EP2146393A1 - Planar antenna - Google Patents

Planar antenna Download PDF

Info

Publication number
EP2146393A1
EP2146393A1 EP09100288A EP09100288A EP2146393A1 EP 2146393 A1 EP2146393 A1 EP 2146393A1 EP 09100288 A EP09100288 A EP 09100288A EP 09100288 A EP09100288 A EP 09100288A EP 2146393 A1 EP2146393 A1 EP 2146393A1
Authority
EP
European Patent Office
Prior art keywords
arm
antenna
arms
opening
inverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09100288A
Other languages
German (de)
French (fr)
Inventor
Jens Passoke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2146393A1 publication Critical patent/EP2146393A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the invention relates to a planar antenna, in particular a planar inverse-F antenna, in particular for wireless data connections, according to the preamble of claim 1 or of claim 2 or of claim 3.
  • wireless communication is known, for example, between a car radio and external other devices, for example between the car radio and a mobile telephone.
  • a wireless communication of mobile phone and speakerphone is known.
  • a wireless data interface is used, wherein the data connection typically only for a relatively short distance of a few meters must be designed because both the transmitter and the receiver are typically located in close proximity to each other. Therefore, part of the so-called Bluetooth standard is used for the wireless data connection. Voice information, image information and / or other data information can then be transmitted via the data connection.
  • this wireless data connection is bidirectional.
  • the processed transmission signal and the received signal are advantageously radiated and received via an antenna.
  • Planar antennas and planar inverse-F antennas also called planar inverted-F antennas, are well known in the art.
  • Such antennas are preferably used in the abovementioned Bluetooth applications operating in the frequency range of a few hundred MHz to a few GHz.
  • the antennas may be constructed discretely or be designed as a conductor track structure.
  • the planarized conductor track structure has the advantage that it manages without additional material costs, because it can be produced with the existing material of a printed circuit board for the existing electronic circuit.
  • One embodiment of the planarized antenna structure is the above-mentioned planar inverse-F antenna, which is also known as Planar Inverted-F Antenna (PIFA) in the prior art.
  • PIFA Planar Inverted-F Antenna
  • Such a planar inverse-F antenna is for example by the WO 02/39547 A1 known.
  • the input impedance of the antenna An important factor influencing the performance of the radio link of the data link is the input impedance of the antenna.
  • the input impedance will be adapted for the design of the radio link to the active circuit and should remain within a defined range of values. Large deviations of the input impedance from the specified setpoint result in that the power provided by the transmission signal processing of the transmitting device used is not radiated via the antenna, but reflected in the transmitter and here is ultimately converted into heat.
  • the antenna input impedance is also significantly influenced by the relative dielectric constant of the substrate material or of the printed circuit board material of the planar antenna.
  • This material parameter of the substrate material or circuit board material used is generally subject to manufacturing tolerances, the limitation in the production of the substrate is associated with significantly increased production costs.
  • a planar antenna is provided with an electrically conductive structure and a carrier material, the field lines emanating from the radiator extend partially in the Eisenommern the radiating electrically conductive structure through the plane of the support material, which for reducing the influence of the material parameters on the electrical properties of the antenna and / or the carrier material is at least partially or completely omitted.
  • a planar antenna is provided with a structure having at least a first and a second arm and a arms connecting these arms, for example end, third arm, which may be substantially perpendicular to the first two and second arms wherein the first arm is optionally electrically connected to a further fourth arm or a comparable ground plane on the top or bottom of a carrier material, and forms a structure with at least one field, wherein the at least one field is provided with an opening.
  • a planar inverse-F antenna is provided with a structure with an inverse F-shape, each with a parallel first and second arm and with these arms connecting end arms third arm wherein one of the first and second arms engages another fourth arm at a gap, the other of the first and second arms being disposed at or near said further fourth arm, and the inverse F-shaped structure being two substantially rectangular, for example Fields limited at least one of the fields is provided with an opening.
