EP2144959B1 - Elastic particle foam based on polyolefin/styrene polymer mixtures - Google Patents
Elastic particle foam based on polyolefin/styrene polymer mixtures Download PDFInfo
- Publication number
- EP2144959B1 EP2144959B1 EP20080735092 EP08735092A EP2144959B1 EP 2144959 B1 EP2144959 B1 EP 2144959B1 EP 20080735092 EP20080735092 EP 20080735092 EP 08735092 A EP08735092 A EP 08735092A EP 2144959 B1 EP2144959 B1 EP 2144959B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymer
- weight
- thermoplastic
- particles
- foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 239000002245 particle Substances 0.000 title claims abstract description 67
- 239000006260 foam Substances 0.000 title claims abstract description 49
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 title claims description 28
- 229920002959 polymer blend Polymers 0.000 title claims description 20
- 229920000098 polyolefin Polymers 0.000 title claims description 20
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 41
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 18
- 210000004027 cell Anatomy 0.000 claims abstract description 14
- 210000000170 cell membrane Anatomy 0.000 claims abstract description 6
- 239000011148 porous material Substances 0.000 claims abstract description 6
- 239000000835 fiber Substances 0.000 claims abstract description 5
- 229920000642 polymer Polymers 0.000 claims description 51
- 239000012071 phase Substances 0.000 claims description 21
- 239000004604 Blowing Agent Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 11
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 11
- 238000010097 foam moulding Methods 0.000 claims description 9
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 230000000717 retained effect Effects 0.000 claims description 3
- 239000008346 aqueous phase Substances 0.000 claims description 2
- 238000005453 pelletization Methods 0.000 claims 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- -1 Polyethylen Polymers 0.000 description 18
- 239000004793 Polystyrene Substances 0.000 description 17
- 229920002223 polystyrene Polymers 0.000 description 16
- 239000003380 propellant Substances 0.000 description 15
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 14
- 238000000465 moulding Methods 0.000 description 14
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 14
- 229920000573 polyethylene Polymers 0.000 description 13
- 239000004698 Polyethylene Substances 0.000 description 12
- 239000008187 granular material Substances 0.000 description 9
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 8
- 239000002667 nucleating agent Substances 0.000 description 8
- 230000003068 static effect Effects 0.000 description 7
- 238000003917 TEM image Methods 0.000 description 6
- 229920001400 block copolymer Polymers 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000005469 granulation Methods 0.000 description 6
- 230000003179 granulation Effects 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 239000000454 talc Substances 0.000 description 6
- 229910052623 talc Inorganic materials 0.000 description 6
- 235000012222 talc Nutrition 0.000 description 6
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 229920002633 Kraton (polymer) Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 4
- 210000002421 cell wall Anatomy 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001993 dienes Chemical class 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 229920002367 Polyisobutene Polymers 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 238000011326 mechanical measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- 239000001692 EU approved anti-caking agent Substances 0.000 description 1
- 229920002438 Oppanol® B 150 Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920003182 Surlyn® Polymers 0.000 description 1
- 239000005035 Surlyn® Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229920005669 high impact polystyrene Polymers 0.000 description 1
- 239000004797 high-impact polystyrene Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 230000002535 lyotropic effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010420 shell particle Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/10—Applying counter-pressure during expanding
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
- C08J9/18—Making expandable particles by impregnating polymer particles with the blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/224—Surface treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2453/00—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249978—Voids specified as micro
Definitions
- the invention relates to thermoplastic particle foams having cells of average cell size in the range of 20 to 500 microns, in which the cell membranes have a nanocellular or fibrous structure with pore or fiber diameter below 1500 nm, and to processes for their preparation.
- Expandable polymer mixtures of styrene polymers, polyolefins and optionally solubilizers, such as hydrogenated styrene-butadiene block copolymers are, for example DE 24 13 375 . DE 24 13 408 or DE 38 14 783 known.
- the foams obtainable therefrom are said to have better mechanical properties than foams of styrene polymers, in particular better elasticity and lower brittleness at low temperatures, and insensitivity to solvents such as ethyl acetate and toluene.
- the propellant holding capacity and the foamability of the expandable polymer blends at low densities are not sufficient for processing.
- the WO 2005/056652 describes particle foam moldings having a density in the range of 10 to 100 g / l, which are obtainable by welding prefoamed foam particles of expandable, thermoplastic polymer granules.
- the polymer granules contain mixtures of styrenic polymers and other thermoplastic polymers and can be obtained by melt impregnation followed by pressurized underwater granulation.
- elastic particle foams made of expandable interpolymer particles are known (eg. US 2004/0152795 A1 ).
- the interpolymers are obtainable by polymerization of styrene in the presence of polyolefins in aqueous suspension and form an interpenetrating network of styrenopolymers and olefin polymers. From the expandable polymer particles, however, the blowing agent diffuses out quickly, so that they must be stored at low temperatures and only a short time have sufficient foamability.
- the WO 2005/092959 describes nanoporous polymer foams obtainable from propellant-containing multiphase polymer blends with domains in the range of 5 to 200 nm.
- the domains consist of a shell-shell particle obtainable by emulsion polymerization in which the solubility of the blowing agent is at least twice as high as in the adjacent phases.
- the object of the present invention was to provide expandable, thermoplastic polymer particles with low blowing agent loss and high expansion capacity, which can be processed into particle foams with high rigidity and at the same time good elasticity, and a process for their preparation.
- thermoplastic particulate foams Accordingly, the above-described thermoplastic particulate foams have been found.
- thermoplastic particle foams preferably have cells of average cell size in the range of 50 to 250 microns and a nanocellular structure or a fibrous stretched, disperse phase structure in the cell walls of the thermoplastic particle foams with a mean pore or fiber diameter in the range of 10 to 1000 nm, especially preferably in the range of 100 to 500 nm.
- FIG. 1 shows a section through the cells of a thermoplastic particle foam according to the invention.
- FIG. 2 shows a 10x enlarged detail of the in FIG. 1 shown cell structure with a nanocellular cell wall.
- the polymer matrix of the thermoplastic particle foams preferably consists of a continuous, styrene polymer-rich phase and a dispersed polyolefin-rich phase.
- the polymer mixture in step b) can also be granulated first and the granules subsequently re-impregnated in the aqueous phase under pressure and elevated temperature with a blowing agent to form expandable thermoplastic polymer particles. These can then be isolated after cooling below the melt temperature of the polymer matrix or obtained directly by pressure release as prefoamed foam particles (stage c).
- the polymer mixture having a continuous and a disperse phase can be prepared by mixing two incompatible thermoplastic polymers, for example in an extruder.
- the polymer mixture preferably contains 45 to 98.9% by weight, particularly preferably 55 to 89.9% by weight of a thermoplastic polymer A), in particular styrene polymers such as standard (GPPS) or impact polystyrene (HIPS) or styrene-acrylonitrile copolymers (SAN) or acrylonitrile-butadiene-styrene copolymers (ABS).
- GPPS standard
- HIPS impact polystyrene
- SAN styrene-acrylonitrile copolymers
- ABS acrylonitrile-butadiene-styrene copolymers
- Standard polystyrene types are particularly preferred having weight average molecular weights ranging from 120,000 to 300,000 g / mol and a melt volume rate MVR (200 ° C / 5 kg) according to ISO 113 in the range of 1 to 10 cm 3/10 min, for example PS 158 K, 168 N or 148 G of BASF Aktiengesellschaft.
- MVR melt volume rate
- the polymer mixture contains preferably 1 to 45 percent by weight, in particular 4 to 37 wt .-% of an incompatible with the thermoplastic polymer A), also thermoplastic polymer B).
- polymer B) is preferably a polyolefin, for. B. homo- or copolymers of ethylene and / or propylene, in particular polyethylene used, in particular when a styrene polymer is used as the polymer A).
- injection molding grades come as polypropylenes, such as Adstif® RA 748 T or impact types such as Clyrell® EM 2484 from Basell into consideration.
- Suitable polyethylenes are commercially available homopolymers of ethylene, such as PE-LD (injection molding types), LLD, -HD, or copolymers of ethylene and propylene (for example Moplen® RP220 and Moplen® RP320 from Basell), ethylene and octene (Engage® ) or ethylene and vinyl acetate (EVA), polyethylene acrylates (EA) such as Surlyn® types 1901 and 2601 from DuPont or ethylene-butylene acrylates (EBA) such as Lucofin® 1400 HN, 1400 HM from Lucobit AG.
- PE-LD injection molding types
- LLD low density low density polyethylene
- -HD low density polyethylene
- copolymers of ethylene and propylene for example Moplen® RP220 and Moplen® RP320 from Basell
- Engage® ethylene and octene
- EVA ethylene and vinyl acetate
- EA polyethylene acrylates
- the melt volume index MVI (190 ° C / 2.16 kg) of the polyethylenes is usually in the range of 0.5 to 40 g / 10 min, the density in the range of 0.86 to 0.97 g / cm 3 , preferably in the range from 0.91 to 0.95 g / cm 3 .
- PIB polyisobutene
- compatibilizer for targeted adjustment of the desired morphology are usually compatibilizer (component C) in amounts of 0.1 to 10 wt .-%, preferably 3 to 8 wt .-%, based on the polymer matrix used.
- the compatibilizer leads to improved adhesion between the polyolefin-rich and the polystyrene-rich phase and improves the elasticity of the foam even in small amounts compared to conventional EPS foams. Investigations of the domain size of the polyolefin-rich phase showed that the compatibilizer stabilized small droplets by reducing the interfacial tension.
- the electron micrograph of a section through a blowing agent-containing, expandable polystyrene / polyethylene shows disperse polyethylene domains in the polystyrene matrix.
- hydrogenated or unhydrogenated styrene-butadiene or styrene-isoprene block copolymers are suitable for this purpose.
- the total diene content is preferably in the range from 20 to 60% by weight, particularly preferably in the range from 30 to 50% by weight, the total styrene content is correspondingly preferably in the range from 40 to 80% by weight, particularly preferably in the region of 50 to 70% by weight.
- Suitable styrene-butadiene block copolymers which consist of at least two polystyrene blocks S and at least one styrene-butadiene copolymer block S / B, are, for example, star-branched block copolymers, such as those in EP-A 0654488 are described.
- block copolymers having at least two hard blocks S 1 and S 2 of vinylaromatic monomers having at least one intermediate random soft block B / S of vinylaromatic monomers and diene are suitable, the proportion of hard blocks being more than 40% by weight, based on the total block copolymer and the 1,2-vinyl content in soft block B / S is below 20%, as in WO 00/58380 are described.
- Suitable compatibilizers are linear styrene-butadiene block copolymers of the general structure S- (S / B) -S lying with one or more, between the two S blocks, a random styrene / butadiene distribution having blocks (S / B) random , suitable.
- Such block copolymers are obtainable by anionic polymerization in a non-polar solvent with the addition of a polar cosolvent or a potassium salt, such as in WO 95/35335 respectively.
