EP2143095B1 - Avionic aviation system with an earth station for automatically eliminating operating malfunctions occurring in airplanes, and corresponding method - Google Patents

Avionic aviation system with an earth station for automatically eliminating operating malfunctions occurring in airplanes, and corresponding method Download PDF

Info

Publication number
EP2143095B1
EP2143095B1 EP20080707264 EP08707264A EP2143095B1 EP 2143095 B1 EP2143095 B1 EP 2143095B1 EP 20080707264 EP20080707264 EP 20080707264 EP 08707264 A EP08707264 A EP 08707264A EP 2143095 B1 EP2143095 B1 EP 2143095B1
Authority
EP
European Patent Office
Prior art keywords
earth station
parameters
memory stack
activation
landing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20080707264
Other languages
German (de)
French (fr)
Other versions
EP2143095A2 (en
Inventor
Marcel Fok
Shinji Shirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swiss Re AG
Original Assignee
Swiss Reinsurance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2007/050708 external-priority patent/WO2007088133A2/en
Application filed by Swiss Reinsurance Co Ltd filed Critical Swiss Reinsurance Co Ltd
Priority to AT08707264T priority Critical patent/ATE533142T1/en
Priority to EP20080707264 priority patent/EP2143095B1/en
Priority to US12/524,389 priority patent/US8244414B2/en
Priority claimed from PCT/EP2008/000553 external-priority patent/WO2008089988A2/en
Publication of EP2143095A2 publication Critical patent/EP2143095A2/en
Application granted granted Critical
Publication of EP2143095B1 publication Critical patent/EP2143095B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground

Definitions

  • the invention relates to an avionic aviation system with ground station for the automatic correction of occurring malfunctions in aircraft.
  • the avionic aviation system is connected to a variety of aircraft via a wireless avionics interface.
  • a switching device of the ground station of the aviation system a dedicated malfunction use device for automatic malfunction correction is activated if a malfunction detected by a sensor occurs in an aircraft.
  • troubleshooting the malfunction not only the type of troubleshooting use devices (eg, malfunctioning devices such as automatic extinguishing systems, locking and regulations, alarm and signaling devices, switching and activating devices, or disaster response devices, etc.) may play a role, but also the manner in which they are measured Control parameters are filtered, processed and technically implemented to control the resources. Often it is the technical implementation, in particular in the case of real-time acquisition, analysis and management of the measurement parameters of such systems, that hardly leads to any problems that can be overcome.
  • detection devices and detection devices eg wind speed sensors, satellite imagery, water level sensors, water and wind temperature sensors, etc.
  • Burning Rate method One of the problems of burning Rate method is based on the difficulty to extrapolate malfunctions and their expected values for future malfunctions. This is partly due to the complexity and nonlinearity of the external influences on the operation of the aircraft.
  • Efficient malfunction correction includes complex technical subsystems of the aircraft as well as the many thousand sensors and measuring signals, or monitoring and control systems based on difficult to control environmental influences, such as meteorological (storms, hurricanes, floods, thermals) influences. Automation of troubleshooting should be able to take into account all these influences without affecting the reaction speed of troubleshooting. Such systems have hitherto not been known in the prior art.
  • the international patent WO 2004/045106 shows a system of the prior art, with which operating data of an aircraft can be collected and transmitted via means of communication of the on-board system to a ground station.
  • the European patent EP 1 455 313 shows another system of the prior art, wherein flight and operating parameters with a so-called Aircraft Condition Analysis and Management System (ACAMS) monitors and incident or expected malfunctions can be detected.
  • ACAMS Aircraft Condition Analysis and Management System
  • the European patent EP 1 630 763 A1 shows another monitoring and control system. With this system, any malfunctions should be based on the transmitted measurement parameters be avoided.
  • the alarm device shown here is based, in particular, on predicted trajectories of the monitored aircraft generated by the system. In case of impending malfunctions, a corresponding alarm signal is generated automatically.
  • the US patent specification US 6,940,426 shows a system for determining the probability of occurring malfunction of aircraft. Different measurement parameters are recorded by historical events as well as by dynamically recorded events and taken into account accordingly during signal generation.
  • the European patent EP 1 777 674 shows a control and control system for landings and takeoffs of aircraft. The measurement parameters can be simultaneously recorded, managed and used for control signal generation by several associated aircraft.
  • the European patent EP 1 840 755 A2 shows another aviation system to prevent and repair malfunction. In this case, a plurality of measurement parameters of the aircraft are transmitted to a ground station. This compares the measured data, for example, with manufacturer data in real-time and generates a corresponding control signal and / or control software for the avionics of the aircraft or the operator in case of deviation.
  • the US patent specification US 5,500,797 shows a control system that detects malfunctions in the aircraft and stores measurement parameters. The saved measurement parameters can be used in the analysis of the malfunction. In particular, so that measurement data for future malfunctions are detected and can be used to control malfunction use devices.
  • the European patent specification shows EP 1 527 432 Bl an avionic aviation system for stationary flight monitoring of aircraft. Based on the transmitted data, for example, a corresponding alarm signal can be automatically generated and control and control functions are generated.
  • the German patent DE 198 56 231 A1 from Daimler Chrysler shows a satellite-based control system for transmitting control data from aircraft eg to a station of a flight operations center. Since the communication system is satellite-based, the aircraft can also be monitored in flight.
  • the system can carry out an error analysis if specified limit values are exceeded, issue warnings and, if necessary, initiate measures for troubleshooting.
  • the document 'The revolution of the aircraft engine ground maintenance station', Clinton JT shows the communication system ACARS (Aircraft Communication and Reporting System), by means of which control data from aircraft can be detected and transmitted to a ground station, a so-called. Engine Data Center. Since the communication system has satellite links, the control data of the aircraft can also be detected during the flight. Alerts or alerts based on the transmitted control data may be sent from the system to the aircraft, the manufacturer of the aircraft (OEM: Original Equipment Manufacturer) or otherwise issued.
  • ACARS Aircraft Communication and Reporting System
  • the solution should make it possible to provide a fully automated, electronic aviation system, which reacts dynamically to changing conditions and business interruptions and / or adapts.
  • it should be a solution that allows to design the avionic aviation system such that changeable causality and dependency of the operational disturbances (eg location of use, type of use, operation of the aircraft, external influences such as weather, landing base, etc.) with the necessary accuracy of the aviation system are considered and integrated in the technical implementation so that human interaction is not necessary.
  • the associated log parameters can be transmitted directly to the ground station, for example, via the aircraft's avionics wireless interface via a sate elite-based network.
  • the associated log parameters can also be transmitted to the ground station via the wireless interface of the avionics (on-board system) of the aircraft via a wireless communication network of a served landing base, for example.
  • the detection devices can be completely integrated into the avionics of the aircraft.
  • the landing bases can also comprise at least parts of the detection device, for example.
  • the detection device can be realized, for example, at least partially as part of a control system of a landing base, eg an airport or airfield.
  • the detection device can also be partially realized, for example, as part of a control system of an air service provider and / or flight operations provider.
  • This has the advantage that with the avionics of the aircraft no further technical adjustments or realizations are necessary than already exists.
  • the detection device can be implemented at any possible flight / landing base or the cycles can be detected elsewhere and transmitted to the aviation system.
  • the invention has the advantage, inter alia, that a uniform, technically in the existing electronics of the aircraft (avionics) to be integrated fully integrated avionics aviation system with ground station for the automatic correction of occurring malfunctions in aircraft can be realized by means of the device according to the invention. Until now, this was not possible in the state of the art, since the automations without human interaction often had unpredictable instabilities.
  • the aviation system with ground station according to the invention now eliminates this deficiency in the prior art and makes it possible for the first time to realize a corresponding, automated avionic aviation system.
  • a further advantage is that, by means of the aviation system according to the invention, at least partially based on cycles (take off and landing), causality and dependency of the operational disturbances can be detected and used with the necessary accuracy. This guarantees a dynamically adjusted operational safety by means of automated troubleshooting.
  • the aviation system allows for the first time a complete automation of the additional pricing of the malfunction at all levels. Also, this was not possible so far in the prior art.
  • the activation parameters are determined variably by means of the filter module based on the detected number of takeoff and / or landing units.
  • the ground station will be dynamic Information about the launches and landings of an aircraft being carried out
  • the aircraft assigned to the aviation system have detection devices with an interface to the ground station and / or landing base and / or to the satellite-based network.
  • the interface to the ground station can be realized, for example, by means of an air interface.
  • This variant has the advantage, among other things, that the aviation system allows real-time acquisition of the cycles (take-off / landing). This also results in the possibility of a dynamic adaptation of the operation of the aviation system in real-time to the current conditions and / or in particular a corresponding real-time adaptation of the activation parameters.
  • the technical implementation of the procedure thus receives the opportunity for self-adapting the aviation system. It also deaves a complete automation. This type of automation is not possible with any of the prior art devices.
  • the malfunction use means are selected by means of the filter module upon detection of a malfunction by means of the sensor system of the aviation system in accordance with the malfunction that has occurred and / or the aircraft type concerned and activated by means of the switching device.
  • This embodiment variant has the advantage that, in order to remedy the occurring malfunction by means of the filter module, the activated malfunctioning agent can be specifically selected and adapted to the resulting malfunction and / or location of the malfunction.
  • the filter module for this embodiment variant can comprise expert systems implemented in accordance with neural network modules.
  • the filtering and selecting e.g. be realized by means of adapted lookup tables. This allows an automation of aviation systems based on the system according to the invention, as it was not nearly possible in the prior art.
  • the malfunction application means are additionally selectable by means of the filter module based on the stack memory height value of the activation stack and selectively activated by means of the switching device.
  • This embodiment variant has the advantage, inter alia, that the aviation system can react dynamically to the transmitted activation parameters.
  • the memory threshold and the cumulative activation parameters need not necessarily be identical. This allows, for example, by means of the filter module, a dynamic adaptation of the selected operational fault use devices based on the transmitted activation parameters.
  • the log parameters additionally include measured value parameters of the flight management system (FMS) and / or the inertial navigation device (INS) and / or the fly-by-wire sensors and / or flight monitoring devices of the aircraft, wherein the memory threshold value is dynamically adjusted for the aircraft by the filter module respective time slots are generated based on the stack height value of the techlog stack and the additional log parameters.
  • FMS flight management system
  • INS inertial navigation device
  • the memory threshold value is dynamically adjusted for the aircraft by the filter module respective time slots are generated based on the stack height value of the techlog stack and the additional log parameters.
  • the avionics of the aircraft comprises a height-measuring sensor system and / or a tachometer and / or a variometer and / or a horizon gyroscope and / or a turning pointer and / or an accelerometer and / or a stall warning sensor system and / or an external temperature sensor system and or a location determination device, wherein the log parameters additionally comprise measurement parameters of at least one sensor and wherein the storage threshold is dynamically generated by the filter module for the respective time window based on the stack height value of the techlog stack and the additional log parameters. For example, by means of a GPS module of the location determination module of the detection device, location-dependent parameters can be generated and transmitted to the ground station.
  • This variant has, among other things, the same advantages as the previous one.
  • the malfunction use device with respect to the location of the malfunction event can be controlled and controlled.
  • the location detection module of the detection device eg location coordinate parameters of the current location of the aircraft can be generated and transmitted to the ground station for triggering the intervention to remedy an operation disturbance by means of the dedicated selected operation disturbance use devices.
  • the malfunction of the aircraft can be automated or at least semi-automatically remedied.
  • the malfunctioning deployment device may also include additional monetary value-based transmission modules in addition to automated direct intervention devices. Since, for example, location coordinate parameters of the current location of the aircraft can be generated by means of the location detection module of the detection device and transmitted to the ground station, the activation parameters and / or the memory threshold value can be dynamically adapted to the probabilities of the occurrence of a malfunction, for example by means of the filter module.
  • difficult landing bases such as Hong Kong higher activation parameters or memory thresholds can be assigned, landing areas with high security, such as Frankfurt or Zurich, smaller values in the activation parameters and / or the memory threshold.
  • the behavior and the environmental influences are thus fully and dynamically taken into account during the operation of the aircraft. This was not possible in the prior art so far. The same applies to detected measurement parameters of the height measurement sensor, the travel measurement, the variometer of the horizon gyro Wende Attaches, acceleration measurement of the Matterziehwarnsensorik or the outdoor temperature sensor of the aircraft.
  • ATIS measurement parameters based on the automatic terminal information service (ATIS) of the approached landing base are automatically transmitted to the ground station for each landing and start unit by means of the avionics of the aircraft or the communication means of the landing base, the memory threshold value being dynamic for the respective time window determined based on the stack height value of the Techlog stack and dynamically adjusted using the ATIS measurement parameters.
  • This variant has u.a. the same advantages as the previous one.
  • the aviation system can be adapted dynamically and in real-time based on the ATIS measurement parameters.
  • the activation parameters and / or the memory threshold value are adjusted dynamically by means of the ATIS measurement parameters to the type and probabilities of a malfunction.
  • dynamically determined first activation parameters are applied to the avionics of the aircraft and / or to a supplemental on-board system assigned to the respective aircraft by means of the filter module of the ground station and, to increment the activation stack, protected second activation parameters are generated by the avionics or the associated supplementary on-board system and transmitted to the ground station.
  • the protected second activation parameters may include, for example, a unique identification number or other electronic identification (ID), such as an IMSI.
  • ID electronic identification
  • This embodiment variant has the advantage, among other things, that the second activation parameters and the first activation parameters do not have to be identical. This allows, for example, a dynamic adaptation of the selected operating fault use devices based on the second activation parameters by means of the filter module.
  • the activation parameters can in particular also be transmitted, for example, simply via networks or processed by decentralized systems.
  • the ground station comprises an interface for accessing one or more databases with land-base-specific data records, each start and / or landing unit detected by the detection apparatus being recorded as a log parameter being assigned to at least one land-base-specific data record and the log parameters being based on a weighting module weighted and / or weighted generated according to the associated landing-base-specific data record.
  • the aviation system may additionally include means for dynamically updating the one or more databases of landing-site-specific data records, wherein the updating of the landing-site-specific data records may be implemented periodically and / or on request.
  • the one or more databases may, for example, be assigned decentralized to a landing base for aircraft, data being transmitted unidirectionally and / or bidirectionally to the ground station by means of an interface.
  • This variant has, inter alia, the same advantages as the previous embodiment.
  • a real-time adaptation of the aviation system for example with regard to the technical conditions in the used landing areas, becomes possible. This allows to keep the aviation system always up to date automatically. This may be particularly important in considering new developments and implementations of technical systems for increasing safety etc. in the cycles.
  • the realization of the databases has the advantage that by means of a filter module or suitable decentralized filter means data, such as metadata, can be generated from acquired data and can be updated dynamically. This allows quick and easy access. For a local database at the ground station with periodic update For example, the aviation system can continue to function dynamically even if the connections to individual landing areas are interrupted in the meantime.
  • an electrical clock signal with a reference frequency is generated by means of an integrated oscillator of the filter module, based on the clock signal, the filter module periodically determine the variable activation parameters and / or optionally transferred to the corresponding incrementable stack.
  • FIGS. 1 and 2 illustrate an architecture that may be used to implement the invention.
  • the avionics aviation system 80 is connected to ground station 81 for automatic repair of incidents occurring in aircraft 40/41/42 with a plurality of aircraft 40/41/42 via a wireless interface 403 of the avionics 402 of the aircraft 40,41,42
  • the aviation system 80 with ground station 81 may be, for example, as part of a technical system of an operator of aircraft 40,..., 42, such as an airline or air cargo / air freight carrier, but also of a manufacturer of aircraft such as Airbus or Boeing or air traffic control services.
  • the aircraft may include, for example, 40/41 goods transport and / or passenger transport 42 and / or airships such as zeppelins or even shuttles or other means of space flight.
  • the aircraft 40, ..., 42 may also include motorized and non-powered aircraft, particularly gliders, motor gliders, delta controllers, etc.
  • dedicated malfunction insets 603 are automatically activated by a switching device 1 of the ground station 81 if a detected by a sensor 3/401/601 detected malfunction occurs.
  • the ground station 81 and / or the malfunction use devices 603 may in particular partially comprise, for example, automated emergency and alarm devices with money-value-based transmission modules.
  • the sensor system 3/401/601 may be integrated at least partially for detecting malfunction in the avionics 402 of the aircraft 40,..., 42, the control device of the malfunction correction devices 603 and / or the ground station 81 and / or landing base 11.
  • the malfunction use devices 603 may be, for example, control, alarm or direct technical intervention systems on the affected aircraft 40, ..., 42, the operator of the aircraft 40, ..., 42 and / or the landing base 11 and / or the ground station 81, which is affected when detecting corresponding malfunctions.
  • multiple aircraft 40, ..., 42, ground stations 81 and / or landing bases 11 may be simultaneously affected or detected by the aviation system.
  • the malfunction correction can be done, for example, by coupled and / or graduated technical interventions, such as triggering different control services or throttling and dosing filters with appropriate dosing devices or valves, etc.
  • malfunction correction devices 603 are possible, which are activated by the flight system 80, for example in the sense automated or partially automated emergency interventions (or their triggering) by medically trained personnel or automated triggering of flight-related emergency situations such as patient transports, etc., which are alerted by selectively generated signal data generated by the flight system 80.
  • Malfunction repair devices 603 may be unidirectionally or bidirectionally connected to the aircraft 40,..., 42, and / or the ground station 81 and / or the landing base 11, for example, to control the devices 603 by means of the automated malfunction remediation system 80.
  • the reference number 60 describes the intervention device as a whole, comprising the communication interface 601 with eventual sensors for measuring malfunction, the control device 602 for electronically monitoring and controlling the malfunctioning device 603, and the malfunctioning device 603.
  • the aviation system 80 comprises detection devices 411 integrated into the avionics 402 of the aircraft 40/41/42.
  • the detection devices 411 take-off and / or landing units of an aircraft 40/41/42 are detected electronically, with corresponding planes corresponding to the aircraft 40, .. ., 42 associated log parameters of the performed takeoff and / or landing units are transmitted from the detection devices 411 via the wireless interface 403 to the ground station 81.
  • the log parameters may be at least partially captured in terms of absolute value parameters.
  • the associated log parameters can be transmitted via a satellite-based network 70 directly to the ground station 81.
  • the associated log parameters can also be transmitted to the ground station 81, for example via a wireless communication network 111 of a flown landing base 11.
  • the ground station 81 includes for each aircraft 40, ..., 42 an incrementable stack stack 202 with readable stack height value (Techlog stack height value).
  • the stack height value of the Techlog stack 202 is increased by means of a counter module 203 of the ground station 81 based on filtered start and / or landing units of the transmitted log parameters of the respective aircraft 40, ..., 42.
  • the meter module 203 also includes means for reading the stack height value of the techlog stack 202.
  • a filter module 2 of the ground station 81 a memory threshold for enabling activation of the paging inserter 603 dynamically for a particular time window based on the stack height value of the techlog stack 202 determined.
  • the ground station 81 comprises an activation stack 102 of a protected memory module 103, by means of which activation parameters of the aircraft 40,..., 42 are detected.
  • the activation parameters are transmitted to the ground station 81 based on the current memory threshold and the activation stack 102 is incremented in accordance with the transmitted activation parameters.
  • the activation parameters may include at least partially monetary and / or monetary-based amounts, in particular electronically protected parameters.
  • first activation parameters can be dynamically determined, for example, by means of the filter module 2 of the ground station 81 and to the avionics (402) of the aircraft 40,..., 42 and / or to a supplemental off-board system 404 assigned to the respective aircraft 40, be transmitted.
  • protected second activation parameters are generated by the avionics 402 or the associated supplementary off-board system 404 and transmitted to the ground station 81.
  • the protected second activation parameters may include, for example, a unique identification number.
  • the activation stack memory height value of the stack 102 is cumulatively detected.
  • the detection can be done, for example, periodically and / or on request and / or carried out during transmission. If the dynamically determined memory threshold is reached with the stack height value of the activation stack 102, the switching device 1 is activated by means of the filter module 2 for the dedicated activation of the operation disturbance means 603 in case of malfunction occurring.
  • variable activation parameter or memory threshold value is determined periodically by means of the filter module 2 based on the detected number of start and / or landing units or the log parameters, for example, and transmitted to the activation stack 102 upon return transmission to the ground station 81.
  • the filter module 2 and / or the counter modules 103/203 may comprise an integrated oscillator, by means of which an electrical clock signal with a reference frequency can be generated, based on the clock signal, the filter module 2 and / or the counter modules 103/203 are periodically activated.
  • the variable activation parameter and / or activation stack memory can be determined dynamically or partially dynamically, for example, by means of the filter module 2 based on the detected number of start and / or landing units.
  • the malfunction use devices 603 can additionally be selected by means of the filter module 2 based on the stack memory height value of the activation stack 102 and activated by means of the switching device 1 become.
  • the log parameters may include additional measurement parameters of the Flight Management System (FMS) and / or the inertial navigation device (INS) and / or the fly-by-wire sensors and / or flight monitoring devices of the aircraft 40,..., 42, wherein the memory threshold value is dynamically generated by the filter module 2 for the respective time window based on the stack memory height value of the techlog stack and the additional log parameters.
  • FMS Flight Management System
  • INS inertial navigation device
  • the memory threshold value is dynamically generated by the filter module 2 for the respective time window based on the stack memory height value of the techlog stack and the additional log parameters.
  • the avionics 402 of the aircraft 40,..., 42 can also include, for example, a height-measuring sensor and / or a travel meter and / or a variometer and / or a horizon gyro and / or a turning pointer and / or an accelerometer and / or a stall warning sensor system and / or an outside temperature sensor and / or a location determining device include.
  • the location determination module of the detection device 411 may include, for example, at least one GPS module for generating location-dependent transmissible parameters.
  • the log parameters additionally comprise measurement parameters of at least one of the sensors, wherein the memory threshold value is dynamically generated by the filter module 2 for the respective time window based on the stack height value of the techlog stack 202 and the additional log parameters.
  • the avionics 402 of the aircraft 40,..., 42 or the communication means 111 of the landing base 11 for example, ATIS measurement parameters based on the Automatic Terminal Information Service (ATIS) of the approached landing base 11 at each landing and start unit (Cycle). are automatically transferred to the ground station 81, wherein the memory threshold is dynamically generated for the respective time window based on the stack height value of the Techlog stack 202 and the transmitted ATIS measurement parameters.
  • ATIS Automatic Terminal Information Service
  • the detection device 411 comprises measuring sensors for dynamically or partially dynamically detecting start and / or landing units.
  • the detection device 411 can, as for the avionics 403, bombard eg a height measuring sensor system and / or a travel meter and / or a variometer and / or a horizon gyro and / or a turning pointer and / or an accelerometer and / or a stall warning sensor system and / or an outside temperature sensor system and or a location determining device.
  • the detection device 411 may also include, for example, sensors and / or detection means for dynamically detecting landbased data of the associated land / takeoff base for airborne transport 40/41 and / or passenger airlift 42.
  • the associated air transport means 40/41 and / or passenger air transport means 42 may include, for example, the detection device 411 with an interface to the filter module 2 and / or the user device 11.
  • the mentioned interface from the detection device 411 to the filter module 2 and / or to the user device 11 can eg be an air interface include.
  • the detection device 411 may include, for example, a location determination module for generating location-dependent transmissible parameters.
  • the location determination module of the detection device 411 may include, for example, at least one GPS module for generating location-dependent transmissible parameters.
  • ground station 81 may include an interface for accessing one or more databases of landing-site-specific data records.
  • Each start and / or landing unit (cycle) detected by means of the detection device 411 and recorded as a log parameter is assigned at least one land-base-specific data record, the log parameters being weighted by means of a weighting module based on the associated land-base-specific data record.
  • the aviation system 80 may further include means for dynamically updating the one or more databases of landing-site-specific data records. The updating of the landing-site-specific data records can be realized, for example, periodically and / or on request.
  • the one or more databases may, for example, be decentralized to a landing base 11 for aircraft 40,..., 42.
  • data from the landing base 11 can be transmitted unidirectionally and / or bidirectionally to the ground station 81.
  • the landing and / or start unit-specific data records and / or data can be acquired by accessing databases of state and / or partially state and / or private control bodies and / or other databases of launch and landing bases.
  • the acquired data can be stored, for example, allocated in a data memory and, for example, can be updated periodically and / or on request.
  • the aviation system 80 may also include the aforementioned one or more databases.
  • suitable filter means data such as metadata, generated data can be generated and updated dynamically. This allows quick and easy access.
  • the automated alarm and Intervention system continue to function even if the connections to user devices and / or detection units are interrupted.
  • the data can, as mentioned, in particular also include metadata, which are extracted, for example, using a content-based indexing technique.
  • the metadata can be generated at least partially dynamically (in real time) based on the log parameters transmitted by the detection devices 411. This has the advantage, for example, that the metadata always has the relevance and accuracy that is meaningful for the system according to the invention.
  • the perturbation utility devices 603 may additionally include petty-based intervention funds for monetary coverage of the malfunction remediation on the aircraft 40, ..., 42.
  • the avionic aviation system 80 may, as mentioned, comprise a plurality of loading bases 11 or / and ground stations 81 with aircraft 40,..., 42.
  • the aircraft 40, ..., 42 and / or the landing base 11 may be connected to the ground station 81, for example, via the communication network 50/51 and / or the satellite-based network 70 unidirectional and / or bidirectional.
  • the communication network 50/51 and / or the satellite-based network 70 may, for example, be a GSM or a UMTS network, or a satellite-based mobile network, and / or one or more fixed networks, for example the public switched telephone network, the worldwide Internet or a suitable LAN ( Local Area Network) or WAN (Wide Area Network). In particular, it also includes ISDN and XDSL connections.
  • the communications network 50/51/70 may also include broadcast systems (eg, Digital Audio Broadcasting DAB or Digital Video Broadcasting) in which broadcast broadcasters include digital audio or video programs (television programs) and digital data, such as data services , Program Associated Data (PAD) to broadcast receivers unidirectionally spread. This can be useful depending on the variant.
  • broadcast systems eg, Digital Audio Broadcasting DAB or Digital Video Broadcasting
  • broadcast broadcasters include digital audio or video programs (television programs) and digital data, such as data services , Program Associated Data (PAD) to broadcast receivers unidirectionally spread. This can be useful depending
  • the unidirectional propagation feature of these broadcast systems may have the disadvantage, inter alia, that, in particular in the case of transmission by means of radio waves, a return channel from the broadcast receivers to the broadcast transmitters, or to their operators, is missing. Due to this missing return channel, the possibilities for encryption, data security, billing, etc. of access-controlled programs and / or data are more limited.

