not exclude that the work space may optionally be filled and emptied to turn on and off the power transmission.
- a control of the power transmission of the hydrodynamic coupling with a throttle element can be done in accordance with the dependencies and input variables described above.
- the opening cross section of the valves can be varied, for example, as a function of the charge pressure of at least one compressor stage of a turbocharger arranged in the drive train of the motor vehicle. It is also conceivable to detect the pressure in a fresh air line to the drive motor and in particular the position of a throttle valve arranged in the fresh air line and thus to control the valves accordingly.
- the current exhaust gas pressure generated by the drive engine can also be used to control or regulate the valves.
- the exhaust flap can be arranged in an exhaust system of the motor vehicle downstream of the drive motor and, in particular, the back pressure upstream of the exhaust flap can be detected.
- the valves can be actuated in dependence on the braking torque of an engine brake or as a function of the braking power, which is converted into compression work in the engine brake.
- the vehicle may, for example via a decompression brake, which leaves the work done by the engine in the compression stroke unused, or an engine dust, wherein the braking power is implemented in Verdichtungsarbelt without subsequent fuel injection and combustion have.
- the engine brake can also be designed as a combination of engine dust brake and decompression brake (EVB).
- the setting of the transferable from the hydrodynamic coupling power can be realized that the valves are actuated in dependence on the ambient temperature of the motor vehicle and in particular its drive train.
- ambient temperature for example, the air temperature of the environment of the motor vehicle or the temperature of the individual units such as gear or retarder meant.
- the actuation of the valves in dependence on the position of a thermostatic valve, which is arranged in the cooling medium circuit, take place.
- valves can from suitable sensors or a control device and depending on the detected variables, such as temperature, pressure or position sensors for the position of the throttle and exhaust through signal lines, which with the Valves and the sensors are at least indirectly connected, are operated.
- a control device may be provided which detects the current values of the sensors and converts these into control signals for the valves for adjusting the power transmission of the hydrodynamic coupling.
- the control device may also be in connection with vehicle assistance systems, engine or vehicle taxation, such that one or more of these signals are dependent on the signals Control units and / or assistance systems the valves are actuated.
- the setting of the power transmission of the hydrodynamic coupling can also take place as a function of the rotational speed of the drive motor or the speed or acceleration of the motor vehicle.
- valves which are free of a foreign operation
- the valves continue to function, for example, in the event of failure of the control device and thus allow optimal adjustment of the power transmission of the hydrodynamic coupling and thus optimal heat dissipation of the amount of heat in the cooling medium circuit.
- externally actuated and uncontrolled valves can be combined for this, so that when the externally actuated valves fail, the uncontrolled valves enable reliable further operation.
- FIG. 1 shows schematically simplified the basic components of a cooling system for a motor vehicle. Furthermore, ademediumkrelsmoor 1 is shown, wherein are arranged in the flow direction: a cooling medium pump 3, a drive motor 2, a thermostatic valve 24 and a heat exchanger 27.
- the heat exchanger 27 can be flowed through for heat removal from an air flow, which is generated by a fan, not shown .
- a surge tank 26 is provided, in which the cooling medium of the cooling circuit 1 can expand.
- a bypass line is provided, which depending on the position of the thermostatic valve 24 more or less working fluid on the heat exchanger 27th passes.
- an additional heat exchanger 31 is provided in the cooling medium circuit 1.
- the heat exchanger 31 may be part of a radiator, such as an intercooler or an exhaust gas recirculation cooler.
- the drive motor 2 is designed as an internal combustion engine and comprises at least one exhaust gas turbocharger, the intercooler in the Fr Kunststoffufttechnisch downstream or upstream of at least one compressor stage may be arranged in the case of exhaust gas recirculation, the cooler is in particular in a line between the exhaust gas leaving the engine and arranged the fresh air line.
- a hydrodynamic coupling 5 can be seen, which in the present case is arranged between the cooling medium pump 3 and a gear 25 adjoining the drive motor 2.
- the primary wheel 6 is rotatably coupled via a drive shaft 14 to the transmission 25, wherein drive power hydrodynamically from the primary wheel 6 to a secondary 7 by means of an output shaft 13 finally on the cooling medium pump 3 is transferable.
- the speed / torque of the drive shaft 14 and / or the output shaft 13 could be additionally translated by means of at least one gear stage.
- the hydrodynamic coupling 5 and in particular its working space for setting a filling level via a Hämediumzuiauf 8 (dashed lines) with the cooling medium circuit 1 is fluidly connected.
- the working medium of the hydrodynamic coupling 5 is at the same time the cooling medium and in the present case is branched off from the cooling medium circuit 1 downstream of the cooling medium pump 3.
- another position for the branch for example upstream or in the region of the cooling medium pump 3, would also be conceivable.
- a valve 32 can be provided by means of which the degree of filling and thus the power transmission of the hydrodynamic coupling 5 can be adjusted.
- the valve 32 may for example be designed as an adjustable throttle,
- a working medium outlet 9 of the hydrodynamic coupling 5 is connected to the cooling medium circuit 1 via a flow-conducting connection.
- this connection opens (dashed lines) in the flow direction of the cooling medium in the area in front of the heat exchanger 31.
- the aforementioned flow-conducting connection may have a controllable valve 33, which may be embodied for example as an adjustable throttle. This arrangement makes it possible that in an operating state, in which a relatively small cooling capacity of the cooling system is required, but heat must be dissipated via a relatively small heat exchanger 31 quickly, the pumping action of the hydrodynamic machine 5 is utilized.
- the pumping action of the hydrodynamic machine 5 is greater, the greater the slip, so the speed difference between the primary wheel 6 and secondary 7 is.
- the cooling medium pump at a comparatively low speed and the drive motor with a relatively high speed rotates (large slip) by heat input into the heat exchanger 31, the cooling demand increases, not necessarily the speed of the cooling medium pump must be increased but it suffices here the pumping action of the hydrodynamic coupling 5 to meet this demand.
- the pumping action of the hydrodynamic coupling 5, in particular in the case of high slip, can additionally or alternatively also be used to increase the pressure in the heat exchanger 31 on the cooling medium element.
- a greater pressure reduces the risk of vapor bubble formation and / or cavitation in the cooling medium in the heat exchanger 31.
- the risk of vapor bubble formation and cavitation is particularly great when the cooling medium circuit is still cold, because then there is a low pressure or overpressure in the cooling medium circuit.
- a check valve 34 can be arranged on the side of the cooling medium circuit 1 upstream of the heat exchanger 31.
- a throttle 35 downstream of the heat exchanger 31, a throttle 35, which may also be designed adjustable, may be arranged downstream of the heat exchanger 31.
- the throttle 35 can also be used to increase the pressure in the heat exchanger 31 by throttling the cooling medium flow. This in turn reduces the risk of vapor bubble formation and cavitation.
- the throttle 35 can be used to determine how much cooling medium flows through the heat exchanger 31 and how much flows past the bypass shown by this.
- FIG. 2 shows a cooling system according to the invention, wherein the same elements with the same reference numerals as in FIG. 1 represented, are designated.
- the hydrodynamic coupling 5 is connected to the cooling medium circuit 1, thus the working medium of the hydrodynamic coupling 5 is at the same time the cooling medium.
- the hydrodynamic coupling 5 is arranged parallel to the cooling medium pump 3 in the present case.
- a valve 19 is arranged, which is embodied here as externally operated valve.
- the valve 19 is connected via a signal line (dashed line) to a control unit 20 In connection.
- the valve 19 may be designed as a proportional valve, wherein the flow cross-section between a minimum and a maximum value is substantially continuously adjustable.
- valve 19 may be designed as a pure on-off valve, wherein in addition to the valve, a throttle may be provided, which is in this case connected in parallel to the valve 19. If the valve 19 is brought into the setting, then the working / cooling medium flows through the throttle and / or the valve. In an off position, the valve leaves no working fluid, so that working fluid only flows through the throttle.
- a throttle may be provided, which is in this case connected in parallel to the valve 19.
- FIG. 3 describes a preferred embodiment of a hydrodynamic coupling 5 according to the invention, wherein the hydrodynamic coupling 5 and the cooling medium-pressure pump 3 are combined to form an assembly.
- the secondary wheel 7 is designed in such a way that it forms a pump impeller 4.
- the secondary wheel 7 may have a corresponding blading on its side facing away from the primary wheel 6.
- the pump impeller 4 and the secondary wheel 7 are rotatably mounted on the drive shaft 14.
- the pump impeller 4 and the secondary impeller 7 could be carried by a common output shaft or be formed by this
- the cooling medium pump 3 and in particular the pump impeller 4 are thus present in the axial direction in addition to the hydrodynamic coupling 5 and in particular on the secondary side in a common housing 15, which surrounds the impeller 4, the primary wheel 6 and the secondary 7 is arranged. Furthermore, the cooling medium pump 3 comprises an inlet channel 11, which runs substantially or exactly in the axial direction of the hydrodynamic coupling 5 and an outlet channel 12, which is arranged in the radial direction of the hydrodynamic coupling 5.