- WO 97140079 described.
- the vinyl content is understood to mean the relative proportion of 1,2-linkages of the diene units, based on the sum of the 1,2-, 1,4-cis and 1,4-trans linkages.
- the 1,2-vinyl content in the styrene-butadiene copolymer block (S / B) is preferably below 20%, in particular in the range from 10 to 18%, particularly preferably in the range from 12 to 16%.
- Preferred compatibilizers are styrene-butadiene-styrene (SBS) triblock copolymers having a butadiene content of from 20 to 60% by weight, preferably from 30 to 50% by weight, which may be hydrogenated or unhydrogenated.
- SBS styrene-butadiene-styrene
- These are for example under the name Styroflex® 2G66, Styrolux® 3G55, Styroclear® GH62, Kraton® D 1101, Kraton® G 1650, Kraton® D 1155, Tuftec® H1043 or Europren® SOL 6414 commercially.
- SBS block copolymers with sharp transitions between B and S blocks.
- An improvement in compatibility can be achieved additionally by hydrogenating the butadiene blocks, for. B. Kraton® G types.
- additives may be added to the multiphase polymer mixture in amounts that do not interfere with the domain formation and resulting foam structure.
- polyolefin waxes or talc may additionally be added in amounts of 0 to 5, preferably 0.5 to 3 wt .-%, based on the polymers A) to C).
- blowing agent (component D) in step b) preferably 1 to 15 weight percent, preferably 3 to 10 weight percent, based on the polymer mixture A) to C) of a physical blowing agent, such as aliphatic C 3 to C 8 hydrocarbons, alcohols, ketones , Ethers or halogenated hydrocarbons used. Preference is given to using isobutane, n-butane, isopentane, n-pentane or isohexane.
- Suitable co-propellants are those having a lower selectivity of solubility for the domain-forming phase, for example, gases such as CO 2 , N 2 , fluorocarbons or noble gases. These are preferably used in amounts of from 0 to 10% by weight, based on the polymer mixture.
- the propellant loaded melt may then be extruded through a corresponding die into foam sheets, strands or particles and cut.
- the melt emerging from the nozzle can also be cut directly into expandable or selectively foamed polymer particles.
- the setting of the appropriate backpressure and a suitable temperature in the water bath of the UWG thus allows a targeted production of foam particles to allow.
- the expandable polymer particles In order to produce the expandable polymer particles, underwater granulation is generally carried out at pressures in the range from 1.5 to 10 bar.
- the nozzle plate usually has several nests with several holes. With a hole diameter in the range of 0.2 to 1 mm, expandable polymer particles having the preferred mean particle diameter in the range of 0.5 to 1.5 mm.0.8 mm are obtained. Expandable polymer particles with narrow particle size distribution and an average particle diameter in the range of 0.6 to 0.8 mm lead to a better filling of the molding machine with filigree molding design. Furthermore, this achieves a better molding surface with less gusset volume.
- the resulting round or oval particles are foamed to a diameter in the range of 0.2 to 10 mm. Its bulk density is preferably in the range of 10 to 100 g / l.
- the average diameter of the disperse phase of the polymer mixture prepared in step a) is preferably in the range from 1 to 2000 nm, particularly preferably in the range from 100 to 1500 nm.
- the final expandable thermoplastic polymer particles may be coated by glycerol esters, antistatic agents or anticaking agents.
- the welding of the prefoamed foam beads to the molding and the resulting mechanical properties are improved in particular by coating the expandable thermoplastic polymer particles with a glycerol stearate.
- the expandable, thermoplastic polymer particles according to the invention can be prefoamed by means of hot air or steam to foam particles having a density in the range of 8 to 200 kg / m 3 , preferably in the range of 10 to 50 kg / m 3 and then welded in a closed mold into foam moldings.
- Component A Polystyrene PS 158K from BASF SE
- Component B polyethylene
- Component D Propellant: pentane S (20% iso-pentane, 80% n-pentane)
- Nucleating agent talcum (HP 320, Omyacarb)
- talcum HP 320, omyacarb
- nucleating agent in the form of a 2.2% by weight polystyrene PS 158 K batch
- talcum HP 320, omyacarb
- the melt was extruded through a heated perforated plate (4 holes with 0.65 mm bore and 280 ° C perforated plate temperature).
- the propellant-containing granules were processed in an EPS prefoamer to foam beads of low density (15-25 g / L prefoamed) and in an EPS molding machine at an overpressure of 0.7 - 1.1 bar to form parts.
- Example 1 expandable thermoplastic mixtures were prepared with the composition shown in Table 1 in parts by weight. The density and cell number of the foam particles after pre-foaming are summarized in Table 2.
- the propellant content of the minigranules was determined immediately after preparation and after 7 days storage on filter paper at room temperature and atmospheric pressure by GC analysis.
- Table 3 shows the deformation residue ⁇ rest of the foam moldings, determined from the single hysteresis at 75% compression (feed 5 mm / min) according to ISO 3386-1.
- the residual strain ⁇ rest is the percentage after 75% compression, which is missing from the original height of the compressed body.
- a significant elastification is observed in comparison to pure EPS, which is recognizable by the very high recovery capacity.
- Example 1 0.3% by weight of a coating composition was drummed onto the surface of the propellant-containing granulate from Example 1 in a Lödige mixer. After a reaction time of 4 hours, the coated, blowing agent-containing granules were prefoamed as in Example 1 and welded into moldings.
- glycerol tristearate GTS
- GTS glycerol tristearate
- GMS glycerol monostearate
- silica silica
- the coating agent had a positive effect on the welding of the prefoamed foam beads to the molding.
- the flexural strength of the moldings obtained according to Example 4 and 5 could be increased to 220 or 227 KPa against 150 kPa of the moldings obtained from the uncoated granules according to Example 1.
- the melt was extruded at 4 kg / h through a heated perforated plate (4 holes with 0.65 mm bore and 280 ° C orifice plate temperature).
- the weight proportions of components A to C) are summarized in Table 4.
- the polymer melt was pressed at 50 kg / h through a tempered to 240-260 ° C perforated plate at 200-220 bar (0.6 mm hole diameter with 7 nests x 7 holes or 0.4 mm Hole diameter with 7 nests x 10 holes).
- the weight proportions of components A to C) are summarized in Table 4.
- the propellant-containing granules were processed in an EPS prefoamer to foam beads of low density (15-25 g / L prefoamed) and in an EPS molding machine at an overpressure of 0.7 - 1.1 bar to form parts.
- Table 4 shows the deformation residue ⁇ rest of the foam moldings, determined from the single hysteresis at 75% compression (feed 5 mm / min) according to ISO 3386-1.
- the residual strain ⁇ rest is the percentage after 75% compression, which is missing from the original height of the compressed body.
- a clear elastification is observed in comparison to pure EPS, which is recognizable by the very high recovery capacity.
- the transmission electron micrograph shows the disperse distribution of the polyethylene in the propellant-containing minigranulate, which after foaming contributes to elastification in the foam.
- the PE domains of the propellant loaded minigranules are in the order of 200 to 1000 nm.
- the coating components used were 70% by weight of glycerol tristearate (GTS) and 30% by weight of glycerol monostearate (GMS).
- GTS glycerol tristearate
- GMS glycerol monostearate
- the coating agent had a positive effect on the welding of the prefoamed foam beads to the molding.
- the flexural strength to 250 or 310 KPa over 150 kPa of the moldings obtained from the uncoated granules are increased.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Die Erfindung betrifft thermoplastische Partikelschaumstoffe mit Zellen einer mittleren Zellgröße im Bereich von 20 bis 500 µm, in denen die Zellmembranen eine nanozellulären oder faserförmigen Struktur mit Poren- bzw. Faserdurchmesser unter 1500 nm aufweisen, sowie Verfahren zu ihrer Herstellung.The invention relates to thermoplastic particle foams having cells of average cell size in the range of 20 to 500 microns, in which the cell membranes have a nanocellular or fibrous structure with pore or fiber diameter below 1500 nm, and to processes for their preparation.
Expandierbare Polymermischungen aus Styrolpolymeren, Polyolefinen und gegebenenfalls Lösungsvermittlern, wie hydrierte Styrol-Butadien-Blockcopolymeren, sind beispielsweise aus
Die
Des Weiteren sind elastische Partikelschaumstoffe aus expandierbaren Interpolymerpartikeln bekannt (z. B.
Die
Aufgabe der vorliegenden Erfindung war es, expandierbare, thermoplastische Polymerpartikel mit geringem Treibmittelverlust und hohem Expansionsvermögen bereitzustellen, die zu Partikelschaumstoffen mit hoher Steifigkeit und gleichzeitig guter Elastizität verarbeitbar sind, sowie ein Verfahren zu deren Herstellung.The object of the present invention was to provide expandable, thermoplastic polymer particles with low blowing agent loss and high expansion capacity, which can be processed into particle foams with high rigidity and at the same time good elasticity, and a process for their preparation.
Demgemäß wurden die oben beschriebenen thermoplastischen Partikelschaumstoffe gefunden.Accordingly, the above-described thermoplastic particulate foams have been found.
Die thermoplastischen Partikelschaumstoffe weisen bevorzugt Zellen einer mittleren Zellgröße im Bereich von 50 bis 250 µm und eine nanozelluläre Struktur oder eine faserförmig verstreckte, disperse Phasenstruktur in den Zellwänden der thermoplastischen Partikelschaumstoffe mit einem mittleren Poren- bzw- Faserdurchmesser im Bereich von 10 bis 1000 nm, besonders bevorzugt im Bereich von 100 bis 500 nm auf.The thermoplastic particle foams preferably have cells of average cell size in the range of 50 to 250 microns and a nanocellular structure or a fibrous stretched, disperse phase structure in the cell walls of the thermoplastic particle foams with a mean pore or fiber diameter in the range of 10 to 1000 nm, especially preferably in the range of 100 to 500 nm.
In der transmissionselektronenmikroskopischen Aufnahme (TEM) ist die Zellstruktur mit nanozellulären Zellwänden und Stegen zu erkennen.
Die Polymermatrix der thermoplastischen Partikelschaumstoffe bestehen bevorzugt aus einer kontinuierlichen, Styrolpolymer-reichen Phase und eine dispersen Polyolefin-reichen Phase.The polymer matrix of the thermoplastic particle foams preferably consists of a continuous, styrene polymer-rich phase and a dispersed polyolefin-rich phase.
Besonders bevorzugt enthalten die thermoplastischen Partikelschaumstoffen eine Polymermatrix aus
- A) 45 bis 98,9 Gew.-%, insbesondere 55 bis 89,9 Gew.-% eines Styrolpolymeren, insbesondere Polystyrol,
- B) 1 bis 45 Gew.-%, insbesondere 4 bis 37 Gew.-% eines Polyolefins, insbesondere Polyethylen und
- C) 0,1 bis 10 Gew.-%, insbesondere 3 bis 8 Gew.-% eines hydrierten oder unhydrierten Styrol-Butadien-Blockcopolymeren.