Abstract

An avionic aviation system, and a corresponding method, with an earth station for automatically eliminating operating malfunctions occurring in airplanes. The avionic aviation system is connected to a plurality of airplanes via a wireless interface of the avionics. If, by sensor, an operating malfunction is detected on an airplane, a dedicated operating malfunction usage device is selected to automatically eliminate the malfunction by a filter module, and a switching device of the earth station is specifically enabled to activate the operating malfunction usage device.

Description

Die Erfindung betrifft ein avionisches Luftfahrtsystem mit Bodenstation zur automatischen Behebung von auftretenden Betriebsstörungen bei Flugzeugen. Das avionische Luftfahrtsystem ist mit einer Vielzahl von Flugzeugen über eine drahtlose Schnittstelle der Avionik verbunden. Mittels einer Schaltvorrichtung der Bodenstation des Luftfahrtsystems wird eine dedizierte Betriebsstörungseinsatzvorrichtung zur automatischen Betriebsstörungsbehebung aktiviert, falls eine mittels einer Sensorik detektierte Betriebsstörung bei einem Flugzeug eintritt.The invention relates to an avionic aviation system with ground station for the automatic correction of occurring malfunctions in aircraft. The avionic aviation system is connected to a variety of aircraft via a wireless avionics interface. By means of a switching device of the ground station of the aviation system, a dedicated malfunction use device for automatic malfunction correction is activated if a malfunction detected by a sensor occurs in an aircraft.

Stand der TechnikState of the art

In den letzten zwanzig Jahren ist die Menge an mit Flugzeugen transportierten Güten und Personen weltweit explodiert. Die Abhängigkeiten der industrie und Wirt-schaft vom Flugverkehr sind dabei vielfältig. Wie bei jeder technischer Vorrichtung ereignen sich jedoch auch bei Flugzeuge immer wieder Betriebsstörungen. Die Ursachen dafür sind unterschiedlich und Nchen von Materialabnutzung, Materialermüdung, mangelhafter Wartung der Flugzeuge oder der Landebasen, fehlerhaftem Verhalten von Piloten, Lotsen, bis zu falschen oder ungenügenden Wettereinschätzungen. Doch auch bei sorgfältiger Ausbildung der Piloten, ausgezeichneter Wartung der Luftfahrzeuge und sorgfältiger Flugvorbereitung können Betriebsstörungen nicht ausgeschlossen werden, was intrinsisch in der Komplexität der beteiligten Systeme liegt. Die Ursachen und Hintergründe von Flugunfällen und Betriebsstörungen sind nicht immer einfach zu klären. Die stark steigenden Ausmaße des Flugverkehrs in den letzten Jahren verlangt zusätzlich eine Automatisierung auf allen Ebenen. Automatisierungen ohne menschliche Interaktion war jedoch im Stand der Technik gerade bei Betriebsstörungsbehebung bis heute nicht möglich. Betriebsunterbrüche bei Flugzeugen unterliegen, trotz der grossen Anzahl mit Flugzeugen transportierter Güter und Personen, nicht den Gesetz-mäßigkeiten größter Zahlen. Einerseits führt die technische Komplexität im Aufbau der Flugzeuge mit meist mehreren Motoren und einigen tausend interagierenden Sensoren und Betriebseinheiten zu einem für den Fachmann in Extremfällen nicht voraussagbarem Verhalten. Anderseits ist auch die Physik z.B. der Flügel und deren Dynamik sowie des Flugzeugrumpfes keineswegs technisch so verstanden, dass die entworfenen Flugzeuge ein für alle Fälle voraussagbares Verhallten im Flug zeigen. Im Gegenteil beruht das meiste der Gestaltungstechnik der Flügel und des Flugzeugkörpers noch immer auf empirischen Erfahrungswerten und nicht technisch vorausgesagten Formen. Flugzeuge selbst sind zudem im Verhalten bei Betrieb stark wettearbhängig. Das Wetter selbst ist technisch zur Zeit für größere Zeiträume weder wirklich voraussagbar noch berechen-bar, sondern unterliegt chaotischen, hochgradig nichtlinearen Prozessen, die sich nicht für beliebig grosse Zeiträume extrapolieren lassen. Dadurch entzieht sich eine effiziente und stabile Automatisierung der Behebung von Betriebsstörungen der im Stand der Technik bekannten avionischen Luftfahrtsysteme. Wie erwähnt hat die starke Zunahme des Flugverkehrs in den letzten Jahren ein Bedürfnis nach neuen Luftfahrtsystemen geschaffen, welche Betriebsstörungen effizient beheben und wirksam abfangen können. Einerseits sollen Betriebsstörungen präventiv verhindert anderseits ihr Eintreten rechtzeitig detektiert und behoben werden, möglichst bevor es zu einer Katastrophe kommt. Eine effiziente Betriebsstörungsbehebung mittels eines Luftfahrtsystem hilft natürlich auch die wirtschaftlichen Folgen für den Betreiber zu minimieren, was ihm Vorteile insbesondere im Wettbewerb mit anderen Betreibern verschafft. Bei der Behebung der Betriebsstörung kann nicht nur die Art der Einsatzvorrichtungen zur Störungsbehebung (z.B. Betriebsstörungseinsatzvorrichtungen wie automatische Löschsysteme, Schließ und Regelwerke, Alarm- und Signalvorrichtungen, Schalt- und Aktivierungsvorrichtungen oder Katastropheneinsatzvorrichtungen etc.) eine Rolle spielen, sondern auch die Art, wie gemessenen Kontrollparameter gefiltert, verarbeitet und zur Steuerung der Einsatzmittel technisch umgesetzt werden. Häufig ist es insbesondere bei der Real-Time Erfassung, Analyse und Verwaltung der Messparameter solcher Systeme die technische Umsetzung, die kaum zu überwindbare Probleme bereitet. Die heute in jedem Zeitpunkt verfügbare, ungeheure Datenmenge aus unterschiedlichsten Erfassungsvorrichtungen und Detektionsvorrichtungen (z.B. Windgeschwindigkeitssensoren, Satellitenbilder, Wasserstandsensoren, Wasser- und Windtemperatursensoren etc.) macht eine Kontrolle und Lenkung durch reines menschliches Handeln und Wahrnehmung nur noch schwer möglich. Die technische Umsetzung solcher Luftfahrtsysteme sollte deshalb, falls möglich, vollautomatisiert und in Real-Time sowohl mit den Erfassungsvorrichtungen/als auch mit den Betriebsstörungseinsatzvorrichtungen interagieren. Selbst nur teilweise menschliche Interaktion ist in der Flugtechnik in vielen Fällen betreffend Signalmenge und/oder Reaktionsgeschwindigkeit nicht mehr möglich. Die menschliche Interaktion hat bei komplexen Systemen zudem den Nachteil, dass ihre Fehleranfälligkeit in Abhängigkeit der Komplexität nicht linear steigt. Das Verhalten bzw. der Betrieb des Systems wird unvorhersagbar. Unerwartete Betriebsunterbrüche, Systemabstürze oder Systemcrashes sind die Folge. Dazu gibt es gehäuft Beispiele in neuerer Zeit, wie z.B. systemerzeugte Betriebsunterbrüche bei mit menschlicher Interaktion gekoppelten Systemen order beispielsweise trotz aller Notfallinterventionsvorrichtungen und -systemer unvorhersehbare Flugzeugabstürze wie z.B. MD1 1-Crash der Swissair vor Halifax am 03.11.98 oder das Flugunglück bei Überlingen im Juli 2002 etc.In the last twenty years, the amount of goods transported by airplanes and people worldwide has exploded. The dependencies of the industry and economy on air traffic are manifold. However, as with any technical device, aircraft malfunctions occur again and again. The causes vary, ranging from material wear, material fatigue, poor aircraft or landing center maintenance, pilot misbehavior, pilots, to false or inadequate weather assessments. But even with careful training of the pilots, excellent maintenance of the aircraft and careful flight preparation, operational disruptions can not be ruled out, which is intrinsically in the complexity of the systems involved. The causes and background of air accidents and breakdowns are not always easy to clarify. The sharp increase in air traffic over the last few years also requires automation at all levels. Automations without human interaction, however, was not possible in the prior art, especially in case of troubleshooting. Business interruptions in aircraft, despite the large number of goods and passengers transported by airplanes, are not subject to the statutes of largest numbers. On the one hand, the technical complexity in the construction of the aircraft with mostly several engines and a few thousand interacting sensors and operating units leads to behavior that is unpredictable for the skilled person in extreme cases. On the other hand, the physics of, for example, the wing and its dynamics as well as the fuselage is by no means technically understood so that the designed aircraft show a predictable in flight flight. On the contrary, most of the design technique of the wings and the aircraft body is still based Empirical experience and not technically predicted forms. Aircraft themselves are also highly competitive in their operational behavior. The weather itself is currently technically neither predictable nor predictable for longer periods of time, but is subject to chaotic, highly nonlinear processes that can not be extrapolated for arbitrarily large periods of time. This eliminates an efficient and stable automation of the elimination of malfunction of avionic aviation systems known in the art. As noted, the proliferation of air traffic in recent years has created a need for new aviation systems that can efficiently troubleshoot and effectively intercept failures. On the one hand, operational disturbances are preventively prevented, on the other hand, their occurrence is detected and remedied in good time, if possible before a catastrophe occurs. Of course, an efficient malfunction correction by means of an aviation system also helps to minimize the economic consequences for the operator, which gives him advantages in particular in competition with other operators. When troubleshooting the malfunction, not only the type of troubleshooting use devices (eg, malfunctioning devices such as automatic extinguishing systems, locking and regulations, alarm and signaling devices, switching and activating devices, or disaster response devices, etc.) may play a role, but also the manner in which they are measured Control parameters are filtered, processed and technically implemented to control the resources. Often it is the technical implementation, in particular in the case of real-time acquisition, analysis and management of the measurement parameters of such systems, that hardly leads to any problems that can be overcome. The tremendous amount of data available today from a wide variety of detection devices and detection devices (eg wind speed sensors, satellite imagery, water level sensors, water and wind temperature sensors, etc.) makes it difficult to control and steer through pure human action and perception. The technical implementation of such aviation systems should therefore, if possible, be fully automated and interact in real-time with both the sensing devices and the malfunctioning deployment devices. Even only partial human interaction is in flight technology in many cases no longer possible in terms of signal quantity and / or reaction rate. The disadvantage of human interaction in complex systems is that their susceptibility to error does not increase linearly, depending on their complexity. The behavior or operation of the system becomes unpredictable. Unexpected service interruptions, system crashes or system crashes are the result. In addition, there are more recent examples, such as system-generated interruptions in systems coupled with human interaction or, for example, despite all emergency intervention devices and systems unpredictable Air crashes such as MD1 1 crash of Swissair before Halifax on 03.11.98 or the flight accident at Überlingen in July 2002 etc.