- Cooling medium which is sucked into the inlet channel 11 of the cooling medium pump 3, is introduced into the working space 10 via a working medium inlet 8.
- the working medium leaves the working space 10 in the present case via a working medium outlet 9, which is arranged, for example, at the radially outer end of the two primary / secondary wheels 6, 7.
- the discharged via the working medium flow Arbeltsmedium is supplied to the cooling medium circuit via a flow-conducting connection, not shown.
- a non-contact seal 18 is provided on the outer diameter of the secondary wheel 7, which in particular the Arbelts- and cooling medium between Working fluid outlet 9 and outlet channel 12 hydraulically separates and seals against each other.
- FIG. 4 a further embodiment of an assembly of cooling medium pump 3 and hydrodynamic coupling 5 is shown.
- the working fluid outlet 9 is connected to an outlet channel 12 in the housing 15 via a flow-connecting connection.
- a valve 19 is provided, which in the present case is arranged radially outside of the working space 10.
- the primary wheel 6 is not made in one piece with the drive shaft 14, but is merely supported by the latter.
- the secondary wheel 7 is supported in the present case via a sliding bearing 29 on the drive shaft 14 from.
- the pump impeller 4 rotates in a pump chamber 17, which is in hydraulic communication with the inlet channel 11 and the outlet channel 12.
- the pump chamber 17 is hydraulically connected to the working space 10 via a flow-conducting connection 23 in the form of an oblique bore.
- the oblique bore means that the center line of the bore extends in an axial section through the longitudinal axis of the hydrodynamic coupling 5 at an angle to the longitudinal axis of the hydrodynamic coupling 5.
- a plurality of holes 23 is provided.
- cooling medium passes from the pump chamber 17 through the bore 23 into the working space 10, so that the degree of filling or the power transmission is set in particular as a function of the rotational speed of the pump impeller 4 or of the delivery pressure.
- the arranged in the flow-conducting connection valve 32 is designed as a bimetallic strip, for example, as shown here, on the primary wheel 6 facing end surface of the secondary wheel 7 rests and the function of the temperature of the working medium by bending, in particular in the direction of the primary wheel. 6 opens.
- soft for example, also as a thermostat or pressure switch valve can be executed.
- the two valves 19, 32 are also conceivable in the form of a combination of a temperature and Druckregelventlls,
- the primary wheel 6, secondary 7 and pump impeller 4 are enclosed by a common housing 15.
- the latter is presently supported by a bearing 16 on the drive shaft 14.
- a seal 28 is provided in the form of a mechanical seal. This can, as well as the sliding bearing 29 are lubricated by means of the supplied cooling medium.
- FIGS. 5 to 9 show the connection of the hydrodynamic coupling 5 to the cooling medium circuit 1. Essentially, the same elements as in FIG. 2 are shown, so that the same reference numerals are used.
- FIG. 5 is the flow-conducting connection 21 on the pressure side of the cooling medium pump 3 and thus arranged in the flow direction of the cooling medium behind the cooling medium pump 3, so that working fluid higher pressure branched off from the cooling medium circuit 1 and the hydrodynamic coupling 5 and in particular the working space 10 is supplied.
- cooling medium thus flows as a function of the opening cross-section of the valves 19 in the flow-conducting connection 22 into the interior of the hydrodynamic coupling 5 and from there via the flow-conducting connection 21 through the valve 19 in the outlet channel 12 or directly into the cooling medium circuit 1 back.
- FIG. 7 shows the same arrangement as in FIG. 6 But with reverse flow direction
- the working medium inlet and working fluid outlet of the hydrodynamic coupling 5 are arranged on the suction side of the cooling medium pump 3, so that the cooling medium present from the inlet channel 11 via the valve 19 - bel at least partially open flow cross section of the valves 19 - in the flow-conducting connection 22 in the hydrodynamic coupling 5 and from there back via the flow-conducting connection 21 and the valve 19, in particular in the outlet channel or in the cooling medium pump 3 flows.
- a reversal of the flow direction would be conceivable, so that cooling medium first flows into the flow-conducting connection 21 and then flows back into the cooling medium circuit 1 via the flow-conducting connection 22.
- FIG. 9 shows a further embodiment of a cooling system according to the invention, but is in contrast to FIG. 8 the convincedumzu- and Arbeltsmediumablauf the hydrodynamic coupling 5 are each connected to the pressure side of the cooling medium pump 3.
- cooling medium flows from the cooling medium pump 3 or from the outlet channel 12 via the flow-conducting connection 22 into the hydrodynamic coupling 5 and from there back again via the flow-conducting connection 21 and the valve 19 - depending on the position of the valve 19 - back to the outlet channel 12 or in the flow direction behind the outlet channel 12 into the cooling medium circuit 1.
- FIG. 10 shows the arrangement of the hydrodynamic coupling 5 in drive connection between the drive motor 2 and the cooling medium pump 3.
- a further clutch 30 is arranged parallel to the hydrodynamic coupling 5.
- the additional clutch 30 may be, for example, a magnetic current clutch or an eddy current clutch or, for example, a friction clutch, in particular in order to mechanically bridge the hydrodynamic clutch.
- a retarder may additionally be provided in the cooling medium circuit 1, which is in drive connection with a drive motor of the motor vehicle, wherein the braking heat generated in the retarder during braking operation is supplied to the cooling system of the motor vehicle.
- the retarder can be shot against the cooling medium circuit, wherein the retarder is formed in this case as Wasserretarder, so that the cooling medium is also the working medium of the retarder.
- a Retarder tenuously, a Retarder horreinrlchtung be provided, which regulates the power transmission of the retarder.
- the retarder is actuated by the retarder control device in particular when requesting a braking request by the driver, are actuated by means of a pneumatic control pressure valves for switching the retarder and in particular for varied setting a predetermined degree of filling of the Retarderarbeitsraumes or a working fluid reservoir is pressurized accordingly and thus the Retarderarbeitsraum least partially filled with cooling medium or other Arbeltsmedium.
- the pneumatic control pressure can be used simultaneously for actuating the valves 19 and 32, 33 in the inlet and / or outlet for working medium to / from the hydrodynamic coupling 5 and thus for changing the degree of filling of the hydrodynamic coupling 5.
- valves 19, 32, 33 may be designed as externally controlled pneumatic valves, which can be actuated by the pneumatic control pressure of the retarder control device.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Motor Or Generator Cooling System (AREA)
- General Details Of Gearings (AREA)
Description
Die vorliegende Erfindung betrifft ein Kühlsystem, insbesondere zum Einsatz In einem Kraftfahrzeug zum Kühlen von Aggregaten und/oder eines Antriebsmotors, insbesondere des Kraftfahrzeugs mittels einer Kühlmedlumpumpe.The present invention relates to a cooling system, in particular for use in a motor vehicle for cooling units and / or a drive motor, in particular of the motor vehicle by means of a cooling medium pump.
Kühlsysteme, beispielsweise Fahrzeugkühlsysteme, sind bekannt. Diese umfassen einen Kühlmediumkreislauf zum Abführen von Wärme mittels eines Kühlmediums, beispielsweise Wasser oder ein Wassergemisch, wobei das Kühlmedium mittels einer Kühlmediumpumpe im Kühlmediumkreislauf ständig umgewälzt wird.Cooling systems, such as vehicle cooling systems, are known. These include a cooling medium circuit for removing heat by means of a cooling medium, for example water or a water mixture, wherein the cooling medium is continuously circulated by means of a cooling medium pump in the cooling medium circuit.
Während herkömmlich die Kühlmittelpumpe in einer ständigen Triebverbindung mit dem Antriebsmotor des Fahrzeugs steht und somit in Abhängigkeit der Drehzahl des Antriebsmotors angetrieben wird, wurden in jüngerer Zeit auch mittels eines Elektromotors angetriebene Kühlmediumpumpen vorgeschlagen. Dies hat den Vorteil, dass die Kühlmediumpumpe unabhängig von der Drehzahl des Antriebsmotors angetrieben werden kann.While conventionally, the coolant pump is in constant drive connection with the drive motor of the vehicle and thus driven in dependence on the rotational speed of the drive motor, cooling medium pumps driven by an electric motor have recently been proposed. This has the advantage that the cooling medium pump can be driven independently of the speed of the drive motor.