- A) from 45 to 98.9% by weight, in particular from 55 to 89.9% by weight, of a styrene polymer, in particular polystyrene,
- B) 1 to 45 wt .-%, in particular 4 to 37 wt .-% of a polyolefin, in particular polyethylene and
- C) 0.1 to 10 wt .-%, in particular 3 to 8 wt .-% of a hydrogenated or unhydrogenated styrene-butadiene block copolymers.
Die erfindungsgemäßen thermoplastischen Partikelschaumstoffe können durch ein Verfahren erhalten werden, bei dem man
- a) eine Polymermischungen mit einer kontinuierlichen und einer dispersen Phase durch Mischen zweier unverträglicher thermoplastischer Polymeren und gegebenenfalls einem Verträglichkeitsvermittler herstellt,
- b) diese Mischungen mit einem Treibmittel imprägniert und zu expandierbaren thermoplastischen Polymerpartikel granuliert,
- c) die expandierbaren, thermoplastischen Polymerpartikel zu Schaumstoffpartikeln vorschäumt, und
- d) die vorgeschäumten Schaumstoffpartikel in einer Form mit Heißluft oder Wasserdampf bei einem Verarbeitungsdruck, der so niedrig gewählt wird, dass die nanozelluläre oder faserförmige Struktur in den Zellmembranen erhalten bleibt und üblicherweise im Bereich von 1,5 bis 2,3 bar liegt, zu Partikelschaumstoffformteilen verschweißt.
- a) produces a polymer mixture having a continuous and a disperse phase by mixing two incompatible thermoplastic polymers and optionally a compatibilizer,
- b) impregnating these mixtures with a blowing agent and granulating them into expandable thermoplastic polymer particles,
- c) prefoaming the expandable, thermoplastic polymer particles into foam particles, and
- d) the prefoamed foam particles in a mold with hot air or water vapor at a processing pressure chosen to be so low that the nano-cellular or fibrous structure is retained in the cell membranes and is usually in the range of 1.5 to 2.3 bar, welded to particle foam moldings.
In einer weiteren Ausführungsform kann in Stufe b) die Polymermischung auch zuerst granuliert und die Granulate anschließend in wässriger Phase unter Druck und erhöhter Temperatur mit einem Treibmittel zu expandierbaren thermoplastischen Polymerpartikel nachimprägniert werden. Diese können anschließend nach Abkühlen unter die Schmelzetemperatur der Polymermatrix isoliert oder direkt durch Druckentspannung als vorgeschäumten Schaumstoffpartikeln (Stufe c) erhalten werden.In a further embodiment, in step b) the polymer mixture can also be granulated first and the granules subsequently re-impregnated in the aqueous phase under pressure and elevated temperature with a blowing agent to form expandable thermoplastic polymer particles. These can then be isolated after cooling below the melt temperature of the polymer matrix or obtained directly by pressure release as prefoamed foam particles (stage c).
Es ist aus dem Bereich der mehrphasigen Polymersysteme bekannt, dass die meisten Polymere nicht oder nur geringfügig miteinander mischbar sind (Flory), so dass es je nach Temperatur, Druck und chemischer Zusammensetzung zur Entmischung in jeweilige Phasen kommt. Werden unverträgliche Polymere kovalent miteinander verknüpft, so findet die Entmischung nicht auf makroskopischer, sondern lediglich auf mikroskopischer Ebene statt, d.h. auf der Längenskala der einzelnen Polymerkette. In diesem Fall spricht man daher von Mikrophasenseparation. Daraus resultieren eine Vielzahl von mesoskopischen Strukturen, z.B. lamellare, hexagonale, kubische und bikontinuierliche Morphologien, die eine starke Verwandtschaft mit lyotropen Phasen aufweisen.It is known from the field of multiphase polymer systems that most polymers are immiscible or only slightly miscible with each other (Flory), so that depending on the temperature, pressure and chemical composition for segregation in respective phases. If incompatible polymers are covalently linked together, the segregation does not take place on a macroscopic level, but only on a microscopic level, ie. on the length scale of the individual polymer chain. In this case one speaks therefore of microphase separation. This results in a variety of mesoscopic structures, e.g. lamellar, hexagonal, cubic and bicontinuous morphologies strongly related to lyotropic phases.
Die Polymermischung mit einer kontinuierlichen und einer dispersen Phase kann durch Mischen von zwei unverträglichen thermoplastischen Polymeren, beispielsweise in einem Extruder, hergestellt werden.The polymer mixture having a continuous and a disperse phase can be prepared by mixing two incompatible thermoplastic polymers, for example in an extruder.
Die Polymermischung enthält bevorzugt 45 bis 98,9 Gew.-%, besonders bevorzugt 55 bis 89,9 Gew.-% eines thermoplastischen Polymeren A), insbesondere Styrolpolymeren wie Standard (GPPS)- oder Schlagzähpolystyrol (HIPS) oder Styrol-Acrylnitril-Copolymere (SAN) oder Acrylnitril-Butadien-Styrol-Copolymere (ABS). Besonders bevorzugt werden Standard-Polystyroltypen mit gewichtsmittleren Molekulargewichten im Bereich von 120.000 bis 300.000 g/mol und einer Schmelzevolumenrate MVR (200°C/5 kg) nach ISO 113 im Bereich von 1 bis 10 cm3/10 min, beispielsweise PS 158 K, 168 N oder 148 G der BASF Aktiengesellschaft. Zur Verbesserung der Verschweißung der Schaumstoffpartikel bei der Verarbeitung zum Formteil können leichtfließende Typen, beispielsweise Empera® 156L (Innovene) zugesetzt werdenThe polymer mixture preferably contains 45 to 98.9% by weight, particularly preferably 55 to 89.9% by weight of a thermoplastic polymer A), in particular styrene polymers such as standard (GPPS) or impact polystyrene (HIPS) or styrene-acrylonitrile copolymers (SAN) or acrylonitrile-butadiene-styrene copolymers (ABS). Standard polystyrene types are particularly preferred having weight average molecular weights ranging from 120,000 to 300,000 g / mol and a melt volume rate MVR (200 ° C / 5 kg) according to ISO 113 in the range of 1 to 10 cm 3/10 min, for example PS 158 K, 168 N or 148 G of BASF Aktiengesellschaft. To improve the fusion of the foam particles during processing to the molded part, easily flowing types, for example Empera® 156L (Innovene), can be added
Als weitere Komponente B) enthält die Polymermischung bevorzugt 1 bis 45 Gewichtsprozent, insbesondere 4 bis 37 Gew.-% eines mit dem thermoplastischen Polymeren A) unverträgliches, ebenfalls thermoplastischen Polymeren B). Als Polymer B) wird bevorzugt ein Polyolefin, z. B. Homo- oder Copolymerer von Ethylen und/oder Propylen, insbesondere Polyethylen verwendet, insbesondere wenn als Polymer A) ein Styrolpolymer eingesetzt wird. Als Polypropylene kommen insbesondere Spritzgusstypen, wie Adstif® RA 748 T oder Schlagzähtypen wie Clyrell® EM 2484 der Firma Basell in Betracht. Als Polyethylene kommen kommerziell erhältliche Homopolymere aus Ethylen, wie PE-LD (Spritzgusstypen), -LLD, -HD, oder Copolymere aus Ethylen und Propylen (z. B Moplen® RP220 und Moplen® RP320 der Basell), Ethylen und Okten (Engage®) oder Ethylen und Vinylacetat (EVA), Polyethylenacrylate (EA), wie Surlyn®-Typen 1901 und 2601 von DuPont oder Ethylen-Butylen-Acrylate (EBA) wie Lucofin® 1400 HN, 1400 HM von Lucobit AG in Frage. Der Schmelzevolumenindex MVI (190°C/2,16 kg) der Polyethylene liegt üblicherweise im Bereich von 0,5 bis 40 g/10 min, die Dichte im Bereich von 0,86 bis 0,97 g/cm3, bevorzugt im Bereich von 0,91 bis 0,95 g/cm3. Außerdem können Abmischungen mit Polyisobuten (PIB)(z. B. Oppanol® B150 der BASF Aktengesellschaft) eingesetzt werden.As a further component B), the polymer mixture contains preferably 1 to 45 percent by weight, in particular 4 to 37 wt .-% of an incompatible with the thermoplastic polymer A), also thermoplastic polymer B). As polymer B) is preferably a polyolefin, for. B. homo- or copolymers of ethylene and / or propylene, in particular polyethylene used, in particular when a styrene polymer is used as the polymer A). In particular injection molding grades come as polypropylenes, such as Adstif® RA 748 T or impact types such as Clyrell® EM 2484 from Basell into consideration. Suitable polyethylenes are commercially available homopolymers of ethylene, such as PE-LD (injection molding types), LLD, -HD, or copolymers of ethylene and propylene (for example Moplen® RP220 and Moplen® RP320 from Basell), ethylene and octene (Engage® ) or ethylene and vinyl acetate (EVA), polyethylene acrylates (EA) such as Surlyn® types 1901 and 2601 from DuPont or ethylene-butylene acrylates (EBA) such as Lucofin® 1400 HN, 1400 HM from Lucobit AG. The melt volume index MVI (190 ° C / 2.16 kg) of the polyethylenes is usually in the range of 0.5 to 40 g / 10 min, the density in the range of 0.86 to 0.97 g / cm 3 , preferably in the range from 0.91 to 0.95 g / cm 3 . In addition, blends with polyisobutene (PIB) (eg Oppanol® B150 from BASF Aktengesellschaft) can be used.
Mit geringerem Anteil an Polyolefin nimmt das Treibmittelhaltevermögen deutlich zu. Damit werden die Lagerfähigkeit und die Verarbeitbarkeit der expandierbaren, thermoplastischen Polymerpartikel deutlich verbessert. Im Bereich von 4 bis 20 Gew.-% Polyolefin als Polymer B) erhält man expandierbare thermoplastische Polymerpartikel mit langer Lagerfähigkeit, ohne dass sich die elastischen Eigenschaften des daraus hergestellten Partikelschaumstoffs verschlechtern. Dies zeigt sich beispielsweise in einem geringern Verformungsrest εrest im Bereich von 25 bis 35 %.With a lower proportion of polyolefin, the blowing agent retention capacity increases significantly. Thus, the shelf life and the processability of the expandable thermoplastic polymer particles are significantly improved. In the range from 4 to 20% by weight of polyolefin as polymer B), expandable thermoplastic polymer particles having a long storage life are obtained without the elastic properties of the particle foam produced therefrom deteriorating. This manifests itself, for example, in a lower residual deformation range in the range from 25 to 35%.
