EP2143080B1 - Method for detecting an identification object in a vehicle - Google Patents

Method for detecting an identification object in a vehicle Download PDF

Info

Publication number
EP2143080B1
EP2143080B1 EP07858043.8A EP07858043A EP2143080B1 EP 2143080 B1 EP2143080 B1 EP 2143080B1 EP 07858043 A EP07858043 A EP 07858043A EP 2143080 B1 EP2143080 B1 EP 2143080B1
Authority
EP
European Patent Office
Prior art keywords
antenna device
magnetic field
identification object
current
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07858043.8A
Other languages
German (de)
French (fr)
Other versions
EP2143080A1 (en
Inventor
Eric Leconte
Stephane Violleau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Comfort and Driving Assistance SAS
Original Assignee
Valeo Securite Habitacle SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Securite Habitacle SAS filed Critical Valeo Securite Habitacle SAS
Publication of EP2143080A1 publication Critical patent/EP2143080A1/en
Application granted granted Critical
Publication of EP2143080B1 publication Critical patent/EP2143080B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00753Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
    • G07C2009/00769Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means
    • G07C2009/00793Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means by Hertzian waves
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C2209/00Indexing scheme relating to groups G07C9/00 - G07C9/38
    • G07C2209/60Indexing scheme relating to groups G07C9/00174 - G07C9/00944
    • G07C2209/63Comprising locating means for detecting the position of the data carrier, i.e. within the vehicle or within a certain distance from the vehicle

Definitions

  • the present invention relates to a method for detecting an identification object in an area around an antenna device (s) and a detection system implementing the detection method.
  • an object of identification such as a badge which acts as a receiver-transmitter to know if it is inside or outside of the passenger compartment of the vehicle. If the badge is inside the vehicle, the user is allowed to start the vehicle.
  • the detection of the badge is based on a magnetic field emitted from a constant power from a voltage regulation of the antenna device.
  • Such a solution has the disadvantage of being difficult to implement. Indeed, the antenna device being supplied with voltage by the vehicle battery voltage, at each variation of this voltage (due to different actions such as a vehicle start, or an engine stop, etc.), it is necessary to readjust to allow the antenna device to transmit at a constant power.
  • the object of the invention is therefore more particularly to enable detection of an identifying object with a simpler solution.
  • control device further comprises a signal receiver for receiving a response from the identification object according to a comparison made between a received magnetic field and a nominal magnetic field.
  • the comparison is performed by the identification object.
  • the invention relates to a motor vehicle comprising a passenger compartment in which is arranged a control device according to any one of the preceding characteristics, an antenna device (s) characterized according to any one of the preceding characteristics, the two devices being able to cooperate with an identification object.
  • each antenna is powered by low-frequency alternating current by the DER transceiver device and emits a Be magnetic field, named BeI for indoor antennas and BeX for external antennas.
  • the external antennas AX make it possible to detect whether the receiver-transmitter ID is located near the vehicle V, in a nonlimiting example at a distance of less than 1.5 mm, whereas the antennas AI interiors detect whether the receiver-transmitter ID is in the passenger compartment VH of the vehicle.
  • the receiver-transmitter ID in this application, is in a non-limiting example, an identification object ID carried by a user of the vehicle V, for example a badge, a key, a keyfob called "keyfob" etc.
  • an identification object ID carried by a user of the vehicle V
  • a badge for example a badge, a key, a keyfob called "keyfob" etc.
  • keyfob a keyfob
  • the antennas A communicate with the ID badge by transmitting data by emitting a low frequency signal BF and the ID badge responds by emitting an RF radio frequency signal.
  • the low frequency signal BF is around 125 kHz and the radio frequency RF signal is around 433 MHz.
  • the antennas A determine whether the badge ID is allowed to open the doors of the vehicle, or whether it is allowed to start the vehicle.
  • the badge ID is allowed to open the doors, the user must for example touch a doorknob.
  • the handles include appropriate detectors.
  • the external antennas AX make it possible to determine a first zone of communication with the badge ID to authorize a vehicle access. This zone is defined by the magnetic field emitted by said antennas. External AX antennas must therefore guarantee at least a minimum distance from which the ID badge is authorized to access the vehicle.
  • the internal antennas AI make it possible to determine a second zone ZO for communication with the badge ID to authorize a start.
  • This zone is defined by the magnetic field emitted by the internal antennas.
  • the internal antennas AI must therefore guarantee a fixed zone from which the ID badge is authorized to start the vehicle, this zone being the passenger compartment VH of the vehicle V.
  • the magnetic field emitted by these indoor antennas AI has a greater coverage than the passenger compartment VH but is limited by the metal carcass of the passenger compartment VH of the vehicle V and overflows through the openings of the windows.
  • the detection of the ID badge in the second zone ZO is based on the fact that the badge is initialized with a fixed threshold value S0 according to a magnetic field received B0 called nominal field.
  • this fixed threshold value S0 is a power P0 corresponding to the nominal field B0.
  • a magnetic field received Br by the badge ID is a function of the emitted magnetic field Be of the antenna device A, the latter defining the zone ZO around it representative of its magnetic field Be, which has also been called a zone Communication.
  • the ID badge is located far from an antenna A emitting a magnetic field emitted Be, the lower the magnetic field received Br corresponding is weak.
  • the received magnetic field Br is theoretically equal to the emitted magnetic field Be.
  • the nominal magnetic field B0 therefore corresponds to a nominal communication zone ZO in which an ID badge can communicate with an antenna A and the transmission-reception device DER.
  • the ID badge When the ID badge is outside this ZO area (the received magnetic field Br is smaller than the nominal received magnetic field B0), the ID badge does not respond to the signals sent by the antenna device A or sends an RF response radio voluntarily wrong. This means that it is located outside the passenger compartment VH of the vehicle. In the opposite case, it responds by emitting an RF radio frequency signal.
  • this nominal magnetic field B0 is set so as to avoid the parasitic magnetic fields Bb originating from the radio disturbances as illustrated in FIG. 2 and its value is greater than the value of the parasitic magnetic fields.
  • the ID badge is positioned relative to an internal antenna AI1.
  • the antenna AI1 emits a magnetic field Be at a power of 15 Watts.
  • the ID badge when in the ID1 position, receives a magnetic field Br1 whose power P1 is 4.5 Watts and therefore less than the fixed threshold S0; so it's outside of the zone ZO defined by the threshold S0 will therefore not communicate with the antenna AI1 and the transmission-reception device DER.
  • the ID badge when in the ID2 position, receives a magnetic field Br2 whose power P2 is 5.5 Watts and therefore greater than the fixed threshold S0; it is therefore in the ZO communication zone and will therefore communicate with the antenna AI1 and the transmission-reception device DER.
  • the method of detecting the badge ID to know if it is in the communication zone ZO of an antenna, in particular an indoor antenna AI is carried out as follows.
  • the fixed threshold value S0 is written in a memory of the ID tag, for example a rewritable type EEPROM memory.
  • a calibration signal S_CAL also called a calibration frame, is sent in the direction of the antenna device A at an initial power PI determined to determine an adjustment power PR for the antenna device A.
  • the calibration signal S_CAL is triggered according to a particular event.
  • the particular event is a vehicle access.
  • a vehicle access is representative of a change in the environment of the antenna device A, a variation of temperatures (due for example to different seasons), which influences the antenna device components and consequently causes a variation of its impedance Z and thus of its magnetic field emitted Be.
  • the particular event is a variation of supply voltage, here the battery voltage Ubat (which may vary after an engine start or engine stop for example).
  • the battery voltage Ubat which may vary after an engine start or engine stop for example.
  • This step is therefore to take into account the variations of the impedance Z of the antenna device A in the determination of the magnetic field emitted by the antenna device A and consequently in the determination of a power of PR setting to be applied to the antenna device A.
  • the calibration signal S_CAL is unintelligible by the identification object ID. Thus, although the identification object ID receives it, it does not respond to this signal S_CAL. This avoids the badge an additional activation-deactivation period to receive this signal. Thus, the ID badge will receive faster data included in the S_FONC functional signal that it will receive thereafter.
  • an initial power PI is determined to send the calibration signal S_CAL.
  • the initial power PI is obtained by means of a calibration voltage UC of initial duty cycle ⁇ 1 corresponding to a theoretical initial current Ith. It will be noted that this theoretical initial current Ith is determined experimentally by vehicle tests. Its value varies according to the type of vehicle V.
  • this voltage is square. This avoids energy dissipation in the power stage for applying the voltage described below. Indeed, there is a heat energy consumption only during transitions phases unlike a typical sinusoidal voltage where the consumption is significantly higher .. This power stage does not heat too much.
  • a second substep 1b) when sending the calibration signal S_CAL, the actual current Irm flowing in the antenna device A is measured.
  • an initial power PI corresponding to theoretical initial current Ith because of the impedance Zr of the antenna device A, the current flowing in said device is in practice not equal to the theoretical initial current Ith.
  • the measurement of the current Irm flowing in the antenna device A can be carried out in a simple manner by a peak amplitude detector C described below.
  • This current Irm is an alternating current whose frequency spectrum comprises harmonics h.
  • the antenna device A is tuned to the transmission frequency (the frequency being for example 125 kHz). This makes it possible to emit a larger magnetic field in amplitude at the transmission frequency, and to have a bandpass filter FL.
  • the bandpass filter FL thus makes it possible to reduce the amplitude of the harmonics h (except for the harmonic of rank 1).
  • the value of the current Irm flowing in the antenna device A is equal to the sum of the harmonics h which are present in the passband of the filter included in the antenna device A.
  • the value of the emitted field Be is a function of this current Irm with harmonics h.
  • the value of the current Irm which is taken into account is equal only to the harmonic h1 of rank 1 called fundamental.
  • the received magnetic field Br (and therefore the fixed threshold value S0) corresponds to the magnetic field emitted Be at the fundamental value only and not at the sum of the harmonics.
  • the calibration voltage UC is a symmetrical voltage.
  • the even-order harmonics of the measured current Irm have been suppressed.
  • the voltage UC is symmetrical with respect to the point PT.
  • the symmetrical CPU voltage will make it possible to obtain precise generation and precise measurement of the corresponding initial power PI on the harmonic h1 of rank 1 by suppressing parasitic currents due to other harmonics.
  • a harmonic of rank n is represented by the term a n cosn ⁇ t + b n sinn ⁇ t.
  • h ⁇ 1 4 ⁇ E / ⁇ . sin ⁇ ⁇ 1. sin ⁇ x
  • the value of the adjustable duty cycle ⁇ 1 makes it possible to adjust the value of the initial power PI.
  • the symmetrical square voltage makes it possible, on the one hand, to adjust the initial power transmitted PI to a desired value corresponding to the desired communication zone ZO (and thus to accurately generate the transmitted power PI) and on the other hand to obtain an accurate measurement of the actual transmitted power PI corresponding to the effective received power of the ID badge because the harmonics of even rank are suppressed.
  • the calibration voltage UC comprises a duty cycle of 1/3 which corresponds to an offset of ⁇ / 3 of the voltage signal UC.
  • the multiple rank harmonics 3 of the measured current Irm have been suppressed.
  • the measured current Irm is therefore in this case representative of the amplitude of the fundamental of the emitted magnetic field.
  • a magnetic field B comprises three components in an orthogonal space x, y, z as illustrated in FIG. 10 which are as follows.
  • B ⁇ Ae Im / 2 ⁇ ⁇ ⁇ d 3 * cos ⁇
  • B ⁇ Ae Im / 4 ⁇ ⁇ ⁇ d 3 * sin ⁇
  • B ⁇ 0. with Ae the effective surface of an antenna through which the magnetic field B, d the distance which allows a measurement of the magnetic field B from the center of the antenna.
  • the calibration voltage UC can be obtained by means of an H-bridge power stage P with full bridge control described below.
  • a third substep 1c) the measured current Irm is compared with the theoretical initial current Ith. The difference will make it possible to determine the real impedance Zr of the antenna device A and consequently to determine the adjustment power PR to be applied to the antenna device A.
  • a transmitted field Be is determined corresponding to a power PR.
  • This field that we want to obtain whose value is known therefore corresponds to a known current Iv.
  • To supply the antenna device A with this known and desired current Iv it is necessary to adjust the power PR of said antenna device taking into account its impedance Zr.
  • the adjustment power PR is adjusted by means of a functional voltage UF of adjustment duty cycle ⁇ 2.
  • a duty cycle ⁇ 2 is thus determined.
  • the adjustment duty ratio ⁇ 2 is calculated by means of a microprocessor of the transmission-reception device DER described below.
  • the cyclic adjustment ratio ⁇ 2 corresponding to a desired functional current Iv which takes into account the variations of the impedance Zr of the antenna device A.
  • Such a table is as follows: Irm1 Irm2 Irm3 Etc ... Iv1 ⁇ 2 11 ⁇ 2 12 ⁇ 2 13 ⁇ 2 1 ... Iv2 ⁇ 2 21 ⁇ 2 22 ⁇ 2 23 ⁇ 2 2 ... IV3 ⁇ 2 31 ⁇ 2 32 ⁇ 2 33 ⁇ 2 3 ... Etc ... Etc ... Etc ... Etc ... Etc ...
  • the abscissa is represented by the cyclic ratio ⁇ and the ordinate by the current I.
  • an initial duty cycle voltage ⁇ 1 is applied for a theoretical initial current Ith.
  • the correspondence between this initial cyclic ratio ⁇ 1 and the theoretical initial current Ith lies on a curve CZth representative of the theoretical impedance Zth of the antenna device A.
  • the actual current Irm circulating in the device is measured at this initial duty cycle ⁇ 1 .
  • the correspondence between this cyclic ratio ⁇ 1 and the actual measured current Irm is on a curve representative of the real impedance Zr of the antenna device A. Two maximum curves CZrmax and minimum CZrmin of this real impedance Zr are represented.
  • the corresponding adjustment cyclic ratio ⁇ 2 is determined by taking the curve of the real impedance Zr, here CZrmax and making a projection on the abscissa axis.
  • the functional voltage UF can be obtained by means of an H-bridge power stage P with full-bridge and half-bridge control described below.
  • This first calibration step 1) therefore corresponds to a self-calibration of the SYS detection system to determine the adjustment power PR. Indeed, no external measuring device is necessary for this calibration. Moreover, this auto-calibration is dynamic because it is launched during the operation of the antenna device (s), and not during its development of the antenna device (s) in the factory for example.
  • a functional signal S_FONC also called a functional frame, is thus sent in the direction of the antenna device A, as shown in FIG. above so that the antenna device A emits a determined magnetic field Be corresponding to the desired area ZO and more particularly to the passenger vehicle VH in the example taken from the vehicle application.
  • the received magnetic field Br is measured by the identification object ID corresponding to the transmitted magnetic field Be of the antenna device A.
  • This measurement is carried out by means of a measurement device of the type RSSI d an amplifier ("Received Signal Strength Indication") well known to those skilled in the art included in the identification object ID.
  • a fourth step 4 the magnetic field received Br is compared with the nominal magnetic field B0. This comparison is performed in the identification object ID.
  • a fifth step 5 it is determined whether the ID badge is in the zone ZO around the antenna device A according to this comparison.
  • the ID badge is in the zone ZO around the antenna device A, and therefore inside the passenger compartment VH vehicle, if the magnetic field received Br is greater than the nominal magnetic field B0.
  • the badge ID therefore returns an affirmative response REPOK to a DC control device of the transmission-reception device DER.
  • the latter therefore allows a vehicle start for example.
  • the badge ID is located outside the zone ZO, and therefore outside the cockpit VH vehicle, if the magnetic field received Br is less than nominal magnetic field B0. In this case, either the ID badge returns no response, it acts as if it has not received the S_FONC functional signal of the antenna device A, or it sends a negative REPNOK response to the DC control device, as illustrated. in Figure 5. The latter therefore prohibits any vehicle start for example.
  • the badge ID systematically sends a response REP including the result of the comparison.
  • all the elements of the transceiver device DER are on the same electronic card. This allows a faster and more reliable dialogue between these different elements. On the contrary, when these elements are separated, the communication links connecting them can be more easily disturbed and the flow rates of these links can be lower.
  • the identification badge ID is known to those skilled in the art, it is not described here.
  • the antenna device A is composed of a circuit RL.
  • the latter requires amplifying the supply voltage of the antenna device to allow appropriate magnetic field emission.
  • the antenna device A is composed of an RLC circuit.
  • the latter makes it possible from the supply voltage of the antenna device A, which is here the battery voltage Ubat of the vehicle V, to directly amplify the current I flowing in the antenna device A to enable a field emission. magnetic field, without using voltage control unlike the first embodiment. It is therefore a simpler solution to implement to obtain amplification.
  • This RLC circuit also acts as a bandpass filter as seen previously.
  • the DC control device includes:
  • the power stage P is H-bridge with full-bridge or half-bridge control. It is illustrated in Figure 13. It comprises in particular four switches S1 to S4. These switches are in a non-limiting example of the MOSFET transistors.
  • the two diagonals of the bridge are controlled by two control signals delayed relative to each other by half a period thus making it possible to obtain symmetry.
  • the power stage P is used to obtain the initial power PI via the calibration voltage UC but also the adjustment power PR via the functional voltage UF.
  • the power stage P is used as full bridge (large range of currents G1) or half-bridge (small range of currents G2).
  • the adjustment power PR necessary to send the S_FONC functional signals is a function of this battery voltage and the impedance of the antenna device Zr.
  • the adjustment duty cycle ⁇ 2 is adjusted appropriately. For example, for a high battery voltage, the power stage P is operated half-bridge, while for a low battery voltage, it is operated full bridge. In order to obtain a continuous range between the two current ranges G1 and G2, in a non-limiting embodiment, the duty ratio ⁇ 2 is in the range [1/6 - 1/2].
  • the current measuring device is a peak amplitude detector. This is a simple way to measure the current. It makes it possible to measure the maximum amplitude of the current, which is sufficient because the disturbing harmonics have been suppressed by the symmetrical control and the duty cycle of 1/3. Thus, this measure will give the value of the fundamental of this current. It is conventionally composed of a diode and a capacitance.
  • the current measuring device C may be a digital sampling device or else a device which performs a rectification of current and then an average of the rectified current.
  • the antenna device A comprises one or more antennas. In the nonlimiting example described, it comprises a plurality of antennas as seen above. In this practical case, for each antenna of the antenna device A, the current is regulated in the antenna to obtain a corresponding nominal magnetic field B0 corresponding to the zone ZO for communication between the badge ID and the antenna.
  • the ID badge comprises a plurality of fixed threshold value S0 associated with each antenna of the antenna device A.
  • the invention is not limited to the described application of the motor vehicle, but can be used in all applications involving a low frequency antenna and an identification object such as a home automation application for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lock And Its Accessories (AREA)