Obwohl Betriebsstörungen bei Flugzeugen, sowohl in der Personenflugbeförderung als auch bei der Güterbeförderung, durch die steigende beförderte Menge ebenfalls häufiger geworden sind, gilt für Flugzeugbetriebsstörungen immer noch, dass der Stand der Technik über viel weniger Erfahrungswerte verfüg als bei Betriebsstörungen in anderen technischen Bereichen. Dies betrifft z.B. die Anzahl existierender, in Betrieb stehender Einheiten mit vergleichbaren historischen Ereignissen. Daraus folgt, dass zur Realisierung eines Luftfahrtsystems zur Behebung von Betriebsstörungen statistische Erfahrungswerte, wie z.B. das "Gesetz der großen Zahlen", im Wesentlichen nicht anwendbar sind. Dazu kommt, dass es in vielen Fällen von Betriebsstörungen bei Flugzeugen zudem schwierig ist, die wirkliche Ursache festzustellen, trotz aufwendiger technischer Hilfsvorrichtungen, wie die Black Box und nahtloser Überwachung der Flugtrajektorie. Dies macht es schwierig, automatisierte Einsatzvorrichtungen zur Behebung von Betriebsstörungen oder entsprechende elektronische Schalt- und Signalerzeugungssysteme auf die notwendige Kausalität zu gründen, bzw. entsprechende Daten überhaupt zu erhalten. Im Stand der Technik versucht man z.B. entsprechende Daten auf die betroffenen Landebasen, Typen der eingesetzten Flugzeuge oder die Menge betrie-bener Flugzeuge (z.B. mittels Marktanteilen des Betreibers, wie z.B. Umlauf (Turnover), etc.) zu begründen. Bekannte solche Systeme sind z.B. RPK (Revenue Passenger Kilometer), AVF (Average Fleet Value) etc. Damit kann z.B. das Verhalten des Betreibers berücksichtigt werden. Einer der Nachteile dieser Systeme ist, dass der Turnover nur die momentane und unmittelbar folgende Zukunft reflektierit und technisch nur sehr indirekt Aufschlüsselung der Ursachen von Betriebsstörungen erlaubt. Zudem besteht technisch zwischen dem Turnover und den auftretenden Betriebsstörungen in den seltensten Fällen eine direkte Abhängigkeit. Einige Systeme des Standes der Technik basieren auch auf der Anzahl in Betrieb stehender Flugzeuge, welche als Randparameter zur Realisierung eines automatisierten Flugfahrtssystems zur Behebung von Betriebsstörungen genommen wird. Diese Systeme reflektieren unter Umständen das Auftreten von Betriebsstörungen besser. Jedoch müssen nicht alle Betreiber von Flugzeugen gleiche technische Ausrüstungen, technisches Know How, Wartung der Maschinen, Flugbasen etc. benutzen, geschweige denn für alle betriebenen Flugzeuge gleich verwenden. Dies verzer die Abhängigkeit stark, wodurch die Realisierung solcher Systeme ihrerseits Unsicherheiten erhält und eine große Fehlertoleranz benötigt. Andere Luftfahrtssysteme des Standes der Technik basieren in ihrer technischen Umsetzung auf dem sog. Burning Rate Verfahren. Eins der Probleme des Burning Rate Verfahrens beruht auf der Schwierigkeit, Betriebsstörungen und deren Erwartungswerte auf zukünftige Betriebsstörungen zu extrapolieren. Dies liegt u.a. in der Komplexität und Nichtlinearität der äußeren Einflüsse auf den Betrieb der Flugzeuge.Although aircraft malfunctions, both in passenger and in freight transport, have also become more frequent as a result of the increased volume transported, it is still the case for aircraft malfunctions that the prior art has much less experience than malfunctions in other technical fields. This applies, for example, to the number of existing, operating units with comparable historical events. It follows that for the realization of an aviation system to remedy operational disturbances statistical empirical values, such as the "law of large numbers", are essentially not applicable. In addition, in many cases of aircraft malfunctions, it is difficult to determine the true cause, despite complex technical supportive devices such as the black box and seamless monitoring of the flight trajectory. This makes it difficult to establish automated deployment devices for repairing malfunction or corresponding electronic switching and signal generation systems on the necessary causality, or to obtain corresponding data in general. In the prior art, for example, one tries to justify corresponding data on the affected landing bases, types of aircraft used or the quantity of aircraft operated (eg by means of market shares of the operator, such as circulation (turnover), etc.). Known such systems are for example RPK (Revenue Passenger Kilometer), AVF (Average Fleet Value) etc. Thus, for example, the behavior of the operator can be considered. One of the drawbacks of these systems is that the turnover only reflects the current and immediately future future and technically allows only very indirect breakdown of the causes of breakdowns. In addition, technically there is rarely a direct dependency between the turnover and the malfunctions that occur. Some prior art systems are also based on the number of aircraft in service, which are taken as marginal parameters for the realization of an automated aircraft malfunction correction system. These systems may better reflect the occurrence of malfunction. However, not all operators of aircraft need to use the same technical equipment, technical know-how, maintenance of the machines, bases, etc., let alone use the same for all aircraft operated. This greatly reduces the dependency, as a result of which the realization of such systems in turn receives uncertainties and requires a large degree of fault tolerance. Other aviation systems of the prior art are based in their technical implementation on the so-called. Burning Rate method. One of the problems of burning Rate method is based on the difficulty to extrapolate malfunctions and their expected values for future malfunctions. This is partly due to the complexity and nonlinearity of the external influences on the operation of the aircraft.

Bei den Luftfahrtsystemen des Standes der Technik ist zur differenzierten Signalerzeugung menschliche Interaktion in vielen Bereichen immer noch notwendige Voraussetzung. Besonders bei Betriebsstörungen ist die Komplexität der beteiligten Vorrichtungen, erfassten Messparameter oder zu kontrollierenden Prozesse und Interaktionen mit der Umwelt in einem Maß überschritten, das menschliche Interaktion immer weniger zulässt. Insbesondere bei der Steuerung, Kontrolle und Überwachung der dynamischen und/oder nicht-linearen Prozesse, welche zu den Betriebsstörungen führen, entht sich eine Automatisierung der Erkennung dem Stand der Technik. Häufig ist es insbesondere die Nichtlinearität, welche konventionellen Vorrichtungen den Boden zur Automatisierung entzieht. Viele technische Umsetzungen unterschiedlichster Arten von Frühwarn-Vorrichtungen, Bild- und/oder Mustererkennungsvorrichtungen (Pattern-Recognition), insbesondere bei analogen Messdaten oder bei notwendiger Selbstorganisierung der Vorrichtung, sind im Stand der Technik noch heute nicht befriedigend gelöst. Die meisten natürlichen Prozesse besitzen mindestens teilweise einen nichtlinearen Verlauf und tendieren außerhalb eines schmalen linearen Gleichgewichtbereichs zu exponentiellem Verhalten. Eine effiziente und zuveriässig funktionierende Frühwarnsignalerzeugung und automatisierte Betriebsstörungsbehebung kann für Flugzeuge deshalb überlebenswichtig sein. Effiziente Betriebsstörungsbehebung umfasst komplexe technische Teilvorrichtungen der Flugzeuge ebenso wie die vielen tausend Sensoren und Meßsignale, oder Überwachungs- und Steuersysteme basierend auf schwer kontrollierbaren Umwelteinflüssen, wie meteorlogischen (Stürme, Hurrikans, Überschwemmungen, Thermiken) Einflüssen. Eine Automatisierung der Störungsbehebung sollte alle diee Einflüsse berücksichtigen können, ohne die Reaktionsgeschwindigkeit der Störungsbeseitigung zu beeinträchtigen. Solche Systeme sind im Stand der Technik bis anhin nicht bekannt. Die internationale Patentschrift WO 2004/045106 ( EP1563616 ) zeigt ein System des Standes der Technik, womit Betriebsdaten eines Flugzeuges gesammelt und über Kommunikationsmittel des Bordsystems an eine Bodenstation übermittelt werden können. Die europäische Patentschrift EP 1 455 313 zeigt ein anderes System des Standes der Technik, wobei Flug- und Betriebsparameter mit einem sog. Aircraft Condition Analysis and Management System (ACAMS) überwacht und anfallende oder zu erwartende Betriebsstörungen detektiert werden können. Die europäische Patentschrift EP 1 630 763 A1 zeigt ein weiteres Überwachungs- und Kontrollsystem. Mit diesem System sollen anfallende Betriebsstörungen basierend auf den übermittelten Messparametern vermieden werden. Die dabei gezeigte Alarmvorrichtung basiert insbesondere auf mittels des Systems generierten, prognostizierten Trajektorien der überwachten Flugzeuge. Bei bevorstehenden Betriebsstörungen wird automatisch ein entsprechendes Alarmsignal erzeugt. Die US Patentschrift US 6 940 426 zeigt ein System zur Wahrscheinlichkeitsbestimmung von auftretenden Betriebsstörungen bei Flugzeugen. Dabei werden unterschiedliche Messparameter sowohl von historischen Ereignissen als auch von dynamisch erfassten Ereignissen erfasst und entsprechend bei der Signalerzeugung berücksichtigt. Die europäische Patentschrift EP 1 777 674 zeigt ein Kontroll- und Steuersystem für Landungen und Starts von Flugzeugen. Die Messparameter können gleichzeitig von mehreren zugeordneten Flugzeugen erfasst, verwaltet und zur Kontrollsignalerzeugung verwendet werden. Die europäische Patentschrift EP 1 840 755 A2 zeigt ein weiteres Luftfahrtsystem zur Vermeidung und Behebung von Betriebsstörungen. Dabei werden eine Vielzahl von Messparametern des Flugzeuges an eine Bodenstation übermittelt. Diese Vergleicht die Messdaten z.B. mit Herstellerdaten in Real-Time und erzeugt bei Abweichung ein entsprechendes Steuersignal und/oder Steuersoftware für die Avionik des Flugzeuges oder den Betreiber. Die US Patentschrift US 5 500 797 zeigt ein Kontrollsystem, welches Betriebsstörungen im Flugzeug detektiert und Messparameter speichert. Die gespeicherten Messparameter können bei der Analyse der Betriebsstörung verwendet werden. Insbesondere werden damit Messdaten für zukünftige Betriebsstörungen erfasst und können zur Steuerung von Betriebsstörungseinsatzvorrichtungen verwendet werden. Schlussendlich zeigt die europäische Patentschrift EP 1 527 432 Bl ein avionisches Luftfahrtsystem zur ortsgebundenen Flugüberwachung von Flugzeugen. Basierend auf den übermittelten Daten kann z.B. ein entsprechendes Alarmsignal automatisch erzeugt und Kontroll- und Steuerfunktionen generiert werden. Die deutsche Patentschrift DE 198 56 231 A1 von Daimler Chrysler zeigt ein satellitenbasiertes Kontrollsystem zum Übertragen von Kontrolldaten von Flugzeugen z.B. auf eine Station eines Flugbetriebzentrums. Da das Kommunikationssystem satellitenbasiert ist, lassen sich die Flugzeuge auch im Flug überwachen. Das System kann bei Überschreiten von festgelegten Grenzwerten eine Fehleranalyse durchführen, Warnmeldungen ausgeben und allenfalls Marnahmen zur Fehlerbehebung einleiten. Das Dokument 'The revolution of the aircraft engine ground maintenance station", Clinton J.T. , zeigt das Kommunikationssystem ACARS (Aircraft Communication and Reporting System), mittels welchem Kontrolldaten von Flugzeugen erfasst werden können und auf eine Bodenstation, einem sog. Engine Data Center, übertragen werden. Da das Kommunikationssystem über Satellitenlinks verfügt, können die Kontrolldaten der Flugzeuge auch während des Fluges erfasst werden. Warnungen (alerts) oder Alarmsignale basierend auf den übertragenen Kontrolldaten können von dem System an das Flugzeug, den Hersteller des Flugzeuges (OEM: Original Equipment Manufacturer) oder anderweitig ausgegeben werden.In the aviation systems of the prior art, human interaction is still a necessary prerequisite for differentiated signal generation in many areas. Especially in the case of malfunctions, the complexity of the devices involved, acquired measurement parameters or processes to be controlled and interactions with the environment is exceeded to an extent that makes human interaction less and less possible. In particular, in the control, monitoring and monitoring of the dynamic and / or non-linear processes, which lead to the operational disturbances, an automation of the recognition entails the state of the art. Often it is the non-linearity which deprives conventional devices of the ground for automation. Many technical implementations of different types of early warning devices, image and / or pattern recognition devices (pattern recognition), in particular with analog measurement data or with necessary self-organization of the device, are still not satisfactorily solved in the prior art. Most natural processes are at least partially non-linear and tend to exponentially out of a narrow linear equilibrium range. An efficient and reliable early warning signal generation and automated troubleshooting can therefore be vital for aircraft. Efficient malfunction correction includes complex technical subsystems of the aircraft as well as the many thousand sensors and measuring signals, or monitoring and control systems based on difficult to control environmental influences, such as meteorological (storms, hurricanes, floods, thermals) influences. Automation of troubleshooting should be able to take into account all these influences without affecting the reaction speed of troubleshooting. Such systems have hitherto not been known in the prior art. The international patent WO 2004/045106 ( EP1563616 ) shows a system of the prior art, with which operating data of an aircraft can be collected and transmitted via means of communication of the on-board system to a ground station. The European patent EP 1 455 313 shows another system of the prior art, wherein flight and operating parameters with a so-called Aircraft Condition Analysis and Management System (ACAMS) monitors and incident or expected malfunctions can be detected. The European patent EP 1 630 763 A1 shows another monitoring and control system. With this system, any malfunctions should be based on the transmitted measurement parameters be avoided. The alarm device shown here is based, in particular, on predicted trajectories of the monitored aircraft generated by the system. In case of impending malfunctions, a corresponding alarm signal is generated automatically. The US patent specification US 6,940,426 shows a system for determining the probability of occurring malfunction of aircraft. Different measurement parameters are recorded by historical events as well as by dynamically recorded events and taken into account accordingly during signal generation. The European patent EP 1 777 674 shows a control and control system for landings and takeoffs of aircraft. The measurement parameters can be simultaneously recorded, managed and used for control signal generation by several associated aircraft. The European patent EP 1 840 755 A2 shows another aviation system to prevent and repair malfunction. In this case, a plurality of measurement parameters of the aircraft are transmitted to a ground station. This compares the measured data, for example, with manufacturer data in real-time and generates a corresponding control signal and / or control software for the avionics of the aircraft or the operator in case of deviation. The US patent specification US 5,500,797 shows a control system that detects malfunctions in the aircraft and stores measurement parameters. The saved measurement parameters can be used in the analysis of the malfunction. In particular, so that measurement data for future malfunctions are detected and can be used to control malfunction use devices. Finally, the European patent specification shows EP 1 527 432 Bl an avionic aviation system for stationary flight monitoring of aircraft. Based on the transmitted data, for example, a corresponding alarm signal can be automatically generated and control and control functions are generated. The German patent DE 198 56 231 A1 from Daimler Chrysler shows a satellite-based control system for transmitting control data from aircraft eg to a station of a flight operations center. Since the communication system is satellite-based, the aircraft can also be monitored in flight. The system can carry out an error analysis if specified limit values are exceeded, issue warnings and, if necessary, initiate measures for troubleshooting. The document 'The revolution of the aircraft engine ground maintenance station', Clinton JT , shows the communication system ACARS (Aircraft Communication and Reporting System), by means of which control data from aircraft can be detected and transmitted to a ground station, a so-called. Engine Data Center. Since the communication system has satellite links, the control data of the aircraft can also be detected during the flight. Alerts or alerts based on the transmitted control data may be sent from the system to the aircraft, the manufacturer of the aircraft (OEM: Original Equipment Manufacturer) or otherwise issued.