Zur gezielten Einstellung der gewünschten Morphologie werden üblicherweise Verträglichkeitsvermittler (Komponente C) in Mengen von 0,1 bis 10 Gew.-%, bevorzugt 3 bis 8 Gew.-%, bezogen auf die Polymermatrix, eingesetzt.For targeted adjustment of the desired morphology are usually compatibilizer (component C) in amounts of 0.1 to 10 wt .-%, preferably 3 to 8 wt .-%, based on the polymer matrix used.
Der Verträglichkeitsvermittler führt zu einer verbesserten Haftung zwischen der Polyolefin-reichen und der Polystyrol-reichen Phase und verbessert die Elastizität des Schaumstoffs schon in geringen Mengen deutlich gegenüber herkömmlichen EPS-Schaumstoffen. Untersuchungen zur Domänengröße der Polyolefin-reichen Phase zeigten, dass der Verträglichkeitsvermittler durch Reduktion der Grenzuflächenspannung kleine Tröpfchen stabilisiert. Die elektronenmikroskopische Aufnahme eines Schnittes durch ein treibmittelhaltiges, expandierbares Polystyrol/Polyethylen zeigt disperse Polyethylendomänen in der Polystyrolmatrix.The compatibilizer leads to improved adhesion between the polyolefin-rich and the polystyrene-rich phase and improves the elasticity of the foam even in small amounts compared to conventional EPS foams. Investigations of the domain size of the polyolefin-rich phase showed that the compatibilizer stabilized small droplets by reducing the interfacial tension. The electron micrograph of a section through a blowing agent-containing, expandable polystyrene / polyethylene shows disperse polyethylene domains in the polystyrene matrix.
Hierfür eignen sich beispielsweise hydrierte oder unhydrierte Styrol-Butadien- oder Styrol-Isopren-Blockcopolymere. Der Gesamtdiengehalt liegt bevorzugt im Bereich von 20 bis 60 Gew.-%, besonders bevorzugt im Bereich von 30 bis 50 Gew.-%, der Gesamtstyrolgehalt liegt entsprechend bevorzugt im Bereich von 40 bis 80 Gew.-%, besonders bevorzugt im Bereich von 50 bis 70 Gew.-%.For example, hydrogenated or unhydrogenated styrene-butadiene or styrene-isoprene block copolymers are suitable for this purpose. The total diene content is preferably in the range from 20 to 60% by weight, particularly preferably in the range from 30 to 50% by weight, the total styrene content is correspondingly preferably in the range from 40 to 80% by weight, particularly preferably in the region of 50 to 70% by weight.
Geeignete Styrol-Butadien-Blockcopolymere, welche aus mindestens zwei Polystyrolblöcken S und mindestens einem Styrol-Butadien-Copolymer-Block S/B bestehen, sind beispielsweise sternförmig verzweigte Blockcopolymere, wie sie in
Des Weiteren eignen sich Blockcopolymere mit mindestens zwei Hartblöcken S1 und S2 aus vinylaromatischen Monomeren mit mindestens einem dazwischen liegenden statistischen Weichblock B/S aus vinylaromatischen Monomeren und Dien, wobei der Anteil der Hartblöcke über 40 Gew.-%, bezogen auf das gesamte Blockcopolymer beträgt und der 1,2-Vinylgehalt im Weichblock B/S unter 20 % beträgt, wie sie in
Als Verträglichkeitsvermittler sind auch lineare Styrol-Butadien-Blockcopolymere der allgemeinen Struktur S-(S/B)-S mit ein oder mehreren, zwischen den beiden S-Blöcken liegenden, eine statische Styrol/Butadien-Verteilung aufweisenden Blöcken (S/B)random, geeignet. Solche Blockcopolymeren sind durch anionische Polymerisation in einem unpolaren Lösungsmittel unter Zusatz eines polaren Cosolvens oder eines Kaliumsalzes erhältlich, wie beispielsweise in
Als Vinylgehalt wird der relative Anteil an 1,2-Verknüpfungen der Dieneinheiten, bezogen auf die Summe der 1,2-, 1,4-cis und 1,4-trans-Verknüpfungen verstanden. Der 1,2-Vinylgehalt im Styrol-Butadien-Copolymerblock (S/B) liegt bevorzugt unter 20 %, insbesondere im Bereich von 10 bis 18%, besonders bevorzugt im Bereich von 12 bis 16 %.The vinyl content is understood to mean the relative proportion of 1,2-linkages of the diene units, based on the sum of the 1,2-, 1,4-cis and 1,4-trans linkages. The 1,2-vinyl content in the styrene-butadiene copolymer block (S / B) is preferably below 20%, in particular in the range from 10 to 18%, particularly preferably in the range from 12 to 16%.
Als Verträglichkeitsvermittler werden bevorzugt Styrol-Butadien-Styrol (SBS) Dreiblockcopolymere mit einem Butadiengehalt von 20 bis 60 Gew.-%, bevorzugt 30 bis 50 Gew.-%, welche hydriert oder nicht hydriert sein können, verwendet. Diese sind beispielsweise unter der Bezeichnung Styroflex® 2G66, Styrolux® 3G55, Styroclear® GH62, Kraton® D 1101, Kraton® G 1650, Kraton® D 1155, Tuftec® H1043 oder Europren® SOL 6414 im Handel. Dabei handelt es sich um SBS-Blockcopolymere mit scharfen Übergängen zwischen B- und S-Blöcken. Eine Verbesserung der Verträglichkeit kann zusätzlich durch Hydrieren der Butadienblöcke erreicht werden, z. B. Kraton® G Typen.Preferred compatibilizers are styrene-butadiene-styrene (SBS) triblock copolymers having a butadiene content of from 20 to 60% by weight, preferably from 30 to 50% by weight, which may be hydrogenated or unhydrogenated. These are for example under the name Styroflex® 2G66, Styrolux® 3G55, Styroclear® GH62, Kraton® D 1101, Kraton® G 1650, Kraton® D 1155, Tuftec® H1043 or Europren® SOL 6414 commercially. These are SBS block copolymers with sharp transitions between B and S blocks. An improvement in compatibility can be achieved additionally by hydrogenating the butadiene blocks, for. B. Kraton® G types.
Des weiteren können der mehrphasigen Polymermischung Additive, Keimbildner, Weichmacher, Flammschutzmittel, lösliche und unlösliche anorganische und/oder organische Farbstoffe und Pigmente, Füllstoffe oder Cotreibmittel in Mengen zugesetzt werden, die die Domänenbildung und daraus resultierende Schaumstoffstruktur nicht beeinträchtigen.Furthermore, additives, nucleating agents, plasticizers, flameproofing agents, soluble and insoluble inorganic and / or organic dyes and pigments, fillers or co-blowing agents may be added to the multiphase polymer mixture in amounts that do not interfere with the domain formation and resulting foam structure.
Als Keimbildner oder Nukleierungsmittel können beispielsweise Polyolefinwachse oder Talkum zusätzlich in Mengen von 0 bis 5, bevorzugt 0,5 bis 3 Gew.-%, bezogen auf die Polymeren A) bis C) gegeben werden.As nucleating agent or nucleating agent, for example, polyolefin waxes or talc may additionally be added in amounts of 0 to 5, preferably 0.5 to 3 wt .-%, based on the polymers A) to C).
Als Treibmittel (Komponente D) wird in Stufe b) bevorzugt 1 bis 15 Gewichtsprozent, bevorzugt 3 bis 10 Gewichtsprozent, bezogen auf die Polymermischung A) bis C), eines physikalischen Treibmittels, wie aliphatischen C3 bis C8-Kohlenwasserstoffen, Alkoholen, Ketonen, Ethern oder halogenierten Kohlenwasserstoffen eingesetzt. Bevorzugt wird iso-Butan, n-Butan, iso-Pentan, n-Pentan oder iso-Hexan eingesetzt.As blowing agent (component D) in step b) preferably 1 to 15 weight percent, preferably 3 to 10 weight percent, based on the polymer mixture A) to C) of a physical blowing agent, such as aliphatic C 3 to C 8 hydrocarbons, alcohols, ketones , Ethers or halogenated hydrocarbons used. Preference is given to using isobutane, n-butane, isopentane, n-pentane or isohexane.
Geeignete Cotreibmittel sind solche mit einer geringeren Selektivität der Löslichkeit für die Domänen bildenden Phase, beispielsweise Gase wie CO2, N2, Fluorkohlenwasserstoffe oder Edelgase. Diese werden bevorzugt in Mengen von 0 bis 10 Gew.-%, bezogen auf die Polymermischung, eingesetzt.Suitable co-propellants are those having a lower selectivity of solubility for the domain-forming phase, for example, gases such as CO 2 , N 2 , fluorocarbons or noble gases. These are preferably used in amounts of from 0 to 10% by weight, based on the polymer mixture.
Besonders bevorzugt wird ein kontinuierliches Verfahren, bei dem die Stufe a) ein thermoplastisches, die kontinuierliche Phase bildenden Polymer A), beispielsweise Polystyrol, in einem Zweiwellen-Extruder aufgeschmolzen und zur Bildung der Polymermischung mit einem die disperse Phase bildenden Polymer B) und gegebenenfalls Verträglichkeitsvermittler C) vermischt wird und anschließend die Polymerschmelze in Stufe b) durch eine oder mehrere statische und/oder dynamischen Mischelemente gefördert und mit dem Treibmittel imprägniert wird. Die treibmittelbeladene Schmelze kann anschließend durch eine entsprechende Düse zu Schaumstoffplatten, -strängen oder -Partikeln extrudiert und geschnitten werden.Particular preference is given to a continuous process in which stage a) a thermoplastic, the continuous phase forming polymer A), for example polystyrene, melted in a twin-screw extruder and to form the polymer mixture with the disperse phase-forming polymer B) and optionally compatibilizer C) is mixed and then the polymer melt in stage b) by one or more static and / or dynamic mixing elements promoted and impregnated with the blowing agent. The propellant loaded melt may then be extruded through a corresponding die into foam sheets, strands or particles and cut.
Mittels Unterwassergranulierung (UWG) kann die aus der Düse austretende Schmelze auch direkt zu expandierbaren oder gezielt angeschäumten Polymerpartikeln geschnitten werden. Die Einstellung des geeigneten Gegendrucks und einer geeigneten Temperatur im Wasserbad des UWG ermöglicht somit eine gezielte Herstellung von Schaumstoffpartikeln zu ermöglichen.By means of underwater granulation (UWG), the melt emerging from the nozzle can also be cut directly into expandable or selectively foamed polymer particles. The setting of the appropriate backpressure and a suitable temperature in the water bath of the UWG thus allows a targeted production of foam particles to allow.