  • the at least one opening is a recess of a printed circuit board material carrying the structure.
  • the at least one opening is a material-free opening or recess.
  • the at least one opening is provided with an alternative material.
  • the at least one recesses is rectangular, because advantageously maximum material between the arms of the structure can be removed.
  • FIG. 1 shows a planar inverse-F antenna 1 according to the prior art, in which a structure 2 is formed with an inverse-F shape with two parallel, for example horizontal arms 3,4 and an end connecting perpendicular thereto arranged arm 5.
  • a structure 2 is formed with an inverse-F shape with two parallel, for example horizontal arms 3,4 and an end connecting perpendicular thereto arranged arm 5.
  • One of the two horizontal parallel arms 3,4 engages through a further arm 6 arranged perpendicularly thereto at a gap 7, wherein the other arm 3,4 is arranged at the end of this arm 6.
  • the inverse F-shaped structure 2 forms or delimits two rectangular fields 8, 9.
  • the one field 8 is bounded by the two arms 3,4 and the two arms 5,6.
  • the further second panel 9 is bounded on three sides by the arms 5, 6 and the arm 4, the fourth side of the panel not being bounded by an arm.
  • the structure 2 is formed by metallic tracks, which form the arms 3,4,5,6 and which are provided on
  • FIG. 2 shows a planar inverse-F antenna 11 according to the invention, in which a structure 12 is formed with an inverse F-shape with two parallel, for example, horizontal arms 13,14 and this end connecting perpendicular thereto aligned arm 15.
  • a structure 12 is formed with an inverse F-shape with two parallel, for example, horizontal arms 13,14 and this end connecting perpendicular thereto aligned arm 15.
  • one of the two parallel horizontal arms 13, 14 passes through another arm 16 oriented perpendicular to it at a gap 17, wherein the other arm 13, 14 is arranged at the end on or near this arm 16.
  • the inverse-F-shaped structure 12 forms or delimits two rectangular fields 18, 19.
  • the one field 18 is delimited by the two arms 15, 16 and the two arms 5, 6.
  • the further second panel 19 is limited on three sides by the arms 15,16 and the arm 14, wherein the fourth side of the field is not limited by an arm.
  • the structure 12 is advantageously formed by metallic tracks, which form the arms 13,14,15,16 and which are provided on a substrate, such as a printed circuit board 22, which also forms or receives the fields 18,19.
  • a substrate such as a printed circuit board 22, which also forms or receives the fields 18,19.
  • the fields 18,19 are further developed such that at least in one of the fields 18,19 an opening 20,21 is provided, which is advantageously carried out material-free, ie, that the material of the circuit board 22 at the location of the opening 20,21 removed is.
  • both fields 18,19 each have a recess 20,21, wherein both recesses 20,21 are advantageously carried out rectangular.
  • the recess 21 may be formed such that between the arm 15 and the arm 16 two webs remain, a web in the region of the arm 14 and a web 23 at the end of the arm 15 at its end facing away from the arm 13. This achieves a higher mechanical stability of the antenna structure 12.
  • the at least one material-free opening 20,21 may optionally be introduced into the region of the openings 20,21 also another material.
  • the openings 20,21 allow less dependence of the antenna input impedance of the relative dielectric constant of the material of the circuit board or the ground of the planar antenna. As a result, fewer field lines run within the printed circuit board or within the substrate material, and the influence of the dielectric constant of the material of the printed circuit board or of the substrate on the antenna properties is advantageously reduced.
  • the antenna geometry is advantageously adapted to the dielectric conditions. This can be done, for example, by choosing the connection geometry or the coupling point.
  • the FIG. 3 Figure 12 is a graph showing the input reflection factor of the antenna as a function of frequency at various dielectric constants in a range of dielectric constant between 3.85 and 4.65.
  • the antenna is designed for a frequency range between 2.4GHz and 2.48GHz.
  • the adaptation of the antenna was designed for a minimum input reflection factor. While at the structure after FIG. 1
  • the input reflection factor varied by 71 MHz as a function of the relative dielectric constant FIG. 2 be advantageously limited to 42 MHz.