Technische AufgabeTechnical task

Es ist eine Aufgabe dieser Erfindung, ein avionisches Luftfahrtsystem mit Bodenstation zur automatischen Behebung von auftretenden Betriebsstörungen bei Flugzeugen vorzuschlagen, welches die oben erwähnten Nachteile nicht aufweiset. Insbesondere soll die Lösung es erlauben, ein vollautomatisiertes, elektronisches Luftfahrtsystem zur Verfügung zu stellen, welches dynamisch auf veränderte Bedingungen und Betriebsunterbrüche reagiert und/oder sich anpasst. Weiter soll es eine Lösung sein, welche erlaubt, das avionische Luftfahrtsystem derart zu gestalten, dass veränderbare Kausalität und Abhängigkeit der Betriebsstörungen (z.B. Ort des Einsatzes, Art des Einsatzes, Betrieb des Flugzeuges, äußere Einflüsse wie z.B. Wetter, Landebasis etc.) mit der notwendigen Genauigkeit vom Luftfahrtsystem berücksichtigt und in der technischen Umsetzung derart integriert sind, dass menschliches Interagieren nicht notwendig ist.It is an object of this invention to propose an avionic ground based aviation system for the automatic repair of aircraft malfunctions which does not have the above mentioned disadvantages. In particular, the solution should make it possible to provide a fully automated, electronic aviation system, which reacts dynamically to changing conditions and business interruptions and / or adapts. Furthermore, it should be a solution that allows to design the avionic aviation system such that changeable causality and dependency of the operational disturbances (eg location of use, type of use, operation of the aircraft, external influences such as weather, landing base, etc.) with the necessary accuracy of the aviation system are considered and integrated in the technical implementation so that human interaction is not necessary.

Gemäss der vorliegenden Erfindung wird dieses Ziel insbesondere durch die Elemente der unabhängigen Ansprüche erreicht. Weitere vorteilhafte Ausführungsformen gehen ausserdem aus den abhängigen Ansprüchen, der Beschreibung und den Zeichnungen hervor.According to the present invention, this object is achieved in particular by the elements of the independent claims. Further advantageous embodiments are further evident from the dependent claims, the description and the drawings.

Insbesondere werden diese Ziele der Erfindung durch ein avionisches Luftfahrtssystem mit Bodenstation zur automatischen Behebung von auftretenden Betriebsstörungen bei Flugzeugen mit den Merkmalen des Anspruchs 1 und durch das avionische Luftfahrtsverfahren mit Bodenstation zur automatischen Behebung von auftretenden Betriebsstörungen bei Flugzeugen mit den Merkmalen des Anspruchs 13 erreicht.In particular, these objects of the invention are achieved by an aeronautical aviation system with ground station for the automatic correction of occurring malfunctions in aircraft with the features of claim 1 and by the avionic aviation method with ground station for the automatic correction of occurring malfunctions in aircraft having the features of claim 13.

Die zugeordneten Logparameter können z.B. mittels der drahtlosen Schnittstelle der Avionik der Flugzeuge über ein sate elitenbasiertes Netzwerk direkt auf die Bodenstation übertragen werden. Die zugeordneten Logparameter können z.B. aber auch mittels der drahtlosen Schnittstelle der Avionik (Bordsystems) der Flugzeuge über ein drahtloses Kommunikationsnetzwerk einer angeflogenen Landebasis auf die Bodenstation übertragen werden. Die Detektionsvorrichtungen können z.B. vollständig in die Avionik der Flugzeuge integriert sein. Die Landebasen können z.B. aber auch mindestens Teile der Detektionsvorrichtung umfassen. Die Detektionsvorrichtung kann z.B. mindestens teilweise als Bestandteil eines Kontrollsystems einer Landebasis, z.B. eines Flughafens oder Flugplatzes, realisiert sein. Die Detektionsvorrichtung kann z.B. auch teilweise als Bestandteil eines Kontrollsystems eines Flugdienstleistungsanbieter und/oder Flugbetriebsanbieter realisiert sein. Dies hat den Vorteil, dass bei der Avionik der Flugzeuge keine weiteren technischen Anpassungen oder Realisationen notwendig sind als bereits vorhanden. So können z.B. die Detektionsvorrichtung an jeder möglichen Flug-/Landebasis realisiert sein oder die Cycles können anderweitig erfasst werden und an das Luftfahrtsystem übermittelt werden. Die Erfindung hat u. a. den Vorteil, dass mittels der erfindungsgemäßen Vorrichtung ein einheitliches, technisch in die bestehende Elektronik der Flugzeuge (Avionik) zu integrierendes vollautomatisiertes avionisches Luftfahrtsystem mit Bodenstation zur automatischen Behebung von auftretenden Betriebsstörungen bei Flugzeugen realisiert werden kann. Dies war so im Stand der Technik bis anhin nicht möglich, da die Automatisierungen ohne menschliche Interaktion häufig unvorsehbare Instabilitäten aufwiesen. Betriebsunterbrüche bei Flugzeugen unterliegen trotz der grossen Anzahl mit Flugzeugen transportierter Güter und Personen nicht den Gesetzmässigkeiten großer Zahlen. Einerseits führt die technische Komplexität im Aufbau der Flugzeuge mit meist mehreren Motoren und einigen tausend interagierenden Sensoren zu einem für den Fachmann in Extremfällen nicht voraussagbaren Verhalten. Anderseits ist auch die Physik z.B. der Flügeldynamik keineswegs technisch so vollständig verstanden, dass Flugzeuge in allen Fällen ein voraussagbares Verhalten im Flug zeigen. Im Gegenteil beruht das meiste der Gestaltungstechnik der Flügel und des Flugzeugkörpers noch immer auf empirisch gesammelten Erfahrungswerten und nicht technisch vorausgesagten oder berechneten Formen. Flugzeuge selbst sind zusätzlich in ihrem Betrieb stark netterarbhängig. Das Wetter selbst ist technisch zur Zeit weder wirklich voraussagbar noch berechenbar, sondern unterliegt chaotischen, hochgradig nichtlinearen Prozessen. Dadurch entzog sich eine effiziente und stabile Automatisierung der Behebung von Betriebsstörungen den im Stand der Technik bekannten avionischen Luftfahrtsystemen. Das erfindungsgemäße Luftfahrtsystem mit Bodenstation behebt nun diesen Mangel im Stand der Technik und ermöglicht erstmals die Realisierung eines entsprechenden, automatisierten avionischen Luftfahrtsystems. Ein weiterer Vorteil ist, dass mittels des ertindungsgemäßen Luftfahrtsystems mindestens teilweise basierend auf Cycles (take off and landing) Kausalität und Abhängigkeit der Betriebsstörungen mit der notwendigen Genauigkeit erfasst und verwendet werden können. Damit lässt sich eine dynamisch angepasste Betriebssicherstellung mittels automatisierter Betriebsstörungsbehebung garantieren. Im Sonderfall von Ausführungsbeispielen mit zusätzlich geldwertbasierten Parametern erlaubt das Luftfahrtsystem erstmals eine vollständige Automatisierung der zusätzlichen Tarifierung der Betriebsstörung auf allen Stufen. Auch dies war so bis anhin im Stand der Technik so nicht möglich. Wie erwähnt sind die Aktivierungsparameter variabel mittels des Filtermoduls basierend auf der detektierten Anzahl Start- und/oder Landeeinheiten bestimmt. Ebenso kann es sinnvoll sein z.B. mittels Messsensoren der Detektionsvorrichtung die Start- und/oder Landeeinheiten dynamisch oder teilweise dynamisch zu detektieren. Die Bodenstation wird damit dynamisch über die durchgeführten Starts und Landungen eines Flugzeuges informiert Als Ausführungsvariante können z.B. auch mittels Sensoren und/oder Detektionsmittel der Detektionsvorrichtung landbasisspezifischen Daten der zugeordneten Lande-/Startbasis für Flugzeuge, wie z.B. Fluggütertransportmittel und/oder Personenflugbeförderungsmittel, dynamisch detektiert werden. Die dem Luftfahrtsystem zugeordneten Flugzeuge besitzen Detektionsvorrichtungen mit einer Schnittstelle zur Bodenstation und/oder Landebasis und/oder zum satellitenbasiereten Netzwerk. Die Schnittstelle zur Bodenstation kann z.B. mittels einer Luftschnittstelle realisiert sein. Diese Ausführungsvariante hat u. a. den Vorteil, dass das Luftfahrtsystem eine real-time Erfassung der Cycles (Start-/Landung) erlaubt. Daraus ergibt sich auch die Möglichkeit zu einer dynamischen Adaption des Betriebs des Luftfahrtsystems in Real-Time an die aktuellen Verhältnisse und/oder insbesondere eine entsprechende Real-Time-Anpassung der Aktivierungsparameter. Die technische Umsetzung des Verfahrens erhält damit die Möglichkeit zum Self-Adapting des Luftfahrtsystems. Ebenfalls ertaubt dies eine vollständige Automatisierung. Diese Art von Automatisierung ist mit keinerr der Vorrichtungen des Standes der Technik möglich.The associated log parameters can be transmitted directly to the ground station, for example, via the aircraft's avionics wireless interface via a sate elite-based network. However, the associated log parameters can also be transmitted to the ground station via the wireless interface of the avionics (on-board system) of the aircraft via a wireless communication network of a served landing base, for example. For example, the detection devices can be completely integrated into the avionics of the aircraft. However, the landing bases can also comprise at least parts of the detection device, for example. The detection device can be realized, for example, at least partially as part of a control system of a landing base, eg an airport or airfield. The detection device can also be partially realized, for example, as part of a control system of an air service provider and / or flight operations provider. This has the advantage that with the avionics of the aircraft no further technical adjustments or realizations are necessary than already exists. Thus, for example, the detection device can be implemented at any possible flight / landing base or the cycles can be detected elsewhere and transmitted to the aviation system. The invention has the advantage, inter alia, that a uniform, technically in the existing electronics of the aircraft (avionics) to be integrated fully integrated avionics aviation system with ground station for the automatic correction of occurring malfunctions in aircraft can be realized by means of the device according to the invention. Until now, this was not possible in the state of the art, since the automations without human interaction often had unpredictable instabilities. Business interruptions in aircraft are not subject to the laws of large numbers, despite the large number of goods and passengers transported by airplanes. On the one hand, the technical complexity in the construction of the aircraft with mostly several engines and a few thousand interacting sensors leads to behavior that is unpredictable for the expert in extreme cases. On the other hand, the physics of wing dynamics, for example, are by no means so technically fully understood that airplanes in all cases show predictable behavior in flight. On the contrary, most of the wing and aircraft body design technique still relies on empirically collected empirical values and non-technically predicted or calculated shapes. Aircraft themselves are also heavily netterarbhängig in their operation. The weather itself is technically currently neither predictable nor predictable, but is subject to chaotic, highly nonlinear processes. As a result, an efficient and stable automation of the repair of malfunctions escaped the avionic aviation systems known in the prior art. The aviation system with ground station according to the invention now eliminates this deficiency in the prior art and makes it possible for the first time to realize a corresponding, automated avionic aviation system. A further advantage is that, by means of the aviation system according to the invention, at least partially based on cycles (take off and landing), causality and dependency of the operational disturbances can be detected and used with the necessary accuracy. This guarantees a dynamically adjusted operational safety by means of automated troubleshooting. In the special case of embodiments with additional value-based parameters, the aviation system allows for the first time a complete automation of the additional pricing of the malfunction at all levels. Also, this was not possible so far in the prior art. As mentioned, the activation parameters are determined variably by means of the filter module based on the detected number of takeoff and / or landing units. Likewise, it may be useful, for example, to dynamically or partially dynamically detect the starting and / or landing units by means of measuring sensors of the detection device. The ground station will be dynamic Information about the launches and landings of an aircraft being carried out As an embodiment variant, it is also possible, for example, to dynamically detect base-specific data of the assigned landing / take-off base for aircraft, such as passenger transport means and / or passenger air transport means, by means of sensors and / or detection means of the detection apparatus. The aircraft assigned to the aviation system have detection devices with an interface to the ground station and / or landing base and / or to the satellite-based network. The interface to the ground station can be realized, for example, by means of an air interface. This variant has the advantage, among other things, that the aviation system allows real-time acquisition of the cycles (take-off / landing). This also results in the possibility of a dynamic adaptation of the operation of the aviation system in real-time to the current conditions and / or in particular a corresponding real-time adaptation of the activation parameters. The technical implementation of the procedure thus receives the opportunity for self-adapting the aviation system. It also deaves a complete automation. This type of automation is not possible with any of the prior art devices.

In einer Ausführungsvariante werden die Betriebsstörungseinsatzmittel mittels des Filtermoduls bei Detektieren einer Betriebsstörung mittels der Sensorik des Luftfahrtsystems entsprechend der aufgetretenen Betriebsstörung und/oder dem betroffenen Flugzeugtyp selektiert und mittels der Schaltvorrichtung aktiviert. Diese Ausführungsvariante hat den Vorteil, dass zur Behebung der anfallenden Betriebsstörung mittels des Filtermoduls die aktivierten Betriebsstörungseinsatzmittel spezifisch selektiert und an die anfallende Betriebsstörung und/oder Ort der Betriebsstörung angepasst werden können. Z.B. kann das Filtermodul für diese Ausführungsvariante entsprechend realisierte Expertensysteme, neuronale Netzwerkmodule umfassen. Insbesondere kann das Filtern und Selektieren z.B. mittels adaptierter Lookup Tables realisiert sein. Dies erlaubt eine Automatisierung der Luftfahrtsysteme basierend auf dem erfindungsgemäßen System, wie es bis anhin im Stand der Technik nicht annähernd möglich war.In one embodiment variant, the malfunction use means are selected by means of the filter module upon detection of a malfunction by means of the sensor system of the aviation system in accordance with the malfunction that has occurred and / or the aircraft type concerned and activated by means of the switching device. This embodiment variant has the advantage that, in order to remedy the occurring malfunction by means of the filter module, the activated malfunctioning agent can be specifically selected and adapted to the resulting malfunction and / or location of the malfunction. For example, If appropriate, the filter module for this embodiment variant can comprise expert systems implemented in accordance with neural network modules. In particular, the filtering and selecting e.g. be realized by means of adapted lookup tables. This allows an automation of aviation systems based on the system according to the invention, as it was not nearly possible in the prior art.

In einer anderen Ausführungsvariante werden bei Detektieren einer Betriebsstörung mittels der Sensorik die Betriebsstörungseinsatzmittel mittels des Filtermoduls zusätzlich basierend auf dem Stapelspeicherhöhenwert des Aktivierungsstapelspeichers selektierbar und mittels der Schaltvorrichtung selektiv aktiviert. Diese Ausführungsvariante hat u.a. den Vorteil, dass das Luftfahrtsystem dynamisch auf die übermittelten Aktivierungsparameter reagieren kann. Der Speicherschwellwert und die kumulierten Aktivierungsparameter müssen so nicht notwendigerweise identisch sein. Dies erlaubt z.B. mittels des Filtermoduls einen dynamische Anpassung der selektierten Betriebsstörungseinsatzvorrichtungen basierend auf den übermittelten Aktivierungsparametern.In another embodiment variant, upon detection of a malfunction by means of the sensor, the malfunction application means are additionally selectable by means of the filter module based on the stack memory height value of the activation stack and selectively activated by means of the switching device. This embodiment variant has the advantage, inter alia, that the aviation system can react dynamically to the transmitted activation parameters. The memory threshold and the cumulative activation parameters need not necessarily be identical. This allows, for example, by means of the filter module, a dynamic adaptation of the selected operational fault use devices based on the transmitted activation parameters.

In einer weiteren Ausführungsvariante umfassen die Logparameter zusätzlich Messwertparameter des Flight Management System (FMS) und/oder des Inertialnavigationsvorrichtung (INS) und/oder der Fly-By-Wire Sensoren und/oder Flugüberwachungsvorrichtungen des Flugzeuges, wobei der Speicherschwellwert mittels des Filtermoduls dynamisch für das jeweilige Zeitfenster basierend auf dem Stapelspeicherhöhenwert des Techlog-Stapelspeichers und den zusätzlichen Logparameten generiert wird. Diese Ausführungsvariante hat u.a. den Vorteil dass z.B. das Luftfahrtsystem dynamisch und in Real-Time mittels der zusätzlichen Logparameter angepasst werden kann. Ebenso können z.B. mittels des Filtermoduls die Aktivierungsparameter und/oder der Speicherschwellwert dynamisch mittels der zusätzlichen Logparameter an die Art und Wahrscheinlichkeiten einer Betriebsstörung angepasst werden.In a further embodiment variant, the log parameters additionally include measured value parameters of the flight management system (FMS) and / or the inertial navigation device (INS) and / or the fly-by-wire sensors and / or flight monitoring devices of the aircraft, wherein the memory threshold value is dynamically adjusted for the aircraft by the filter module respective time slots are generated based on the stack height value of the techlog stack and the additional log parameters. This variant has u.a. the advantage that e.g. the aviation system can be adjusted dynamically and in real-time using the additional log parameters. Likewise, e.g. the activation parameters and / or the memory threshold value can be adjusted dynamically by means of the filter module by means of the additional log parameters to the type and probabilities of a malfunction.