Zur Herstellung der expandierbaren Polymerpartikel wird die Unterwassergranulierung in der Regel bei Drücken im Bereich von 1,5 bis 10 bar durchgeführt. Die Düsenplatte weist in der Regel mehrere Nester mit mehreren Löchern auf. Bei einem Lochdurchmesser im Bereich von 0,2 bis 1 mm erhält man expandierbare Polymerpartikel mit der bevorzugten mittleren Partikeldurchmesser im Bereich von 0,5 bis 1,5 mm.0,8 mm. Expandierbare Polymerpartikel mit enger Partikelgrößenverteilung und einem mittleren Partikeldurchmesser im Bereich von 0,6 bis 0,8 mm führen zu einer besseren Ausfüllung des Formteilautomaten mit filigranere Formteilgestaltung. Des Weiteren wird dadurch eine bessere Formteiloberfläche erreicht mit weniger Zwickelvolumen.In order to produce the expandable polymer particles, underwater granulation is generally carried out at pressures in the range from 1.5 to 10 bar. The nozzle plate usually has several nests with several holes. With a hole diameter in the range of 0.2 to 1 mm, expandable polymer particles having the preferred mean particle diameter in the range of 0.5 to 1.5 mm.0.8 mm are obtained. Expandable polymer particles with narrow particle size distribution and an average particle diameter in the range of 0.6 to 0.8 mm lead to a better filling of the molding machine with filigree molding design. Furthermore, this achieves a better molding surface with less gusset volume.
Bevorzugt werden die erhaltenen runden oder ovalen Partikel auf einen Durchmesser im Bereich von 0,2 bis 10 mm aufgeschäumt. Ihre Schüttdichte liegt vorzugsweise im Bereich von 10 bis 100 g/l.Preferably, the resulting round or oval particles are foamed to a diameter in the range of 0.2 to 10 mm. Its bulk density is preferably in the range of 10 to 100 g / l.
Der mittlere Durchmesser der dispersen Phase der in Stufe a) hergestellten Polymermischung liegt bevorzugt im Bereich von 1 bis 2000 nm, besonders bevorzugt im Bereich von 100 bis 1500 nm.The average diameter of the disperse phase of the polymer mixture prepared in step a) is preferably in the range from 1 to 2000 nm, particularly preferably in the range from 100 to 1500 nm.
Eine bevorzugte Polymermischungen in Stufe a) wird durch Mischen von
- A) 45 bis 98,9 Gewichtsprozent, insbesondere 55 bis 89,9 Gew.-% eines Styrolpolymeren, insbesondere Polystyrol,
- B) 1 bis 45 Gewichtsprozent, insbesondere 4 bis 37 Gew.-% eines Polyolefins, insbesondere Polyethylen und
- C) 0,1 bis 10 Gewichtsprozent, insbesondere 3 bis 8 Gew.-% eines hydrierten oder unhydrierten Styrol-Butadien-Blockcopolymeren hergestellt.
- A) from 45 to 98.9% by weight, in particular from 55 to 89.9% by weight, of a styrene polymer, in particular polystyrene,
- B) 1 to 45 weight percent, in particular 4 to 37 wt .-% of a polyolefin, in particular polyethylene and
- C) 0.1 to 10 weight percent, in particular 3 to 8 wt .-% of a hydrogenated or unhydrogenated styrene-butadiene block copolymers produced.
Gegenstand der Erfindung sind auch die in Stufe b) als Zwischenprodukte erhältlichen expandierbaren, thermoplastischen Polymerpartikel, die eine Polymermatrix enthalten aus
- A) 45 bis 98,9 Gewichtsprozent, insbesondere 55 bis 89,9Gew.-% eines Styrolpolymeren, insbesondere Polystyrol,
- B) 1 bis 45 Gewichtsprozent, insbesondere 4 bis 37 Gew.-% eines Polyolefins, insbeondere Polyethylen und
- C) 0,1 bis 10 Gewichtsprozent, insbesondere 1 bis 8 Gew.-% eines hydrierten oder unhydrierten Styrol-Butadien-Blockcopolymeren, wobei die Summe aus A) bis C) 100 Gew.-% ergibt, und zusätzlich
- D) 1 bis 15 Gewichtsprozent, insbesondere 3 bis 10 Gew.-%, bezogen auf die Polymermatrix, eines Treibmittels,
- E) 0 bis 5, vorzugsweise 0,3 bis 3 Gew.-% eines Nukleierungsmittels.
- A) from 45 to 98.9% by weight, in particular from 55 to 89.9% by weight, of a styrene polymer, in particular polystyrene,
- B) 1 to 45 weight percent, in particular 4 to 37 wt .-% of a polyolefin, in particular polyethylene and
- C) 0.1 to 10 weight percent, in particular 1 to 8 wt .-% of a hydrogenated or unhydrogenated styrene-butadiene block copolymer, wherein the sum of A) to C) 100 wt .-% results, and in addition
- D) 1 to 15% by weight, in particular 3 to 10% by weight, based on the polymer matrix, of a blowing agent,
- E) 0 to 5, preferably 0.3 to 3 wt .-% of a nucleating agent.
Zur Verbesserung der Verarbeitbarkeit können die fertigen expandierbaren thermoplastischen Polymerpartikel durch Glycerinester, Antistatika oder Antiverklebungsmittel beschichtet werden.To improve processability, the final expandable thermoplastic polymer particles may be coated by glycerol esters, antistatic agents or anticaking agents.
Die Verschweißung der vorgeschäumten Schaumstoffperlen zum Formteil und die daraus resultierenden mechanischen Eigenschaften werden insbesondere durch Beschichtung der expandierbaren thermoplastischen Polymerpartikel mit einem Glycerinstearat verbessert. Besonders bevorzugt wird eine Beschichtung aus 50 bis 100 Gew.-% Glycerintristearat (GTS), 0 bis 50 Gew.-% Glycerinmonostearat (GMS) und 0 bis 20 Gew.-% Kieselsäure verwendet.The welding of the prefoamed foam beads to the molding and the resulting mechanical properties are improved in particular by coating the expandable thermoplastic polymer particles with a glycerol stearate. Particularly preferred is a coating of 50 to 100 wt .-% glyceryl tristearate (GTS), 0 to 50 wt .-% glycerol monostearate (GMS) and 0 to 20 wt .-% silica used.
Die erfindungsgemäßen expandierbaren, thermoplastischen Polymerpartikel können mittels Heißluft oder Wasserdampf zu Schaumpartikeln mit einer Dichte im Bereich von 8 bis 200 kg/m3, bevorzugt im Bereich von 10 bis 50 kg/m3 vorgeschäumt und anschließend in einer geschlossenen Form zu Schaumstoffformkörpern verschweißt werden.The expandable, thermoplastic polymer particles according to the invention can be prefoamed by means of hot air or steam to foam particles having a density in the range of 8 to 200 kg / m 3 , preferably in the range of 10 to 50 kg / m 3 and then welded in a closed mold into foam moldings.
- B1: PE-LLD (LL1201 XV, Exxon Mobile, Dichte 0,925 g/L, MVI = 0,7 g/10 min, Schmelzpunkt 123°C)B1: LLDPE (LL1201 XV, Exxon Mobile, density 0.925 g / L, MVI = 0.7 g / 10 min, melting point 123 ° C)
- B2: PE-LLD (LL1001 XV, Exxon Mobile, Dichte 0,918 g/L, MVI = 1,0 g/10 min, Schmelzpunkt 120°C))B2: LLDPE (LL1001 XV, Exxon Mobile, density 0.918 g / L, MVI = 1.0 g / 10 min, melting point 120 ° C))
- C: Styrolux® 3G55, Styrol-Butadien-Blockcopolymer der BASF SE,C: Styrolux® 3G55, styrene-butadiene block copolymer from BASF SE,
In einem Zweischneckenextruder der Firma Leitritz ZSK 18 wurden 22 Gew. % PE-LLD (LL1201 XV, Exxon Mobile) mit 69,6 Gew. % Polystyrol (PS 158K, BASF) und 4 Gew. % SBS-Blockcopolymer (Styrolux® 3G55, BASF) bei 220-240°C aufgeschmolzen. Anschließend wurde die Polymerschmelze mit 8 Gew. % s-Pentan, bezogen auf die Polymermatrix, beladen. Danach wurde die Polymerschmelze in zwei statischen Mischern homogenisiert und auf 180°C abgekühlt. Zu dem treibmittelbeladenen Hauptschmelzestrom wurde über einen Seitenextruder 2,2 Gew. % Talkum (HP 320, Omyacarb), bezogen auf die Polymermatrix, als Nukleierungsmittel in Form eines Batches mit 2,2 Gew.-% Polystyrol PS 158 K zugegeben. Nach Homogenisierung über zwei weitere statische Mischer wurde die Schmelze durch eine beheizte Lochplatte extrudiert (4 Löcher mit 0,65 mm Bohrung und 280°C Lochplattentemperatur). Der Polymerstrang wurde mittels Unterwassergranulierung abgeschlagen (12 bar Unterwasserdruck, 45°C Wassertemperatur), so dass ein treibmittelbeladenes Minigranulat mit enger Teilchengrößenverteilung (d'= 1,2 mm) erhalten wurde.In a twin-screw extruder Leitritz ZSK 18 22 wt.% PE-LLD (LL1201 XV, Exxon Mobile) with 69.6 wt.% Polystyrene (PS 158K, BASF) and 4 wt.% SBS block copolymer (Styrolux® 3G55, BASF) melted at 220-240 ° C. Subsequently, the polymer melt was loaded with 8% by weight of s-pentane, based on the polymer matrix. Thereafter, the polymer melt was homogenized in two static mixers and cooled to 180 ° C. 2.2% by weight of talcum (HP 320, omyacarb), based on the polymer matrix, as nucleating agent in the form of a 2.2% by weight polystyrene PS 158 K batch was added to the blowing agent-laden main melt stream via a side extruder. After homogenization via two further static mixers, the melt was extruded through a heated perforated plate (4 holes with 0.65 mm bore and 280 ° C perforated plate temperature). The polymer strand was beaten off by means of underwater granulation (12 bar underwater pressure, 45 ° C. water temperature), so that a propellant-loaded minigranulate having a narrow particle size distribution (d '= 1.2 mm) was obtained.
Das treibmittelhaltige Granulat wurde in einem EPS-Vorschäumer zu Schaumperlen geringer Dichte (15-25 g/L vorgeschäumt) und in einem EPS-Formteilautomaten bei einem Überdruck von 0,7 - 1,1 bar zu Formteilen verarbeitet.The propellant-containing granules were processed in an EPS prefoamer to foam beads of low density (15-25 g / L prefoamed) and in an EPS molding machine at an overpressure of 0.7 - 1.1 bar to form parts.
Analog Beispiel 1 wurden expandierbare Thermoplastmischungen mit der in Tabelle 1 angegebenen Zusammensetzung in Gewichtsanteilen hergestellt. Die Dichte und Zellzahl der Schaumstoffpartikel nach dem vorschäumen sind in Tabelle 2 zusammengestellt.As in Example 1 expandable thermoplastic mixtures were prepared with the composition shown in Table 1 in parts by weight. The density and cell number of the foam particles after pre-foaming are summarized in Table 2.