Abstract

The antenna (11) has an electrically conducting structure (12) with an inverse-F form, and a substrate i.e. printed circuit board, whose field lines emerging from an emitter running to a part in an intermediate chamber of the radiant electrically conducting structure through a plane of the substrate. The field lines are partially or completely left open for reducing impact of a material parameter of electrical characteristics of the antenna and/or the substrate. The electrically conducting structure has an arm (15) directed perpendicular to other arms (13, 14).

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine planare Antenne, wie insbesondere eine planare inverses-F Antenne, insbesondere für drahtlose Datenverbindungen, nach dem Oberbegriff von Anspruch 1 oder von Anspruch 2 oder von Anspruch 3.The invention relates to a planar antenna, in particular a planar inverse-F antenna, in particular for wireless data connections, according to the preamble of claim 1 or of claim 2 or of claim 3.

Stand der TechnikState of the art

Bei Fahrzeugen ist eine drahtlose Kommunikation beispielsweise zwischen einem Autoradio und externen anderen Geräten bekannt, beispielsweise zwischen dem Autoradio und einem Mobiltelefon. Auch ist eine drahtlose Kommunikation von Mobiltelefon und Freisprecheinrichtung bekannt. Dabei wird eine drahtlose Datenschnittstelle verwendet, wobei die Datenverbindung typischer Weise nur für eine relativ kurze Wegstrecke von maximal wenigen Metern ausgelegt sein muss, weil sowohl der Sender als auch der Empfänger typischer Weise in nahezu unmittelbarer Nähe voneinander lokalisiert sind. Daher wird zum Teil der sogenannte Bluetooth-Standard für die drahtlose Datenverbindung angewendet. Über die Datenverbindung kann dann eine Sprachinformation, Bildinformation und/oder eine anderweitige Dateninformation übermittelt werden.In the case of vehicles, wireless communication is known, for example, between a car radio and external other devices, for example between the car radio and a mobile telephone. Also, a wireless communication of mobile phone and speakerphone is known. In this case, a wireless data interface is used, wherein the data connection typically only for a relatively short distance of a few meters must be designed because both the transmitter and the receiver are typically located in close proximity to each other. Therefore, part of the so-called Bluetooth standard is used for the wireless data connection. Voice information, image information and / or other data information can then be transmitted via the data connection.

Üblicher Weise ist diese drahtlose Datenverbindung dazu bidirektional ausgelegt. Das aufbereitete Sendesignal und das Empfangssignal werden dabei vorteilhaft über eine Antenne abgestrahlt und empfangen.Usually this wireless data connection is bidirectional. The processed transmission signal and the received signal are advantageously radiated and received via an antenna.

Planare Antennen und planare Inverses-F Antennen, auch planare Inverted-F Antennen genannt, sind im Stand der Technik durchaus bekannt.Planar antennas and planar inverse-F antennas, also called planar inverted-F antennas, are well known in the art.

Es können aber auch andere Antennen eingesetzt werden, wie sie im Stand der Technik bekannt sind. Solche Antennen, wie die planaren Inverses-F-Antennen, werden vorzugsweise bei den oben genannten Bluetooth-Anwendungen eingesetzt, die im Frequenzbereich von einigen Hundert MHz bis zu wenigen GHz arbeiten.But it can also be used other antennas, as they are known in the art. Such antennas, such as the planar inverse F antennas, are preferably used in the abovementioned Bluetooth applications operating in the frequency range of a few hundred MHz to a few GHz.

Die Antennen können dabei diskret aufgebaut sein oder als Leiterbahnstruktur ausgebildet sein. Die planierte Leiterbahnstruktur hat dabei den Vorteil, dass sie ohne zusätzliche Materialkosten auskommt, weil sie mit dem bereits vorhandenen Material einer Leiterplatte für die vorhandene elektronische Schaltung hergestellt werden kann. Eine Ausführungsform der planierten Antennenstruktur ist die oben genannte planare Inverses-F Antenne, die auch als Planar Inverted-F Antenna (PIFA) im Stand der Technik bekannt ist. Eine solche planare Inverses-F Antenne ist beispielsweise durch die WO 02/39547 A1 bekannt geworden.The antennas may be constructed discretely or be designed as a conductor track structure. The planarized conductor track structure has the advantage that it manages without additional material costs, because it can be produced with the existing material of a printed circuit board for the existing electronic circuit. One embodiment of the planarized antenna structure is the above-mentioned planar inverse-F antenna, which is also known as Planar Inverted-F Antenna (PIFA) in the prior art. Such a planar inverse-F antenna is for example by the WO 02/39547 A1 known.

Eine wichtige Einflussgröße auf die Leistungsfähigkeit der Funkverbindung der Datenverbindung ist die Eingangsimpedanz der Antenne. Die Eingangsimpedanz wird dabei für die Auslegung der Funkverbindung an die aktive Schaltung angepasst werden und sollte dazu innerhalb eines definierten Wertebereiches bleiben. Große Abweichungen der Eingangsimpedanz von dem festgelegten Sollwert führen dazu, dass die von der Sendesignalaufbereitung der benutzten Sendevorrichtung zur Verfügung gestellte Leistung nicht über die Antenne abgestrahlt wird, sondern in den Sender reflektiert und hier letztlich in Wärme umgesetzt wird.An important factor influencing the performance of the radio link of the data link is the input impedance of the antenna. The input impedance will be adapted for the design of the radio link to the active circuit and should remain within a defined range of values. Large deviations of the input impedance from the specified setpoint result in that the power provided by the transmission signal processing of the transmitting device used is not radiated via the antenna, but reflected in the transmitter and here is ultimately converted into heat.

Die Antenneneingangsimpedanz wird dabei auch maßgeblich durch die relative Dielektrizitätskonstante des Untergrundmaterials bzw. des Leiterplattenmaterials der planaren Antenne beeinflusst. Dieser Materialparameter des verwendeten Untergrundmaterials bzw. Leiterplattenmaterials unterliegt im Allgemeinen Herstellungstoleranzen, deren Begrenzung in der Produktion des Untergrunds mit erheblich erhöhten Produktionskosten verbunden ist.The antenna input impedance is also significantly influenced by the relative dielectric constant of the substrate material or of the printed circuit board material of the planar antenna. This material parameter of the substrate material or circuit board material used is generally subject to manufacturing tolerances, the limitation in the production of the substrate is associated with significantly increased production costs.