Description

Domaine de l'inventionField of the invention

La présente invention concerne un procédé de détection d'un objet d'identification dans une zone autour d'un dispositif d'antenne(s) et un système de détection mettant en oeuvre le procédé de détection.The present invention relates to a method for detecting an identification object in an area around an antenna device (s) and a detection system implementing the detection method.

Elle trouve une application particulière pour un véhicule automobile équipé d'un système de détection mains libres.It finds a particular application for a motor vehicle equipped with a hands-free detection system.

Etat de la techniqueState of the art

Selon un état de la technique connu, il existe un procédé de détection d'un objet d'identification tel qu'un badge qui fait office de récepteur-émetteur pour savoir s'il se trouve à l'intérieur ou à l'extérieur de l'habitacle du véhicule. Si le badge se trouve à l'intérieur du véhicule, l'utilisateur est autorisé à démarrer le véhicule.According to a known state of the art, there is a method of detecting an object of identification such as a badge which acts as a receiver-transmitter to know if it is inside or outside of the passenger compartment of the vehicle. If the badge is inside the vehicle, the user is allowed to start the vehicle.

La détection du badge est basée sur un champ magnétique émis à partir d'une puissance constante à partir d'une régulation en tension du dispositif d'antennes.The detection of the badge is based on a magnetic field emitted from a constant power from a voltage regulation of the antenna device.

Une telle solution présente l'inconvénient d'être difficile à mettre en oeuvre. En effet, le dispositif d'antennes étant alimenté en tension par la tension batterie véhicule, à chaque variation de cette tension (dues à différentes actions telles qu'un démarrage véhicule, ou un arrêt moteur etc.), il est nécessaire de la réajuster pour permettre au dispositif d'antennes d'émettre à une puissance constante.Such a solution has the disadvantage of being difficult to implement. Indeed, the antenna device being supplied with voltage by the vehicle battery voltage, at each variation of this voltage (due to different actions such as a vehicle start, or an engine stop, etc.), it is necessary to readjust to allow the antenna device to transmit at a constant power.

On connait également le document FR-A-2 834 344 qui divulgue un procédé de détection d'un badge basée sur une mesure du champ magnétique. Ce procédé ne permet pas de prendre en compte les variations d'impédance qui apparaissent au cours de l'utilisation du dispositif d'antennes dans le véhicule.We also know the document FR-A-2,834,344 which discloses a method of detecting a badge based on a measurement of the magnetic field. This method does not take into account the impedance variations that occur during use of the antenna device in the vehicle.

On connait enfin le document EP-A-1 189 302 qui divulgue un procédé de calibration d'une antenne pour la détection d'Un badge lors du montage de cette antenne sur le véhicule.We finally know the document EP-A-1,189,302 which discloses a method of calibrating an antenna for detecting a badge when mounting this antenna on the vehicle.

Objet de l'inventionObject of the invention

L'invention a donc plus particulièrement pour but de permettre une détection d'un objet identifiant avec une solution plus simple.The object of the invention is therefore more particularly to enable detection of an identifying object with a simpler solution.