In einer wieder anderen Ausführungsvariante umfasst die Avionik des Flugzeuges eine Höhenmesssensorik und/oder einen Fahrtenmesser und/oder ein Variometer und/oder einen Horizontkreisel und/oder einen Wendezeiger und/oder einen Beschleunigungsmesser und/oder eine Überziehwarnsensorik und/oder eine Außen-temperatursensorik und/oder eine Ortsbestimmungsvorrichtung, wobei die Logparameter zusätzlich Messparameter mindestens eines Sensors umfassen und wobei der Speicherschwellwert mittels des Filtermoduls dynamisch für das jeweilige Zeitfenster basierend auf dem Stapelspeicherhöhenwert des Techlog-Stapelspeichers und den zusätzlichen Logparametern generiert wird. Beispieisweise könnem mittels eines GPS-Moduls des Ortsbestimmungsmoduls der Detektionsvorrichtung ortsabhängige Parameter generiert und an die Bodenstation übermittelt werden. Diese Ausführungsvariante hat u. a. die gleichen Vorteile wie die vorgehende. Bei der Ausführungsvariante mit Ortsbestimmungsmodul können z.B. mittels des Luftfahrtsystems jederzeit die Betriebsstörungseinsatzvorrichtung bezüglich des Ortes des Betriebsstörungsereignisses kontrolliert und gesteuert werden. Wie erwähnt können folglich mittels des Ortserfassungsmoduls der Detektionsvorrichtung z.B. Ortskoordinatenparameter des aktuellen Standortes des Flugzeuges generiert werden und an die Bodenstation zum Auslösen der Intervention zur Behebung einer Betriebsstörung mittels der dediziert selektierten Betriebsstörungseinsatzvorrichtungen übertragen werden. Beispielsweise kann mittels mindestens einer Betriebsstörungseinsatzvorrichtung beim Detektieren eines Interventionsereignisses die Betriebsstörung des Flugzeuges automatisiert oder mindestens halb automatisiert behoben werden. Diese Ausführungsvariante hat u. a. den Vorteil, dass die Betriebsstörungseinsatzvorrichtungen, wie z.B. automatisierte Löschvorrichtungen, Alarmvorrichtungen bei Hilfsmittel oder lnterventionseinheiten, wie z.B. Polizei- oder Feuerwehreinsatzeinheiten, automatisierte Schließ- oder Ab-/Umschalteinheiten etc. automatisiert und/oder in Real-Time basierend auf dem aktuellen Standort des Flugmittels optimiert und/oder aktiviert werden können. Die Betriebsstörungseinsatzvorrichtung kann neben automatisierten Vorrichtungen zum direkten Eingreifen auch zusätzlich geldwertbasierte Übertragungsmodule umfassen. Da mittels des Ortserfassungsmoduls der Detektionsvorrichtung z.B. Ortskoordinatenparameter des aktuellen Standortes des Flugzeuges generiert werden und an die Bodenstation übermittelt werden können, können z.B. mittels des Filtermoduls die Aktivierungsparameter und/oder der Speicherschwellwert dynamisch an die Wahrscheinlichkeiten des Auftretens einer Betriebsstörung angepasst werden. Z.B. können schwierigen Landebasen, wie z.B. Hongkonghöhere Aktivierungsparameter oder Speicherschwellwerte zugeordnet werden, Landebasen mit hoher Sicherheit, wie z.B. Frankfurt oder Zürich, kleinere Werte bei den Aktivierungsparametern und/oder des Speicherschwellwertes. Das Verhalten und die Umwelteinflüsse werden so beim Betrieb des Flugzeuges vollständig und dynamisch berücksichtigt. Dies war so im Stand der Technik bis anhin nicht möglich. Das Gleiche gilt für erfasste Messparameter der Höhenmesssensorik, des Fahrtenmesses, des Variometers des Horizontkreisels Wendezeiges, Beschleunigungsmesses der Überziehwarnsensorik oder der Außen-temperatursensorik des Flugzeuges.In yet another embodiment variant, the avionics of the aircraft comprises a height-measuring sensor system and / or a tachometer and / or a variometer and / or a horizon gyroscope and / or a turning pointer and / or an accelerometer and / or a stall warning sensor system and / or an external temperature sensor system and or a location determination device, wherein the log parameters additionally comprise measurement parameters of at least one sensor and wherein the storage threshold is dynamically generated by the filter module for the respective time window based on the stack height value of the techlog stack and the additional log parameters. For example, by means of a GPS module of the location determination module of the detection device, location-dependent parameters can be generated and transmitted to the ground station. This variant has, among other things, the same advantages as the previous one. In the embodiment with locating module, for example, by means of the aviation system at any time the malfunction use device with respect to the location of the malfunction event can be controlled and controlled. As mentioned, therefore, by means of the location detection module of the detection device, eg location coordinate parameters of the current location of the aircraft can be generated and transmitted to the ground station for triggering the intervention to remedy an operation disturbance by means of the dedicated selected operation disturbance use devices. For example, by means of at least one malfunctioning use device when detecting an intervention event, the malfunction of the aircraft can be automated or at least semi-automatically remedied. This embodiment variant has, inter alia, the advantage that the malfunctioning use devices, such as automated extinguishing devices, alarm devices in aids or intervention units, such as police or firefighting units, automated closing or shutdown / switching units, etc., automated and / or optimized in real-time based on the current location of the aircraft and / or activated , The malfunctioning deployment device may also include additional monetary value-based transmission modules in addition to automated direct intervention devices. Since, for example, location coordinate parameters of the current location of the aircraft can be generated by means of the location detection module of the detection device and transmitted to the ground station, the activation parameters and / or the memory threshold value can be dynamically adapted to the probabilities of the occurrence of a malfunction, for example by means of the filter module. For example, difficult landing bases, such as Hong Kong higher activation parameters or memory thresholds can be assigned, landing areas with high security, such as Frankfurt or Zurich, smaller values in the activation parameters and / or the memory threshold. The behavior and the environmental influences are thus fully and dynamically taken into account during the operation of the aircraft. This was not possible in the prior art so far. The same applies to detected measurement parameters of the height measurement sensor, the travel measurement, the variometer of the horizon gyro Wendezeiges, acceleration measurement of the Überziehwarnsensorik or the outdoor temperature sensor of the aircraft.

In einer Ausführungsvariante werden mittels der Avionik des Flugzeuges oder der Kommunikationsmittel der Landebasis ATIS-Messparameter basierend auf dem Automatic Terminal Information Service (ATIS) der angeflogenen Landebasis bei jeder Lande- und Starteinheit automatisch auf die Bodenstation übertragen, wobei der Speicherschwellwert dynamisch für das jeweilige Zeitfenster basierend auf dem Stapelspeicherhöhenwert des Techlog-Stapelspeichers bestimmt und mittels der ATIS-Messparameter dynamisch angepasst wird. Diese Ausführungsvariante hat u.a. die gleichen Vorteile wie die vorhergehende. Insbesondere kann z.B. das Luftfahrtsystem dynamisch und in Real-Time basierend auf den ATIS-Messparameten angepasst werden. Ebenso können z.B. mittels des Filtermoduls die Aktivierungsparameter und/oder der Speicherschwellwert dynamisch mittels der ATIS-Messparameter an die Art und Wahrscheinlichkeiten einer Betriebsstörung angepasst werden.In an embodiment variant, ATIS measurement parameters based on the automatic terminal information service (ATIS) of the approached landing base are automatically transmitted to the ground station for each landing and start unit by means of the avionics of the aircraft or the communication means of the landing base, the memory threshold value being dynamic for the respective time window determined based on the stack height value of the Techlog stack and dynamically adjusted using the ATIS measurement parameters. This variant has u.a. the same advantages as the previous one. In particular, e.g. The aviation system can be adapted dynamically and in real-time based on the ATIS measurement parameters. Likewise, e.g. by means of the filter module, the activation parameters and / or the memory threshold value are adjusted dynamically by means of the ATIS measurement parameters to the type and probabilities of a malfunction.

In einer anderen Ausführungsvariante werden mittels des Filtermoduls der Bodenstation dynamisch bestimmte erste Aktivierungsparameter auf die Avionik des Flugzeuges und/oder auf ein dem jeweiligen Flugzeuge zugeordneten Ergänzungsbordsystem übertragen, und zur Inkrementierung des Aktivierungsstapelspeichers geschützte zweite Aktivierungsparameter von der Avionik oder dem zugeordneten Ergänzungsbordsystem generiert und auf die Bodenstation übertragen. Die geschützten zweiten Aktivierungsparameter können z.B. eine eindeutig zuordenbare Identifikationsnummer oder andere elektronisch Identifikation (ID), wie z.B. eine IMSI umfassen. Diese Ausführungsvariante hat u.a. den Vorteil, dass die zweiten Aktivierungsparameter und die ersten Aktivierungsparameter nicht identisch sein müssen. Dies erlaubt z.B. einen dynamische Anpassung der selektierten Betriebsstörungseinsatzvorrichtungen basierend auf den zweiten Aktivierungsparametern mittels des Filtermoduls. Durch das geschützte Beifügen einer eindeutig zuordenbaren Identifikationsnummer lassen sich die Aktivierungsparameter insbesondere z.B. auch einfach über Netzwerke übermitteln oder von dezentralisierten Systemen bearbeiten.In another embodiment variant, dynamically determined first activation parameters are applied to the avionics of the aircraft and / or to a supplemental on-board system assigned to the respective aircraft by means of the filter module of the ground station and, to increment the activation stack, protected second activation parameters are generated by the avionics or the associated supplementary on-board system and transmitted to the ground station. The protected second activation parameters may include, for example, a unique identification number or other electronic identification (ID), such as an IMSI. This embodiment variant has the advantage, among other things, that the second activation parameters and the first activation parameters do not have to be identical. This allows, for example, a dynamic adaptation of the selected operating fault use devices based on the second activation parameters by means of the filter module. By the protected addition of a clearly assignable identification number, the activation parameters can in particular also be transmitted, for example, simply via networks or processed by decentralized systems.

In einer weiteren Ausführungsvariante umfasst die Bodenstation ein Interface zum Zugreifen auf eine oder mehrere Datenbanken mit landebasisspezifischen Datenrekords, wobei jede mittels der Detektionsvorrichtung detektierte und als Logparameter erfasste Start- und/oder Landeeinheit mindestens einem landebasisspezifischen Datenrekord zugeordnet wird und die Logparameter mittels eines Gewichtungsmoduls basierend auf dem zugeordneten landebasisspezifischen Datenrekord gewichtet werden und/oder gewichtet generiert werden. Das Luftfahrtsystem kann z.B. zusätzlich Mittel zum dynamischen Aktualisieren der einen oder mehreren Datenbanken mit landebasisspezifischen Datenrekords umfassen, wobei die Aktualisierung der landebasisspezifischen Datenrekords periodisch und/oder auf Request realisiert sein kann. Die eine oder mehrere Datenbanken können z.B. dezentralisiert einer Landebasis für Flugzeuge zugeordnet sein, wobei mittels eines Interfaces Daten unidirektional und/oder bidirektional zur Bodenstation übertragen werden. Diese Ausführungsvariante hat u. a. die gleichen Vorteile wie die vorhergehende Ausführungsvariante. Insbesondere wird durch das Zugreifen auf die Datenbanken mit lande- und/oder starteinheitsspezifischen Datenrekords eine Real-Tme-Adaption des luftfahrtsystems z.B. betreffend den technischen Bedingungen bei den benutzten Landebasen möglich. Dies erlaubt, das Luftfahrtsystem stets automatisiert auf dem neusten Stand zu halten. Dies kann insbesondere wichtig sein beim Berücksichtigen neuer Entwicklungen und Einführungen von technischen Systemen zur Sicherheitsehöhung etc. bei den Cycles. Weiter hat die Realisierung der Datenbanken den Vorteil, dass mittels Filtermodul oder geeigneter dezentralisierter Filtermittet Daten, wie z.B. Metadaten, von erfassten Daten generiert werden können und dynamisch aktualisiert werden können. Dies erlaubt einen schnellen und einfachen Zugriff. Bei einer lokalen Datenbank bei der Bodenstation mit periodischer Aktualisierung kann z.B. das Luftfahrtsystem auch dann dynamisch weiter funktionieren, wenn die Verbindungen zwischenzeitlich zu einzelnen Landebasen unterbrochen wird.In a further embodiment variant, the ground station comprises an interface for accessing one or more databases with land-base-specific data records, each start and / or landing unit detected by the detection apparatus being recorded as a log parameter being assigned to at least one land-base-specific data record and the log parameters being based on a weighting module weighted and / or weighted generated according to the associated landing-base-specific data record. For example, the aviation system may additionally include means for dynamically updating the one or more databases of landing-site-specific data records, wherein the updating of the landing-site-specific data records may be implemented periodically and / or on request. The one or more databases may, for example, be assigned decentralized to a landing base for aircraft, data being transmitted unidirectionally and / or bidirectionally to the ground station by means of an interface. This variant has, inter alia, the same advantages as the previous embodiment. In particular, by accessing the databases with landing and / or starting unit-specific data records, a real-time adaptation of the aviation system, for example with regard to the technical conditions in the used landing areas, becomes possible. This allows to keep the aviation system always up to date automatically. This may be particularly important in considering new developments and implementations of technical systems for increasing safety etc. in the cycles. Furthermore, the realization of the databases has the advantage that by means of a filter module or suitable decentralized filter means data, such as metadata, can be generated from acquired data and can be updated dynamically. This allows quick and easy access. For a local database at the ground station with periodic update For example, the aviation system can continue to function dynamically even if the connections to individual landing areas are interrupted in the meantime.

In einer wieder anderen Ausführungsvariante wird mittels eines integrierten Oszillators des Filtermoduls ein elektrisches Taktsignal mit einer Referenzfrequenz erzeugt, wobei basierend auf dem Taktsignal das Filtermodul periodisch den variablen Aktivierungsparameter bestimmen und/oder gegebenenfalls auf den entsprechenden inkrementierbaren Stack übertragen. Diese Ausführungsvariante hat u. a. den Vorteil, dass die einzelnen Module und Einheiten der technischen Umsetzung des Luftfahrtsystems einfach synchronisiert und gegeneinander abgeglichen werden können.In yet another embodiment variant, an electrical clock signal with a reference frequency is generated by means of an integrated oscillator of the filter module, based on the clock signal, the filter module periodically determine the variable activation parameters and / or optionally transferred to the corresponding incrementable stack. This variant has u. a. the advantage that the individual modules and units of the technical implementation of the aviation system can be easily synchronized and compared against each other.

An dieser Stelle soll festgehalten werden, dass sich die vorliegende Erfindung neben dem erfindungsgemäßen Luftfahrtsystem mit Bodenstation auch auf ein entsprechendes Verfahren bezieht.It should be noted at this point that the present invention, in addition to the aviation system according to the invention with ground station also refers to a corresponding method.

Nachfolgend werden Ausführungsvarianten der vorliegenden Erfindung anhand von Beispielen beschrieben. Die Beispiele der Ausführungen werden durch die folgenden beigelegten Figuren illustrierf:

  • Figur 1 zeigt ein Blockdiagramm, welches schematisch ein Ausführungsbeispiel einer erfindungsgemäßen avionischen Luftfahrtssystem 80 mit Bodenstation 81 zur automatischen Behebung von auftretenden Betriebsstörungen bei Flugzeugen 40/41/42 darstellt. Das avionische Luftfahrtsystem 80 ist mit einer Vielzahl von Flugzeugen 40/41/42 über eine drahtloses Schnittstelle 403 der Avionik 402 verbunden. Mittels einer Schaltvorrichtung 1 der Bodenstation 81 werden dedizierte Betriebsstörungseinsatzvorrichtungen 603 zur automatischen Betriebsstörungsbehebung aktiviert, falls eine mittels einer Sensorik 3/401/601 detektierte Betriebsstörung eintritt. Basierend auf den Logparametern, d.h. insbesondere der gemessenen Cycles, verändert ein Filtermodul 2 die Steuerung der Schaltvorrichtung 1.
  • Figur 2 zeigt ebenfalls ein Blockdiagramm, welches schematisch ein Ausführungsbeispiel eines erfindungsgemäßen avionischen Luftfahrtssystems 80 mit Bodenstation 81 zur automatischen Behebung von auftretenden Betriebsstörungen bei Flugzeugen 40/41/42 darstellt. Das avionische Luftfahrtsystem 80 ist mit einer Vielzahl von Flugzeugen 40/41/42 über eine drahtloses Schnittstelle 403 der Avionik 402 verbunden. Mittels einer Schaltvorrichtung 1 der Bodenstation 81 werden dedizierte Betriebsstörungseinsatzvorrichtungen 603 zur automatischen Betriebsstörungsbehebung aktiviert, falls eine mittels einer Sensorik 3/401/601 detektierte Betriebsstörung eintritt.
Hereinafter, embodiments of the present invention will be described by way of examples. The examples of the embodiments are illustrated by the following attached figures:
  • FIG. 1 shows a block diagram, which schematically represents an embodiment of an avionic aviation system 80 according to the invention with ground station 81 for the automatic correction of occurring malfunctions in aircraft 40/41/42. The avionics aviation system 80 is connected to a plurality of aircraft 40/41/42 via a wireless interface 403 of the avionics 402. By means of a switching device 1 of the ground station 81, dedicated malfunction use devices 603 are activated for automatic malfunction rectification if a malfunction detected by means of a sensor system 3/401/601 occurs. Based on the log parameters, ie in particular the measured cycles, a filter module 2 changes the control of the switching device 1.
  • FIG. 2 also shows a block diagram which schematically illustrates an embodiment of an avionic aviation system 80 according to the invention with ground station 81 for the automatic correction of occurring malfunctions in aircraft 40/41/42. The avionics aviation system 80 is connected to a plurality of aircraft 40/41/42 via a wireless interface 403 of the avionics 402. By means of a switching device 1 of the ground station 81 are dedicated operation failure use devices 603 is activated for automatic malfunction correction if a malfunction detected by a sensor 3/401/601 occurs.