Eine weitere bekannte Möglichkeit, die Drehzahl der Kühlmediumpumpe regeln zu können, jedoch nicht vollständig unabhängig von der Drehzahl des Antriebsmotors, sieht vor, in der Triebverbindung zwischen dem Antriebsmotor und der Kühlmediumpumpe eine schaltbare Magnetkupplung anzuordnen. Hierdurch ist es möglich, die Kühlmediumpumpe bei Bedarf mit einer niedrigeren Drehzahl umlaufen zu lassen als die Antriebsmaschine umläuft. Ein solcher Bedarf besteht immer dann, wenn in einem Betriebszustand eine verhältnismäßig kleine Kühlleistung des Kühlsystems erforderlich ist, die Antriebsmaschine mit einer vergleichsweise hohen Drehzahl umläuft und durch Vermindern der Drehzahl der Kühlmedlumpumpe eine Energieeinsparung erzielt werden kann.Another known way to be able to control the speed of the cooling medium pump, but not completely independent of the speed of the drive motor, provides to arrange a switchable magnetic coupling in the drive connection between the drive motor and the cooling medium pump. This makes it possible to rotate the cooling medium pump, if necessary, at a lower speed than the engine rotates. Such a need exists whenever, in an operating condition, a relatively small cooling capacity of the cooling system is required, the prime mover rotates at a comparatively high speed, and an energy saving can be achieved by reducing the rotational speed of the cooling medium pump.
Nachteile der bekannten Ausführungsformen mit einer Magnetkupplung in der Triebverbindung zwischen der Antriebsmaschine und der Kühlmediumpumpe sind die begrenzte Schalthäufigkeit aufgrund eines Verschleißes der Kupplung sowie die Störanfälligkeit der Kupplung. Ein besonderes Problem stellt die Wärmeentwicklung in der Kupplung dar.Disadvantages of the known embodiments with a magnetic coupling in the drive connection between the prime mover and the cooling medium pump are the limited switching frequency due to wear of the coupling and the susceptibility of the coupling. A particular problem is the heat development in the coupling.
Zum druckschrittlichen Stand der Technik wird auf
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Kühlsystem, insbesondere für ein Kraftfahrzeug anzugeben, welches hinsichtlich der genannten Probleme verbessert ist. Hierbei soll ein Kühlsystem mit einer schaltbaren und vorteilhaft in ihrer Drehzahl regelbaren Kühlmediumpumpe angegeben werden, welche weniger anfällig ist für im Dauerbetrieb auftretende Wärmebelastungen. Weiterhin soll die Kühlmittelpumpe von geringem Aufwand und kostengünstig in der Herstellung sein sowie eine Gewichterspamis mit sich bringen.The present invention has for its object to provide a cooling system, in particular for a motor vehicle, which is improved in terms of the aforementioned problems. Here, a cooling system with a switchable and advantageously controllable in their speed cooling medium pump is to be specified, which is less prone to occurring in continuous operation heat loads. Furthermore, the coolant pump should be of little effort and inexpensive to manufacture and bring a Gewichtserspamis with it.
Die erfindungsgemäße Aufgabe wird durch ein Kühlsystem, insbesondere eines Kraftfahrzeuges nach dem unabhängigen Anspruch gelöst. Die abhängigen Ansprüche stellen bevorzugte Ausführungsformen der Erfindung dar.The object of the invention is achieved by a cooling system, in particular a motor vehicle according to the independent claim. The dependent claims represent preferred embodiments of the invention.
Ein erfindungsgemäßes Kühlsystem beispielsweise eines Kraftfahrzeugs umfasst einen Kühlmediumkreislauf, in dem ein Kühlmedium zum Kühlen von Aggregaten und/oder eines Antriebsmotors des Kraftfahrzeugs mittels einer Kühlmediumpumpe umgewälzt wird. Die Kühlmediumpumpe weist ein Pumpenlaufrad zum Fördern des Kühlmediums auf. Weiterhin ist eine hydrodynamische Kupplung vorgesehen, umfassend ein Primärrad und ein Sekundärrad, die miteinander einen torusförmigen, über einen Arbeitsmediumzu- und Arbeitsmediumablauf befüllbaren und entleerbaren Arbeitsraum ausbilden, um Drehmoment hydrodynamisch vom Primärrad auf das Sekundärrad zu übertragen, wobei das Pumpenlaufrad mit dem Sekundärrad drehfest gekoppelt ist.A cooling system according to the invention, for example of a motor vehicle, comprises a cooling medium circuit in which a cooling medium for cooling units and / or a drive motor of the motor vehicle is circulated by means of a cooling medium pump. The cooling medium pump has a pump impeller for conveying the cooling medium. Furthermore, a hydrodynamic coupling is provided, comprising a primary wheel and a secondary wheel, which together form a toroidal, over a Arbeitsmediumzu- and working medium drainable and emptied working space to transfer torque hydrodynamically from the primary to the secondary wheel, the pump impeller rotatably coupled to the secondary is.
Vorzugsweise ist die Kühlmediumpumpe eine Rotationspumpe und umfasst einen Einlasskanal zum Zuführen und einen Auslasskanal zum Abführen von Kühlmedium.Preferably, the cooling medium pump is a rotary pump and comprises an inlet channel for supplying and an outlet channel for discharging cooling medium.
Besonders bevorzugt ist das Kühlmedium des Kühlmediumkreislaufs zugleich das Arbeitsmedium der hydrodynamischen Kupplung. Dies bedeutet, dass die hydrodynamische Kupplung arbeitsmediumleitend mit dem Kühlmediumkrelslauf verbunden ist. Dabei kann die hydrodynamische Kupplung wie folgt mit dem Einlasskanal (Saugseite) und dem Auslasskanal (Druckseite) der Kühlmediumpumpe in Verbindung stehen:
- Der Arbeitsmadiumzulauf der hydrodynamischen Kupplung ist über eine strömungsleitende Verbindung mit dem Auslasskanal der Kühlmediumpumpe und der Arbeitsmediumablauf über eine strömungsleitende Verbindung mit dem Einlasskanal der Kühlmediumpumpe verbunden.
- Der Arbeitsmediumzulauf der hydrodynamischen Kupplung ist über eine strömungsleitende Verbindung mit dem Einlasskanal der Kühlmediumpumpe und der Arbeitsmediumablauf über eine strömungsleitende Verbindung mit dem Auslasskanal der Kühlmediumpumpe verbunden.
- Der Arbeitsmedlumzulauf und der Arbeitsmediumablauf der hydrodynamischen Kupplung sind mit dem Einlasskanal der Kühlmediumpumpe über eine strömungsleitende Verbindung verbunden.
- Der Arbeitsmediumzulauf und der Arbeitsmedlumablauf der hydrodynamischen Kupplung sind mit dem Auslasskanal der Kühlmediumpumpe über eine strömungsleitende Verbindung verbunden.
- Der Arbeitsmediumzu- und/oder der Arbeitsmediumablauf sind/ist über eine strömungsleitende Verbindung mit einem Pumpenraum, in dem ein Pumpenlaufrad angeordnet ist, verbunden.
- The Arbeitsmadiumzulauf the hydrodynamic coupling is connected via a flow-conducting connection with the outlet channel of the cooling medium pump and the working medium drain via a flow-conducting connection with the inlet channel of the cooling medium pump.
- The working medium inlet of the hydrodynamic coupling is connected via a flow-conducting connection with the inlet channel of the cooling medium pump and the working medium outlet via a flow-conducting connection with the outlet channel of the cooling medium pump.
- The Arbeitsmedlumzulauf and the working medium flow of the hydrodynamic coupling are connected to the inlet channel of the cooling medium pump via a flow-conducting connection.
- The working medium inlet and the Arbeitsmedlumablauf the hydrodynamic coupling are connected to the outlet channel of the cooling medium pump via a flow-conducting connection.
- The Arbeitsmediumzu- and / or the working medium drain are / is connected via a flow-conducting connection with a pump chamber in which a pump impeller is arranged.
im letztgenannten Fall wird mittels der strömungsleitenden Verbindung der Füllungsgrad und somit die Leistungsübertragung der hydrodynamischen Kupplung Im Wesentlichen in Abhängigkeit der Drehzahl des Pumpenlaufrades, des Fördervolumenstroms oder Förderdruckes der Kühlmediumpumpe eingestellt. Eine entsprechende Abhängigkeit kann auch dann erreicht werden, wenn der Arbeitsmediumzu- und/oder ablauf mit dem Auslass der Kühlmediumpumpe verbunden ist/sind. Vorteilhaft ersetzt die Kühlmediumpumpe in diesem Fall eine Füllsteuerungsvorrichtung zur Einstellung eines Füllungsgrades in der hydrodynamischen Kupplung.in the last-mentioned case, by means of the flow-conducting connection, the degree of filling and thus the power transmission of the hydrodynamic coupling are essentially dependent on the rotational speed of the pump impeller, adjusted the delivery volume flow or discharge pressure of the cooling medium pump. A corresponding dependency can also be achieved if the working medium inlet and / or outlet is / are connected to the outlet of the cooling medium pump. Advantageously, the cooling medium pump replaced in this case a filling control device for adjusting a degree of filling in the hydrodynamic coupling.