Elle propose donc un procédé de détection d'un objet d'identification dans une zone autour d'un dispositif d'antenne(s), selon les caractéristiques de la revendication 1.It therefore proposes a method of detecting an identification object in an area around an antenna device (s), according to the features of claim 1.

Ainsi, comme on le verra en détail plus loin, on aura une détection d'un objet identifiant grâce au calibrage du dispositif d'antenne(s) et à une comparaison avec un champ magnétique nominal sans avoir besoin de régulation en tension.Thus, as will be seen in detail below, there will be a detection of an identifying object through the calibration of the antenna device (s) and a comparison with a nominal magnetic field without the need for voltage regulation.

Selon des modes de réalisation non limitatifs, le procédé selon l'invention présente les caractéristiques supplémentaires suivantes.

  • Le signal de calibrage est non intelligible par l'objet d'identification. Cela permet à l'objet d'identification de recevoir rapidement le signal fonctionnel par la suite.
  • Le procédé comporte une étape supplémentaire selon laquelle :
  • lors de l'envoi du signal de calibrage, on mesure un courant circulant dans le dispositif d'antenne(s), et
  • on compare le courant mesuré à un courant initial de sorte à déterminer la puissance de réglage.
According to non-limiting embodiments, the method according to the invention has the following additional features.
  • The calibration signal is not intelligible by the identification object. This allows the identification object to quickly receive the functional signal thereafter.
  • The method comprises a further step that:
  • when sending the calibration signal, a current flowing in the antenna device (s) is measured, and
  • the measured current is compared to an initial current so as to determine the adjustment power.

Ainsi, le signal de calibrage dépend d'une mesure de courant qui est simple à mettre en oeuvre.

  • Une puissance est réglée avec une tension de rapport cyclique donné. Cette régulation est simple à mettre en oeuvre. De plus, cela permet de compenser les variations de la tension d'alimentation du dispositif d'antenne(s).
  • La tension est un signal symétrique. Cela permet de supprimer les harmoniques de rang pair dans le signal courant mesuré et d'obtenir ainsi une mesure plus précise du courant.
  • Le rapport cyclique est égal à 1/3. Cela permet de supprimer les harmoniques de rang multiples de trois dans le signal courant mesuré et d'obtenir ainsi une mesure plus précise du courant.
  • La tension est générée au moyen d'un étage de puissance avec commande à pont complet ou à demi-pont. Cela permet d'obtenir une plus grande gamme de courants.
  • Le signal de calibrage est déclenché en fonction d'un événement particulier. Cela permet d'avoir régulièrement un signal de calibrage réactualisé et donc par la suite une mesure régulière et précise du champ magnétique émis par le dispositif d'antenne(s).
  • Selon une première variante, l'événement particulier est un accès véhicule. Cela permet de prendre en compte les variations du champ magnétique émis dues à des événements extérieurs tel que des variations de température.
  • Selon une deuxième variante, l'événement particulier est une variation de tension batterie. Cela permet de prendre en compte ces variations dans le calibrage.
  • Le procédé comporte une étape initiale supplémentaire d'écriture d'une valeur de seuil fixe dans l'objet d'identification. Cela permet d'obtenir un champ fixe de réception à partir duquel l'objet d'identification peut recevoir des signaux du dispositif d'antenne(s) et communiquer avec un dispositif de commande associé.
  • La valeur de seuil fixe est fonction d'un champ magnétique nominal. Cela permet à l'objet d'identification de répondre à un signal émis du dispositif d'antenne(s) lorsque il est dans la zone correspondant au champ magnétique nominal..
  • La zone autour du dispositif d'antenne(s) est définie par le champ magnétique nominal.
  • La zone autour du dispositif d'antenne(s) correspond à un habitacle de véhicule. Ainsi, on détermine si l'objet d'identification se situe dans l'habitacle du véhicule pour autoriser un démarrage du véhicule.
Thus, the calibration signal depends on a current measurement that is simple to implement.
  • A power is set with a given duty cycle voltage. This regulation is simple to implement. In addition, this makes it possible to compensate for variations in the supply voltage of the antenna device (s).
  • The voltage is a symmetrical signal. This makes it possible to suppress the even-numbered harmonics in the measured current signal and thus obtain a more accurate measurement of the current.
  • The duty ratio is 1/3. This makes it possible to suppress the multiple harmonics of three in the measured current signal and thus obtain a more accurate measurement of the current.
  • The voltage is generated by means of a power stage with full-bridge or half-bridge control. This allows for a greater range of currents.
  • The calibration signal is triggered according to a particular event. This makes it possible to regularly have an updated calibration signal and therefore subsequently a regular and accurate measurement of the magnetic field emitted by the antenna device (s).
  • According to a first variant, the particular event is a vehicle access. This makes it possible to take into account the variations in the magnetic field emitted due to external events such as temperature variations.
  • According to a second variant, the particular event is a battery voltage variation. This makes it possible to take into account these variations in the calibration.
  • The method includes an additional initial step of writing a fixed threshold value in the identification object. This makes it possible to obtain a fixed reception field from which the identification object can receive signals from the antenna device (s) and communicate with an associated control device.
  • The fixed threshold value is a function of a nominal magnetic field. This allows the identification object to respond to a signal transmitted from the antenna device (s) when it is in the area corresponding to the nominal magnetic field.
  • The area around the antenna device (s) is defined by the nominal magnetic field.
  • The area around the antenna device (s) corresponds to a vehicle interior. Thus, it is determined whether the identification object is in the passenger compartment of the vehicle to allow a start of the vehicle.

Selon un deuxième objet, l'invention concerne un système de détection d'un objet d'identification dans une zone autour d'un dispositif d'antenne(s), comprenant un dispositif de commande, un dispositif d'antenne(s) et un objet d'identification, caractérisé en ce que :

  • le dispositif de commande est apte à :
    • émettre un signal de calibrage en direction du dispositif d'antenne(s) pour déterminer une puissance de réglage,
    • émettre un signal fonctionnel en direction du dispositif d'antenne(s) correspondant à la puissance de réglage de sorte que le dispositif d'antenne(s) émette un champ magnétique déterminé,
    • déterminer si l'objet d'identification se trouve dans la zone autour du dispositif d'antenne(s) en fonction d'une comparaison effectuée entre le champ magnétique reçu par l'objet d'identification et un champ magnétique nominal,
  • l'objet d'identification est apte à mesurer le champ magnétique reçu correspondant au champ magnétique émis et à le comparer avec le champ magnétique nominal.
According to a second object, the invention relates to a system for detecting an identification object in an area around an antenna device (s), comprising a control device, an antenna device (s) and an identification object, characterized in that:
  • the control device is able to:
    • transmit a calibration signal to the antenna device (s) to determine a setting power,
    • transmitting a functional signal to the antenna device (s) corresponding to the adjustment power so that the antenna device (s) emits a determined magnetic field,
    • determining whether the identification object is in the area around the antenna device (s) based on a comparison made between the magnetic field received by the identification object and a nominal magnetic field,
  • the identification object is able to measure the received magnetic field corresponding to the emitted magnetic field and to compare it with the nominal magnetic field.

Selon un troisième objet, l'invention concerne un dispositif d'antenne(s) apte à coopérer avec un objet d'identification, caractérisé en ce qu'il est apte à :

  • recevoir un signal de calibrage correspondant à une puissance initiale déterminée,
  • recevoir un signal fonctionnel correspondant à une puissance de réglage déterminée de sorte à émettre un champ magnétique déterminé, et
  • transmettre le signal fonctionnel à l'objet d'identification, ce dernier recevant un champ magnétique fonction du champ magnétique émis par le dispositif d'antenne(s).
According to a third object, the invention relates to an antenna device (s) adapted to cooperate with an identification object, characterized in that it is able to:
  • receive a calibration signal corresponding to a determined initial power,
  • receiving a functional signal corresponding to a determined adjustment power so as to emit a determined magnetic field, and
  • transmitting the functional signal to the identification object, the latter receiving a magnetic field depending on the magnetic field emitted by the antenna device (s).

Selon un quatrième objet, l'invention concerne un dispositif de commande apte à coopérer avec un dispositif d'antenne(s) et avec un objet d'identification, caractérisé en ce qu'il comprend un émetteur de signaux pour :

  • émettre un signal de calibrage en direction du dispositif d'antenne(s) pour déterminer une puissance de réglage, et
  • émettre un signal fonctionnel en direction du dispositif d'antenne(s) correspondant à la puissance de réglage déterminée de sorte que le dispositif d'antenne(s) émette un champ magnétique déterminé.
According to a fourth object, the invention relates to a control device adapted to cooperate with an antenna device (s) and with an identification object, characterized in that it comprises a signal transmitter for:
  • transmitting a calibration signal to the antenna device (s) to determine a setting power, and
  • transmitting a functional signal in the direction of the antenna device (s) corresponding to the setting power determined so that the antenna device (s) emits a determined magnetic field.

Selon un mode de réalisation non limitatif, le dispositif de commande comporte en outre un récepteur de signaux pour recevoir une réponse de l'objet d'identification en fonction d'une comparaison effectuée entre un champ magnétique reçu et un champ magnétique nominal.According to a non-limiting embodiment, the control device further comprises a signal receiver for receiving a response from the identification object according to a comparison made between a received magnetic field and a nominal magnetic field.

Selon un mode de réalisation non limitatif, la comparaison est effectuée par l'objet d'identification.According to a non-limiting embodiment, the comparison is performed by the identification object.

Selon un cinquième objet, l'invention concerne un véhicule automobile comprenant un habitacle dans lequel est disposé un dispositif de commande selon l'une quelconque des caractéristiques précédentes, un dispositif d'antenne(s) caractérisé selon l'une quelconque des caractéristiques précédentes, les deux dispositifs étant aptes à coopérer avec un objet d'identification.According to a fifth object, the invention relates to a motor vehicle comprising a passenger compartment in which is arranged a control device according to any one of the preceding characteristics, an antenna device (s) characterized according to any one of the preceding characteristics, the two devices being able to cooperate with an identification object.

D'autres caractéristiques et avantages de la présente invention seront mieux compris à l'aide de la description d'exemples non limitatifs.Other features and advantages of the present invention will be better understood with the aid of the description of non-limiting examples.

Description détaillée de modes de réalisation non limitatifs de l'inventionDetailed description of non-limiting embodiments of the invention

Un véhicule V muni d'un dispositif d'émission-réception DER de signaux permettant de contrôler un dispositif d'antennes A, et le dispositif d'antennes A comprend, dans un exemple non limitatif une pluralité d'antennes, ici des antennes dites extérieures AX et des antennes dites intérieures AI, toutes ces antennes coopérant avec un récepteur-émetteur ID, le tout formant un système de détection décrit plus loin.A vehicle V equipped with a signal transmission-reception device DER for controlling an antenna device A, and the antenna device A comprises, in a nonlimiting example, a plurality of antennas, here antennas called external AX and so-called indoor antennas AI, all these antennas cooperating with a receiver-transmitter ID, all forming a detection system described below.