Darstellung der Erfindung: Aufgabe, Lösung, VorteileDESCRIPTION OF THE INVENTION: Problem, Solution, Advantages

Es ist die Aufgabe der Erfindung, eine sogenannte planare Antenne zu schaffen, welche hinsichtlich ihrer Eingangsimpedanz angepasst ist und dennoch kostengünstig in der Herstellung ist.It is the object of the invention to provide a so-called planar antenna, which is adapted in terms of their input impedance and yet is inexpensive to manufacture.

Dies wird erreicht mit den Merkmalen von Anspruch 1, wonach eine planare Antenne mit einer elektrisch leitenden Struktur und einem Trägermaterial geschaffen wird, deren vom Strahler austretende Feldlinien zum Teil in den Zwischenräumern der strahlenden elektrisch leitenden Struktur durch die Ebene des Trägermaterials verlaufen, welches zur Verringerung des Einflusses der Materialparameter auf die elektrischen Eigenschaften der Antenne und/oder des Trägermaterials zumindest teilweise oder ganz ausgespart ist.This is achieved with the features of claim 1, wherein a planar antenna is provided with an electrically conductive structure and a carrier material, the field lines emanating from the radiator extend partially in the Zwischenräumern the radiating electrically conductive structure through the plane of the support material, which for reducing the influence of the material parameters on the electrical properties of the antenna and / or the carrier material is at least partially or completely omitted.

Dies wird weiterhin erreicht mit den Merkmalen von Anspruch 2, wonach eine planare Antenne geschaffen wird mit einer Struktur mit zumindest einem ersten und einem zweiten Arm und mit einem diese Arme beispielsweise endseitig verbindenden dritten Arm, der gegebenenfalls im Wesentlichen senkrecht zu den beiden ersten und zweiten Armen ausgerichtet ist, wobei der erste Arm gegebenenfalls mit einem weiteren vierten Arm oder einer vergleichbaren Massefläche auf der Ober- oder Unterseite eines Trägermaterials elektrisch verbunden ist, und eine Struktur mit zumindest einem Feld bildet, wobei das zumindest eine Feld mit einer Öffnung versehen ist.This is further achieved with the features of claim 2, wherein a planar antenna is provided with a structure having at least a first and a second arm and a arms connecting these arms, for example end, third arm, which may be substantially perpendicular to the first two and second arms wherein the first arm is optionally electrically connected to a further fourth arm or a comparable ground plane on the top or bottom of a carrier material, and forms a structure with at least one field, wherein the at least one field is provided with an opening.

Dies Aufgabe der Erfindung wird auch erreicht mit den Merkmalen von Anspruch 3, wonach eine planare Inverses-F Antenne geschaffen wird mit einer Struktur mit einer inverses-F-Form mit jeweils einem parallelen ersten und zweiten Arm und mit einem diese Arme endseitig verbindenden dritten Arm, wobei einer der beiden ersten und zweiten Arme einen weiteren vierten Arm an einer Lücke durchgreift, wobei der andere der beiden ersten und zweiten Arme endseitig an oder nahe diesem weiteren vierten Arm angeordnet ist und die inverses-F-förmige Struktur zwei beispielsweise im Wesentlichen rechteckige Felder begrenzt wobei zumindest eines der Felder mit einer Öffnung versehen ist.This object of the invention is also achieved with the features of claim 3, wherein a planar inverse-F antenna is provided with a structure with an inverse F-shape, each with a parallel first and second arm and with these arms connecting end arms third arm wherein one of the first and second arms engages another fourth arm at a gap, the other of the first and second arms being disposed at or near said further fourth arm, and the inverse F-shaped structure being two substantially rectangular, for example Fields limited at least one of the fields is provided with an opening.

Vorteilhaft ist dabei, wenn beide Felder mit einer Öffnung versehen sind.It is advantageous if both fields are provided with an opening.

Auch ist es vorteilhaft, wenn die zumindest eine Öffnung eine Aussparung eines die Struktur tragenden Leiterplattenmaterials ist.It is also advantageous if the at least one opening is a recess of a printed circuit board material carrying the structure.

Dabei ist es vorteilhaft, wenn die zumindest eine Öffnung eine materialfreie Öffnung oder Aussparung ist.It is advantageous if the at least one opening is a material-free opening or recess.

Bei einem weiteren vorteilhaften Ausführungsbeispiel ist es zweckmäßig, wenn die zumindest eine Öffnung mit einem alternativen Material versehen ist.In a further advantageous embodiment, it is expedient if the at least one opening is provided with an alternative material.