Alternativ ist es möglich, In der strömungsleitenden Verbindung ein gesteuertes oder geregeltes Ventil vorzusehen, mittels welchem der Füllungsgrad des Arbeitsraumes der hydrodynamischen Kupplung eingestellt wird. Der durch die Kühlmedlumpumpe erzeugte Druck dient in diesem Fall einer schnelleren und/oder vergleichsweise größeren Befüllung des Arbeitsraumes.Alternatively, it is possible to provide a controlled or regulated valve in the flow-conducting connection, by means of which the degree of filling of the working space of the hydrodynamic coupling is set. The pressure generated by the cooling medium pump in this case serves a faster and / or comparatively larger filling of the working space.
Dabei kann die strömungsleitende Verbindung jeweils eine Leitung darstellen oder in Form von Axial- und/oder Radialbohrungen ausgebildet sein, welche In das Primärrad, Sekundärrad, Pumpenlaufrad und/oder in ein Pumpengehäuse eingebracht sind. Auch kann eine solche strömungsleitende Verbindung von den genannten Bauteilen ausgebildet werden, beispielsweise durch Begrenzen eines Hohlraumes wie zum Beispiel eines Ringspaltes, Weiterhin kann eine Vielzahl von strömungsleitenden Verbindungen vorgesehen sein.In this case, the flow-conducting connection in each case represent a line or be formed in the form of axial and / or radial bores, which are introduced into the primary, secondary, pump impeller and / or in a pump housing. Such a flow-conducting connection can also be formed by said components, for example by limiting a cavity such as, for example, an annular gap. Furthermore, a multiplicity of flow-conducting connections can be provided.
Vorzugsweise kann in den strömungsleitenden Verbindungen, dem Arbeitsmedlumzu- und/oder dem Arbeitsmediumablauf ein Ventil zur variablen Einstellung eines Arbeitsmediumvolumenstromes angeordnet sein. Beispielsweise kann das Ventil auch als veränderbare Drossel ausgeführt sein. Bevorzugt kann das Ventil ein ungesteuertes Ventil sein, das heißt frei von einer Steuerverbindung mit einer Steuer- oder Regelvorrichtung sein, welche zum Betätigen des Ventils Steuersignale erzeugt. Das Schalten des Ventils erfolgt dann beispielsweise durch Abgriff einer Temperatur, eines Druckes, eines Durchflusses oder einer sonstigen Größe oder einer entsprechenden Größendifferenz vorzugsweise eines durch das Kühlsystem gekühlten Antriebsstrangs oder seiner Umgebung. Auch kann das Ventil derart ausgebildet sein, dass es direkt vom Arbeitsmedium betätigbar ist.Preferably, in the flow-conducting connections, the Arbeitsmedlumzu- and / or the working medium drain a valve for variable adjustment of a working medium volume flow can be arranged. For example, the valve can also be designed as a variable throttle. Preferably, the valve may be an uncontrolled valve, that is to say be free of a control connection with a control or regulating device which generates control signals for actuating the valve. The switching of the valve then takes place, for example, by tapping off a temperature, a pressure, a flow or any other variable or a corresponding size difference, preferably a drive train cooled by the cooling system or its surroundings. Also, the valve may be designed such that it can be actuated directly from the working medium.
Beispielsweise wird der Öffnungsquerschnitt des Ventils in Abhängigkeit der Temperatur und/oder des Druckes des Arbeitsmediums am Ventil oder, insbesondere des Druckes im Arbeitsraum und/oder eines dazu relativen Überlagerungsdruckes variiert. Vorzugsweise erfolgt die Erfassung der Temperatur und/oder des Druckes im Wesentlichen an derselben Stelle wie die Änderung des Strömungsquerschnitts oder die Beaufschlagung des Ventils mit Arbeitsmedium. Bei einem temperaturabhängigen Schalten kann das Ventil beispielsweise als Temperaturregelventil (Thermostat, Bimetall) oder Druckzuschaltventil ausgebildet sein, welches den Strömungsquerschnitt für Kühlmedium und somit den Füllungsgrad und die Leistungsübertragung der hydrodynamischen Kupplung direkt oder indirekt temperatur- oder druckabhängig varilert. Druckzuschaltventile öffnen beispielsweise oberhalb eines vorbestimmten Druckes und variieren den Strömungsquerschnitt auch proportional zum anliegenden Druck.For example, the opening cross section of the valve is varied as a function of the temperature and / or the pressure of the working medium at the valve or, in particular, the pressure in the working space and / or a relative overlay pressure. Preferably, the detection of the temperature and / or the pressure takes place substantially at the same point as the change in the flow cross-section or the admission of the valve with the working medium. In the case of a temperature-dependent switching, the valve can be designed, for example, as a temperature regulating valve (thermostat, bimetal) or pressure switching valve, which varies the flow cross section for the cooling medium and thus the degree of filling and the power transmission of the hydrodynamic coupling directly or indirectly depending on temperature or pressure. Pressure switching valves open, for example, above a predetermined pressure and vary the flow cross section also proportional to the applied pressure.
Alternativ kann das Ventil fremdbetätigt sein - beispielsweise durch eine Steuervorrichtung. Auch hierbei können die genannten oder anderen Größen als Eingangsgrößen der Steuervorrichtung dienen, in Abhängigkeit von welchen die Steuervorrichtung das Ventil betätigt,Alternatively, the valve may be externally actuated - for example by a control device. Here, too, the mentioned or other variables can serve as input variables of the control device, as a function of which the control device actuates the valve,
Die Einstellung der Leistung beziehungsweise des Drehmomentes der Kühlmediumpumpe mittels der hydrodynamischen Kupplung kann neben der Variierung des Öffnungsquerschnittes der in den strömungsleitenden Verbindungen angeordneten Ventile und somit über den Füllungsgrad des Arbeitsraumes auch über die Beeinflussung der sich im Arbeitsraum der hydrodynamischen Kupplung ausbildbaren Krelslaufströmung erfolgen. Beispielsweise kann die Kreislaufströmung durch Einbringen eines Drosselelementes mehr oder minder gestört oder freigegeben werden, so dass sich bei maximaler Störung der Kreislaufströmung ein minimales von der hydrodynamischen Kupplung übertragbares Drehmoment ergibt, und bei Entfernen des Drosselalementes ein maximales Drehmoment übertragbar ist.The adjustment of the power or the torque of the cooling medium pump by means of the hydrodynamic coupling can be done in addition to the variation of the opening cross-section of the arranged in the flow-conducting connections valves and thus on the degree of filling of the working space on the influence of the formable in the working space of the hydrodynamic coupling Krelslaufströmung. For example, the circulation flow can be disturbed or released by introducing a throttle element more or less, so that at maximum disruption of the circulation flow results in a minimum transmissible by the hydrodynamic coupling torque, and when removing the Drosselalementes a maximum torque is transferable.
Wenn Zwischenstellungen des Drosselelements einstellbar sind, ist die Übertragung der Leistung auch zwischen den beiden Grenzwerten variierbar.If intermediate positions of the throttle element are adjustable, the transmission of the power is also variable between the two limits.
Bei Vorsehen eines solchen Drosselelements in der hydrodynamischen Kupplung kann die Kupplung als konstantgefüllte hydrodynamische Kupplung ausgeführt sein, das heißt der Füllungsgrad von Arbeitsmedium im Arbeitsraum ist nicht gezielt variierbar. Dies schließt nicht aus, dass der Arbeitsraum gegebenenfalls wahlweise befüllt und entleert werden kann, um die Leistungsübertragung ein- und auszuschalten.When providing such a throttle element in the hydrodynamic coupling, the coupling can be designed as a constant-filled hydrodynamic coupling, that is, the degree of filling of working fluid in the working space is not selectively varied. This does not exclude that the work space may optionally be filled and emptied to turn on and off the power transmission.
Eine Steuerung der Leistungsübertragung der hydrodynamischen Kupplung mit einem Drosselelement kann entsprechend durch die zuvor beschriebenen Abhängigkeiten und Eingangsgrößen erfolgen.A control of the power transmission of the hydrodynamic coupling with a throttle element can be done in accordance with the dependencies and input variables described above.
Sind die Ventile zur Beeinflussung der Leistungsübertragung der hydrodynamischen Kupplung fremdbetätigbar ausgeführt, so kann der Öffnungsquerschnitt der Ventile beispielsweise in Abhängigkeit des Ladedruckes wenigstens einer Verdichterstufe eines im Antriebsstrang des Kraftfahrzeugs angeordneten Turboladers varilert werden. Auch ist es denkbar, den Druck In einer Frischluftleitung zum Antriebsmotor und insbesondere die Stellung einer in der Frischluftleitung angeordneten Drosselklappe zu erfassen und somit die Ventile entsprechend anzusteuern.If the valves are designed to be externally actuatable for influencing the power transmission of the hydrodynamic clutch, the opening cross section of the valves can be varied, for example, as a function of the charge pressure of at least one compressor stage of a turbocharger arranged in the drive train of the motor vehicle. It is also conceivable to detect the pressure in a fresh air line to the drive motor and in particular the position of a throttle valve arranged in the fresh air line and thus to control the valves accordingly.