Figuren 1 und 2 illustrieren eine Architektur, die zur Realisierung der Erfindung verwendet werden kann. In diesem Ausführungsbeispiel ist das avionisches Luftfahrtsystem 80 mit Bodenstation 81 zur automatischen Behebung von auftretenden Betriebsstörungen bei Flugzeugen 40/41/42 mit einer Vielzahl von Flugzeugen 40/41/42 über eine drahtlose Schnittstelle 403 der Avionik 402 der Flugzeuge 40,41,42 verbunden Das Luftfahrtssystem 80 mit Bodenstation 81 kann z.B. als Teil eines technischen Systems eines Betreibers von Flugzeugen 40,...,42 sein, wie beispielsweise einer Fluggesellschaft oder Fluggüter-/Flugfrachttransportgesellschaft, aber auch eines Herstellers von Flugzeugen wie Airbus oder Boeing oder Flugüberwachungsdiensten. Die Flugzeuge können z.B. Flugzeuge zum Gütertransport 40/41 und/oder Personenbeförderung 42 und/oder Luftschiffe wie Zeppeline oder gar Shuttles oder andere Flugmittel zur Weltraumfahrt umfassen. Die Flugzeuge 40,...,42 können ebenfalls motorisierte und nicht motorisierte Flugmittel umfassen, insbesondere Segler, Motorsegler, Deltasegler u.ä.. Für ein bestimmtes Betriebsstörungsereignis werden dedizierte Betriebsstörungseinsatzvorrichtungen 603 zur automatischen Betriebsstörungsbehebung mittels einer Schaltvorrichtung 1 der Bodenstation 81 aktiviert, falls eine mittels einer Sensorik 3/401/601 detektierte Betriebsstörung eintritt. Die Bodenstation 81 und/oder die Betriebsstörungseinsatzvorrichtungen 603 können insbesondere teilweise z.B. automatisierte Notfall- und Alarmvorrichtungen mit geldwertbasierten Übertragungsmodulen umfasst. Die Sensorik 3/401/601 kann z.B. mindestens teilweise zum Detektieren von Betriebsstörung in die Avionik 402 der Flugzeuge 40,...,42, die Steuervorrichtung der Betriebsstörungsbehebungsvorrichtungen 603 und/oder die Bodenstation 81 und/oder Landebasis 11 integriert sein. Bei den Betriebsstörungseinsatzvorrichtungen 603 kann es sich z.B. um Kontroll-, Alarmvorrichtungen oder Systeme zur direkten technischen Intervention beim betroffenen Flugzeug 40,...,42, beim Betreiber des Flugzeuges 40,...,42 und/oder der Landebasis 11 und/oder der Bodenstation 81 handeln, welche beim Detektieren entsprechender Betriebsstörungen betroffen ist. Natürlich können auch mehrere Flugzeuge 40,...,42, Bodenstationen 81 und/oder Landebasen 11 gleichzeitig betroffen oder mittels des Luftfahrtssystems erfasst sein. Die Betriebsstörungsbehebung kann z.B. durch gekoppelte und/oder abgestufte technische Interventionen geschehen, wie z.B. Auslösen unterschiedlicher Kontrolldienste oder Drosselungs- und Dosierungsfilter bei entsprechenden Dosierungsvorrichtungen oder Ventilen etc.. Ebenso sind Betriebsstörungsbehebungsvorrichtungen 603 möglich, welche z.B. durch das Flugfahrtsystem 80 aktiviert werden, beispielsweise im Sinne von automatisierten oder teilweise automatisierten Notfallinterventionen (oder deren Auslösung) von medizinisch geschultem Personal oder automatisiertem Auslösen von flugbedingten Notsituationen wie Krankentransporten etc., welche durch mittels des Flugfahrtsystems 80 generierte, selektiv übermittelte Signaldaten alarmiert werden. Betriebsstörungsbehebungsvorrichtungen 603 können z.B. zur Steuerung der Vorrichtungen 603 mittels des Luftfahrtssystems 80 zur automatisierten Behebung bei Betriebsstörungen mittels eines Interfaces uni- oder bidirektional mit den Flugzeug 40,...,42 und/oder der Bodenstation 81 und/oder der Landebasis 11 verbunden sein. Die Referenznummer 60 beschreibt die Interventionsvorrichtung als Ganzes, umfassend das Kommunikationsinterface 601 mit eventueler Sensorik zur Messung von Betiebsstörungen, die Steuervorrichtung 602 zur elektronischen Überwachung und Steuerung der Betriebsstörungseinsatzvorrichtung 603 sowie die Betriebsstörungseinsatzvorrichtung 603. FIGS. 1 and 2 illustrate an architecture that may be used to implement the invention. In this embodiment, the avionics aviation system 80 is connected to ground station 81 for automatic repair of incidents occurring in aircraft 40/41/42 with a plurality of aircraft 40/41/42 via a wireless interface 403 of the avionics 402 of the aircraft 40,41,42 The aviation system 80 with ground station 81 may be, for example, as part of a technical system of an operator of aircraft 40,..., 42, such as an airline or air cargo / air freight carrier, but also of a manufacturer of aircraft such as Airbus or Boeing or air traffic control services. The aircraft may include, for example, 40/41 goods transport and / or passenger transport 42 and / or airships such as zeppelins or even shuttles or other means of space flight. The aircraft 40, ..., 42 may also include motorized and non-powered aircraft, particularly gliders, motor gliders, delta controllers, etc. For a particular malfunction event, dedicated malfunction insets 603 are automatically activated by a switching device 1 of the ground station 81 if a detected by a sensor 3/401/601 detected malfunction occurs. The ground station 81 and / or the malfunction use devices 603 may in particular partially comprise, for example, automated emergency and alarm devices with money-value-based transmission modules. For example, the sensor system 3/401/601 may be integrated at least partially for detecting malfunction in the avionics 402 of the aircraft 40,..., 42, the control device of the malfunction correction devices 603 and / or the ground station 81 and / or landing base 11. The malfunction use devices 603 may be, for example, control, alarm or direct technical intervention systems on the affected aircraft 40, ..., 42, the operator of the aircraft 40, ..., 42 and / or the landing base 11 and / or the ground station 81, which is affected when detecting corresponding malfunctions. Of course, multiple aircraft 40, ..., 42, ground stations 81 and / or landing bases 11 may be simultaneously affected or detected by the aviation system. The malfunction correction can be done, for example, by coupled and / or graduated technical interventions, such as triggering different control services or throttling and dosing filters with appropriate dosing devices or valves, etc. Similarly, malfunction correction devices 603 are possible, which are activated by the flight system 80, for example in the sense automated or partially automated emergency interventions (or their triggering) by medically trained personnel or automated triggering of flight-related emergency situations such as patient transports, etc., which are alerted by selectively generated signal data generated by the flight system 80. Malfunction repair devices 603 may be unidirectionally or bidirectionally connected to the aircraft 40,..., 42, and / or the ground station 81 and / or the landing base 11, for example, to control the devices 603 by means of the automated malfunction remediation system 80. The reference number 60 describes the intervention device as a whole, comprising the communication interface 601 with eventual sensors for measuring malfunction, the control device 602 for electronically monitoring and controlling the malfunctioning device 603, and the malfunctioning device 603.

Mittels der Sensorik 3/401/601 wird eine auftretende Betriebsstörung detektiert und mittels des Filtermoduls 2 werden die Betriebsstörungseinsatzmittel 603 z.B. entsprechend der aufgetretenen Betriebsstörung und/oder dem betroffenen Flugzeugtyp 40,...,42 selektiert und mittels der Schaltvorrichtung 1 aktiviert. Das Luftfahrtsystem 80 umfasst in die Avionik 402 der Flugzeuge 40/41/42 integrierte Detektionsvorrichtungen 411. Mittels der Detektionsvorrichtungen 411 werden durchgeführte Start- und/oder Landeeinheiten eines Flugzeuges 40/41/42 elektronisch erfasst, wobei entsprechende, dem Flugzeug 40,...,42 zugeordnete Logparameter der durchgeführten Start- und/oder Landeeinheiten von den Detektionsvorrichtungen 411 über die drahtlose Schnittstelle 403 auf die Bodenstation 81 übertragen werden. Die Logparameter können z.B. mindestens teilweise in Form von Betragswertparametern erfasst sein. Mittels der drahtlosen Schnittstelle 403 der Avionik 402 der Flugzeuge 40,...,42 können z.B. die zugeordneten Logparameter über ein satelitengestütztes Netzwerk 70 direkt auf die Bodenstation 81 übertragen werden. Die zugeordneten Logparameter können z.B. auch über ein drahtloses Kommunikationsnetzwerk 111 einer angeflogenen Landebasis 11 auf die Bodenstation 81 übertragen werden. Die Bodenstation 81 umfasst für jedes Flugzeug 40,...,42 einen inkrementierbaren Techlog-Stapelspeicher 202 mit auslesbarem Stapelspeicherhöhenwert (Techlog-Stapelspeicherhöhenwert). Der Stapelspeicherhöhenwert des Techlog-Stapelspeichers 202 wird mittels eines Zählermoduls 203 der Bodenstation 81 basierend auf gefilterten Start- und/oder Landeeinheiten der übertragenen Logparameter des jeweiligen Flugzeuges 40,...,42 erhöht. Das Zählermodul 203 umfasst ebenfalls Mittel zum Auslesen des Stapelspeicherhöhenwertes des Techlog-Stapelspeichers 202. Mittels eines Filtermoduls 2 der Bodenstation 81 wird ein Speicherschwellwert zur Freigabe der Aktivierung der Betriebsstörungseinsatzvorrichtung 603 dynamisch für ein bestimmtes Zeitfenster basierend auf dem Stapelspeicherhöhenwert des Techlog-Stapelspeichers 202 bestimmt. Die Bodenstation 81 umfasst einen Aktivierungsstapelspeicher 102 eines geschützten Speichermoduls 103, mittels welchem Aktivierungsparameter des Flugzeuges 40,...,42 erfasst werden. Die Aktivierungsparameter werden basierend auf dem aktuellen Speicherschwellwert auf die Bodenstation 81 übertragen und der Aktivierungsstapelspeicher 102 wird entsprechend den übertragenen Aktivierungsparametern schrittweise inkrementiert. Die Aktivierungsparameter können als Spezialfall mindestens teilweise monetäre und/oder geldwerfbasierte Betragswerte, insbesondere elektronisch geschützte Parameter umfassen. Als Ausführungsvariante können z.B. mittels des Filtermoduls 2 der Bodenstation 81 erste Aktivierungsparameter dynamisch bestimmt werden und auf die Avionik (402) des Flugzeuges 40,...,42 und/oder auf ein dem jeweiligen Flugzeuge 40,...,42 zugeordneten Ergänzungsoffboardsystem 404 übertragen werden. Zur Inkrementierung des Aktivierungsstapelspeicher werden z.B. geschützte zweite Aktivierungsparameter von der Avionik 402 oder dem zugeordneten Ergänzungsoffboardsystem 404 generiert und auf die Bodenstation 81 übertragen. Die geschützten zweiten Aktivierungsparameter können z.B. eine eindeutig zuordenbare Identifikationsnummer umfassen. Mittels eines weiteren Zählermoduls 103 der Bodenstation 81 wird der Aktivierungsstapelspeicherhöhenwert des Stapelspeichers 102 kumuliert erfasst. Die Erfassung kann z.B. periodisch und/oder auf Request erfolgen und/oder bei Übermittlung erfolgen. Falls der dynamisch bestimmte Speicherschwellwert mit dem Stapelspeicherhöhenwert des Aktivierungsstapelspeichers 102 erreicht wird, wird mittels des Filtermoduls 2 die Schaltvorrichtung 1 zum dedizierten Aktivieren der Betriebsstörungseinsatzmittel 603 bei auftretenden Betriebsstörungen freigeschaltet.By means of the sensor system 3/401/601 an occurring malfunction is detected and by means of the filter module 2, the malfunctioning means 603, for example, according to the occurred malfunction and / or the affected aircraft type 40, ..., 42 selected and activated by the switching device 1. The aviation system 80 comprises detection devices 411 integrated into the avionics 402 of the aircraft 40/41/42. By means of the detection devices 411, take-off and / or landing units of an aircraft 40/41/42 are detected electronically, with corresponding planes corresponding to the aircraft 40, .. ., 42 associated log parameters of the performed takeoff and / or landing units are transmitted from the detection devices 411 via the wireless interface 403 to the ground station 81. For example, the log parameters may be at least partially captured in terms of absolute value parameters. By means of the wireless interface 403 of the avionics 402 of the aircraft 40,..., 42, for example, the associated log parameters can be transmitted via a satellite-based network 70 directly to the ground station 81. The associated log parameters can also be transmitted to the ground station 81, for example via a wireless communication network 111 of a flown landing base 11. The ground station 81 includes for each aircraft 40, ..., 42 an incrementable stack stack 202 with readable stack height value (Techlog stack height value). The stack height value of the Techlog stack 202 is increased by means of a counter module 203 of the ground station 81 based on filtered start and / or landing units of the transmitted log parameters of the respective aircraft 40, ..., 42. The meter module 203 also includes means for reading the stack height value of the techlog stack 202. By means of a filter module 2 of the ground station 81, a memory threshold for enabling activation of the paging inserter 603 dynamically for a particular time window based on the stack height value of the techlog stack 202 determined. The ground station 81 comprises an activation stack 102 of a protected memory module 103, by means of which activation parameters of the aircraft 40,..., 42 are detected. The activation parameters are transmitted to the ground station 81 based on the current memory threshold and the activation stack 102 is incremented in accordance with the transmitted activation parameters. As a special case, the activation parameters may include at least partially monetary and / or monetary-based amounts, in particular electronically protected parameters. As a variant embodiment, first activation parameters can be dynamically determined, for example, by means of the filter module 2 of the ground station 81 and to the avionics (402) of the aircraft 40,..., 42 and / or to a supplemental off-board system 404 assigned to the respective aircraft 40, be transmitted. For example, to protect the activation stack memory, protected second activation parameters are generated by the avionics 402 or the associated supplementary off-board system 404 and transmitted to the ground station 81. The protected second activation parameters may include, for example, a unique identification number. By means of a further counter module 103 of the ground station 81, the activation stack memory height value of the stack 102 is cumulatively detected. The detection can be done, for example, periodically and / or on request and / or carried out during transmission. If the dynamically determined memory threshold is reached with the stack height value of the activation stack 102, the switching device 1 is activated by means of the filter module 2 for the dedicated activation of the operation disturbance means 603 in case of malfunction occurring.

Der variable Aktivierungsparameter oder Speicherschwellwert wird mittels des Filtermoduls 2 basierend auf der detektierten Anzahl Start- und/oder Landeeinheiten bzw. der Logparameter z.B. periodisch bestimmt und bei Rück-Übermittlung auf die Bodenstation 81 auf den Aktivierungsstapelspeicher 102 übertragen. Das Filtermodul 2 und/oder die Zählermodule 103/203 können einen integrierten Oszillator umfassen, mittels welchem ein elektrisches Taktsignal mit einer Referenzfrequenz erzeugbar ist, wobei basierend auf dem Taktsignal das Filtermodul 2 und/oder die Zählermodule 103/203 periodisch aktivierbar sind. Der variable Aktivierungsparameter und/oder Aktivierungsstapelspeicher kann z.B. mittels des Filtermoduls 2 basierend auf der detektierten Anzahl Start- und/oder Landeeinheiten dynamisch oder teilweise dynamisch bestimmt werden. Als Ausführungsvariante können z.B. bei Detektieren einer Betriebsstörung mittels der Sensorik 3/401/601 die Betriebsstörungseinsatzvorrichtungen 603 mittels des Filtermoduls 2 zusätzlich basierend auf dem Stapelspeicherhöhenwert des Aktivierungsstapelspeichers 102 selektiert und mittels der Schaltvorrichtung 1 aktiviert werden. Ebenso können die Logparameter z.B. zusätzlich Messwertparameter des Flight Management System (FMS) und/oder des Inertialnavigationsvorrichtung (INS) und/oder der Fly-By-Wire Sensoren und/oder Flugüberwachungsvorrichtungen des Flugzeuges 40,...,42 umfassen, wobei der Speicherschwellwert mittels des Filtermoduls 2 dynamisch für das jeweilige Zeitfenster basierend auf dem Stapelspeicherhöhenwert des Techlog-Stapelspeichers und den zusätzlichen Logparametern generiert wird. Die Avionik 402 des Flugzeuges 40,...,42 kann z.B. auch eine Höhenmesssensorik und/oder einen Fahrtenmesser und/oder ein Variometer und/oder einen Horizontkreisel und/oder einen Wendezeiger und/oder einen Beschleunigungsmesser und/oder eine Überziehwarnsensorik und/oder eine Aussentemperatursensorik und/oder eine Ortsbestimmungsvorrichtung umfassen. Das Ortsbestimmungsmodul der Detektionsvorrichtung 411 kann z.B. mindestens ein GPS-Modul zum Generieren von ortsabhängigen übermittelbaren Parametern umfassen. In den genannten Fällen umfassen die Logparameter zusätzlich Messparameter von mindestens einem der Sensoren, wobei der Speicherschwellwert mittels des Filtermoduls 2 dynamisch für das jeweilige Zeitfenster basierend auf dem Stapelspeicherhöhenwert des Techlog-Stapelspeichers 202 und den zusätzlichen Logparametern generiert wird. Weiter können mittels der Avionik 402 des Flugzeuges 40,...,42 oder den Kommunikationsmitteln 111 der Landebasis 11 beispielsweise auch ATIS-Messparameter basierend auf dem Automatic Terminal Information Service (ATIS) der angeflogenen Landebasis 11 bei jeder Lande- und Starteinheit (Cycle) automatisch auf die Bodenstation 81 übertragen werden, wobei der Speicherschwellwert dynamisch für das jeweilige Zeitfenster basierend auf dem Stapelspeicherhöhenwert des Techlog-Stapelspeichers 202 und den übertragenen ATIS-Messparameten geneiert wird. Die Detektionsvorrichtung 411 umfasst wie erwähnt Messsensoren zum dynamisch oder teilweise dynamisch Detektieren von Start- und/oder Landeeinheiten. Die Detektionsvorrichtung 411 kann dazu wie für die Avionik 403 beschben z.B. eine Höhenmesssensorik und/oder einen Fahrtenmesser und/oder ein Variometer und/oder einen Horizontkreisel und/oder einen Wendezeiger und/oder einen Beschleunigungsmesser und/oder eine Überziehwarnsensorik und/oder eine Aussentemperatursensorik und/oder eine Ortsbestimmungsvorrichtung umfassen. Die Detektionsvorrichtung 411 kann z.B. auch Sensoren und/oder Detektionsmittel zum dynamischen Detektieren von landbasisspezifischen Daten der zugeordneten Land-/Startbasis für Flugtransportmittel 40/41 und/oder Personenflugbeförderungsmittel 42 umfassen. Die zugeordneten Flugtransportmittel 40/41 und/oder Personenflugbeförderungsmittel 42 können z.B. die Detektionsvorrichtung 411 mit einer Schnittstelle zum Filtermodul 2 und/oder zur Benutzervorrichtung 11 umfassen. Die genannte Schnittstelle von der Detektionsvorrrichtung 411 zum Filtermodul 2 und/oder zur Benutzervorrichtung 11 kann z.B. eine Luftschnittstelle umfassen. Insbesondere kann die Detektionsvorrichtung 411 z.B. ein Ortsbestimmungsmodul zum Generieren von ortsabhängigen übermittelbaren Parametern umfassen. Das Ortsbestimmungsmodul der Detektionsvorrichtung 411 kann z.B. mindestens ein GPS-Modul zum Generieren von ortsabhängigen übermittelbaren Parametern umfassen.The variable activation parameter or memory threshold value is determined periodically by means of the filter module 2 based on the detected number of start and / or landing units or the log parameters, for example, and transmitted to the activation stack 102 upon return transmission to the ground station 81. The filter module 2 and / or the counter modules 103/203 may comprise an integrated oscillator, by means of which an electrical clock signal with a reference frequency can be generated, based on the clock signal, the filter module 2 and / or the counter modules 103/203 are periodically activated. The variable activation parameter and / or activation stack memory can be determined dynamically or partially dynamically, for example, by means of the filter module 2 based on the detected number of start and / or landing units. As a variant embodiment, for example, upon detecting a malfunction by means of the sensor system 3/401/601, the malfunction use devices 603 can additionally be selected by means of the filter module 2 based on the stack memory height value of the activation stack 102 and activated by means of the switching device 1 become. Likewise, the log parameters may include additional measurement parameters of the Flight Management System (FMS) and / or the inertial navigation device (INS) and / or the fly-by-wire sensors and / or flight monitoring devices of the aircraft 40,..., 42, wherein the memory threshold value is dynamically generated by the filter module 2 for the respective time window based on the stack memory height value of the techlog stack and the additional log parameters. The avionics 402 of the aircraft 40,..., 42 can also include, for example, a height-measuring sensor and / or a travel meter and / or a variometer and / or a horizon gyro and / or a turning pointer and / or an accelerometer and / or a stall warning sensor system and / or an outside temperature sensor and / or a location determining device include. The location determination module of the detection device 411 may include, for example, at least one GPS module for generating location-dependent transmissible parameters. In the cases mentioned, the log parameters additionally comprise measurement parameters of at least one of the sensors, wherein the memory threshold value is dynamically generated by the filter module 2 for the respective time window based on the stack height value of the techlog stack 202 and the additional log parameters. Furthermore, by means of the avionics 402 of the aircraft 40,..., 42 or the communication means 111 of the landing base 11, for example, ATIS measurement parameters based on the Automatic Terminal Information Service (ATIS) of the approached landing base 11 at each landing and start unit (Cycle). are automatically transferred to the ground station 81, wherein the memory threshold is dynamically generated for the respective time window based on the stack height value of the Techlog stack 202 and the transmitted ATIS measurement parameters. As mentioned, the detection device 411 comprises measuring sensors for dynamically or partially dynamically detecting start and / or landing units. For this purpose, the detection device 411 can, as for the avionics 403, bombard eg a height measuring sensor system and / or a travel meter and / or a variometer and / or a horizon gyro and / or a turning pointer and / or an accelerometer and / or a stall warning sensor system and / or an outside temperature sensor system and or a location determining device. The detection device 411 may also include, for example, sensors and / or detection means for dynamically detecting landbased data of the associated land / takeoff base for airborne transport 40/41 and / or passenger airlift 42. The associated air transport means 40/41 and / or passenger air transport means 42 may include, for example, the detection device 411 with an interface to the filter module 2 and / or the user device 11. The mentioned interface from the detection device 411 to the filter module 2 and / or to the user device 11 can eg be an air interface include. In particular, the detection device 411 may include, for example, a location determination module for generating location-dependent transmissible parameters. The location determination module of the detection device 411 may include, for example, at least one GPS module for generating location-dependent transmissible parameters.