Vorteilhaft ist, wenn die zumindest eine Aussparungen rechteckig ausgeführt ist, weil dadurch vorteilhaft maximal Material zwischen den Armen der Struktur entfernt werden kann.It is advantageous if the at least one recesses is rectangular, because advantageously maximum material between the arms of the structure can be removed.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Nachstehend wird die Erfindung auf der Grundlage eines Ausführungsbeispiels anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1
eine schematische Darstellung einer planaren Inverses-F Antenne nach dem Stand der Technik,
Fig. 2
eine schematische Darstellung einer erfindungsgemäßen planaren Inverses-F Antenne, und
Fig. 3
ein Diagramm des Eingangsreflexionsfaktors als Funktion der Frequenz.
The invention will be explained in more detail on the basis of an embodiment with reference to the drawings. Show it:
Fig. 1
a schematic representation of a planar inverse-F antenna according to the prior art,
Fig. 2
a schematic representation of a planar inverse F antenna according to the invention, and
Fig. 3
a diagram of the input reflection factor as a function of frequency.

Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

Die Figur 1 zeigt eine planare Inverses-F Antenne 1 nach dem Stand der Technik, bei welcher eine Struktur 2 mit einer inverses-F-Form mit zwei parallelen beispielsweise horizontalen Armen 3,4 und einem diese endseitig verbindenden senkrecht dazu angeordneten Arm 5 ausgebildet ist. Einer der beiden horizontalen parallelen Arme 3,4 durchgreift dabei einen weiteren senkrecht dazu angeordneten Arm 6 an einer Lücke 7, wobei der andere Arm 3,4 endseitig an diesem Arm 6 angeordnet ist. Die inverses-F-förmige Struktur 2 bildet bzw. umgrenzt dabei zwei rechteckige Felder 8,9. Das eine Feld 8 wird durch die beiden Arme 3,4 und die beiden Arme 5,6 begrenzt. Das weitere zweite Feld 9 wird an drei Seiten durch die Arme 5,6 und den Arm 4 begrenzt, wobei die vierte Seite des Feldes nicht durch einen Arm begrenzt wird. Üblicher Weise ist die Struktur 2 durch metallische Leiterbahnen gebildet, welche die Arme 3,4,5,6 ausbilden und welche auf eine Leiterplatte 10 vorgesehen sind, welche auch die Felder 8,9 bildet.The FIG. 1 shows a planar inverse-F antenna 1 according to the prior art, in which a structure 2 is formed with an inverse-F shape with two parallel, for example horizontal arms 3,4 and an end connecting perpendicular thereto arranged arm 5. One of the two horizontal parallel arms 3,4 engages through a further arm 6 arranged perpendicularly thereto at a gap 7, wherein the other arm 3,4 is arranged at the end of this arm 6. The inverse F-shaped structure 2 forms or delimits two rectangular fields 8, 9. The one field 8 is bounded by the two arms 3,4 and the two arms 5,6. The further second panel 9 is bounded on three sides by the arms 5, 6 and the arm 4, the fourth side of the panel not being bounded by an arm. Normally, the structure 2 is formed by metallic tracks, which form the arms 3,4,5,6 and which are provided on a circuit board 10, which also forms the fields 8,9.