Alternativ oder zusätzlich zu der Erfassung des durch den Verdichter erzeugten Ladedrucks kann auch der aktuelle, vom Antriebsmotor erzeugte Abgasdruck zur Steuerung oder Regelung der Ventile herangezogen werden. Auch ist die Betätigung der Ventile in Abhängigkeit der Stellung einer Auspuffklappe, welche von den Abgasen des Antriebsmotors, welcher als Verbrennungskraftmaschine ausgeführt sein kann, beaufschlagt wird und den Abgasdruck variiert, denkbar. Hierzu kann die Auspuffklappe in einer Abgasanlage des Kraftfahrzeugs stromab des Antriebsmotors angeordnet sein und insbesondere der Staudruck stromauf der Auspuffklappe erfasst werden.As an alternative or in addition to the detection of the boost pressure generated by the compressor, the current exhaust gas pressure generated by the drive engine can also be used to control or regulate the valves. Also, the actuation of the valves in response to the position of an exhaust flap, which is acted upon by the exhaust gases of the drive motor, which can be designed as an internal combustion engine, and varies the exhaust gas pressure, conceivable. For this purpose, the exhaust flap can be arranged in an exhaust system of the motor vehicle downstream of the drive motor and, in particular, the back pressure upstream of the exhaust flap can be detected.
Vorteilhaft können die Ventile in Abhängigkeit des Bremsmomentes einer Motorbremse beziehungsweise in Abhängigkeit der Bremsleistung, die in der Motorbremse in Verdichtungsarbeit umgesetzt wird, betätigt werden. Hierzu kann das Fahrzeug beispielsweise über eine Dekompressionsbremse, welche die vom Motor im Verdichtungstakt geleistete Arbeit ungenutzt lässt, beziehungsweise eine Motorstaubremse, wobei die Bremsleistung In Verdichtungsarbelt ohne anschließende Kraftstoffeinspritzung und Verbrennung umgesetzt wird, verfügen. Auch kann die Motorbremse als Kombination von Motorstaubremse und Dekompressionsbremse (EVB) ausgeführt sein.Advantageously, the valves can be actuated in dependence on the braking torque of an engine brake or as a function of the braking power, which is converted into compression work in the engine brake. For this purpose, the vehicle may, for example via a decompression brake, which leaves the work done by the engine in the compression stroke unused, or an engine dust, wherein the braking power is implemented in Verdichtungsarbelt without subsequent fuel injection and combustion have. The engine brake can also be designed as a combination of engine dust brake and decompression brake (EVB).
Weiterhin ist die Einstellung der von der hydrodynamischen Kupplung übertragbaren Leistung dadurch realisierbar, dass die Ventile in Abhängigkeit der Umgebungstemperatur des Kraftfahrzeuges und insbesondere dessen Antriebsstranges betätigt werden. Mit Umgebungstemperatur ist beispielsweise die Lufttemperatur der Umgebung des Kraftfahrzeugs oder die Temperatur der einzelnen Aggregate wie Getriebe oder Retarder gemeint. Auch kann die Betätigung der Ventile in Abhängigkeit der Stellung eines Thermostatventils, welches im Kühlmediumkreislauf angeordnet ist, erfolgen.Furthermore, the setting of the transferable from the hydrodynamic coupling power can be realized that the valves are actuated in dependence on the ambient temperature of the motor vehicle and in particular its drive train. By ambient temperature, for example, the air temperature of the environment of the motor vehicle or the temperature of the individual units such as gear or retarder meant. Also, the actuation of the valves in dependence on the position of a thermostatic valve, which is arranged in the cooling medium circuit, take place.
Sind die Ventile, wie oben beschrieben, fremdgesteuert ausgeführt, so können diese von geeigneten Sensoren beziehungsweise einer Steuervorrichtung und in Abhängigkeit der erfassten Größen, wie beispielsweise Temperatur-, Druck- oder Positionssensoren für die Stellung der Drossel- und Auspuffklappe über Signalleitungen, welche mit den Ventilen und den Sensoren wenigstens mittelbar in Verbindung stehen, betätigt werden. Dabei bedeutet mittelbar, dass zwischen den Ventilen und den Sensoren eine Steuervorrichtung vorgesehen sein kann, welche die aktuellen Werte der Sensoren erfasst und diese in Steuersignale für die Ventile zur Einstellung der Leistungsübertragung der hydrodynamischen Kupplung umwandelt. Auch kann die Steuervorrichtung mit Fahrzeugassistenzsystemen, der Motor- oder Getrlebesteuerung in Verbindung stehen, so dass in Abhängigkeit der Signale einer oder mehrerer dieser Steuereinheiten und/oder Assistenzsysteme die Ventile betätigt werden. Ganz allgemein kann die Einstellung der Leistungsübertragung der hydrodynamischen Kupplung auch in Abhängigkeit der Drehzahl des Antriebsmotors beziehungsweise der Geschwindigkeit oder Beschleunigung des Kraftfahrzeugs erfolgen.If the valves, as described above, carried out externally controlled, they can from suitable sensors or a control device and depending on the detected variables, such as temperature, pressure or position sensors for the position of the throttle and exhaust through signal lines, which with the Valves and the sensors are at least indirectly connected, are operated. In this case indirectly means that between the valves and the sensors, a control device may be provided which detects the current values of the sensors and converts these into control signals for the valves for adjusting the power transmission of the hydrodynamic coupling. The control device may also be in connection with vehicle assistance systems, engine or vehicle taxation, such that one or more of these signals are dependent on the signals Control units and / or assistance systems the valves are actuated. Quite generally, the setting of the power transmission of the hydrodynamic coupling can also take place as a function of the rotational speed of the drive motor or the speed or acceleration of the motor vehicle.
Der Vorteil des Einsatzes von ungesteuerten Ventilen, die frei von einer Fremdbetätigung sind, ist der, dass die Ventile beispielsweise beim Ausfall der Steuereinrichtung weiterhin funktionieren und somit eine optimale Einstellung der Leistungsübertragung der hydrodynamischen Kupplung und somit eine optimale Wärmeabfuhr der Wärmemenge im Kühlmediumkreislauf ermöglichen. Beispielsweise können hierzu fremdbetätigbare und ungesteuerte Ventile kombiniert werden, so dass beim Ausfall der fremdbetätigbaren Ventile die ungesteuerten Ventile einen zuverlässigen Weiterbetrieb ermöglichen.The advantage of using uncontrolled valves, which are free of a foreign operation, is that the valves continue to function, for example, in the event of failure of the control device and thus allow optimal adjustment of the power transmission of the hydrodynamic coupling and thus optimal heat dissipation of the amount of heat in the cooling medium circuit. For example, externally actuated and uncontrolled valves can be combined for this, so that when the externally actuated valves fail, the uncontrolled valves enable reliable further operation.
Weitere vorteilhafte Merkmale, die einzeln oder In Kombination vorgesehen werden können, sind die Folgenden:
- Das Primärrad der hydrodynamischen Kupplung kann in einer Triebverbindung mit dem Antriebsmotor stehen und insbesondere von einer Antriebswelle getragen werden oder einteilig mit einer solchen ausgeführt sein.
- Im Kühlmediumkreislauf kann ein Wärmetauscher angeordnet sein, wobei der Arbeitsmediumablauf und/oder der Auslasskanal stromauf des Wärmetauschers im Bereich des Wärmetauschers münden/mündet.
- Der Antriebsmotor kann ein Verbrennungsmotor sein.
- Der Wärmetauscher kann Teil eines Kühlers einer Einrichtung zur Abgasrückführung und/oder eines Zwischenkühlers eines dem Antriebsmotor zugeordneten Abgasturboladers sein.
- The primary wheel of the hydrodynamic coupling can be in a drive connection with the drive motor and in particular be carried by a drive shaft or be made in one piece with such.
- A heat exchanger can be arranged in the cooling medium circuit, the working medium outlet and / or the outlet channel opening / opening in the region of the heat exchanger upstream of the heat exchanger.
- The drive motor may be an internal combustion engine.
- The heat exchanger may be part of a cooler of a device for exhaust gas recirculation and / or an intermediate cooler of an exhaust gas turbocharger assigned to the drive motor.
Die Erfindung soll nachfolgend anhand von Ausführungsbelspielen und der beigefügten Figuren exemplarisch erläutert werden.The invention will be explained below with reference to Ausführungsbelspielen and the accompanying figures by way of example.
Es zeigen:
- Figur 1
- schematisch vereinfacht ein Kühlsystem eines Kraftfahrzeuges.
Figur 2- schematisch vereinfacht ein Kühlsystem eines Kraftfahrzeuges mit einer Steuereinrichtung.
Figur 3- eine erste Ausführungsform einer erfindungsgemäßen hydrodynamischen Kupplung.
Figur 4- eine weitere Ausgestaltung einer erfindungsgemäßen hydrodynamischen Kupplung.