Der Treibmittelgehalt des Minigranulats (Gew.-%) wurde sofort nach der Herstellung und nach 7 Tagen Lagerung auf Filterpapier bei Raumtemperatur und Atmosphärendruck mittels GC-Analyse bestimmt.The propellant content of the minigranules (% by weight) was determined immediately after preparation and after 7 days storage on filter paper at room temperature and atmospheric pressure by GC analysis.
An den Formteilen wurden verschiedene mechanische Messungen durchgeführt um die Elastifizierung des Schaumstoffs nachzuweisen. Tabelle 3 zeigt den Verformungsrest εrest der Schaumstoffformteile, ermittelt aus der Einfachhysterese bei 75% Stauchung (Vorschub 5mm/min) nach ISO 3386-1. Der Verformungsrest εrest ist der prozentuale Anteil nach 75% Stauchung, der zur Ursprungshöhe des gestauchten Körpers fehlt. Bei den erfindungsgemäßen Beispielen wird im Vergleich zum reinen EPS eine deutliche Elastifizierung beobachtet, die an dem sehr hohen Rückstellungsvermögen erkennbar ist.Various mechanical measurements were carried out on the molded parts in order to demonstrate the elasticity of the foam. Table 3 shows the deformation residue ε rest of the foam moldings, determined from the single hysteresis at 75% compression (feed 5 mm / min) according to ISO 3386-1. The residual strain ε rest is the percentage after 75% compression, which is missing from the original height of the compressed body. In the examples according to the invention a significant elastification is observed in comparison to pure EPS, which is recognizable by the very high recovery capacity.
In der transmissionselektronenmikroskopischen Aufnahme (TEM) ist die Zellstruktur (
Zur Verbesserung der Verschweißung der Schaumstoffpartikel, wurde auf die Oberfläche des treibmittelhaltigen Granulates aus Beispiel 1 in einem Lödige-Mischer 0,3 Gew. % eines Beschichtungsmittels aufgetrommelt. Nach einer Einwirkzeit von 4 Stunden wurde das beschichtete, treibmittelhaltige Granulat wie in Beispiel 1 vorgeschäumt und zu Formteilen verschweißt.To improve the welding of the foam particles, 0.3% by weight of a coating composition was drummed onto the surface of the propellant-containing granulate from Example 1 in a Lödige mixer. After a reaction time of 4 hours, the coated, blowing agent-containing granules were prefoamed as in Example 1 and welded into moldings.
Als Beschichtungskomponenten wurden für Beispiel 4 Glycerintristearat (GTS) und für Beispiel 5 eine Mischung aus 60 Gew.-% GTS, 30 Gew.-% Glycerinmonostearat (GMS) und 10 Gew.-% Kieselsäure verwendet. Das Beschichtungsmittel hatte einen positiven Effekt auf die Verschweißung der vorgeschäumten Schaumstoffperlen zum Formteil. Die Biegefestigkeit der nach Beispiel 4 und 5 erhaltenen Formteile konnte auf 220 bzw. 227 KPa gegenüber 150 kPa der aus den unbeschichteten Granulaten nach Beispiel 1 erhaltenen Formteile, erhöht werden.As coating components, for example 4, glycerol tristearate (GTS) and for example 5 a mixture of 60% by weight GTS, 30% by weight glycerol monostearate (GMS) and 10% by weight silica were used. The coating agent had a positive effect on the welding of the prefoamed foam beads to the molding. The flexural strength of the moldings obtained according to Example 4 and 5 could be increased to 220 or 227 KPa against 150 kPa of the moldings obtained from the uncoated granules according to Example 1.
In einem Zweischneckenextruder der Firma Leitritz ZSK 18 wurden die Komponenten A bis C bei 220-240°C / 130 bar aufgeschmolzen. Anschließend wurde in die Polymerschmelze 8 Gewichtsanteile Pentan S (20% iso-Pentan, 80% n-Pentan) als Treibmittel gedrückt und über zwei statische Mischer homogen in die Polymerschmelze eingearbeitet. Danach wurde über einen Kühler die Temperatur auf 180° - 185°C reduziert. Zu dem treibmittelbeladenen Hauptschmelzestrom wurde über einen Seitenextruder 2,2 Gewichtsanteile Talkum (HP 320, Omyacarb) als Nukleierungsmittel in Form eines 50 Gew.-%igen Polystyrol-Batches zudosiert. Nach Homogenisierung über zwei weitere statische Mischer wurde die Schmelze mit 4 kg/h durch eine beheizte Lochplatte extrudiert (4 Löcher mit 0,65 mm Bohrung und 280°C Lochplattentemperatur). Der Polymerstrang wurde mittels Unterwassergranulierung abgeschlagen (12 bar Unterwasserdruck, 45°C Wassertemperatur), so dass ein treibmittelbeladenes Minigranulat mit enger Teilchengrößenverteilung (d'= 1,1 mm) erhalten wurde. Die Gewichtsanteile der Komponenten A bis C) sind in Tabelle 4 zusammengestellt.In a twin-screw extruder Leitritz ZSK 18, the components A to C were melted at 220-240 ° C / 130 bar. Subsequently, 8 parts by weight of pentane S (20% isopentane, 80% n-pentane) as blowing agent were pressed into the polymer melt and incorporated homogeneously into the polymer melt via two static mixers. Thereafter, the temperature was reduced to 180 ° - 185 ° C via a condenser. 2.2 parts by weight of talcum (HP 320, omyacarb) as nucleating agent in the form of a 50% by weight polystyrene batch were added via a side extruder to the blowing agent-laden main melt stream. After homogenization via two further static mixers, the melt was extruded at 4 kg / h through a heated perforated plate (4 holes with 0.65 mm bore and 280 ° C orifice plate temperature). The polymer strand was beaten off by means of underwater granulation (12 bar underwater pressure, 45 ° C. water temperature), so that a propellant-loaded minigranulate having a narrow particle size distribution (d '= 1.1 mm) was obtained. The weight proportions of components A to C) are summarized in Table 4.
In einem Zweischneckenextruder der Firma Leitritz ZE 40 wurden die Komponenten A bis C bei 240 - 260°C / 140 bar aufgeschmolzen und mit 2,2 Gewichtsanteilen Talkum (HP 320, Omyacarb) als Nukleierungsmittel versetzt. Anschließend wurde in die Polymermelze mit 8 Gewichtsanteilen Pentan S (20% iso-Pentan, 80% n-Pentan) als Treibmittel gedrückt und über zwei statische Mischer homogen in die Polymerschmelze eingearbeitet. Danach wurde über einen Kühler die Temperatur auf 180°-195°C reduziert. Nach weiterer Homogenisierung über zwei weitere statische Mischer, wurde die Polymerschmelze mit 50 kg/h durch eine auf 240 - 260°C temperierte Lochplatte bei 200 - 220 bar gedrückt (0,6 mm Lochdurchmesser mit 7 Nester x 7 Löcher oder 0,4 mm Lochdurchmesser mit 7 Nester x 10 Löcher). Der Polymerstrang wurde mittels Unterwassergranulierung abgeschlagen (11-10 bar Unterwasserdruck bei 40°C-50°C Wassertemperatur), so dass ein treibmittelbeladenes Minigranulat mit enger Teilchengrößenverteilung (d'= 1,1 mm bei 0,6 mm Lochdurchmesser und 0,8 mm bei 0,4 mm Lochdurchmesser) erhalten wurde. Die Gewichtsanteile der Komponenten A bis C) sind in Tabelle 4 zusammengestellt.In a twin-screw extruder Leitritz ZE 40, the components A to C at 240 - 260 ° C / 140 bar were melted and treated with 2.2 parts by weight of talc (HP 320, omyacarb) as a nucleating agent. Subsequently, pentane S (20% isopentane, 80% n-pentane) as blowing agent was pressed into the polymer melt with 8 parts by weight and incorporated homogeneously into the polymer melt via two static mixers. Thereafter, the temperature was reduced to 180 ° -195 ° C via a condenser. After further homogenization via two further static mixers, the polymer melt was pressed at 50 kg / h through a tempered to 240-260 ° C perforated plate at 200-220 bar (0.6 mm hole diameter with 7 nests x 7 holes or 0.4 mm Hole diameter with 7 nests x 10 holes). The polymer strand was beaten off by means of underwater granulation (11-10 bar underwater pressure at 40 ° C.-50 ° C. water temperature), so that a propellant-laden minigranulate having a narrow particle size distribution (d '= 1.1 mm at 0.6 mm hole diameter and 0.8 mm at 0.4 mm hole diameter). The weight proportions of components A to C) are summarized in Table 4.
Das treibmittelhaltige Granulat wurde in einem EPS-Vorschäumer zu Schaumstoffperlen geringer Dichte (15-25 g/L vorgeschäumt) und in einem EPS-Formteilautomaten bei einem Überdruck von 0,7 - 1,1 bar zu Formteilen verarbeitet.The propellant-containing granules were processed in an EPS prefoamer to foam beads of low density (15-25 g / L prefoamed) and in an EPS molding machine at an overpressure of 0.7 - 1.1 bar to form parts.
An den Formteilen wurden verschiedene mechanische Messungen durchgeführt um die Elastifizierung des Schaumstoffs nachzuweisen. Tabelle 4 zeigt den Verformungsrest εrest der Schaumstoffformteile, ermittelt aus der Einfachhysterese bei 75% Stauchung (Vorschub 5mm/min) nach ISO 3386-1. Der Verformungsrest εrest ist der prozentuale Anteil nach 75% Stauchung, der zur Ursprungshöhe des gestauchten Körpers fehlt. Bei den erfindungsgemäßen Beispielen wird im Vergleich zum reinen EPS eine deutliche Elastifizierung beobachtet, die an dem sehr hohen Rückstellungvermögen erkennbar ist.Various mechanical measurements were carried out on the molded parts in order to demonstrate the elasticity of the foam. Table 4 shows the deformation residue ε rest of the foam moldings, determined from the single hysteresis at 75% compression (feed 5 mm / min) according to ISO 3386-1. The residual strain ε rest is the percentage after 75% compression, which is missing from the original height of the compressed body. In the examples according to the invention a clear elastification is observed in comparison to pure EPS, which is recognizable by the very high recovery capacity.
In der transmissionselektronenmikroskopischen Aufnahme (TEM) ist die disperse Verteilung des Polyethylens im treibmittelhaltigen Minigranulat zu erkennen, die nach dem Verschäumen zur Elastifizierung im Schaumstoff beitragen. Die PE-Domänen des des treibmittelbeladenen Minigranulats liegen dabei in der Größenordnung von 200 bis 1000 nm.The transmission electron micrograph (TEM) shows the disperse distribution of the polyethylene in the propellant-containing minigranulate, which after foaming contributes to elastification in the foam. The PE domains of the propellant loaded minigranules are in the order of 200 to 1000 nm.