Die Figur 2 zeigt eine erfindungsgemäße planare Inverses-F Antenne 11, bei welcher eine Struktur 12 mit einer inverse-F-Form mit zwei parallelen beispielsweise horizontalen Armen 13,14 und einem diese endseitig verbindenden senkrecht dazu ausgerichteten Arm 15 ausgebildet ist. Einer der beiden parallelen horizontalen Arme 13,14 durchgreift dabei einen weiteren senkrecht dazu ausgerichteten Arm 16 an einer Lücke 17, wobei der andere Arm 13,14 endseitig an oder nahe diesem Arm 16 angeordnet ist. Die inverses-F-förmige Struktur 12 bildet bzw. umgrenzt dabei zwei rechteckige Felder 18,19. Das eine Feld 18 wird durch die beiden Arme 15,16 und die beiden Arme 5,6 begrenzt. Das weitere zweite Feld 19 wird an drei Seiten durch die Arme 15,16 und den Arm 14 begrenzt, wobei die vierte Seite des Feldes nicht durch einen Arm begrenzt wird. Die Struktur 12 wird dabei vorteilhaft durch metallische Leiterbahnen gebildet, welche die Arme 13,14,15,16 ausbilden und welche auf einem Untergrund, wie eine Leiterplatte 22, vorgesehen sind, welche auch die Felder 18,19 ausbildet oder aufnimmt. Erfindungsgemäß sind die Felder 18,19 derart weitergebildet, dass zumindest in einem der Felder 18,19 eine Öffnung 20,21 vorgesehen ist, welche vorteilhaft materialfrei ausgeführt ist, d.h., dass das Material der Leiterplatte 22 an der Stelle der Öffnung 20,21 entfernt ist. Im Ausführungsbeispiel der Figur 2 weisen beide Felder 18,19 jeweils eine Aussparung 20,21 auf, wobei beide Aussparungen 20,21 vorteilhaft rechteckig ausgeführt sind. Dabei kann die Aussparung 21 derart ausgebildet sein, dass zwischen dem Arm 15 und dem Arm 16 zwei Stege verbleiben, ein Steg im Bereich des Arms 14 und ein Steg 23 am Endbereich des Arms 15 an seinem dem Arm 13 abgewandten Ende. Dies erreicht eine höhere mechanische Stabilität der Antennenstruktur 12.The FIG. 2 shows a planar inverse-F antenna 11 according to the invention, in which a structure 12 is formed with an inverse F-shape with two parallel, for example, horizontal arms 13,14 and this end connecting perpendicular thereto aligned arm 15. In this case, one of the two parallel horizontal arms 13, 14 passes through another arm 16 oriented perpendicular to it at a gap 17, wherein the other arm 13, 14 is arranged at the end on or near this arm 16. The inverse-F-shaped structure 12 forms or delimits two rectangular fields 18, 19. The one field 18 is delimited by the two arms 15, 16 and the two arms 5, 6. The further second panel 19 is limited on three sides by the arms 15,16 and the arm 14, wherein the fourth side of the field is not limited by an arm. The structure 12 is advantageously formed by metallic tracks, which form the arms 13,14,15,16 and which are provided on a substrate, such as a printed circuit board 22, which also forms or receives the fields 18,19. According to the fields 18,19 are further developed such that at least in one of the fields 18,19 an opening 20,21 is provided, which is advantageously carried out material-free, ie, that the material of the circuit board 22 at the location of the opening 20,21 removed is. In the embodiment of FIG. 2 both fields 18,19 each have a recess 20,21, wherein both recesses 20,21 are advantageously carried out rectangular. In this case, the recess 21 may be formed such that between the arm 15 and the arm 16 two webs remain, a web in the region of the arm 14 and a web 23 at the end of the arm 15 at its end facing away from the arm 13. This achieves a higher mechanical stability of the antenna structure 12.

Gemäß einem weiteren Ausführungsbeispiel kann statt der zumindest einen materialfreien Öffnung 20,21 ggf. auch ein weiteres Material in den Bereich der Öffnungen 20,21 eingeführt sein.According to a further embodiment, instead of the at least one material-free opening 20,21 may optionally be introduced into the region of the openings 20,21 also another material.

Die Öffnungen 20,21 erlauben eine geringere Abhängigkeit der Antenneneingangsimpedanz von der relativen Dielektrizitätskonstante des Materials der Leiterplatte bzw. des Untergrunds der planaren Antenne. Dadurch verlaufen weniger Feldlinien innerhalb des Leiterplatten bzw. innerhalb des Untergrundmaterials und der Einfluss der Dielektrizitätskonstante des Materials der Leiterplatte bzw. des Untergrunds auf die Antenneneigenschaften wird vorteilhaft reduziert. Vorteilhaft wird dabei bzw. anschließend die Antennengeometrie an die dielektrischen Verhältnisse angepasst. Dies kann beispielsweise durch die Wahl der Anschlussgeometrie oder des Ankoppelungspunktes erfolgen.The openings 20,21 allow less dependence of the antenna input impedance of the relative dielectric constant of the material of the circuit board or the ground of the planar antenna. As a result, fewer field lines run within the printed circuit board or within the substrate material, and the influence of the dielectric constant of the material of the printed circuit board or of the substrate on the antenna properties is advantageously reduced. In this case, the antenna geometry is advantageously adapted to the dielectric conditions. This can be done, for example, by choosing the connection geometry or the coupling point.

Die Figur 3 zeigt ein Diagramm zur Darstellung des Eingangsreflexionsfaktors der Antenne als Funktion der Frequenz bei verschiedenen Dielektrizitätskonstanten in einem Bereich der Dielektrizitätskonstante zwischen 3,85 und 4,65. Die Antenne ist dabei für einen Frequenzbereich zwischen 2,4GHz und 2,48GHz ausgelegt. Die Anpassung der Antenne wurde dabei auf einen minimalen Eingangsreflexionsfaktor ausgelegt. Während bei der Struktur nach Figur 1 der Eingangsreflexionsfaktor in Abhängigkeit der relativen Dielektrizitätskonstanten um 71 MHz variiert, konnte die Toleranz bei einer Antenne nach Figur 2 vorteilhaft auf 42 MHz eingeschränkt werden.The FIG. 3 Figure 12 is a graph showing the input reflection factor of the antenna as a function of frequency at various dielectric constants in a range of dielectric constant between 3.85 and 4.65. The antenna is designed for a frequency range between 2.4GHz and 2.48GHz. The adaptation of the antenna was designed for a minimum input reflection factor. While at the structure after FIG. 1 The input reflection factor varied by 71 MHz as a function of the relative dielectric constant FIG. 2 be advantageously limited to 42 MHz.