- Fig. 5
bis 9 - weitere Ausgestaltungen eines erfindungsgemäßen Kühlsystems und der Anbindung der hydrodynamischen Kupplung an den Kühlmediumkreislauf,
Figur 10- eine weitere Ausgestaltung, wobei neben der hydrodynamischen Kupplung eine zusätzliche Kupplung vorgesehen ist.
- FIG. 1
- schematically simplifies a cooling system of a motor vehicle.
- FIG. 2
- schematically simplifies a cooling system of a motor vehicle with a control device.
- FIG. 3
- a first embodiment of a hydrodynamic coupling according to the invention.
- FIG. 4
- a further embodiment of a hydrodynamic coupling according to the invention.
- Fig. 5 to 9
- Further embodiments of a cooling system according to the invention and the connection of the hydrodynamic coupling to the cooling medium circuit,
- FIG. 10
- a further embodiment, wherein in addition to the hydrodynamic coupling, an additional clutch is provided.
Weiterhin ist eine hydrodynamische Kupplung 5 ersichtlich, welche vorliegend zwischen der Kühlmediumpumpe 3 und einem sich an den Antriebsmotor 2 anschließenden Getriebe 25 angeordnet ist. Dabei ist das Primärrad 6 über eine Antriebswelle 14 mit dem Getriebe 25 drehfest gekoppelt, wobei Antriebsleistung hydrodynamisch vom Primärrad 6 auf ein Sekundärrad 7 mittels einer Abtriebswelle 13 schließlich auf die Kühlmediumpumpe 3 übertragbar ist. Die Drehzahl/das Drehmoment der Antriebswelle 14 und/oder der Abtriebswelle 13 könnte mittels wenigstens einer Getriebestufe zusätzlich übersetzt werden.Furthermore, a
Vorliegend Ist die hydrodynamische Kupplung 5 und insbesondere deren Arbeitsraum zum Einstellen eines Füllungsgrades über einen Arbeitsmediumzuiauf 8 (gestrichelte Linien) mit dem Kühlmediumkreislauf 1 strömungsleitend verbunden. Somit ist das Arbeitsmedium der hydrodynamischen Kupplung 5 zugleich das Kühlmedium und wird vorliegend stromab der Kühlmediumpumpe 3 aus dem Kühlmediumkreislauf 1 abgezweigt. Jedoch wäre auch eine andere Position für die Abzweigung, beispielsweise stromauf der oder im Bereich der Kühlmediumpumpe 3 denkbar. Im Bereich des Arbeitemedlumzulaufs 8 kann ein Ventil 32 vorgesehen sein, mittels welchem sich der Füllungsgrad und somit die Leistungsübertragung der hydrodynamischen Kupplung 5 einstellen lässt. Das Ventil 32 kann beispielsweise als verstellbare Drossel ausgeführt sein,In the present case, the
Vorliegend ist ein Arbeitsmediumablauf 9 der hydrodynamischen Kupplung 5 über eine strömungsleitende Verbindung mit dem Kühlmediumkreislauf 1 verbunden. Insbesondere mündet diese Verbindung (gestrichelte Linien) in Strömungsrichtung des Kühlmediums gesehen in dem Bereich vor dem Wärmetauscher 31. Zur Einstellung eines Druckes beziehungsweise Volumenstroms kann auch die genannte strömungsleitende Verbindung ein regelbares Ventil 33 aufweisen, welches beispielsweise als verstellbare Drossel ausgeführt sein kann. Diese Anordnung ermöglicht es, dass in einem Betriebszustand, In welchem eine verhältnismäßig kleine Kühlleistung des Kühlsystems erforderlich ist, jedoch schnell Wärme über einen verhältnismäßig kleinen Wärmetauscher 31 abgeführt werden muss, die Pumpwirkung der hydrodynamischen Maschine 5 ausgenutzt wird. Dies ist beispielsweise dann der Fall, wenn der Motor und der Kühlmediumkreislauf noch vergleichsweise kalt sind, der Abgasrückführungskühler oder der Zwischenkühler jedoch schon ein heißes Medium kühlen müssen. Dabei ist die Pumpwirkung der hydrodynamischen Maschine 5 umso größer, je größer der Schlupf, also die Drehzahldifferenz zwischen Primärrad 6 und Sekundärrad 7 ist. Wird beispielsweise bei verhältnismäßig kleiner Kühlleistung des Kühlsystems, wobei die Kühlmediumpumpe mit einer vergleichsweise niedrigen Drehzahl und der Antriebsmotor mit einer vergleichsweise hohen Drehzahl umläuft (großer Schlupf) durch Wärmeeintrag in den Wärmetauscher 31 der Kühlbedarf vergrößert, so muss nicht unbedingt die Drehzahl der Kühlmediumpumpe vergrößert werden, sondern es genügt hierbei die Pumpwirkung der hydrodynamischen Kupplung 5, um diesen Bedarf zu decken.In the present case, a working
Die Pumpwirkung der hydrodynamischen Kupplung 5, Insbesondere bei großem Schlupf, kann zusätzlich oder alternativ auch dazu genutzt werden, den Druck im Wärmetauscher 31 auf der Kühlmediumselte zu vergrößern. Ein größerer Druck verringert die Gefahr der Dampfblasenbildung und/oder der Kavitation Im Kühlmedium im Wärmetauscher 31. Die Gefahr der Dampfblasenbildung und der Kavitation ist besonders dann groß, wenn der Kühlmediumkreislauf noch kalt ist, da dann ein geringer Druck beziehungsweise Überdruck im Kühlmediumkreislauf herrscht.The pumping action of the
In der Zuleitung zum Wärmetauscher 31 kann auf Seiten des Kühlmediumkreislaufs 1 stromauf des Wärmetauschers 31 ein Rückschlagventil 34 angeordnet sein. Ebenso kann stromab des Wärmetauschers 31 eine Drossel 35, welche auch regelbar ausgeführt sein kann, angeordnet sein. Die Drossel 35 kann auch dazu herangezogen werden, durch Drosseln des Kühlmediumstroms den Druck im Wärmetauscher 31 zu erhöhen. Hierdurch wird wiederum die Gefahr der Dampfblasenbildung und der Kavitation vermindert. Auch kann die Drossel 35 dazu herangezogen werden, zu bestimmen, wieviel Kühlmedium durch den Wärmetauscher 31 strömt und wieviel durch den gezeigten Bypass an diesem vorbeiströmt.In the supply line to the
Die
Die Kühlmediumpumpe 3 und insbesondere das Pumpenlaufrad 4 sind somit vorliegend In Axialrichtung neben der hydrodynamischen Kupplung 5 und insbesondere auf der Sekundärseite In einem gemeinsamen Gehäuse 15, welches das Pumpenlaufrad 4, das Primärrad 6 und das Sekundärrad 7 umschließt, angeordnet. Weiterhin umfasst die Kühlmedlumpumpe 3 einen Einlasskanal 11, der im Wesentlichen oder exakt in Axialrichtung der hydrodynamischen Kupplung 5 verläuft sowie einen Auslasskanal 12, welcher in Radialrichtung der hydrodynamischen Kupplung 5 angeordnet ist.The cooling
Über einen Arbeitsmediumzulauf 8 wird Kühlmedium, welches im Einlasskanal 11 der Kühlmedlumpumpe 3 angesaugt wird, in den Arbeitsraum 10 eingebracht. Das Arbeitsmedium verlässt den Arbeitsraum 10 vorliegend über einen Arbeitsmediumablauf 9, welcher beispielsweise am radial äußeren Ende der beiden Primär-/Sekundärräder 6, 7 angeordnet ist. Das über den Arbeitsmediumablauf abgeführte Arbeltsmedium wird dem Kühlmediumkreislauf über eine nicht gezeigte strömungsleitende Verbindung zugeführt. Vorliegend ist am Außendurchmesser des Sekundärrades 7 eine berührungslose Dichtung 18 vorgesehen, welche insbesondere das Arbelts- und Kühlmedium zwischen Arbeitsmediumablauf 9 und Auslasskanal 12 hydraulisch trennt und gegeneinander abdichtet.Cooling medium, which is sucked into the
In
Das Pumpenlaufrad 4 rotiert in einem Pumpenraum 17, welcher in hydraulischer Verbindung mit dem Einlasskanal 11 und dem Auslasskanal 12 steht. Vorliegend ist der Pumpenraum 17 über eine strömungsleitende Verbindung 23 in Form einer schrägen Bohrung hydraulisch mit dem Arbeitsraum 10 verbunden. Dabei bedeutet die schräge Bohrung, dass in einem Axialschnitt durch die Längsachse der hydrodynamischen Kupplung 5 gesehen die Mittellinie der Bohrung in einem Winkel zu der Längsachse der hydrodynamischen Kupplung 5 verläuft. Bevorzugt ist eine Mehrzahl von Bohrungen 23 vorgesehen. Somit gelangt Kühlmedium infolge der Rotation des Pumpenlaufrads 4 aus dem Pumpenraum 17 durch die Bohrung 23 in den Arbeitsraum 10, so dass der Füllungsgrad beziehungsweise die Leistungsübertragung Insbesondere in Abhängigkeit der Drehzahl des Pumpenlaufrades 4 beziehungsweise des Förderdrucks eingestellt wird.The