Dans l'exemple non limitatif, sont présentes cinq antennes extérieures AX dont quatre AX1, AX2, AX3 et AX4 sont situées à l'extérieur de l'habitacle VH du véhicule V, ici sur les poignées des portières, et une AX5 dans le pare-choc arrière VC du véhicule. Par ailleurs deux antennes intérieures AI1, AI2 sont situées dans l'habitacle VH, ici à l'avant et à l'arrière du véhicule. Chaque antenne est alimentée en courant alternatif basse fréquence par le dispositif d'émission-réception DER et émet un champ magnétique Be, nommé BeI pour les antennes intérieures et BeX pour les antennes extérieures.In the nonlimiting example, there are five external antennas AX four AX1, AX2, AX3 and AX4 are located outside the cabin VH vehicle V, here on the door handles, and an AX5 in the bumper rear hitch VC of the vehicle. In addition two indoor antennas AI1, AI2 are located in the passenger compartment VH, here at the front and rear of the vehicle. Each antenna is powered by low-frequency alternating current by the DER transceiver device and emits a Be magnetic field, named BeI for indoor antennas and BeX for external antennas.

Au moyen de leur champ magnétique émis B respectif, les antennes extérieures AX permettent de détecter si le récepteur-émetteur ID se situe à proximité du véhicule V, dans un exemple non limitatif à une distance inférieure à 1,5 mm, tandis que les antennes intérieures AI permettent de détecter si le récepteur-émetteur ID est dans l'habitacle VH du véhicule.By means of their respective emitted magnetic field B, the external antennas AX make it possible to detect whether the receiver-transmitter ID is located near the vehicle V, in a nonlimiting example at a distance of less than 1.5 mm, whereas the antennas AI interiors detect whether the receiver-transmitter ID is in the passenger compartment VH of the vehicle.

Le récepteur-émetteur ID, dans cette application, est dans un exemple non limitatif, un objet d'identification ID porté par un utilisateur du véhicule V, par exemple un badge, une clef, un porte clef appelé en anglais «keyfob» etc. L'exemple du badge d'identification sera pris comme exemple dans la suite de la description.The receiver-transmitter ID, in this application, is in a non-limiting example, an identification object ID carried by a user of the vehicle V, for example a badge, a key, a keyfob called "keyfob" etc. The example of the identification badge will be taken as an example in the following description.

Au moyen du courant alternatif, les antennes A communiquent avec le badge ID par transmission de données en émettant un signal basse fréquence BF et le badge ID répond en émettant un signal radiofréquence RF. Dans un exemple non limitatif, le signal basse fréquence BF se situe aux alentours de 125kHz et le signal radiofréquence RF se situe aux alentours de 433 MHz. On peut redescendre à 20kHz pour le signal basse fréquence BF ou aller jusqu'au GigaHz pour le signal radiofréquence RF en fonction des bandes de fréquences disponibles pour différents pays (315MHz pour l'Asie, 868Mhz pour certains pays d'Europe ou 915Mhz en Amérique etc.).Using the alternating current, the antennas A communicate with the ID badge by transmitting data by emitting a low frequency signal BF and the ID badge responds by emitting an RF radio frequency signal. In a non-limiting example, the low frequency signal BF is around 125 kHz and the radio frequency RF signal is around 433 MHz. We can go down to 20kHz for the low frequency signal BF or go to GigaHz for the RF radio frequency signal according to the frequency bands available for different countries (315MHz for Asia, 868Mhz for some European countries or 915MHz in America etc.).

En fonction de la réponse, les antennes A déterminent si le badge ID est autorisé à ouvrir les portières du véhicule, ou s'il est autorisé à démarrer le véhicule. On notera que dans un exemple non limitatif, pour que le badge ID soit autorisé à ouvrir les portières, l'utilisateur doit par exemple toucher une poignée de porte. A cet effet, les poignées comprennent des détecteurs appropriés.Depending on the response, the antennas A determine whether the badge ID is allowed to open the doors of the vehicle, or whether it is allowed to start the vehicle. Note that in a non-limiting example, for the badge ID is allowed to open the doors, the user must for example touch a doorknob. For this purpose, the handles include appropriate detectors.

Les antennes extérieures AX permettent de déterminer une première zone de communication avec le badge ID pour autoriser un accès véhicule. Cette zone est définie par le champ magnétique émis par lesdites antennes. Les antennes extérieures AX doivent donc garantir au moins une distance minimale à partir de laquelle le badge ID est autorisé à accéder au véhicule.The external antennas AX make it possible to determine a first zone of communication with the badge ID to authorize a vehicle access. This zone is defined by the magnetic field emitted by said antennas. External AX antennas must therefore guarantee at least a minimum distance from which the ID badge is authorized to access the vehicle.

Les antennes intérieures AI permettent de déterminer une deuxième zone ZO de communication avec le badge ID pour autoriser un démarrage. Cette zone est définie par le champ magnétique émis par les antennes intérieures. Les antennes intérieures AI doivent donc garantir une zone fixe à partir de laquelle le badge ID est autorisé à démarrer le véhicule, cette zone étant l'habitacle VH du véhicule V.The internal antennas AI make it possible to determine a second zone ZO for communication with the badge ID to authorize a start. This zone is defined by the magnetic field emitted by the internal antennas. The internal antennas AI must therefore guarantee a fixed zone from which the ID badge is authorized to start the vehicle, this zone being the passenger compartment VH of the vehicle V.

On notera que en pratique, le champ magnétique émis par ces antennes intérieures AI a une couverture plus grande que l'habitacle VH mais est limité par la carcasse métallique de l'habitacle VH du véhicule V et déborde par les ouvertures des fenêtres.Note that in practice, the magnetic field emitted by these indoor antennas AI has a greater coverage than the passenger compartment VH but is limited by the metal carcass of the passenger compartment VH of the vehicle V and overflows through the openings of the windows.

La détection du badge ID dans la deuxième zone ZO est basé sur le fait que le badge est initialisé avec une valeur de seuil fixe S0 fonction d'un champ magnétique reçu B0 appelé champ nominal. De manière non limitative, cette valeur de seuil fixe S0 est une puissance P0 correspondant au champ nominal B0.The detection of the ID badge in the second zone ZO is based on the fact that the badge is initialized with a fixed threshold value S0 according to a magnetic field received B0 called nominal field. Without limitation, this fixed threshold value S0 is a power P0 corresponding to the nominal field B0.

On rappelle qu'un champ magnétique reçu Br par le badge ID est fonction du champ magnétique émis Be du dispositif d'antennes A, ce dernier définissant la zone ZO autour de lui représentatif de son champ magnétique Be que l'on a appelé également zone de communication.It will be recalled that a magnetic field received Br by the badge ID is a function of the emitted magnetic field Be of the antenna device A, the latter defining the zone ZO around it representative of its magnetic field Be, which has also been called a zone Communication.

On peut analyser la position du badge ID par rapport à une antenne A du dispositif d'antennes en fonction du champ magnétique Be de cette antenne A et donc du champ magnétique Br reçu correspondant.It is possible to analyze the position of the badge ID with respect to an antenna A of the antenna device as a function of the magnetic field Be of this antenna A and therefore of the corresponding magnetic field Br received.

On peut voir que plus le badge ID se situe loin d'une antenne A émettant un champ magnétique émis Be, plus le champ magnétique reçu Br correspondant est faible. Lorsque le badge ID se trouve au même endroit que l'antenne A, le champ magnétique reçu Br est théoriquement égal au champ magnétique émis Be.It can be seen that the further the ID badge is located far from an antenna A emitting a magnetic field emitted Be, the lower the magnetic field received Br corresponding is weak. When the ID badge is at the same location as the antenna A, the received magnetic field Br is theoretically equal to the emitted magnetic field Be.

Le champ magnétique nominal B0 correspond donc à zone ZO de communication nominale dans laquelle un badge ID peut communiquer avec une antenne A et le dispositif d'émission-réception DER.The nominal magnetic field B0 therefore corresponds to a nominal communication zone ZO in which an ID badge can communicate with an antenna A and the transmission-reception device DER.

Lorsque le badge ID est en dehors de cette zone ZO (le champ magnétique reçu Br est inférieur au champ magnétique reçu nominal B0), le badge ID ne répond pas aux signaux envoyés par le dispositif d'antennes A ou envoie une réponse radiofréquence RF volontairement erroné. Cela veut dire qu'il se situe à l'extérïeur de l'habitacle VH du véhicule. Dans le cas contraire, il répond en émettant un signal radiofréquence RF. On notera que ce champ magnétique nominal B0 est fixé de manière à éviter les champs magnétiques parasites Bb provenant des perturbations radio comme illustré sur la Figure 2 et sa valeur est supérieure à la valeur des champs magnétiques parasites.When the ID badge is outside this ZO area (the received magnetic field Br is smaller than the nominal received magnetic field B0), the ID badge does not respond to the signals sent by the antenna device A or sends an RF response radio voluntarily wrong. This means that it is located outside the passenger compartment VH of the vehicle. In the opposite case, it responds by emitting an RF radio frequency signal. It should be noted that this nominal magnetic field B0 is set so as to avoid the parasitic magnetic fields Bb originating from the radio disturbances as illustrated in FIG. 2 and its value is greater than the value of the parasitic magnetic fields.

Dans un exemple on positionne le badge ID par rapport à une antenne intérieure AI1.In one example, the ID badge is positioned relative to an internal antenna AI1.

L'antenne AI1 émet un champ magnétique Be à une puissance de 15 Watts. La valeur de seuil fixe S0 est fixée à P0 = 5 Watts. Le badge ID, lorsqu'il est à la position ID1, reçoit un champ magnétique Br1 dont la puissance P1 est de 4,5 Watts et donc inférieure au seuil fixe S0; il se situe donc à l'extérieur de la zone ZO définie par le seuil S0 ne communiquera donc pas avec l'antenne AI1 et le dispositif d'émission-réception DER.The antenna AI1 emits a magnetic field Be at a power of 15 Watts. The fixed threshold value S0 is set at P0 = 5 Watts. The ID badge, when in the ID1 position, receives a magnetic field Br1 whose power P1 is 4.5 Watts and therefore less than the fixed threshold S0; so it's outside of the zone ZO defined by the threshold S0 will therefore not communicate with the antenna AI1 and the transmission-reception device DER.

Le badge ID, lorsqu'il est à la position ID2, reçoit un champ magnétique Br2 dont la puissance P2 est de 5,5 Watts et donc supérieure au seuil fixe S0; il se situe donc dans la zone de communication ZO et communiquera donc avec l'antenne AI1 et le dispositif d'émission-réception DER.The ID badge, when in the ID2 position, receives a magnetic field Br2 whose power P2 is 5.5 Watts and therefore greater than the fixed threshold S0; it is therefore in the ZO communication zone and will therefore communicate with the antenna AI1 and the transmission-reception device DER.