In einer Ausführungsvariante kann die Bodenstation 81 z.B. ein Interface zum Zugreifen auf eine oder mehrere Datenbanken mit landebasisspezifischen Datenrekords umfassen. Jede mittels der Detektionsvorrichtung 411 detektierte und als Logparameter erfasste Start- und/oder Landeeinheit (Cycle) wird mindestens einem landebasisspezifischen Datenrekord zugeordnet, wobei die Logparameter mittels eines Gewichtungsmoduls basierend auf dem zugeordneten landebasisspezifischen Datenrekord gewichtet werden. Das Luftfahrtsystem 80 kann z.B. weiter Mittel zum dynamischen Aktualisieren der einen oder mehreren Datenbanken mit landebasisspezifischen Datenrekords umfassen. Die Aktualisierung der landebasisspezifischen Datenrekords kann beispielsweise periodisch und/oder auf Request realisiert sein. Die eine oder mehrere Datenbanken können z.B. dezentralisiert einer Landebasis 11 für Flugzeuge 40,...,42 zugeordnet sein. Mittels eines Interfaces 111 können z.B. Daten von der Landebasis 11 unidirektional und/oder bidirektional zur Bodenstation 81 übertragen werden. Es ist natürlich auch möglich, dass die lande- und/oder starteinheitsspezifischen Datenrekords und/oder Daten mittels Zugriff auf Datenbanken von staatlichen und/oder teilweise staatlichen und/oder privaten Kontrollstellen und/oder anderen Datenbanken von Start- und Landebasen erfasst werden. Die erfassten Daten können z.B. in einem Datenspeicher zugeordnet gespeichert werden und z.B. periodisch und/oder auf Request aktualisierbar sein. Durch diese Ausführungsvariante können unterschiedliche z.B. landesspezifische Bedingungen berücksichtigt werden, wie z.B. technische und wartungsmässige Unterschiede z.B. zwischen einem Flughafen wie Frankfurt, Hongkong (schwierige Landeverhältnisse) oder einem Flughafen in einem Entwicklungsland wie Angola oder Usbekistan (schlechte technische Vorrichtungen). Dies hat den Vorteil, dass Änderungen in den Start- und/oder Landebedingungen z.B. durch technische Veränderungen bei den Basen unmittelbar erfasst werden und so das Luftfahrtssystem stets auf dem neusten Stand bleibt. Insbesondere wird so eine Automatisierung des Systems erreicht, welche auf andere Art so im Stand der Technik noch in keiner Weise erreicht worden ist. Das Luftfahrtsystem 80 kann z.B. auch die genannten eine oder mehrere Datenbanken zugeordnet umfassen. In diesem Fall können z.B. mittels geeigneter Filtermittel Daten, wie z.B. Metadaten, von erfassten Daten generiert werden und dynamisch aktualisiert werden. Dies erlaubt einen schnellen und einfachen Zugriff. Zudem kann das automatisierte Alarm-und Interventionssystem auch dann weiter funktionieren, wenn die Verbindungen zu Benutzervorrichtungen und/oder Erfassungseinheiten unterbrochen werden. Die Daten können, wie erwähnt, insbesondere auch Metadaten umfassen, die z.B. anhand einer inhaltsbasierenden Indexingtechnik extrahiert werden. Als Ausführungsbeispiel können die Metadaten mindestens teilweise dynamisch (in Real-Time) basierend auf den mittels der Detektionsvorrichtungen 411 übermittelten Logparametern erzeugt werden. Dies hat z.B. den Vorteil, dass die Metadaten immer die für das erfindungsgemäße System sinnvolle Aktualität und Genauigkeit besitzen. In einem speziellen Ausführungsbeispiel können die Betriebsstörungseinsatzvorrichtungen 603 zusätzlich geldwertbasierte Interventionsmittel zur monetären Deckung der Betriebsstörungsbehebung bei den Flugzeugen 40,...,42 umfassen. Für den Spezialfall dieser Betriebsstörungseinsatzvorrichtungen 603 sind die Aktivierungsparameter, d.h. die Fälle, in welchen mindestens eines der Betriebsstörungseinsatzvorrichtungen 603 aktiviert werden sollte, häufig gesetzlich länderspezifisch geregelt und umfassen private Systeme und/oder staatliche Systeme und/oder teilweise staatliche Systeme. Das avionische Luftfahrtssystem 80 kann wie erwähnt zugeordnet eine Vielzahl von Ladebasen 11 oder/oder Bodenstationen 81 mit Flugzeugen 40,...,42 umfassen. Die Flugzeuge 40,...,42 und/oder die Landebasis 11 können mit der Bodenstation 81 z.B, über das Kommunikationsnetzwerk 50/51 und/oder das satellitenbasierte Netzwerk 70 unidirektional und/oder bidirektional verbunden sein. Das Kommunikationsnetz 50/51 und/oder das Satellitenbasierte Netzwerk 70 können beispielsweise ein GSM- oder ein UMTS-Netz, oder ein satellitenbasiertes Mobilfunknetz, und/oder ein oder mehrere Festnetze, beispielsweise das öffentlich geschaltete Telefonnetz, das weltweite Internet oder ein geeignetes LAN (Local Area Network) oder WAN (Wide Area Network) umfassen. Insbesondere umfasst es auch ISDN- und XDSL-Verbindungen. Bei unidirektionaler Verbindung kann das Kommunikationsnetz 50/51/70 auch Broadcastsysteme (z.B. Digital Audio Broadcasting DAB oder Digital Video Broadcasting) umfassen, bei welchen Broadcastsender digitale Audio- respektive Video-Programme (Fernsehprogramme) und digitale Daten, beispielsweise Daten für die Ausführung von Datendiensten, programmbegleitende Daten (Programm Associated Data, PAD) an Broadcastempfänger unidirektional verbreiten. Dies kann je nach Ausführungsvariante sinnvoll sein. Die unidirektionale Verbreitungseigenschaft dieser Broadcastsysteme kann jedoch u. a. den Nachteil haben, dass, insbesondere bei der Übertragung mittels Radiowellen, ein Rückkanal von den Broadcastempfängern zu den Broadcastsendern, respektive zu deren Betreibern, fehlt. Bedingt durch diesen fehlenden Rückkanal sind die Möglichkeiten für die Verschlüsselung, Datensicherheit, Verrechnung etc, von zugriffskontrollierten Programmen und/oder Daten beschränkter.For example, in one embodiment, ground station 81 may include an interface for accessing one or more databases of landing-site-specific data records. Each start and / or landing unit (cycle) detected by means of the detection device 411 and recorded as a log parameter is assigned at least one land-base-specific data record, the log parameters being weighted by means of a weighting module based on the associated land-base-specific data record. For example, the aviation system 80 may further include means for dynamically updating the one or more databases of landing-site-specific data records. The updating of the landing-site-specific data records can be realized, for example, periodically and / or on request. The one or more databases may, for example, be decentralized to a landing base 11 for aircraft 40,..., 42. By means of an interface 111, for example, data from the landing base 11 can be transmitted unidirectionally and / or bidirectionally to the ground station 81. Of course, it is also possible for the landing and / or start unit-specific data records and / or data to be acquired by accessing databases of state and / or partially state and / or private control bodies and / or other databases of launch and landing bases. The acquired data can be stored, for example, allocated in a data memory and, for example, can be updated periodically and / or on request. By this variant, different eg country-specific conditions can be considered, such as technical and maintenance differences eg between an airport like Frankfurt, Hong Kong (difficult land relations) or an airport in a developing country like Angola or Uzbekistan (bad technical devices). This has the advantage that changes in the takeoff and / or landing conditions, for example due to technical changes in the bases, are recorded immediately and the aviation system thus always remains up to date. In particular, such an automation of the system is achieved, which has not been achieved in any other way in the prior art in any way. For example, the aviation system 80 may also include the aforementioned one or more databases. In this case, for example, by means of suitable filter means data, such as metadata, generated data can be generated and updated dynamically. This allows quick and easy access. In addition, the automated alarm and Intervention system continue to function even if the connections to user devices and / or detection units are interrupted. The data can, as mentioned, in particular also include metadata, which are extracted, for example, using a content-based indexing technique. As an exemplary embodiment, the metadata can be generated at least partially dynamically (in real time) based on the log parameters transmitted by the detection devices 411. This has the advantage, for example, that the metadata always has the relevance and accuracy that is meaningful for the system according to the invention. In a particular embodiment, the perturbation utility devices 603 may additionally include petty-based intervention funds for monetary coverage of the malfunction remediation on the aircraft 40, ..., 42. For the special case of these malfunction use devices 603, the activation parameters, ie the cases in which at least one of the malfunctioning use devices 603 should be activated, are often regulated by law in a country-specific manner and include private systems and / or government systems and / or partially state systems. The avionic aviation system 80 may, as mentioned, comprise a plurality of loading bases 11 or / and ground stations 81 with aircraft 40,..., 42. The aircraft 40, ..., 42 and / or the landing base 11 may be connected to the ground station 81, for example, via the communication network 50/51 and / or the satellite-based network 70 unidirectional and / or bidirectional. The communication network 50/51 and / or the satellite-based network 70 may, for example, be a GSM or a UMTS network, or a satellite-based mobile network, and / or one or more fixed networks, for example the public switched telephone network, the worldwide Internet or a suitable LAN ( Local Area Network) or WAN (Wide Area Network). In particular, it also includes ISDN and XDSL connections. In unidirectional connection, the communications network 50/51/70 may also include broadcast systems (eg, Digital Audio Broadcasting DAB or Digital Video Broadcasting) in which broadcast broadcasters include digital audio or video programs (television programs) and digital data, such as data services , Program Associated Data (PAD) to broadcast receivers unidirectionally spread. This can be useful depending on the variant. However, the unidirectional propagation feature of these broadcast systems may have the disadvantage, inter alia, that, in particular in the case of transmission by means of radio waves, a return channel from the broadcast receivers to the broadcast transmitters, or to their operators, is missing. Due to this missing return channel, the possibilities for encryption, data security, billing, etc. of access-controlled programs and / or data are more limited.

ReferenzllsteReferenzllste

11
SchaltvomchtungSchaltvomchtung
22
Filtermodulfilter module
33
Sensorik mit GatewayinterfaceSensor system with gateway interface
1111
Landebasisland base
111111
Kommunikationsmittelmeans of communication
40,...,4240, ..., 42
Flugzeugplane
401401
Sensoriksensors
402402
AvionikAvionics
403403
Drahtlose KommunikationsmittelWireless communication media
404404
ErgänzungsoffboardsystemErgänzungsoffboardsystem
411411
Detektionsvorrichtung für Start- und/oder LandeeinheitenDetection device for take-off and / or landing units
50/5150/51
KommunikationsnetzwerkCommunication network
6060
InterventionsvorrichtungThe intervention device
601601
Sensorik/InterfaceSensors / Interface
602602
Steuervorrichtungcontrol device
603603
BetriebsstörungseinsatzvomchtungBetriebsstörungseinsatzvomchtung
7070
Satellitengestütztes NetzwerkSatellite-based network
8080
Avionisches LuftfahrtsystemAvionic aviation system
8181
Bodenstationground station
101101
Geschütztes erstes SpeichermodulProtected first memory module
102102
AktivierungsstapelspeicherActivation stack memory
103103
Zählermodulcounter module
201201
Geschütztes zweites SpeichermodulProtected second memory module
202202
Techlog-StapelspeicherTechlog stack
203203
Zählermodulcounter module

Claims (24)