Als Beschichtungskomponenten wurde 70 Gew.-% Gycerintristearat (GTS) und 30 Gew.-% Glycerinmonostearat (GMS) verwendet. Das Beschichtungsmittel hatte einen positiven Effekt auf die Verschweißung der vorgeschäumten Schaumstoffperlen zum Formteil. Die Biegefestigkeit auf 250 bzw. 310 KPa gegenüber 150 kPa der aus den unbeschichteten Granulaten erhaltenen Formteile, erhöht werden.The coating components used were 70% by weight of glycerol tristearate (GTS) and 30% by weight of glycerol monostearate (GMS). The coating agent had a positive effect on the welding of the prefoamed foam beads to the molding. The flexural strength to 250 or 310 KPa over 150 kPa of the moldings obtained from the uncoated granules are increased.
Die kleinen Partikelgrößen 0,8 mm zeigten eine Verbesserung bei der Verarbeitbarkeit zum Formteil bezüglich Entformzeiten und Füllverhalten des Werkzeugs. Zusätzlich wurde die Formteiloberfläche homogener als bei Partikeln mit 1,1 mm Durchmesser.
Claims (9)
- A thermoplastic particle foam which has cells having a mean cell size in the range from 20 to 500 µm, wherein the cell membranes have a nanocellular or fibrous structure having pore or fiber diameters below 1500 nm.
- The thermoplastic particle foam according to claim 1, wherein the mean pore or fiber diameter of the nanocellular or fibrous structure is in the range from 10 to 1000 nm.
- The thermoplastic particle foam according to claim 1 or 2, wherein the polymer matrix comprises a continuous phase which is rich in styrene polymer and a disperse polyolefin-rich phase.
- The thermoplastic particle foam according to any of claims 1 to 3, wherein the polymer matrix comprisesA) from 45 to 98.9 percent by weight of styrene polymer,B) from 1 to 45 percent by weight of polyolefin andC) from 0.1 to 10 percent by weight of a hydrogenated or unhydrogenated styrene-butadiene block copolymer.
- A process for producing thermoplastic particle foams according to any of claims 1 to 4, which comprisesa) producing a polymer mixture having a continuous phase and a disperse phase by mixing two incompatible thermoplastic polymers,b) impregnating this mixture with a blowing agent and pelletizing it to produce expandable thermoplastic polymer particles,c) prefoaming the expandable, thermoplastic polymer particles to produce foam particles andd) fusing the prefoamed foam particles in a mold by means of hot air or steam at a processing pressure which is kept sufficiently low for the nanocellular or fibrous structure in the cell membranes to be retained to produce particle foam moldings.
- A process for producing thermoplastic particle foams according to any of claims 1 to 4, which comprisesa) producing a polymer mixture having a continuous phase and a disperse phase by mixing two incompatible thermoplastic polymers,b) pelletizing this mixture and after-impregnating it with a blowing agent in an aqueous phase under superatmospheric pressure at elevated temperature to produce expandable thermoplastic polymer particles,c) prefoaming the expandable, thermoplastic polymer particles to produce foam particles andd) fusing the prefoamed foam particles in a mold by means of hot air or steam at a processing pressure which is kept sufficiently low for the nanocellular or fibrous structure in the cell membranes to be retained to produce particle foam moldings.
- The process according to claim 5 or 6, wherein the mean diameter of the disperse phase of the polymer mixture is in the range from 1 to 1500 nm.
- The process according to any of claims 5 to 7, wherein the polymer mixture is produced in step a) by mixingA) from 45 to 98.9 percent by weight of styrene polymer,B) from 1 to 45 percent by weight of polyolefin andC) from 0.1 to 10 percent by weight of a hydrogenated or unhydrogenated styrene-butadiene block copolymer.
- The process according to any of claims 5 to 8, wherein from 1 to 10 percent by weight, based on the polymer mixture, of a C3-C8-hydrocarbon is used as blowing agent in step b).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200830199T SI2144959T1 (en) | 2007-04-11 | 2008-04-08 | Elastic particle foam based on polyolefin/styrene polymer mixtures |
PL08735092T PL2144959T3 (en) | 2007-04-11 | 2008-04-08 | Elastic particle foam based on polyolefin/styrene polymer mixtures |
EP20080735092 EP2144959B1 (en) | 2007-04-11 | 2008-04-08 | Elastic particle foam based on polyolefin/styrene polymer mixtures |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07105953 | 2007-04-11 | ||
PCT/EP2008/002774 WO2008125250A1 (en) | 2007-04-11 | 2008-04-08 | Elastic particle foam based on polyolefin/styrene polymer mixtures |
EP20080735092 EP2144959B1 (en) | 2007-04-11 | 2008-04-08 | Elastic particle foam based on polyolefin/styrene polymer mixtures |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2144959A1 EP2144959A1 (en) | 2010-01-20 |
EP2144959B1 true EP2144959B1 (en) | 2011-01-05 |
Family
ID=39622683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20080735092 Not-in-force EP2144959B1 (en) | 2007-04-11 | 2008-04-08 | Elastic particle foam based on polyolefin/styrene polymer mixtures |
Country Status (25)
Country | Link |
---|---|
US (2) | US20100143697A1 (en) |
EP (1) | EP2144959B1 (en) |
JP (1) | JP5570413B2 (en) |
KR (2) | KR20150027221A (en) |
CN (1) | CN101652416B (en) |
AR (1) | AR066021A1 (en) |
AT (1) | ATE494323T1 (en) |
BR (1) | BRPI0809543A2 (en) |
CA (1) | CA2681782C (en) |
CL (1) | CL2008001027A1 (en) |
CO (1) | CO6140063A2 (en) |
DE (1) | DE502008002220D1 (en) |
DK (1) | DK2144959T3 (en) |
ES (1) | ES2358307T3 (en) |
HK (1) | HK1138029A1 (en) |
HR (1) | HRP20110071T1 (en) |
MX (1) | MX2009010310A (en) |
MY (1) | MY147660A (en) |
PL (1) | PL2144959T3 (en) |
PT (1) | PT2144959E (en) |
RU (1) | RU2478112C2 (en) |
SI (1) | SI2144959T1 (en) |
TW (1) | TWI476235B (en) |
UA (1) | UA97838C2 (en) |
WO (1) | WO2008125250A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012110159A1 (en) * | 2012-10-24 | 2014-04-24 | Michael Kellerer | Method and device for producing a brick with insulation filling and such brick |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2254937B1 (en) * | 2008-03-13 | 2012-09-05 | Basf Se | Elastic particle foam made from polyolefin/styrol polymer mixtures |
KR20110110280A (en) * | 2008-12-30 | 2011-10-06 | 바스프 에스이 | Elastic particle foam based on polyolefin/styrene polymer mixtures |
CN102272222B (en) | 2008-12-30 | 2013-10-16 | 巴斯夫欧洲公司 | Elastic particle foam based on polyolefin/styrene polymer mixtures |
WO2010076185A1 (en) * | 2008-12-30 | 2010-07-08 | Basf Se | Expandable thermoplastic polymer particles based on polyolefin/styrene polymer mixtures using isopentane or cyclopentane as a blowing agent |
CN102341442B (en) * | 2009-03-05 | 2013-06-05 | 巴斯夫欧洲公司 | Elastic particle foam material based on polyolefin/styrene polymer mixture |
WO2011042405A1 (en) * | 2009-10-09 | 2011-04-14 | Basf Se | Polymer mixtures of polystyrene having styrene butadiene block copolymers |
JP5704831B2 (en) * | 2010-03-26 | 2015-04-22 | 積水化成品工業株式会社 | Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article |
TWI529205B (en) * | 2010-03-26 | 2016-04-11 | 積水化成品工業股份有限公司 | Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form |
JP5603628B2 (en) * | 2010-03-26 | 2014-10-08 | 積水化成品工業株式会社 | Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article |
EP2431148A1 (en) | 2010-09-17 | 2012-03-21 | Technisch Bureel Panigo N.V. | Production of laminated styrene-polymerised sheets |
EP2452968A1 (en) * | 2010-11-11 | 2012-05-16 | Basf Se | Method for producing expandable thermoplastic particles with improved expandability |
WO2012089574A1 (en) | 2010-12-28 | 2012-07-05 | Basf Se | Foam board based on styrene polymer-polyolefin mixtures |
JP5829717B2 (en) * | 2014-03-27 | 2015-12-09 | 株式会社ジェイエスピー | Polyolefin resin foamed particles, foamed particle molded body, and composite laminate with the molded body |
CN104592663A (en) * | 2015-02-13 | 2015-05-06 | 芜湖市伟华泡塑有限公司 | High-toughness and high-elasticity expandable polystyrene and preparation method thereof |
US10329450B2 (en) | 2015-05-22 | 2019-06-25 | Basf Coatings Gmbh | Method for producing a multicoat coating |
RU2678038C1 (en) | 2015-05-22 | 2019-01-22 | БАСФ Коатингс ГмбХ | Water base coating material for obtaining a coating layer |
CA2999771A1 (en) * | 2015-10-21 | 2017-04-27 | Owens Corning Intellectual Capital, Llc | Methods of manufacturing foams comprising nanocellular domains |
IT201600080035A1 (en) | 2016-07-29 | 2018-01-29 | Versalis Spa | Block expandable polymeric compositions |
IT201600079947A1 (en) | 2016-07-29 | 2018-01-29 | Versalis Spa | Expandable polymeric composition containing ethylene-vinyl acetate copolymers |
EP3529293A1 (en) | 2016-10-20 | 2019-08-28 | BASF Coatings GmbH | Method for producing a coating |
WO2018104009A1 (en) | 2016-12-07 | 2018-06-14 | Huntsman International Llc | Method for producing expanded thermoplastic polymers |
EP3592804A1 (en) | 2017-03-10 | 2020-01-15 | Repsol, S.A. | Polymeric foams |
BR112020006475A2 (en) | 2017-11-30 | 2020-09-29 | Basf Coatings Gmbh | process, plastic substrate, and, shoe sole. |
JP6628374B1 (en) * | 2018-08-10 | 2020-01-08 | 株式会社ジェイエスピー | Laminate |
WO2021121930A1 (en) | 2019-12-18 | 2021-06-24 | Basf Coatings Gmbh | Process for producing a structured and optionally coated article and article obtained from said process |
WO2023036854A1 (en) | 2021-09-13 | 2023-03-16 | Basf Coatings Gmbh | Coating composition comprising a sustainable pigment and method of coating a substrate using the same |
EP4200367B1 (en) | 2021-09-28 | 2024-07-10 | BASF Coatings GmbH | Method of coating a substrate using a coating composition comprising a naturally occurring pigment |
JP2024537324A (en) | 2021-10-11 | 2024-10-10 | ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for producing coated non-crosslinked polymeric materials |
WO2024161277A1 (en) * | 2023-01-30 | 2024-08-08 | Versalis S.P.A. | Expandable granules and articles obtained therefrom |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2413408A1 (en) | 1974-03-20 | 1975-10-23 | Basf Ag | EXPANDABLE PLASTIC COMPOUND MADE FROM A STYRENE POLYMERISATE, AN ETHYLENE POLYMERISATE, A SOLVENT AND A DRIVING AGENT |
DE2413375A1 (en) | 1974-03-20 | 1975-10-23 | Basf Ag | PROCESS FOR THE PRODUCTION OF FOAM FROM BULK CONTAINING STYRENE AND ETHYLENE POLYMERISATE |
JPS5364277A (en) * | 1976-11-22 | 1978-06-08 | Sekisui Plastics | Improved foamable polystyrene resin particle |
DE3814783A1 (en) | 1988-04-30 | 1989-11-09 | Basf Ag | Expandable polymer alloy in particle form, and process for the preparation thereof |
AU4754090A (en) * | 1988-11-25 | 1990-06-26 | Dow Chemical Company, The | Polystyrene foam containing carbon black |
JPH04255732A (en) * | 1991-02-08 | 1992-09-10 | Kanegafuchi Chem Ind Co Ltd | Preliminarily expanded beads of thermoplastic resin and production thereof |
CA2134026C (en) | 1993-11-15 | 1998-06-09 | William J. Trepka | Tapered block copolymers of monovinylarenes and conjugated dienes |
DE4416862A1 (en) * | 1994-05-13 | 1996-02-22 | Basf Ag | Expandable styrene polymers |
DE4416852A1 (en) * | 1994-05-13 | 1995-11-16 | Basf Ag | Expandable styrene polymers |
DE4420952A1 (en) | 1994-06-17 | 1995-12-21 | Basf Ag | Thermoplastic elastomer |
DE19615533A1 (en) | 1996-04-19 | 1997-10-23 | Basf Ag | Thermoplastic molding compound |
US6593430B1 (en) * | 1999-03-27 | 2003-07-15 | Basf Aktiengesellschaft | Transparent, impact-resistant polystyrene on a styrene-butadiene block copolymer basis |