Ainsi, le procédé de détection du badge ID pour savoir s'il se trouve dans la zone de communication ZO d'une antenne, en particulier une antenne intérieure AI s'effectue de la manière suivante.Thus, the method of detecting the badge ID to know if it is in the communication zone ZO of an antenna, in particular an indoor antenna AI is carried out as follows.

Dans une étape initiale 0), lors de la fabrication du badge ID, on écrit la valeur de seuil fixe S0 dans une mémoire du badge ID, par exemple une mémoire réinscriptible type EEPROM. In an initial step 0), during the manufacture of the ID badge, the fixed threshold value S0 is written in a memory of the ID tag, for example a rewritable type EEPROM memory.

Puis, lors de l'utilisation du badge ID et du dispositif d'antennes A, c'est-à-dire en mode de fonctionnement,
Dans une première étape 1), on émet un signal de calibrage S_CAL appelée également trame de calibrage en direction du dispositif d'antennes A à une puissance initiale PI déterminée pour déterminer une puissance de réglage PR pour le dispositif d'antennes A.
Then, when using the ID badge and the antenna device A, that is to say in operating mode,
In a first step 1), a calibration signal S_CAL, also called a calibration frame, is sent in the direction of the antenna device A at an initial power PI determined to determine an adjustment power PR for the antenna device A.

Dans un mode de réalisation non limitatif, le signal de calibrage S_CAL est déclenché en fonction d'un événement particulier.In a non-limiting embodiment, the calibration signal S_CAL is triggered according to a particular event.

Dans un exemple non limitatif, l'événement particulier est un accès véhicule. En effet, un accès de véhicule est représentatif d'un changement de l'environnement du dispositif d'antennes A, qu'une variation de températures (dues par exemple aux différentes saisons), qui influe sur les composants du dispositif d'antennes et entraîne par conséquent une variation de son impédance Z et donc de son champ magnétique émis Be.In a non-limiting example, the particular event is a vehicle access. Indeed, a vehicle access is representative of a change in the environment of the antenna device A, a variation of temperatures (due for example to different seasons), which influences the antenna device components and consequently causes a variation of its impedance Z and thus of its magnetic field emitted Be.

Dans un autre exemple non limitatif, l'événement particulier est une variation de tension d'alimentation, ici la tension batterie Ubat (qui peut varier après un démarrage moteur ou un arrêt moteur par exemple). Cela permet de prendre en compte ces variations dans le calibrage, ces variations influant sur le courant circulant dans le dispositif d'antennes. On compense ainsi ces variations de tensions batterie, puisque l'on mesure dans ce cas le courant Irm après une variation de tension batterie.In another nonlimiting example, the particular event is a variation of supply voltage, here the battery voltage Ubat (which may vary after an engine start or engine stop for example). This makes it possible to take into account these variations in the calibration, these variations affecting the current flowing in the antenna device. These variations of battery voltages are thus compensated, since in this case the current Irm is measured after a battery voltage variation.

Le but de cette étape est donc de prendre en compte les variations de l'impédance Z du dispositif d'antennes A dans la détermination du champ magnétique émis Be par le dispositif d'antennes A et par conséquent dans la détermination d'une puissance de réglage PR à appliquer au dispositif d'antennes A.The purpose of this step is therefore to take into account the variations of the impedance Z of the antenna device A in the determination of the magnetic field emitted by the antenna device A and consequently in the determination of a power of PR setting to be applied to the antenna device A.

On prend ainsi en compte les variations d'impédance Z qui apparaissent au cours de l'utilisation du dispositif d'antenne(s) dans le véhicule, donc lors de son fonctionnement.This takes into account the impedance variations Z that appear during the use of the antenna device (s) in the vehicle, so during its operation.

On notera que le signal de calibrage S_CAL est inintelligible par l'objet d'identification ID. Ainsi, bien que l'objet d'identification ID le reçoive, il ne répond pas à ce signal S_CAL. Cela évite au badge une période d'activation-désactivation supplémentaire pour recevoir ce signal. Ainsi, le badge ID recevra plus rapidement les données comprises dans le signal fonctionnel S_FONC qu'il va recevoir par la suite.It will be noted that the calibration signal S_CAL is unintelligible by the identification object ID. Thus, although the identification object ID receives it, it does not respond to this signal S_CAL. This avoids the badge an additional activation-deactivation period to receive this signal. Thus, the ID badge will receive faster data included in the S_FONC functional signal that it will receive thereafter.

Ainsi, dans une première sous-étape 1a), on détermine une puissance initiale PI, pour envoyer le signal de calibrage S_CAL.Thus, in a first substep 1a), an initial power PI is determined to send the calibration signal S_CAL.

La puissance initiale PI est obtenue au moyen d'une tension de calibrage UC de rapport cyclique initial α1 correspondant à un courant initial théorique Ith. On notera que ce courant initial théorique Ith est déterminé de façon expérimentale par des essais sur véhicules. Sa valeur varie selon le type de véhicule V.The initial power PI is obtained by means of a calibration voltage UC of initial duty cycle α1 corresponding to a theoretical initial current Ith. It will be noted that this theoretical initial current Ith is determined experimentally by vehicle tests. Its value varies according to the type of vehicle V.

Dans un mode de réalisation non limitatif, cette tension est carrée. Cela permet d'éviter une dissipation d'énergie dans l'étage de puissance permettant d'appliquer cette tension décrite plus loin. En effet, il existe une consommation d'énergie calorifique uniquement lors des phases de transitions contrairement à une tension type sinusoïdale où la consommation est nettement plus importante.. Cet étage de puissance ne chauffe donc pas trop.In a non-limiting embodiment, this voltage is square. This avoids energy dissipation in the power stage for applying the voltage described below. Indeed, there is a heat energy consumption only during transitions phases unlike a typical sinusoidal voltage where the consumption is significantly higher .. This power stage does not heat too much.

Dans une deuxième sous-étape 1b), lors de l'envoi du signal de calibrage S_CAL, on mesure le courant réel Irm circulant dans le dispositif d'antennes A. En effet, bien que l'on applique une puissance initiale PI correspondant au courant initial théorique Ith, en raison de l'impédance Zr du dispositif d'antennes A, le courant circulant dans ledit dispositif n'est en pratique pas égal au courant initial théorique Ith. In a second substep 1b) , when sending the calibration signal S_CAL, the actual current Irm flowing in the antenna device A is measured. In fact, although an initial power PI corresponding to theoretical initial current Ith, because of the impedance Zr of the antenna device A, the current flowing in said device is in practice not equal to the theoretical initial current Ith.

La mesure du courant Irm circulant dans le dispositif d'antennes A peut être effectuée de manière simple par un détecteur d'amplitude crête C décrit plus loin. Ce courant Irm est un courant alternatif dont le spectre de fréquence comporte des harmoniques h.The measurement of the current Irm flowing in the antenna device A can be carried out in a simple manner by a peak amplitude detector C described below. This current Irm is an alternating current whose frequency spectrum comprises harmonics h.

Dans un mode de réalisation non limitatif, le dispositif d'antennes A est accordé à la fréquence d'émission (la fréquence étant par exemple de 125kHz). Cela permet d'émettre un champ magnétique plus important en amplitude à la fréquence d'émission, et d'avoir un filtre passe-bande FL. Le filtre passe-bande FL permet ainsi de réduire l'amplitude des harmoniques h (sauf pour l'harmonique de rang 1).In a nonlimiting embodiment, the antenna device A is tuned to the transmission frequency (the frequency being for example 125 kHz). This makes it possible to emit a larger magnetic field in amplitude at the transmission frequency, and to have a bandpass filter FL. The bandpass filter FL thus makes it possible to reduce the amplitude of the harmonics h (except for the harmonic of rank 1).

En effet, à l'émission, du côté du dispositif d'antennes A, la valeur du courant Irm circulant dans le dispositif d'antennes A est égale à la somme des harmoniques h qui sont présentes dans la bande passante du filtre compris dans le dispositif d'antennes A. Selon la sélectivité du filtre, on aura toutes les harmoniques si le filtre est large bande, ou une partie seulement des harmoniques si le filtre est bande étroite. A l'émission donc, la valeur du champ émis Be est fonction de ce courant Irm avec des harmoniques h.Indeed, on transmission, on the side of the antenna device A, the value of the current Irm flowing in the antenna device A is equal to the sum of the harmonics h which are present in the passband of the filter included in the antenna device A. Depending on the selectivity of the filter, we will have all the harmonics if the filter is broad band, or only part of the harmonics if the filter is narrow band. At the emission therefore, the value of the emitted field Be is a function of this current Irm with harmonics h.

A la réception, du côté du badge ID, la valeur du courant Irm qui est prise en compte est égale uniquement à l'harmonique h1 de rang 1 appelé fondamental. En effet, le champ magnétique reçu Br (et par conséquent la valeur de seuil fixe S0) correspond au champ magnétique émis Be à la valeur du fondamental uniquement et non à la somme des harmoniques.At the reception, on the ID badge side, the value of the current Irm which is taken into account is equal only to the harmonic h1 of rank 1 called fundamental. Indeed, the received magnetic field Br (and therefore the fixed threshold value S0) corresponds to the magnetic field emitted Be at the fundamental value only and not at the sum of the harmonics.

Il est donc nécessaire de déterminer précisément la puissance émise sur l'harmonique h1 de rang 1 pour permettre d'émettre un champ magnétique émis Be correspondant précisément au champ nominal B0 et donc au seuil fixe S0 du badge ID. On doit par conséquent effectuer une mesure de courant Irm de manière à éliminer le plus possible les harmoniques autres que le fondamental h1.It is therefore necessary to precisely determine the power emitted on the harmonic h1 of rank 1 to allow to emit a transmitted magnetic field Be corresponding precisely to the nominal field B0 and thus to the fixed threshold S0 of the ID badge. It is therefore necessary to measure the current Irm so as to eliminate as much as possible the harmonics other than the fundamental h1.

Ceci est effectué au moyen de la tension de calibrage UC de rapport cyclique initial α1 qui permet d'obtenir la puissance initiale PI.This is done by means of the initial cycle duty UC calibration voltage α1 which makes it possible to obtain the initial power PI.

Lorsque la tension de calibrage UC est un signal carré quelconque, toutes les harmoniques du courant mesuré Irm peuvent être présentes.When the calibration voltage UC is any square signal, all the harmonics of the measured current Irm may be present.

Dans un premier mode de réalisation non limitatif, la tension de calibrage UC est une tension symétrique. Dans ce cas, les harmoniques de rang pair du courant mesuré Irm ont été supprimées. Comme on peut le voir, la tension UC est symétrique par rapport au point PT. La tension UC symétrique va permettre d'obtenir une génération précise et une mesure précise de la puissance initiale PI correspondante sur l'harmonique h1 de rang 1 en supprimant des courants parasites dus aux autres harmoniques.In a first non-limiting embodiment, the calibration voltage UC is a symmetrical voltage. In this case, the even-order harmonics of the measured current Irm have been suppressed. As can be seen, the voltage UC is symmetrical with respect to the point PT. The symmetrical CPU voltage will make it possible to obtain precise generation and precise measurement of the corresponding initial power PI on the harmonic h1 of rank 1 by suppressing parasitic currents due to other harmonics.