Vorliegend ist das in der strömungsleitenden Verbindung angeordnete Ventil 32 als Bimetalistreifen ausgeführt, der beispielsweise, wie hier angezeigt, auf der dem Primärrad 6 zugewandten Stirnfläche des Sekundärrads 7 aufliegt und der in Abhängigkeit der Temperatur des Arbeitsmedium durch Verbiegen, insbesondere in Richtung auf das Primärrad 6 hin öffnet. Zur Beeinflussung des Füllungsgrades und somit der Leistungsübertragung könnte auch das Ventil 19 herangezogen werden, weiches zum Beispiel ebenfalls als Thermostat- oder Druckzuschaltventil ausgeführt sein kann. Die beiden Ventile 19, 32 sind auch In Form einer Kombination eines Temperatur- und Druckregelventlls denkbar,In the present case, the arranged in the flow-conducting
Auch gemäß
Die
In
Die
In
Die
Die
In allen beschriebenen Ausführungsformen kann im Kühlmediumkreislauf 1 zusätzlich ein Retarder vorgesehen sein, welcher in Triebverbindung mit einem Antriebsmotor des Kraftfahrzeuges steht, wobei die im Retarder während des Bremsbetriebs erzeugte Bremswärme dem Kühlsystem des Kraftfahrzeugs zugeführt wird. Auch kann der Retarder an den Kühlmediumkreislauf angeschossen sein, wobei der Retarder in diesem Fall als Wasserretarder ausgebildet ist, so dass das Kühlmedium gleichzeitig das Arbeitsmedium des Retarders ist. Vorteilhaft kann eine Retardersteuereinrlchtung vorgesehen sein, welche die Leistungsübertragung des Retarders regelt. Hierbei wird insbesondere bei Anforderung eines Bremswunsches durch den Fahrer der Retarder durch die Retardersteuereinrichtung betätigt, wobei mittels eines pneumatischen Steuerdrucks Ventile zur Zuschaltung des Retarders und insbesondere zur variierten Einstellung eines vorbestimmten Füllungsgrads des Retarderarbeitsraumes betätigt werden oder ein Arbeitsmediumvorrat entsprechend druckbeaufschlagt wird und somit der Retarderarbeitsraum wenigstens teilweise mit Kühlmedium oder einem anderen Arbeltsmedium gefüllt wird. Der pneumatische Steuerdruck kann gleichzeitig zur Betätigung der Ventile 19 beziehungsweise 32, 33 im Zulauf und/oder Ablauf für Arbeitsmedium zu der/von der hydrodynamischen Kupplung 5 und somit zum Ändern des Füllungsgrades der hydrodynamischen Kupplung 5 herangezogen werden. Somit wird bei Betätigung des Retarders die Leistungsübertragung des Retarders und gleichzeitig die der hydrodynamischen Kupplung 5 und somit die Drehzahl der Kühlmediumpumpe 3 eingestellt. Hierzu können beispielsweise die Ventile 19, 32, 33 als fremdgesteuerte pneumatische Ventile ausgeführt sein, die durch den pneumatischen Steuerdruck der Retardersteuereinrichtung betätigbar sind.In all the described embodiments, a retarder may additionally be provided in the cooling medium circuit 1, which is in drive connection with a drive motor of the motor vehicle, wherein the braking heat generated in the retarder during braking operation is supplied to the cooling system of the motor vehicle. Also, the retarder can be shot against the cooling medium circuit, wherein the retarder is formed in this case as Wasserretarder, so that the cooling medium is also the working medium of the retarder. Advantageously, a Retardersteuereinrlchtung be provided, which regulates the power transmission of the retarder. In this case, the retarder is actuated by the retarder control device in particular when requesting a braking request by the driver, are actuated by means of a pneumatic control pressure valves for switching the retarder and in particular for varied setting a predetermined degree of filling of the Retarderarbeitsraumes or a working fluid reservoir is pressurized accordingly and thus the Retarderarbeitsraum least partially filled with cooling medium or other Arbeltsmedium. The pneumatic control pressure can be used simultaneously for actuating the
- 11
- KühlmediumkreislaufCoolant circuit
- 22
- Antriebsmotordrive motor
- 33
- KühlmediumpumpeCoolant pump
- 44
- Pumpenlaufradpump impeller
- 55
- hydrodynamische Kupplunghydrodynamic coupling
- 66
- Primärradprimary wheel
- 77
- Sekundärradsecondary
- 88th
- ArbeitsmediumzulaufWorking fluid inlet
- 99
- ArbeitsmediumablaufWorking medium flow
- 1010
- Arbeitsraumworking space
- 1111
- Einlasskanalinlet channel
- 1212
- Auslasskanalexhaust port
- 1313
- Abtriebswelleoutput shaft
- 1414
- Antriebswelledrive shaft
- 1515
- Gehäusecasing
- 1616
- Lagercamp
- 1717
- Pumpenraumpump room
- 1818
- berührungslose Dichtungnon-contact seal
- 19, 32, 3319, 32, 33
- VentilValve
- 2020
- Steuervorrichtungcontrol device
- 21, 2221, 22
- strömungsleitende Verbindungflow-conducting connection
- 2323
- Bohrungdrilling
- 2424
- Thermostatventilthermostatic valve
- 2525
- Getriebetransmission
- 2626
- Ausgleichsbehältersurge tank
- 27, 3127, 31
- Wärmetauscherheat exchangers
- 2828
- Dichtungpoetry
- 2929
- Gleitlagerbearings
- 3030
- Kupplungclutch
- 3434
- Rückschlagventilcheck valve
- 3535
- Drosselthrottle
Claims (14)
- A cooling system, in particular of a motor vehicle
with a cooling medium circuit (1), in which a cooling medium for cooling units and/or a drive motor (2) is circulated by means of a cooling medium pump (3); the cooling medium pump (3) includes a pump rotor (4) for conveying the coolant; wherein
a hydrodynamic coupling (5) is provided, comprising a primary wheel (6) and a secondary wheel (7), which form together a toroidal working chamber (10) which can be filled and emptied via a working medium inlet (8) and a working medium outlet (9), for hydrodynamic transmission of torque from the primary wheel (6) to the secondary wheel (7); whereas
the pump rotor (4) is coupled in a torque-proof manner to the secondary wheel (7); characterised in that
the pump rotor (4) is formed as a single-part with the secondary wheel (7) and/or the cooling medium pump (3) is arranged in axial direction beside the hydrodynamic coupling (5), whereas a common housing (15) is provided, which encloses the pump rotor (4), the primary wheel (6) and the secondary wheel (7). - The cooling system according to claim 1, characterised in that the cooling medium pump (3) is a rotation pump and includes an inlet channel (11) for supplying cooling medium and an outlet channel (12) for discharging cooling medium, whereas the working medium in particular is simultaneously the working medium of the hydrodynamic coupling (5).
- The cooling system according to one of claims 1 or 2, characterised in that the pump rotor (4) and the secondary wheel (7) are carried by a common output shaft (13) or are formed by such one.
- The cooling system according to one of claims 1 to 3, characterised in that the output shaft (13) and the drive shaft (14) are journalled relatively to one another by means of at least one bearing (16), whereas the output shaft (13) is designed in particular as a hollow shaft and encloses the bearing (16) as well as the drive shaft (14).
- The cooling system according to one of claims 1 to 4, characterised in that the cooling medium pump (3) and in particular the pump rotor (4) are arranged in a pump chamber (17), which is provided axially and adjoining to the working chamber (10) and is mainly hydraulically separated from the working chamber (10) in particular by a contactless seal (18).
- The cooling system according to one of claims 1 to 5, characterised in that a valve (19, 32, 33) is provided for adjusting a working chamber volume flow in the working medium inlet (8) and/or the working medium outlet (9) of the hydrodynamic coupling (5), which are operable in a configuration in which each a valve (19, 32, 33) is arranged in the working medium inlet (8) and in the working medium outlet (9), dependently or independently from one another.
- The cooling system according to claim 6, characterised in that the valve (19, 32, 33) is temperature-controlled, so that the opening section of the valve (19, 32, 33) is varied according to the temperature of the cooling medium, in particular in the place of pressurizing the valve with the working medium, and/or the valve (19, 32, 33) is pressure-controlled, so that the opening section of the valve (19, 32, 33) is varied according to the cooling medium pressure or of a pressure in the cooling system, in particular in a compensating container (26) provided in the cooling medium circuit.