Claims (8)

Planare Antenne mit einer elektrisch leitenden Struktur und einem Trägermaterial, deren vom Strahler austretende Feldlinien zum Teil in den Zwischenräumern der strahlenden elektrisch leitenden Struktur durch die Ebene des Trägermaterials verlaufen, welches zur Verringerung des Einflusses der Materialparameter auf die elektrischen Eigenschaften der Antenne und/oder des Trägermaterials zumindest teilweise oder ganz ausgespart ist.Planar antenna having an electrically conductive structure and a carrier material whose field lines emanating from the radiator extend in part through the plane of the carrier material in the interspaces of the radiating electrically conductive structure, which reduces the influence of the material parameters on the electrical properties of the antenna and / or the antenna Carrier material is at least partially or completely recessed. Planare Antenne mit einer Struktur (12) mit zumindest einem ersten und einem zweiten Arm (13,14) und mit einem diese Arme beispielsweise endseitig verbindenden dritten Arm (15), der im Wesentlichen senkrecht zu den beiden ersten und zweiten Armen (13, 14) ausgerichtet ist, wobei der erste Arm (13) gegebenenfalls mit einem weiteren vierten Arm (16) oder einer vergleichbaren Massefläche auf der Ober- oder Unterseite eines Trägermaterials (22) elektrisch verbunden ist, und eine Struktur (12) mit zumindest einem Feld (18,19) bildet, dadurch gekennzeichnet, dass das zumindest eine Feld (18,19) mit einer Öffnung (20,21) versehen ist.A planar antenna having a structure (12) with at least a first and a second arm (13, 14) and with a third arm (15) connecting these arms at the end, for example, which is substantially perpendicular to the two first and second arms (13, 14 ), wherein the first arm (13) is optionally electrically connected to a further fourth arm (16) or a comparable ground surface on the upper or lower side of a carrier material (22), and a structure (12) having at least one field ( 18, 19), characterized in that the at least one panel (18, 19) is provided with an opening (20, 21). Planare inverses-F Antenne mit eine Struktur (12) mit einer inverses-F-Form mit jeweils einem parallelen ersten und zweiten Arm (13,14) und mit einem diese Arme endseitig verbindenden dritten Arm (15), wobei ein Arm (14) einen weiteren vierten Arm (16) an einer Lücke (17) durchgreift und an einen Wellenleiter angeschlossen ist, der die abzustrahlende Energie zuführt, wobei der andere der beiden ersten und zweiten Arme (13,14) endseitig an oder nahe diesem weiteren vierten Arm (16) angeordnet ist und die inverses-F-förmige Struktur (12) zwei Felder (18,19) begrenzt, dadurch gekennzeichnet, dass zumindest eines der Felder (18,19) mit einer Öffnung (20,21) versehen ist.Planar inverse-F antenna having a structure (12) with an inverse F-shape, each having a parallel first and second arm (13, 14) and a third arm (15) connecting said arms at its end, one arm (14) a further fourth arm (16) passes through a gap (17) and is connected to a waveguide which supplies the energy to be radiated, the other of the two first and second arms (13, 14) being at the end or adjacent to this further fourth arm (13) 16) and the inverse F-shaped structure (12) delimits two panels (18, 19), characterized in that at least one of the panels (18, 19) is provided with an opening (20, 21). Antenne nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass eines oder beide Felder (18,19) mit einer Öffnung (20,21) versehen sind.Antenna according to claim 1, 2 or 3, characterized in that one or both panels (18, 19) are provided with an opening (20, 21). Antenne nach Anspruch 1, 2, 3 oder 4, dadurch gekennzeichnet, dass die zumindest eine Öffnung (20,21) eine Aussparung eines die Struktur (12) tragenden Leiterplattenmaterials ist.An antenna according to claim 1, 2, 3 or 4, characterized in that the at least one opening (20, 21) is a recess of a printed circuit board material carrying the structure (12). Antenne nach Anspruch 1, 2, 3, 4 oder 5, dadurch gekennzeichnet, dass die zumindest eine Öffnung (20,21) eine materialfreie Aussparung ist.Antenna according to claim 1, 2, 3, 4 or 5, characterized in that the at least one opening (20, 21) is a material-free recess. Antenne nach Anspruch 1, 2, 3, 4 oder 5, dadurch gekennzeichnet, dass die zumindest eine Öffnung (20,21) mit einem alternativen Material versehen ist.Antenna according to claim 1, 2, 3, 4 or 5, characterized in that the at least one opening (20, 21) is provided with an alternative material. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Aussparungen (20,21) rechteckig ausgeführt ist.Antenna according to one of the preceding claims, characterized in that the at least one recesses (20,21) is rectangular.
EP09100288A 2008-07-04 2009-05-25 Planar antenna Withdrawn EP2146393A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810040185 DE102008040185A1 (en) 2008-07-04 2008-07-04 Planar antenna