En effet, lors d'une représentation en fréquence, une harmonique de rang n est représentée par le terme ancosnωt + bn sinnωt.Indeed, during a frequency representation, a harmonic of rank n is represented by the term a n cosnωt + b n sinnωt.

La tension UC est une fonction impaire, soit f(-x) = -f(x), son développement en série de Fourier ne comporte donc que des termes en sinus, les coefficients an étant nuls.The voltage UC is an odd function, ie f (-x) = -f (x), its development in Fourier series therefore only includes sine terms, the coefficients a n being zero.

Ainsi, en sachant que Cn = 1 T f x e - jnωx dx et Cn = 1 2 an - jbn

Figure imgb0001
on obtient Cn=j(2E/πn)sin(nπα1).sin(n(π/2))
et bn = 4 E / πn . sin nπα 1 . sin n π / 2
Figure imgb0002

avec ω = 2π/T, avec T la période et E l'amplitude de la tension d'alimentation Ubat du dispositif d'antennes.So, knowing that Cn = 1 T f x e - jnωx dx and Cn = 1 2 year - JBN
Figure imgb0001
we obtain Cn = j (2E / πn) sin (nπα1) .sin (n (π / 2))
and bn = 4 E / πn . sin nπα 1 . sin not π / 2
Figure imgb0002

with ω = 2π / T, with T the period and E the amplitude of the supply voltage Ubat of the antenna device.

La série de Fourier correspondant au signal tension symétrique UC est donc égale à : f x = Σ 4 E / πn . sin nπα 1 . sin n π / 2 . sin nωx , avec n = 1 , ,

Figure imgb0003

soit f x = Σ 4 E / π 2 p + 1 . sin 2 p + 1 πα 1 . sin 2 p + 1 π / 2 . sin 2 p + 1 ωx ,
Figure imgb0004
avec p = 0 , ,
Figure imgb0005

ce qui donne le spectre avec les harmoniques à la Figure 7.The Fourier series corresponding to the symmetrical voltage signal UC is therefore equal to: f x = Σ 4 E / πn . sin nπα 1 . sin not π / 2 . sin nωx , with n = 1 , ... ,
Figure imgb0003

is f x = Σ 4 E / π 2 p + 1 . sin 2 p + 1 πα 1 . sin 2 p + 1 π / 2 . sin 2 p + 1 ωx ,
Figure imgb0004
with p = 0 , ... ,
Figure imgb0005

which gives the spectrum with the harmonics in Figure 7.

La valeur du fondamental h1 est donnée par : h 1 = 4 E / π . sin πα 1. sin ωx

Figure imgb0006
The value of the fundamental h1 is given by: h 1 = 4 E / π . sin πα 1. sin ωx
Figure imgb0006

Par ailleurs, on notera que le fait d'avoir une tension carrée évite une dissipation d'énergie dans les transistors de l'étage de puissance P. En effet, il existe une consommation d'énergie calorifique uniquement lors des phases de transitions contrairement à une tension type sinusoïdale où la consommation est nettement plus importante. Cet étage de puissance P ne chauffe donc pas trop.Moreover, it will be noted that the fact of having a square voltage avoids energy dissipation in the transistors of the power stage P. In fact, there is a heat energy consumption only during the transition phases, unlike a typical sinusoidal voltage where the consumption is significantly higher. This power stage P does not heat too much.

On notera que la valeur du rapport cyclique α1 ajustable permet de régler la valeur de la puissance initiale PI.It will be noted that the value of the adjustable duty cycle α1 makes it possible to adjust the value of the initial power PI.

Ainsi, la tension symétrique carré permet d'une part de régler la puissance initiale émise PI à une valeur voulue correspondant à la zone de communication ZO voulue (et donc de générer de façon précise la puissance émise PI) et d'autre part d'obtenir une mesure précise de la puissance réelle émise PI correspondant à la puissance reçue effective du badge ID car les harmoniques de rang pair sont supprimées.Thus, the symmetrical square voltage makes it possible, on the one hand, to adjust the initial power transmitted PI to a desired value corresponding to the desired communication zone ZO (and thus to accurately generate the transmitted power PI) and on the other hand to obtain an accurate measurement of the actual transmitted power PI corresponding to the effective received power of the ID badge because the harmonics of even rank are suppressed.

Dans un deuxième mode de réalisation non limitatif, la tension de calibrage UC comporte un rapport cyclique de 1/3 qui correspond à un décalage de π/3 du signal tension UC. Comme on peut le voir à la Figure 8, dans ce cas, les harmoniques de rang multiples 3 du courant mesuré Irm ont été supprimées.In a second nonlimiting embodiment, the calibration voltage UC comprises a duty cycle of 1/3 which corresponds to an offset of π / 3 of the voltage signal UC. As can be seen in Figure 8, in this case the multiple rank harmonics 3 of the measured current Irm have been suppressed.

On notera que les deux modes de réalisation peuvent se combiner. Dans ce cas, il ne reste plus que les harmoniques de rang 1 et 5, cette dernière étant négligeable.Note that the two embodiments can be combined. In this case, only the harmonics of rank 1 and 5 remain, the latter being negligible.

Ainsi, on obtient une mesure précise du courant Irm circulant dans le dispositif d'antennes A. Le courant mesuré Irm est donc dans ce cas représentatif de l'amplitude du fondamental du champ magnétique émis.Thus, a precise measurement of the current Irm flowing in the antenna device A is obtained. The measured current Irm is therefore in this case representative of the amplitude of the fundamental of the emitted magnetic field.

Par conséquent, on peut en déduire la puissance initiale émise PI (et donc le champ magnétique émis Be) par le dispositif d'antennes A correspondant précisément à la puissance reçue Pr en sachant que le champ magnétique émis Be est proportionnel au courant mesuré Irm.Therefore, it is possible to deduce the initial power transmitted PI (and thus the emitted magnetic field Be) by the antenna device A corresponding precisely to the received power Pr, knowing that the emitted magnetic field Be is proportional to the measured current Irm.

On rappelle que de manière connue de l'homme du métier, un champ magnétique B comporte trois composantes dans un espace orthogonal x, y, z telles qu'illustrées à la Figure 10 qui sont les suivantes. B μ = Ae Im / 2 π d 3 * cos θ ,

Figure imgb0007
B θ = Ae Im / 4 π d 3 * sin θ ,
Figure imgb0008

et = 0.
Figure imgb0009
avec Ae la surface effective d'une antenne par laquelle s'écoule le champ magnétique B, d la distance qui permet une mesure du champ magnétique B à partir du centre de l'antenne.It will be recalled that, in a manner known to those skilled in the art, a magnetic field B comprises three components in an orthogonal space x, y, z as illustrated in FIG. 10 which are as follows. B μ = Ae Im / 2 π d 3 * cos θ ,
Figure imgb0007
B θ = Ae Im / 4 π d 3 * sin θ ,
Figure imgb0008

and = 0.
Figure imgb0009
with Ae the effective surface of an antenna through which the magnetic field B, d the distance which allows a measurement of the magnetic field B from the center of the antenna.

On rappelle également que Ae = Nw*A*µrod avec Nw le nombre de spires dans l'antenne, A la section transversale de la ferrite des spires, et µrod la perméabilité apparente de la ferrite.It is also recalled that Ae = N w * A * μ rod with N w the number of turns in the antenna, A the cross section of the ferrite of the turns, and μ rod the apparent permeability of the ferrite.

On notera que la tension de calibrage UC peut être obtenue au moyen d'un étage de puissance P à pont en H avec commande à pont complet décrit plus loin.It should be noted that the calibration voltage UC can be obtained by means of an H-bridge power stage P with full bridge control described below.

Dans une troisième sous-étape 1c), le courant mesuré Irm est comparé au courant initial théorique Ith. La différence va permettre de déterminer l'impédance réelle Zr du dispositif d'antennes A et par conséquent de déterminer la puissance de réglage PR à appliquer au dispositif d'antennes A. In a third substep 1c) , the measured current Irm is compared with the theoretical initial current Ith. The difference will make it possible to determine the real impedance Zr of the antenna device A and consequently to determine the adjustment power PR to be applied to the antenna device A.

On rappellera que pour obtenir une zone ZO autour du dispositif d'antennes A correspondant à l'habitacle du véhicule VH, on détermine un champ émis Be correspondant à une puissance PR. Ce champ que l'on veut obtenir dont la valeur est donc connue correspond donc à un courant Iv connu. Pour alimenter le dispositif d'antennes A avec ce courant Iv connu et voulu, il faut régler la puissance PR dudit dispositif d'antennes en prenant en compte son impédance Zr.It will be recalled that to obtain a zone ZO around the antenna device A corresponding to the passenger compartment of the vehicle VH, a transmitted field Be is determined corresponding to a power PR. This field that we want to obtain whose value is known therefore corresponds to a known current Iv. To supply the antenna device A with this known and desired current Iv, it is necessary to adjust the power PR of said antenna device taking into account its impedance Zr.

La puissance de réglage PR est réglée au moyen d'une tension fonctionnelle UF de rapport cyclique de réglage α2.The adjustment power PR is adjusted by means of a functional voltage UF of adjustment duty cycle α2.

Dans une quatrième sous-étape 1d), on détermine donc un rapport cyclique de réglage α2. In a fourth substep 1d) , a duty cycle α2 is thus determined.

Le calcul du rapport cyclique de réglage α2 se déduit de la manière suivante. On a Irm = (Ubat *sin(α1π)) /Zr, d'où Zr = (Ubat *sin(α1π))/Irm
et Iv = (Ubat sin(α2π))/Zr
d'où sin α 2 π = Zr * Iv / Ubat = Ubat * sin α 1 π * Iv / Irm * Ubat

Figure imgb0010
= sin α 1 π * Iv / Irm
Figure imgb0011

d'où α 2 = 1 / π * Arcsin sin α 1 π * Iv / Im
Figure imgb0012
The calculation of the duty ratio α2 is deduced in the following manner. We have Irm = (Ubat * sin (α1π)) / Zr, where Zr = (Ubat * sin (α1π)) / Irm
and Iv = (Ubat sin (α2π)) / Zr
from where sin α 2 π = Zr * iv / Ubat = Ubat * sin α 1 π * iv / MRI * Ubat
Figure imgb0010
= sin α 1 π * iv / MRI
Figure imgb0011

from where α 2 = 1 / π * arcsin sin α 1 π * iv / im
Figure imgb0012

On peut remarquer qu'en pratique, dans le calcul [1] du rapport cyclique de réglage α2, l'impédance réelle Zr du dispositif d'antennes A n'intervient plus.It may be noted that in practice, in the calculation [1] of the duty ratio α2, the actual impedance Zr of the antenna device A no longer intervenes.