- The cooling system according to one of claims 1 to 7, characterised in that the hydrodynamic coupling (5) is connected as follows to the inlet channel (11) and the outlet channel (12) of the cooling medium pump (3):- the working medium inlet (8) is connected via a flow conveying connection to the outlet channel (12) of the cooling medium pump (3) and the working medium outlet (9) is connected via a flow conveying connection to the inlet channel (11) of the cooling medium pump (3); or- the working medium inlet (8) is connected via a flow conveying connection to the inlet channel (11) of the cooling medium pump (3) and the working medium outlet (9) is connected via a flow conveying connection to the outlet channel (12) of the cooling medium pump (3); or- the working medium inlet (8) and the working medium outlet (9) of the hydrodynamic coupling (5) are connected via a flow conveying connection (21) to the inlet channel (11) of the cooling medium pump (3); or- the working medium inlet (8) and the working medium outlet (9) of the hydrodynamic coupling (5) are connected via a flow conveying connection (22) to the outlet channel (12) of the cooling medium pump (3); or- the working medium inlet (8) and/or the working medium outlet (9) is/are connected via a flow conveying connection (21, 22) to the pump chamber (17).
- The cooling system according to one of claims 1 to 8, characterised in that the valve (19, 32) can be operated by a retarder control device and in particular by a pneumatic control pressure for actuating a retarder arranged in a drive train of the motor vehicle, in particular when activating the retarder.
- The cooling system according to one of claims 1 to 3, characterised in that the valves (19, 32, 33) can be operated according to the boost pressure of at least one compressor stage of a turbo charger arranged in the drive train of the motor vehicle.
- The cooling system according to one of claims 1 to 10, characterised in that the valves (19, 32, 33) can be operated according to the braking torque of an engine brake, in particular according to the breaking power, which is transformed into compression work in the engine brake.
- The cooling system according to one of claims 1 to 11, characterised in that the valves (19, 32, 33) can be operated according to the surrounding temperature of the motor vehicle and in particular of its drive train, whereas the temperature in particular is detected by sensors, which are connected to a control device (20).
- The cooling system according to one of claims 1 to 12, characterised in that the valves (19, 32, 33) can be operated according to the position of a thermostat valve (24) arranged in the cooling medium circuit, which is arranged in particular upstream of the retarder in the cooling medium circuit (1).
- The cooling system according to one of claims 1 to 13, characterised in that the valves (19, 32, 33) can be operated according to the position of an exhaust valve, which can be circulated around by the exhaust gases of the internal combustion engine of the vehicle and which is arranged in an exhaust system of the motor vehicle, and can be operated in particular according to the dynamic pressure upstream of the exhaust valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12188264A EP2559878A1 (en) | 2008-07-25 | 2009-07-17 | Cooling system, in particular for a motor vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200810034973 DE102008034973A1 (en) | 2008-07-25 | 2008-07-25 | Cooling system, in particular of a motor vehicle |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12188264.1 Division-Into | 2012-10-12 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2148059A2 EP2148059A2 (en) | 2010-01-27 |
EP2148059A3 EP2148059A3 (en) | 2012-02-08 |
EP2148059B1 true EP2148059B1 (en) | 2013-02-20 |
Family
ID=41403033
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20090009331 Not-in-force EP2148059B1 (en) | 2008-07-25 | 2009-07-17 | Cooling system, in particular for a motor vehicle |
EP12188264A Withdrawn EP2559878A1 (en) | 2008-07-25 | 2009-07-17 | Cooling system, in particular for a motor vehicle |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12188264A Withdrawn EP2559878A1 (en) | 2008-07-25 | 2009-07-17 | Cooling system, in particular for a motor vehicle |
Country Status (2)
Country | Link |
---|---|
EP (2) | EP2148059B1 (en) |
DE (1) | DE102008034973A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009055975A1 (en) * | 2009-11-27 | 2011-06-01 | Voith Patent Gmbh | Cooling system, in particular of a motor vehicle |
US9416720B2 (en) | 2011-12-01 | 2016-08-16 | Paccar Inc | Systems and methods for controlling a variable speed water pump |
DE102012201341B4 (en) | 2012-01-31 | 2021-10-14 | Schaeffler Technologies AG & Co. KG | Fluid coupling for a variable drive of a coolant pump |
DE102018112531A1 (en) * | 2018-05-25 | 2019-11-28 | Voith Patent Gmbh | Hydrodynamic coupling, in particular for a pump or compressor station |
EP3730796A1 (en) * | 2019-04-23 | 2020-10-28 | Sulzer Management AG | Centrifugal pump |
CN111254499B (en) * | 2020-03-05 | 2021-03-26 | 上海磐盟电子材料有限公司 | Single crystal furnace structure and using method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3241835C1 (en) | 1982-11-12 | 1984-02-16 | Daimler-Benz Ag, 7000 Stuttgart | Hydrodynamic device |
DE4415031C1 (en) * | 1994-04-29 | 1995-05-11 | Daimler Benz Ag | Hydrodynamic device as a heating generator for a motor vehicle |
DE19831922A1 (en) * | 1998-07-16 | 2000-01-20 | Man Nutzfahrzeuge Ag | Drive device in a motor vehicle |
DE19832626C1 (en) * | 1998-07-21 | 2000-03-16 | Daimler Chrysler Ag | Regulation of a cooling circuit of a motor-driven vehicle |
DE19939726A1 (en) * | 1999-08-21 | 2001-03-22 | Voith Turbo Kg | Assembly for an internal combustion engine |
DE102005009456A1 (en) * | 2005-03-02 | 2006-09-07 | Voith Turbo Gmbh & Co. Kg | Retarder-rotation pump assembly |
-
2008
- 2008-07-25 DE DE200810034973 patent/DE102008034973A1/en not_active Withdrawn
-
2009
- 2009-07-17 EP EP20090009331 patent/EP2148059B1/en not_active Not-in-force
- 2009-07-17 EP EP12188264A patent/EP2559878A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
EP2148059A2 (en) | 2010-01-27 |
DE102008034973A1 (en) | 2010-01-28 |
EP2148059A3 (en) | 2012-02-08 |
EP2559878A1 (en) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2148059B1 (en) | Cooling system, in particular for a motor vehicle | |
EP1565365B1 (en) | Drive unit comprising a retarder | |
DE102009015319B4 (en) | Drive train for a vehicle and hydraulic system for a transmission | |
DE112009001198B4 (en) | Power transmission device | |
EP2035267B1 (en) | Hydrodynamic retarder | |
WO2016045895A1 (en) | Internal combustion engine | |
DE10290840B4 (en) | Drive unit with an internal combustion engine and an exhaust gas turbocharger | |
EP1778996A1 (en) | Hydrodynamic coupling | |
EP1288093B1 (en) | Hydrodynamic retarder | |
EP1761422B1 (en) | Retarder-rotary pump assembly | |
WO2012065653A1 (en) | Drive train having a hydrodynamic retarder and method for adjusting the braking torque | |
DE112016002337T5 (en) | Hydrodynamic retarder device | |
DE102013219786A1 (en) | Hydraulic system for a hydrodynamic machine | |
EP1251050B1 (en) | Brake system with retarder | |
DE102007055604B3 (en) | Vehicle cooling circuit, has control valve that is integrated in circuit, so that switching position of valve is adjusted based on working medium pressure in retarder, working medium feed line or working medium discharge line of retarder | |
EP0718133A1 (en) | Heating system, particularly for vehicles | |
DE102006011987A1 (en) | Drive train for commercial vehicle, has opening arranged in housing shell in such manner that during reversed power flow residual volume of fluid remains between impeller and housing shell | |
EP1694949A1 (en) | Drive train with exhaust gas utilisation and control method | |
EP2673177B1 (en) | Hydrodynamic retarder | |
EP1697651B1 (en) | Hydrodynamic coupling | |
DE3435659C2 (en) | Hydrodynamic control clutch | |
EP3052350B1 (en) | Hydraulic system for a hydrodynamic machine | |
WO2015044330A1 (en) | Hydraulic system for a hydrodynamic machine | |
DE102014004009A1 (en) | Coolant circuit for cooling an internal combustion engine, in particular for a motor vehicle, and method for operating such a coolant circuit | |
DE102020125509B3 (en) | Braking system for coupling to a drive train |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01P 7/16 20060101ALI20120103BHEP Ipc: F01P 7/04 20060101ALN20120103BHEP Ipc: F01P 5/12 20060101AFI20120103BHEP |
|
17P | Request for examination filed |
Effective date: 20120807 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01P 7/04 20060101ALN20121001BHEP Ipc: F01P 5/12 20060101AFI20121001BHEP Ipc: F01P 7/16 20060101ALI20121001BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 597666 Country of ref document: AT Kind code of ref document: T Effective date: 20130315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009006264 Country of ref document: DE Effective date: 20130418 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130220 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130520 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130620 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130531 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130520 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130620 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130521 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
26N | No opposition filed |
Effective date: 20131121 |
|
BERE | Be: lapsed |
Owner name: VOITH PATENT G.M.B.H. Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009006264 Country of ref document: DE Effective date: 20131121 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130717 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130717 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130717 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090717 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150626 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 597666 Country of ref document: AT Kind code of ref document: T Effective date: 20140717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140717 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20150721 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160718 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180723 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009006264 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200201 |