Publications (1)

Publication Number Publication Date
EP2146393A1 true EP2146393A1 (en) 2010-01-20

Family

ID=40974680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09100288A Withdrawn EP2146393A1 (en) 2008-07-04 2009-05-25 Planar antenna

Country Status (2)

Country Link
EP (1) EP2146393A1 (en)
DE (1) DE102008040185A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476143B1 (en) 2018-09-26 2019-11-12 Lear Corporation Antenna for base station of wireless remote-control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757405A1 (en) * 1995-08-03 1997-02-05 Nokia Mobile Phones Ltd. Antenna
WO2002039547A1 (en) 2000-11-07 2002-05-16 Siemens Aktiengesellschaft Inverted-f antenna
US20040119643A1 (en) * 2002-12-19 2004-06-24 Accton Technology Corporation Planar inverted-f antenna and application system thereof
WO2007042614A1 (en) * 2005-10-10 2007-04-19 Pulse Finland Oy Internal antenna
US20070241967A1 (en) * 2006-04-17 2007-10-18 Chieh-Sheng Hsu Portable device and antenna thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757405A1 (en) * 1995-08-03 1997-02-05 Nokia Mobile Phones Ltd. Antenna
WO2002039547A1 (en) 2000-11-07 2002-05-16 Siemens Aktiengesellschaft Inverted-f antenna
US20040119643A1 (en) * 2002-12-19 2004-06-24 Accton Technology Corporation Planar inverted-f antenna and application system thereof
WO2007042614A1 (en) * 2005-10-10 2007-04-19 Pulse Finland Oy Internal antenna
US20070241967A1 (en) * 2006-04-17 2007-10-18 Chieh-Sheng Hsu Portable device and antenna thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476143B1 (en) 2018-09-26 2019-11-12 Lear Corporation Antenna for base station of wireless remote-control system

Also Published As

Publication number Publication date
DE102008040185A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
EP0557794B1 (en) Glass antenna mounted into the window cutout of a metallic motorcar body
DE69936903T2 (en) Antenna for two frequencies for radio communication in the form of a microstrip antenna
DE102005047418B4 (en) Multi-band antenna device, wireless data transmission device and radio frequency chip
EP1825561B1 (en) Antenna assembly for a radar transceiver
DE102007056258A1 (en) Chip antenna and mobile telecommunication terminal, which has these
AT508750B1 (en) DEVICE FOR TRANSFERRING HIGH-FREQUENCY SIGNALS
DE19602657A1 (en) Mobile telephone aerial for securing to vehicle glass surface
DE10051661A1 (en) Antenna with high frequency circuit, used as communication antenna, has antenna element connected to high frequency circuit formed in dielectric disk through conductor
DE102008007258A1 (en) Multi-band antenna and mobile communication terminal, which has these
DE19922699C2 (en) Antenna with at least one vertical radiator
DE112019000636T5 (en) Antenna device, window glass for a vehicle, and window glass structure
DE112008001688T5 (en) Antenna system for the remote control of an application in the automotive sector
WO2004095634A2 (en) Fixture for mobile radio equipment in a vehicle
EP1323207A1 (en) Mobile telephone comprising a multi-band antenna
DE19983744B4 (en) antenna device
DE102004045707A1 (en) antenna
DE102010019904A1 (en) Arrangement for wireless connection of wireless device i.e. mobile phone, to high-frequency line, has electrically conductive layer deposited on surface for receiving radio waves from coupling antenna, and strip line applied on surface
DE112019002128T5 (en) Vehicle antenna, window pane with fixed vehicle antenna and antenna system
EP1769564B1 (en) Device and method for transmitting/receiving electromagnetic hf signals
EP1454381A1 (en) Wide band slot cavity antenna
DE102017123342A1 (en) TO housing with high reflection loss
EP1606853B1 (en) Antenna coupler and mount for mobile radio terminals
DE10331213B4 (en) Glass antenna for the LMK and diversified FM reception of mobile vehicles
DE10210341A1 (en) Multi-band microwave antenna
EP2146393A1 (en) Planar antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20100720

17Q First examination report despatched

Effective date: 20100813

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120424