Dans un premier mode de réalisation non limitatif, le rapport cyclique de réglage α2 est calculé au moyen d'un microprocesseur du dispositif d'émission-réception DER décrit plus loin.In a first nonlimiting embodiment, the adjustment duty ratio α2 is calculated by means of a microprocessor of the transmission-reception device DER described below.

Dans un deuxième mode de réalisation plus simple et plus rapide, le rapport cyclique de réglage α2 est défini en fonction d'une table de correspondance pré-remplie (non représentée) en utilisant la formule sin (α1π)/sin(α2π) = Irm/Iv [2]. Dans cette table, à chaque différence entre le courant mesuré Irm circulant dans le dispositif d'antennes lors de l'envoi d'un signal de calibrage S_CAL et le courant théorique Ith, on récupère dans la table le rapport cyclique de réglage α2 correspondant à un courant fonctionnel voulu Iv et qui prend en compte les variations de l'impédance Zr du dispositif d'antennes A.In a second simpler and faster embodiment, the duty cycle α2 is defined based on a pre-filled correspondence table (not shown) using the formula sin (α1π) / sin (α2π) = Irm / Iv [2] . In this table, at each difference between the measured current Irm flowing in the antenna device during the sending of a calibration signal S_CAL and the theoretical current Ith, the cyclic adjustment ratio α2 corresponding to a desired functional current Iv which takes into account the variations of the impedance Zr of the antenna device A.

Une telle table se présente de la manière suivante : Irm1 Irm2 Irm3 Etc... Iv1 α211 α212 α213 α21... Iv2 α221 α222 α223 α22... Iv3 α231 α232 α233 α23... Etc... Etc... Etc... Etc... Etc... Such a table is as follows: Irm1 Irm2 Irm3 Etc ... Iv1 α2 11 α2 12 α2 13 α2 1 ... Iv2 α2 21 α2 22 α2 23 α2 2 ... IV3 α2 31 α2 32 α2 33 α2 3 ... Etc ... Etc ... Etc ... Etc ... Etc ...

Avec Iv1, Iv2, Iv3 etc... les différentes valeurs du courant voulu Iv, Irml, Irm2, Irm3 etc... , les différentes valeurs du courant mesuré Irm circulant dans le dispositif d'antennes A et α2111...α221...α231 etc...les différentes valeurs de rapport cyclique de réglage correspondantes.With Iv1, Iv2, Iv3, etc., the different values of the desired current Iv, Irml, Irm2, Irm3, etc., the different values of the measured current Irm flowing in the antenna device A and α21 11 ... α2 21 ... α2 31 etc ... the different corresponding duty cycle values.

L'application de la formule [1] ou encore Le choix du rapport cyclique de réglage α2 dans cette table de correspondance revient à utiliser une courbe CZ représentative de l'impédance réelle Zr pour déterminer le rapport cyclique de réglage α2 à appliquer au dispositif d'antennes A, comme illustré sur le diagramme de la Figure 11 dans un exemple non limitatif.The application of the formula [1] or again The choice of the adjustment duty cycle α2 in this correspondence table is equivalent to using a curve CZ representative of the actual impedance Zr to determine the duty cycle α2 to be applied to the device. antennas A, as illustrated in the diagram of Figure 11 in a non-limiting example.

En abscisse, est représenté le rapport cyclique α et en ordonnée le courant I. Comme on peut le voir, pour un courant initial théorique Ith, on applique une tension de rapport cyclique initial α1. La correspondance entre ce rapport cyclique initial α1 et le courant initial théorique Ith se situe sur une courbe CZth représentative de l'impédance théorique Zth du dispositif d'antennes A. On mesure le courant réel Irm circulant dans le dispositif à ce rapport cyclique initial α1. La correspondance entre ce rapport cyclique α1 et le courant réel mesuré Irm se situe sur une courbe représentative de l'impédance réelle Zr du dispositif d'antennes A. Deux courbes maximum CZrmax et minimum CZrmin de cette impédance réelle Zr sont représentées. Dans l'exemple, on a pris la courbe CZmax correspondant au maximum de l'impédance réelle Zrmax. Enfin, on détermine pour un courant voulu Iv le rapport cyclique de réglage correspondant α2 en prenant la courbe de l'impédance réelle Zr, soit ici CZrmax et en faisant une projection sur l'axe des abscisses.The abscissa is represented by the cyclic ratio α and the ordinate by the current I. As can be seen, for a theoretical initial current Ith, an initial duty cycle voltage α1 is applied. The correspondence between this initial cyclic ratio α1 and the theoretical initial current Ith lies on a curve CZth representative of the theoretical impedance Zth of the antenna device A. The actual current Irm circulating in the device is measured at this initial duty cycle α1 . The correspondence between this cyclic ratio α1 and the actual measured current Irm is on a curve representative of the real impedance Zr of the antenna device A. Two maximum curves CZrmax and minimum CZrmin of this real impedance Zr are represented. In the example, we took the curve CZmax corresponding to the maximum of the real impedance Zrmax. Finally, for the desired current Iv, the corresponding adjustment cyclic ratio α2 is determined by taking the curve of the real impedance Zr, here CZrmax and making a projection on the abscissa axis.

On a donc trouvé le rapport cyclique de réglage α2 de manière à appliquer la tension fonctionnelle UF voulue pour obtenir une puissance voulue PR dans le dispositif d'antennes A.Thus the duty cycle α2 was found to apply the desired functional voltage UF to obtain a desired power PR in the antenna device A.

On notera que la tension fonctionnelle UF peut être obtenue au moyen d'un étage de puissance P à pont en H avec commande à pont complet et à demi-pont décrit plus loin.It will be noted that the functional voltage UF can be obtained by means of an H-bridge power stage P with full-bridge and half-bridge control described below.

Cette première étape 1) de calibration correspond donc à une auto-calibration du système de détection SYS pour déterminer la puissance de réglage PR. En effet, aucun appareil de mesure extérieur n'est nécessaire à cette calibration. De plus, cette auto-calibration est dynamique car elle est lancée pendant le fonctionnement du dispositif d'antenne(s), et non pas lors de sa mise au point du dispositif d'antenne(s) en usine par exemple.This first calibration step 1) therefore corresponds to a self-calibration of the SYS detection system to determine the adjustment power PR. Indeed, no external measuring device is necessary for this calibration. Moreover, this auto-calibration is dynamic because it is launched during the operation of the antenna device (s), and not during its development of the antenna device (s) in the factory for example.

Dans une deuxième étape 2), après avoir envoyé le signal de calibrage S_CAL, on émet donc un signal fonctionnel S_FONC appelée également trame fonctionnelle en direction du dispositif d'antennes A, comme illustré à la Figure 5, à la puissance de réglage PR déterminée ci-dessus de sorte que le dispositif d'antennes A émette un champ magnétique Be déterminé correspondant à la zone ZO voulue et plus particulièrement à l'habitacle véhicule VH dans l'exemple pris de l'application véhicule. In a second step 2), after sending the calibration signal S_CAL, a functional signal S_FONC, also called a functional frame, is thus sent in the direction of the antenna device A, as shown in FIG. above so that the antenna device A emits a determined magnetic field Be corresponding to the desired area ZO and more particularly to the passenger vehicle VH in the example taken from the vehicle application.

Dans une troisième étape 3), on mesure le champ magnétique reçu Br par l'objet d'identification ID correspondant au champ magnétique émis Be du dispositif d'antennes A. Cette mesure est effectuée au moyen d'un dispositif de mesure type RSSI d'un amplificateur («Received Signal Strength Indication») bien connu de l'homme du métier compris dans l'objet d'identification ID. In a third step 3), the received magnetic field Br is measured by the identification object ID corresponding to the transmitted magnetic field Be of the antenna device A. This measurement is carried out by means of a measurement device of the type RSSI d an amplifier ("Received Signal Strength Indication") well known to those skilled in the art included in the identification object ID.

Dans une quatrième étape 4), on compare le champ magnétique reçu Br avec le champ magnétique nominal B0. Cette comparaison est effectuée dans l'objet d'identification ID. In a fourth step 4), the magnetic field received Br is compared with the nominal magnetic field B0. This comparison is performed in the identification object ID.

Dans une cinquième étape 5), on détermine si le badge ID se trouve dans la zone ZO autour du dispositif d'antennes A en fonction de cette comparaison. In a fifth step 5), it is determined whether the ID badge is in the zone ZO around the antenna device A according to this comparison.

Ainsi, le badge ID se trouve dans la zone ZO autour du dispositif d'antennes A, et donc à l'intérieur de l'habitacle VH véhicule, si le champ magnétique reçu Br est supérieur au champ magnétique nominal B0. Le badge ID renvoie donc une réponse affirmative REPOK à un dispositif de commande DC du dispositif d'émission-réception DER. Ce dernier autorise donc un démarrage véhicule par exemple.Thus, the ID badge is in the zone ZO around the antenna device A, and therefore inside the passenger compartment VH vehicle, if the magnetic field received Br is greater than the nominal magnetic field B0. The badge ID therefore returns an affirmative response REPOK to a DC control device of the transmission-reception device DER. The latter therefore allows a vehicle start for example.

Par contre, le badge ID se trouve à l'extérieur de la zone ZO, et donc en dehors de l'habitacle VH véhicule, si le champ magnétique reçu Br est inférieur au champ magnétique nominal B0. Dans ce cas, soit le badge ID ne renvoie aucune réponse, il fait comme s'il n'avait pas reçu le signal fonctionnel S_FONC du dispositif d'antennes A, soit il renvoie une réponse REPNOK négative au dispositif de commande DC, comme illustré à la Figure 5. Ce dernier interdit donc tout démarrage véhicule par exemple.On the other hand, the badge ID is located outside the zone ZO, and therefore outside the cockpit VH vehicle, if the magnetic field received Br is less than nominal magnetic field B0. In this case, either the ID badge returns no response, it acts as if it has not received the S_FONC functional signal of the antenna device A, or it sends a negative REPNOK response to the DC control device, as illustrated. in Figure 5. The latter therefore prohibits any vehicle start for example.

Dans une autre variante, qu'il soit à l'intérieur ou à l'extérieur de la zone ZO, le badge ID envoie systématiquement une réponse REP comprenant le résultat de la comparaison.In another variant, whether inside or outside the zone ZO, the badge ID systematically sends a response REP including the result of the comparison.

Le procédé qui a été décrit est mis en oeuvre par un système de détection SYS détaillé dans un mode de réalisation non limitatif et comprenant

  • un dispositif d'émission-réception DER comprenant :
    • un dispositif de commande DC,
    • un étage de puissance P,
    • un dispositif de mesure de courant C,
    • un récepteur RE de signaux pour notamment recevoir une réponse REPOK, REPNOK du badge d'identification ID en fonction de la comparaison effectuée entre le champ magnétique reçu Br et le champ magnétique nominal B0.
  • le dispositif d'antennes A, et
  • un récepteur-émetteur, ici, le badge d'identification ID.
The method which has been described is implemented by a detailed SYS detection system in a non-limiting embodiment and comprising
  • a DER transceiver device comprising:
    • a DC control device,
    • a power stage P,
    • a current measuring device C,
    • a signal receiver RE, in particular for receiving a REPOK, REPNOK response of the identification badge ID as a function of the comparison made between the received magnetic field Br and the nominal magnetic field B0.
  • the antenna device A, and
  • a receiver-transmitter, here, the identification badge ID.