  1. An avionic aviation system (80) with an earth station (81) for automatically eliminating malfunctions occurring in airplanes (40/41/42), wherein the avionic aviation system (80) is connected to a plurality of airplanes (40/41/42) via a wireless interface (403) of the avionics (402) and wherein dedicated operating malfunction usage devices (603) can be activated by means of a switching device (1) of the earth station (81) if an operating malfunction occurs which is detected by means of a sensor (3/401/601),
    wherein the aviation system (80) comprises detection devices (411) which are integrated in the avionics (402) of the airplanes (40/41/42) and serve for electronically detecting take-off and landing units performed by an airplane (40/41/42), and wherein log parameters of the take-off and/or landing units performed and assigned to the airplane (40,...,42) can be transferred from the detection devices (411) via wireless interfaces (403) to the earth station (81), characterized in
    that the earth station (81) comprises an interface for accessing one or a plurality of data bases comprising landing base-specific data records, wherein each take-off and/or landing unit detected by means of the detection device (411) and recorded as a log parameter can be assigned to at least one landing base-specific data record and the log parameter can be weighted based on the assigned landing base-specific data record by means of a weighting module, and wherein by means of the recorded data of the data records, country-specific and/or landing base-specific conditions can be considered for activating the dedicated operating malfunction usage device (603) by means of a switching device (1),
    that the earth station (81) comprises for each airplane (40,...42) one incrementable techlog memory stack (202) with a techlog memory stack altitude value that can be read out, wherein the techlog memory stack altitude value can be increased, by means of a counter module (203), based on filtered take-off and/or landing units of the transferred log parameters of the respective airplane (40,...41), and the techlog memory stack altitude value comprises the performed take-off and/or landing units such that they can be read out by means of the counter module (203),
    that the counter module (203) comprises means for reading out the techlog memory stack altitude value,
    that the earth station (81) comprises a filter module (2) by means of which, for a certain time window, a memory threshold value for enabling the activation of the operating malfunction usage device (603) can be dynamically determined based on the techlog memory stack altitude value,
    that the earth station (81) comprises in addition an activation memory stack (102) of a protected memory module (103) for recording activation parameters of the airplane (40,..42), wherein the activation parameters can be generated by the avionics (402) or assigned supplementary offboard systems (404) and can be transferred based on the actual memory threshold to the earth station (81), and wherein the activation memory stack (102) can be incremented in steps corresponding to the transferred activation parameters,
    that by means of a counter module (103) of the earth station (81), a memory stack altitude value of the activation memory stack (102) can be recorded and,
    if with the memory stack altitude value of the activation memory stack (102), the dynamically determined memory threshold is reached, the switching device (1) can be enabled by means of the filter module (2) so as to activate the operating malfunction usage means (603) in a dedicated manner if operating malfunctions occur.
  2. The avionic aviation system (80) with an earth station (81) according to claim 1, characterized in that if an operating malfunction is detected by means of the sensor (3/401/601), the operating malfunction usage means (603) can be selected by means of the filter module corresponding to the operating malfunction occurred and/or the type of airplane (40,...42) involved and can be activated by means of the switching device (1).
  3. The avionic aviation system (80) with an earth station (81) according to claim 2, characterized in that if an operating malfunction is detected by means of the sensor (3,401/601), the operating malfunction usage means (603) can be selected by means of the filter module (2) and can additionally be based on the activation memory stack altitude value and can be activated by means of the switching device (1).
  4. The avionic aviation system (80) with an earth station (81) according to any one of the claims 1 to 3, characterized in that the log parameters comprise in addition measured value parameters of the flight management system (FMS) and/or the inertial navigation device (INS) and/or the fly-by-wire sensors and/or the flight monitoring devices of the airplane (40,...42), wherein the memory threshold is dynamically generated for the respective time window, by means of the filter module (2) and is based on the techlog memory stack altitude value and the additional log parameters.
  5. The avionic aviation system (80) with an earth station (81) according to claim 4, characterized in that the avionics (402) of the airplane (40,...42) comprises an altitude measurement sensor and/or an odometer and/or a variometer and/or a gyro horizon and/or a turn and bank indicator and/or an accelerometer and/or a stall warning sensor and/or an outside temperature sensor and/or a position finding device, wherein the log parameters comprise in addition measuring parameters of at least one sensor and wherein the memory threshold is dynamically generated for the respective time window, by means of the filter module (2) and is based on the techlog memory stack altitude value and the additional log parameters.
  6. The avionic aviation system (80) with an earth station (81) according to any one of the claims 1 to 5, characterized in that by means of the avionics (402) of the airplane (40,...42) or the communication means (111) of the landing base (11), ATIS measuring parameters based on the Automatic Terminal Information Service (ATIS) of the approached landing base (11) are automatically transferable to the earth station (81) during each take-off and landing unit, wherein the memory threshold is dynamically generated, for the respective time window, based on the techlog memory stack altitude value and the ATIS measuring parameters transferred.
  7. The avionic aviation system (80) with an earth station (81) according to any one of the claims 1 to 6, characterized in that by means of the filter module (2) of the earth station (81), dynamically determined first activation parameters can be transmitted to the avionics (402) of the airplane (40,...42) and/or to a supplementary board system (404) assigned to the respective airplane, and protected second activation parameters for incrementing the activation memory stack (102) can be generated by the avionics (402) or the assigned supplementary board system (404) and can be transferred to the earth station (81).
  8. The avionic aviation system (80) with an earth station (81) according to claim 7, characterized in that the protected second activation parameters comprise a uniquely assignable identification number.
  9. The avionic aviation system (80) with an earth station (81) according to any one of the claims 1 to 8, characterized in that by means of the wireless interface (403) of the avionics (402) of the airplanes (40,...42), the assigned log parameters can be transferred via a satellite-based network (70) directly to the earth station (81).
  10. The avionic aviation system (80) with an earth station (81) according to any one of the claims 1 to 8, characterized in that by means of the wireless interface (403) of the avionics (402) of the airplanes (40,...42), the assigned log parameters can be transferred via a wireless communication network (111) of an approached landing base (11) to the earth station (81).
  11. The avionic aviation system (80) with an earth station (81) according to any one of the claims 1 to 10, characterized in that the aviation system (80) comprises means for dynamically updating the one or a plurality of data bases comprising landing base-specific data records, wherein updating the landing base-specific data records is implemented periodically and/or upon request.
  12. The avionic aviation system (80) with an earth station (81) according to any one of the claims 1 to 12, characterized in that the one or a plurality of data bases is assigned in a decentralized manner to a landing base (11) for airplanes (40,...42), wherein by means of an interface (111), data can be transferred unidirectionally and/or bidirectionally from the landing base (11) to the earth station (81).
  13. An avionic aviation method (80) with an earth station (81) for automatically eliminating operating malfunctions occurring in airplanes (40/41/42), wherein the avionic aviation system (80) is connected to a plurality of airplanes (40/41/42) via a wireless interface (403) of the avionics (402), and wherein dedicated operating malfunction usage devices (603) are activated by means of a switching device (1) of the earth station (81) if an operating malfunction occurs that is detected by means of a sensor (3/401/601),
    wherein by means of integrated detection devices (411) of the avionics (402) of an airplane (40/41/41), take-off and/or landing units performed by the airplane are electronically recorded and wherein log parameters assigned to the airplane of the take-off and landing units performed are transferred by the detection devices (411) via the wireless interface (403) to the earth station (81), characterized in
    that the earth station (81) accesses by means of an interface one or a plurality of data bases comprising landing base-specific data records, wherein each take-off and landing unit detected by means of the detection device (411) and recorded as a log parameter is assigned to at least one landing base-specific data record and the log parameters are weighted by means of a weighting module based on the associated landing base-specific data record, and wherein by means of the recorded data of the data record, country-specific and/or landing base-specific conditions are considered for activating the dedicated operating malfunction usage device (603) by means of a switching device (1),
    that the earth station (81) comprises for each airplane (40,...42) an incrementable techlog memory stack (202) comprising a techlog memory stack altitude value that can be read out, wherein by means of a counter module (203) of the earth station (81), the techlog memory stack altitude value is increased based on filtered take-off and landing units of the transferred log parameters of the respective airplane (40,...42) and wherein the techlog memory stack altitude value comprises the take-off and/or landing units performed such that they can be read out by means of the counter module (203),
    that the techlog memory stack altitude value is read out by means of the counter module (203),
    that by means of a filter module (2) of the earth station (81), a memory threshold for enabling the activation of the operating malfunction usage device (603) is dynamically determined, for a certain time widow, based on the techlog memory stack altitude value,
    that by means of an activation memory stack (102) of a protected memory module (103) of the earth station (81), activation parameters of the airplane (40,...42) transferred to earth station (81) are recorded, wherein the activation parameters are generated by the avionics (402) or assigned supplementary offboard systems (404) and are transferred based on the actual threshold to the earth station (81), and wherein the activation memory stack (102) is incremented in steps corresponding the transferred activation parameters,
    that by means of a counter module (103) of the earth station (81), a memory stack altitude value of the activation memory stack (102) is recorded, and
    if the dynamically determined memory threshold is reached with the memory stack altitude value of the activation memory stack (102), the switching device (1) is enabled by means of the filter module (2) so as to activate the operating malfunction usage means (603) in a dedicated manner if operating malfunctions occur.
  14. The avionic aviation method (80) with an earth station (81) according to claims 14 or claim 15, characterized in that when detecting an operating malfunction by means of the sensor (3/401/601), the operating malfunction usage means (603) are selected by means of the filter module according to the malfunction occurred and/or the type of airplane (40,...42) involved and are activated by means of the switching device (1).
  15. The avionic aviation method (80) with an earth station (81) according to claim 14, characterized in that when detecting an operating malfunction by means of the sensor (3/401/601), the operating malfunction usage means (603) are selected by means of the filter module (2) and are additionally based on the activation memory stack altitude value and are activated by means of the switching device (1).
  16. The avionic aviation method (80) with an earth station (81) according to any one of the claims 13 to 15, characterized in that the log parameters comprise in addition measured value parameters of the flight management system (FMS) and/or the inertial navigation device (INS) and/or the fly-by-wire sensors and/or the flight monitoring devices of the airplane (40,...42), wherein the memory threshold is dynamically generated for the respective time window by means of the filter module (2) and is based on the techlog memory stack altitude value and the additional log parameters.
  17. The avionic aviation method (80) with an earth station (81) according to claim 16, characterized in that the avionics (402) of the airplane (40,...42) comprises an altitude measurement sensor and/or an odometer and/or a variometer and/or a gyro horizon and/or a turn and bank indicator and/or an accelerometer and/or a stall warning sensor and/or an outside temperature sensor and/or a position finding device, wherein the log parameters comprise in addition measuring parameters of at least one sensor and wherein the memory threshold is dynamically generated for the respective time window, by means of the filter module (2) and is based on the techlog memory stack altitude value and the additional log parameters.
  18. The avionic aviation method (80) with an earth station (81) according to any one of the claims 13 to 17, characterized in that by means of the avionics (402) of the airplane (40,...42) or the communication means (111) of the landing base (11), ATIS measuring parameters based on the Automatic Terminal Information Service (ATIS) of the approached landing base (11) are automatically transferred to the earth station (81) during each take-off and landing unit, wherein by means of the filter module (2), the memory threshold is dynamically generated, for the respective time window, based on the techlog memory stack altitude value and the transferred ATIS measuring parameters.
  19. The avionic aviation method (80) with an earth station (81) according to any one of the claims 13 to 17, characterized in that by means of the filter module (2) of the earth station (81), dynamically determined first activation parameters are transmitted to the avionics (402) of the airplane (40,...42) and/or to a supplementary board system (404) assigned to the respective airplane (40,...42), and protected second activation parameters for incrementing the activation memory stack (102) are generated by the avionics (402) or the assigned supplementary board system (404) and are transferred to the earth station (81).
  20. The avionic aviation method (80) with an earth station (81) according to claim 19, characterized in that the protected second activation parameters comprise a uniquely assignable identification number.
  21. The avionic aviation method (80) with an earth station (81) according to any one of the claims 13 to 20, characterized in that by means of the wireless interface (403) of the avionics (402) of the airplanes (40,...42), the assigned log parameters are transferred via a satellite-based network (70) directly to the earth station (81).
  22. The avionic aviation method (80) with an earth station (81) according to any one of the claims 13 to 21, characterized in that by means of the wireless interface (403) of the avionics (402) of the airplanes (40,...42), the assigned log parameters are transferred via a wireless communication network (111) of an approached landing base (11) to the earth station (81).
  23. The avionic aviation method (80) with an earth station (81) according to claim 22, characterized in that by means of the aviation system (80), the one or a plurality of data bases are dynamically updated with landing base-specific data records, wherein the landing base-specific data records are updated periodically and/or upon request.
  24. The avionic aviation method (80) with an earth station (81) according to claim 22 or claim 23, characterized in that the one or a plurality of data bases is assigned in a decentralized manner to a landing base (11) for airplanes (40,...42), wherein by means of an interface (111) of the landing base (11), data are transferred unidirectionally and/or bidirectionally from the landing base (11) to the earth station (81).
EP20080707264 2007-01-24 2008-01-24 Avionic aviation system with an earth station for automatically eliminating operating malfunctions occurring in airplanes, and corresponding method Active EP2143095B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT08707264T ATE533142T1 (en) 2007-01-24 2008-01-24 AVIONIC AVIATION SYSTEM WITH GROUND STATION FOR THE AUTOMATIC ERROR OF OPERATING FAULTS THAT OCCUR IN AIRCRAFT, AND A CORRESPONDING METHOD
EP20080707264 EP2143095B1 (en) 2007-01-24 2008-01-24 Avionic aviation system with an earth station for automatically eliminating operating malfunctions occurring in airplanes, and corresponding method
US12/524,389 US8244414B2 (en) 2007-01-24 2008-01-24 Avionic aviation system with an earth station for automatically eliminating operating malfunctions occurring in airplanes, and corresponding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/EP2007/050708 WO2007088133A2 (en) 2006-02-02 2007-01-24 Dynamic control and trigger device for activating automated intervention systems for air transport means and/or air passenger conveyance means, and associated method
PCT/EP2008/000553 WO2008089988A2 (en) 2007-01-24 2008-01-24 Avionic aviation system with an earth station for automatically eliminating operating malfunctions occurring in airplanes, and corresponding method
EP20080707264 EP2143095B1 (en) 2007-01-24 2008-01-24 Avionic aviation system with an earth station for automatically eliminating operating malfunctions occurring in airplanes, and corresponding method

Publications (2)

Publication Number Publication Date
EP2143095A2 EP2143095A2 (en) 2010-01-13
EP2143095B1 true EP2143095B1 (en) 2011-11-09

Family

ID=41404362

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080707264 Active EP2143095B1 (en) 2007-01-24 2008-01-24 Avionic aviation system with an earth station for automatically eliminating operating malfunctions occurring in airplanes, and corresponding method

Country Status (3)

Country Link
US (1) US8244414B2 (en)
EP (1) EP2143095B1 (en)
AT (1) ATE533142T1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110313614A1 (en) * 2010-06-21 2011-12-22 Hinnant Jr Harris O Integrated aeroelasticity measurement for vehicle health management
FR2970093B1 (en) * 2011-01-05 2013-12-13 Airbus Operations Sas METHOD AND DEVICE FOR AUTOMATIC MONITORING OF AIR OPERATIONS REQUIRING GUARANTEE OF NAVIGATION PERFORMANCE AND GUIDANCE
US8798817B2 (en) 2012-01-31 2014-08-05 Gulfstream Aerospace Corporation Methods and systems for requesting and retrieving aircraft data during flight of an aircraft
US20130197739A1 (en) * 2012-01-31 2013-08-01 Gulfstream Aerospace Corporation Methods and systems for aircraft health and trend monitoring
CN104685526A (en) * 2012-07-10 2015-06-03 瑞士再保险有限公司 Avionic system for emergency interception in case of imminent damages of aircraft fleets following natural disaster events
US9550583B2 (en) 2015-03-03 2017-01-24 Honeywell International Inc. Aircraft LRU data collection and reliability prediction
US9542851B1 (en) * 2015-11-03 2017-01-10 The Boeing Company Avionics flight management recommender system
US9934620B2 (en) * 2015-12-22 2018-04-03 Alula Aerospace, Llc System and method for crowd sourcing aircraft data communications
WO2017108133A1 (en) 2015-12-23 2017-06-29 Swiss Reinsurance Company Ltd. Automated, reactive flight-delay risk-transfer system and method thereof
WO2019135966A1 (en) * 2018-01-03 2019-07-11 Thales USA, Inc. Power line communication for an aeronautical system
DE102019218574A1 (en) * 2019-11-29 2021-06-02 Airbus Operations Gmbh CONFIGURATION MANAGEMENT FOR AVIONICS NETWORK AND PROCEDURE FOR VERIFYING THE CONFIGURATION OF AN AVIONICS NETWORK
US11416006B2 (en) * 2019-12-18 2022-08-16 Lockheed Martin Corporation Integration of real time metadata in the evaluation of landing zones

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5890079A (en) 1996-12-17 1999-03-30 Levine; Seymour Remote aircraft flight recorder and advisory system
DE19856231A1 (en) 1998-12-04 2000-06-21 Daimler Chrysler Ag Satellite constellation and system and method for monitoring aircraft
BR0015274A (en) 1999-10-28 2002-07-23 Gen Electric Diagnostic and repair system and method
US7908042B2 (en) * 2001-02-13 2011-03-15 The Boeing Company Methods and apparatus for wireless upload and download of aircraft data
JP2004352071A (en) 2003-05-29 2004-12-16 Ishikawajima Harima Heavy Ind Co Ltd On-board trouble management device of engine for aircraft
US20080154444A1 (en) * 2006-12-22 2008-06-26 Boeing Company A Corporation Of Delaware Apparatus and method for cooperative employment with installed airborne application control system

Also Published As

Publication number Publication date
US8244414B2 (en) 2012-08-14
EP2143095A2 (en) 2010-01-13
US20100036545A1 (en) 2010-02-11
ATE533142T1 (en) 2011-11-15

Similar Documents

Publication Publication Date Title
EP2143095B1 (en) Avionic aviation system with an earth station for automatically eliminating operating malfunctions occurring in airplanes, and corresponding method
WO2008089988A2 (en) Avionic aviation system with an earth station for automatically eliminating operating malfunctions occurring in airplanes, and corresponding method
DE60305041T2 (en) AIRCRAFT SYSTEM AND FLOOR STATION FOR LEADING A PLANE OUTSIDE OF THE COURSE AND ALARM TRANSMISSION
DE60224975T2 (en) Sub-system for release monitoring and alerting the pilot with data transmission (COMPASS)
DE102019135280A1 (en) Secure wireless vehicle parameter streaming
DE102006007644B4 (en) Method and system for preventing intrusion of a mobile object into a section of a traffic route
EP1444131B1 (en) Monitoring and control system for manned vehicles
US20030065428A1 (en) Integrated aircraft early warning system, method for analyzing early warning data, and method for providing early warnings
DE102009008745B4 (en) Procedure and system for automatic traffic management
EP0798684A1 (en) Method and system to obtain the traffic situation through fixed data-acquisition device
DE102016212150A1 (en) Method for operating an at least temporarily unmanned aerial or spacecraft and such an aircraft or spacecraft
EP2924662B1 (en) Onboard unit and method for functional monitoring in a road toll system
DE102005031439A1 (en) Satellite linked simulation system is used to provide aircraft flight management to prevent mid air collisions
WO2019170649A1 (en) Air position information- and traffic management system for unmanned and manned aircraft
EP1495457B1 (en) Safety system for aircraft
DE1111951B (en) Device for the prevention of aircraft collisions
DE19746570A1 (en) Method and device for large-area traffic situation monitoring
WO2018177665A1 (en) Reporting system in a vehicle for reporting an incident of the vehicle, and method for reporting an incident of a vehicle
WO2012110046A1 (en) Device and method for monitoring and controlling traffic guidance at an airport
EP1109032B1 (en) Method and system for warning against collisions between aircraft
DE19904842A1 (en) Surveillance system for terrestrial navigation and airport landing systems
EP3625520A1 (en) Method, device, and system for determining a weather area
US9824595B1 (en) Aircraft monitoring and analysis using edge computing
EP3495847B1 (en) Tachograph assembly and method for operating same
DE19730595C1 (en) Electro-magnetic noise source detection device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090527

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100528

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SWISS REINSURANCE COMPANY LTD.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BRAUNPAT BRAUN EDER AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008005522

Country of ref document: DE

Effective date: 20120209

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111109

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120309

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120309

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120210

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

BERE Be: lapsed

Owner name: SWISS REINSURANCE COMPANY LTD.

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008005522

Country of ref document: DE

Effective date: 20120810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: THOMANNFISCHER, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080124

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230123

Year of fee payment: 16

Ref country code: FR

Payment date: 20230123

Year of fee payment: 16

Ref country code: CH

Payment date: 20230201

Year of fee payment: 16

Ref country code: AT

Payment date: 20230118

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230124

Year of fee payment: 16

Ref country code: DE

Payment date: 20230119

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240122

Year of fee payment: 17