DE19914075A1 (en) | 1999-03-27 | 2000-09-28 | Basf Ag | Transparent high-impact styrene-butadiene block copolymers comprises at least two hard blocks and a soft block with a low 1,2-vinyl content for improved thermal stability |
DE19950420A1 (en) * | 1999-10-20 | 2001-04-26 | Basf Ag | Particulate expandable olefin polymerizate, useful in preparation of foamed materials, has specified properties and comprises halogen-free propellant |
DE50012568D1 (en) * | 2000-01-25 | 2006-05-24 | Basf Ag | Process for the preparation of particle-shaped, expandable propylene polymers |
AU2001281270A1 (en) * | 2000-08-14 | 2002-02-25 | The Dow Chemical Company | Dimensionally stable foam made from compatibilized blends of poly (vinyl aromatic) polymers and poly (alpha-olefin) polymers for cushion packaging applications |
NL1016665C2 (en) * | 2000-11-21 | 2002-05-22 | Produkt Ontwikkeling Beheer B | Removal of tar and PAHs by a foam. |
JP2003155369A (en) * | 2001-11-22 | 2003-05-27 | Mitsubishi Kagaku Form Plastic Kk | In-mold molding styrene-based resin cellular particle and molded product given by in-mold molding |
ITMI20012706A1 (en) * | 2001-12-20 | 2003-06-20 | Enichem Spa | PROCEDURE FOR THE PRODUCTION OF EXPANDABLE THERMOPLASTIC POLYMER GRANULES AND APPARATUS SUITABLE FOR THE PURPOSE |
JP3983116B2 (en) | 2002-02-18 | 2007-09-26 | 積水化成品工業株式会社 | Expandable thermoplastic resin particles and foamed molded products |
KR20050104355A (en) * | 2003-01-27 | 2005-11-02 | 노바 케미칼즈 인코포레이팃드 | Foamable interpolymer resin particles containing limonene as a blowing aid |
JP4017538B2 (en) * | 2003-02-14 | 2007-12-05 | 積水化成品工業株式会社 | Styrenic resin foamable particles, method for producing the same, and styrene resin foamed molded article |
WO2005021624A1 (en) * | 2003-08-29 | 2005-03-10 | Sekisui Plastics Co., Ltd. | Pre-expanded particle of olefin-modified polystyrene resin, process for producing the same, and molded foam |
DE10358801A1 (en) * | 2003-12-12 | 2005-07-14 | Basf Ag | Particle foam moldings of expandable styrene polymers and blends with thermoplastic polymers |
WO2005092959A1 (en) * | 2004-03-25 | 2005-10-06 | Basf Aktiengesellschaft | Nanoporous polymer foams formed from multiphase polymer mixtures containing a foaming agent |
-
2008
- 2008-04-08 EP EP20080735092 patent/EP2144959B1/en not_active Not-in-force
- 2008-04-08 KR KR1020157001212A patent/KR20150027221A/en not_active Application Discontinuation
- 2008-04-08 KR KR1020097023393A patent/KR101514094B1/en not_active IP Right Cessation
- 2008-04-08 JP JP2010502453A patent/JP5570413B2/en not_active Expired - Fee Related
- 2008-04-08 MX MX2009010310A patent/MX2009010310A/en active IP Right Grant
- 2008-04-08 UA UAA200911481A patent/UA97838C2/en unknown
- 2008-04-08 SI SI200830199T patent/SI2144959T1/en unknown
- 2008-04-08 DK DK08735092T patent/DK2144959T3/en active
- 2008-04-08 AT AT08735092T patent/ATE494323T1/en active
- 2008-04-08 PL PL08735092T patent/PL2144959T3/en unknown
- 2008-04-08 MY MYPI20094238A patent/MY147660A/en unknown
- 2008-04-08 CA CA2681782A patent/CA2681782C/en not_active Expired - Fee Related
- 2008-04-08 CN CN2008800112673A patent/CN101652416B/en not_active Expired - Fee Related
- 2008-04-08 RU RU2009141371/04A patent/RU2478112C2/en not_active IP Right Cessation
- 2008-04-08 PT PT08735092T patent/PT2144959E/en unknown
- 2008-04-08 BR BRPI0809543-4A2A patent/BRPI0809543A2/en not_active IP Right Cessation
- 2008-04-08 US US12/595,275 patent/US20100143697A1/en not_active Abandoned
- 2008-04-08 ES ES08735092T patent/ES2358307T3/en active Active
- 2008-04-08 WO PCT/EP2008/002774 patent/WO2008125250A1/en active Application Filing
- 2008-04-08 DE DE200850002220 patent/DE502008002220D1/en active Active
- 2008-04-10 CL CL2008001027A patent/CL2008001027A1/en unknown
- 2008-04-10 AR ARP080101494 patent/AR066021A1/en active IP Right Grant
- 2008-04-11 TW TW097113406A patent/TWI476235B/en not_active IP Right Cessation
-
2009
- 2009-10-22 CO CO09118654A patent/CO6140063A2/en unknown
-
2010
- 2010-03-31 HK HK10103327A patent/HK1138029A1/en not_active IP Right Cessation
-
2011
- 2011-01-31 HR HR20110071T patent/HRP20110071T1/en unknown
-
2013
- 2013-01-29 US US13/669,747 patent/US8568633B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012110159A1 (en) * | 2012-10-24 | 2014-04-24 | Michael Kellerer | Method and device for producing a brick with insulation filling and such brick |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2144959B1 (en) | Elastic particle foam based on polyolefin/styrene polymer mixtures | |
EP2384354B1 (en) | Elastic particle foam based on polyolefin/styrene polymer mixtures | |
EP2254937B1 (en) | Elastic particle foam made from polyolefin/styrol polymer mixtures | |
EP2384355B1 (en) | Elastic particle foam based on polyolefin/styrene polymer mixtures | |
EP2638102A1 (en) | Process for producing expandable thermoplastic beads with improved expandability | |
EP2403900B1 (en) | Elastic particle foam material based on polyolefin/styrene polymer mixtures | |
WO2012062773A1 (en) | Method for producing expandable thermoplastic particles by post-impregnation | |
WO2010076185A1 (en) | Expandable thermoplastic polymer particles based on polyolefin/styrene polymer mixtures using isopentane or cyclopentane as a blowing agent | |
EP3625272B1 (en) | Brominated flame retardants | |
DE102013224275A1 (en) | Process for the preparation of expandable, thermoplastic polymer particles with improved blowing agent retention capacity | |
WO2012089574A1 (en) | Foam board based on styrene polymer-polyolefin mixtures | |
WO2024008911A1 (en) | Expandable thermoplastic polymer particles with a content of recycled material, and method for producing same | |
WO2024008914A1 (en) | Expanded thermoplastic polymer particles with a content of recycled material, and method for producing same | |
DE102013224277A1 (en) | Process for preparing antistatic, expandable, thermoplastic polymer particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20091111 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17Q | First examination report despatched |
Effective date: 20100203 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20110071 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20110131 |
|
REF | Corresponds to: |
Ref document number: 502008002220 Country of ref document: DE Date of ref document: 20110217 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008002220 Country of ref document: DE Effective date: 20110217 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 8577 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20110105 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20110071 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2358307 Country of ref document: ES Kind code of ref document: T3 Effective date: 20110426 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110105 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110105 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110505 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110105 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E010828 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110105 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110105 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
26N | No opposition filed |
Effective date: 20111006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110105 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008002220 Country of ref document: DE Effective date: 20111006 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20130328 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110408 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20130325 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20130426 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20130423 Year of fee payment: 6 Ref country code: SI Payment date: 20130328 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20140328 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20141008 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: ML Ref document number: 20110400190 Country of ref document: GR Effective date: 20141104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140408 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141104 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141008 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20141209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140409 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20110071 Country of ref document: HR Payment date: 20150324 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HR Payment date: 20150324 Year of fee payment: 8 Ref country code: PL Payment date: 20150318 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20150427 Year of fee payment: 8 Ref country code: CZ Payment date: 20150403 Year of fee payment: 8 Ref country code: SE Payment date: 20150429 Year of fee payment: 8 Ref country code: ES Payment date: 20150522 Year of fee payment: 8 Ref country code: FI Payment date: 20150421 Year of fee payment: 8 Ref country code: GB Payment date: 20150430 Year of fee payment: 8 Ref country code: SK Payment date: 20150407 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20150618 Year of fee payment: 8 Ref country code: FR Payment date: 20150430 Year of fee payment: 8 Ref country code: NL Payment date: 20150424 Year of fee payment: 8 Ref country code: IT Payment date: 20150421 Year of fee payment: 8 Ref country code: IE Payment date: 20150423 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20151012 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20110400190 Country of ref document: GR Effective date: 20110218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: PBON Ref document number: P20110071 Country of ref document: HR Effective date: 20160408 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20160430 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20160501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160408 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 8577 Country of ref document: SK Effective date: 20160408 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20161230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160408 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160408 Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160408 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160408 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160409 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160501 Ref country code: HR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160408 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160408 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160408 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160409 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181205 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20200424 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20200420 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200629 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008002220 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 494323 Country of ref document: AT Kind code of ref document: T Effective date: 20210408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211103 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160408 |