On notera que selon un mode de réalisation non limitatif, tous les éléments du dispositif d'émission-réception DER se trouvent sur une même carte électronique. Cela permet un dialogue plus rapide et plus fiable entre ces différents éléments. Au contraire, lorsque ces éléments sont séparés, les liaisons de communication les reliant peuvent être plus facilement perturbés et les débits de ces liaisons peuvent être plus faibles.Note that according to a non-limiting embodiment, all the elements of the transceiver device DER are on the same electronic card. This allows a faster and more reliable dialogue between these different elements. On the contrary, when these elements are separated, the communication links connecting them can be more easily disturbed and the flow rates of these links can be lower.

Le badge d'identification ID étant connu de l'homme du métier, il n'est pas décrit ici.The identification badge ID is known to those skilled in the art, it is not described here.

Les autres éléments sont décrits plus en détail ci-après.The other elements are described in more detail below.

• Le dispositif d'antennes A.• The antenna device A.

Dans un premier mode de réalisation non limitatif, le dispositif d'antennes A est composé d'un circuit RL. Ce dernier nécessite d'amplifier la tension d'alimentation du dispositif d'antennes pour permettre une émission de champ magnétique approprié.In a first nonlimiting embodiment, the antenna device A is composed of a circuit RL. The latter requires amplifying the supply voltage of the antenna device to allow appropriate magnetic field emission.

Dans un deuxième mode de réalisation non limitatif, le dispositif d'antennes A est composé d'un circuit RLC. Ce dernier permet à partir de la tension d'alimentation du dispositif d'antennes A, qui est ici la tension batterie Ubat du véhicule V, d'amplifier directement le courant I circulant dans le dispositif d'antennes A pour permettre une émission de champ magnétique approprié, sans utiliser d'asservissement en tension contrairement au premier mode de réalisation. C'est donc une solution plus simple à mettre en oeuvre pour obtenir une amplification. Ce circuit RLC fait également office de filtre passe-bande comme vu précédemment.In a second nonlimiting embodiment, the antenna device A is composed of an RLC circuit. The latter makes it possible from the supply voltage of the antenna device A, which is here the battery voltage Ubat of the vehicle V, to directly amplify the current I flowing in the antenna device A to enable a field emission. magnetic field, without using voltage control unlike the first embodiment. It is therefore a simpler solution to implement to obtain amplification. This RLC circuit also acts as a bandpass filter as seen previously.

• Le dispositif de commande DC comporte quant à lui :• The DC control device includes:

  • un émetteur EM de signaux pour notamment :
    • émettre les signaux de calibrage S_CAL en direction du dispositif d'antennes A,
    • émettre les signaux fonctionnels S_FONC en direction du dispositif d'antennes A,
    • émettre des signaux de commande en direction de l'étage de puissance P pour fournir la tension d'alimentation Ubat au dispositif d'antennes A,
    an emitter EM of signals for including:
    • transmit the calibration signals S_CAL towards the antenna device A,
    • transmit the functional signals S_FONC towards the antenna device A,
    • transmit control signals to the power stage P to supply the supply voltage Ubat to the antenna device A,
  • un comparateur CMP de courant Inn, Ith, eta CMP comparator of current Inn, Ith, and
  • un organe de calcul CALC (par exemple un microprocesseur ou un ASIC) permettant notamment d'adapter les rapports cycliques α1 et α2 des tensions de calibrage UC et fonctionnelle UF.a calculation member CALC (for example a microprocessor or an ASIC) making it possible in particular to adapt the cyclic ratios α1 and α2 of the UC and functional calibration voltages UF.

Dans un mode de réalisation non limitatif, le dispositif de commande DC peut en outre comporter :

  • le récepteur RE de signaux pour notamment recevoir une réponse REPOK, REPNOK du badge d'identification ID en fonction de la comparaison effectuée entre le champ magnétique reçu Br et le champ magnétique nominal B0.
In a non-limiting embodiment, the control device DC may further comprise:
  • the signal receiver RE, in particular for receiving a response REPOK, REPNOK of the identification badge ID as a function of the comparison made between the received magnetic field Br and the nominal magnetic field B0.

• L'étage de puissance P.• The P power stage.

Il fournit la tension de calibrage UC permettant de régler la puissance initiale PI et la tension fonctionnelle UF permettant de régler la puissance de réglage PR du dispositif d'antennes A.It provides the calibration voltage UC for adjusting the initial power PI and the functional voltage UF for adjusting the setting power PR of the antenna device A.

Dans un mode de réalisation non limitatif, l'étage de puissance P est à pont en H avec commande à pont complet ou à demi-pont. Il est illustré à la Figure 13. Il comporte en particulier quatre interrupteurs S1 à S4. Ces interrupteurs sont dans un exemple non limitatif des transistors type MOSFET.In a non-limiting embodiment, the power stage P is H-bridge with full-bridge or half-bridge control. It is illustrated in Figure 13. It comprises in particular four switches S1 to S4. These switches are in a non-limiting example of the MOSFET transistors.

Afin de fournir une tension, l'étage de puissance P fonctionne en pont complet de la manière suivante. L'exemple est pris pour une tension symétrique

  • Entre les intervalles t0-t1 et t2-t3, soit tous les interrupteurs sont ouverts, soit les interrupteurs S2 et S4 sont fermés, soit les interrupteurs S1 et S3 sont fermés, les autres étant ouverts. La tension UC est nulle.
  • Entre l'intervalle t1-t2, les interrupteurs S1-S4 sont fermés, les autres étant ouverts. La tension UC est positive.
  • Entre l'intervalle t3-t4, les interrupteurs S2-S3 sont fermés, les autres étant ouverts. La tension UC est négative.
In order to provide a voltage, the power stage P operates as a full bridge in the following manner. The example is taken for symmetrical voltage
  • Between the intervals t0-t1 and t2-t3, either all the switches are open, the switches S2 and S4 are closed, or the switches S1 and S3 are closed, the others being open. The UC voltage is zero.
  • Between the interval t1-t2, the switches S1-S4 are closed, the others being open. The UC voltage is positive.
  • Between the interval t3-t4, the switches S2-S3 are closed, the others being open. The UC voltage is negative.

Les deux diagonales du pont sont commandées par deux signaux de commande retardés l'un par rapport à l'autre d'une demi-période permettant ainsi d'obtenir la symétrie.The two diagonals of the bridge are controlled by two control signals delayed relative to each other by half a period thus making it possible to obtain symmetry.

Lorsque l'étage de puissance P fonctionne en pont complet, la tension obtenue permet d'obtenir une première gamme de courants G1 = [I11-I12].When the power stage P operates in full bridge, the obtained voltage makes it possible to obtain a first range of currents G1 = [I11-I12].

L'étage de puissance P fonctionne de la manière suivante en demi-pont. On notera que l'interrupteur S4 est toujours fermé.

  • Entre les intervalles t0-t1 et t2-t3, soit les trois autres interrupteurs S1-S2-S3 sont ouverts, soit l'interrupteur S2 est fermé, les deux autres S1-S3 étant ouverts. La tension UC/UF est nulle.
  • Entre l'intervalle t1-t2, l'interrupteur S1 est fermé, les deux autres S2-S3 étant ouverts. La tension UC/UF est positive. Ou l'interrupteur S2 est fermé, les deux autres S1-S3 étant ouverts. La tension UC/UF est négative.
The power stage P operates in the following half-bridge manner. It will be noted that the switch S4 is always closed.
  • Between the intervals t0-t1 and t2-t3, the other three switches S1-S2-S3 are open, or the switch S2 is closed, the other two S1-S3 being open. UC / UF voltage is zero.
  • Between the interval t1-t2, the switch S1 is closed, the other two S2-S3 being open. The UC / UF voltage is positive. Or the switch S2 is closed, the other two S1-S3 being open. UC / UF voltage is negative.

Lorsque l'étage de puissance P fonctionne en demi-pont, la tension obtenue permet d'obtenir une deuxième gamme de courants G2 = [I21 - I22] plus petite que la première gamme et notamment deux fois plus petite.When the power stage P operates half bridge, the obtained voltage provides a second range of currents G2 = [I21 - I22] smaller than the first range and in particular twice as small.

Ainsi, l'étage de puissance P est utilisé pour obtenir la puissance initiale PI via la tension de calibrage UC mais également la puissance de réglage PR via la tension fonctionnelle UF.Thus, the power stage P is used to obtain the initial power PI via the calibration voltage UC but also the adjustment power PR via the functional voltage UF.

Ainsi, selon le courant voulu Iv que l'on veut obtenir, on utilise l'étage de puissance P en pont complet (grande gamme de courants G1) ou à demi-pont (petite gamme de courants G2).Thus, according to the desired current Iv that is to be obtained, the power stage P is used as full bridge (large range of currents G1) or half-bridge (small range of currents G2).

Cela permet d'obtenir un champ magnétique Be via le dispositif d'antennes A régulé selon le type de véhicule voulu. En effet, par exemple pour les véhicules type familial, on utilisera un pont complet pour fournir un champ magnétique émis Be correspondant à une zone ZO délimitant l'habitacle VH de ce véhicule familial, tandis que pour des véhicules type coupé dont l'habitacle est plus petit, on utilisera un demi-pont pour fournir un champ magnétique émis Be correspondant à cet habitacle différent et plus petit. Ainsi, grâce à ce fonctionnement en pont complet ou demi-pont, on a une couverture de champ adapté selon le type de véhicule sans changer de circuit RLC dans le dispositif d'antennes A et donc sans avoir besoin d'adapter la résistance R de ce circuit. Le dispositif de commande DC sera juste programmé selon le type de véhicule V pour faire fonctionner l'étage de puissance P de manière adéquate.This makes it possible to obtain a magnetic field Be via the antenna device A regulated according to the desired type of vehicle. In fact, for example for family-type vehicles, a complete bridge will be used to provide a magnetic field emitted Be corresponding to a zone ZO delimiting the passenger compartment VH of this family vehicle, whereas for cut-off vehicles of which the cockpit is smaller, we will use a half bridge to provide a magnetic field emitted Be corresponding to this different and smaller cabin. Thus, thanks to this full-bridge or half-bridge operation, there is a field coverage adapted according to the type of vehicle without changing the RLC circuit in the antenna device A and therefore without having to adapt the resistance R of this circuit. The control device DC will be just programmed according to the vehicle type V to operate the power stage P adequately.

Par ailleurs, on notera que pour un même véhicule on peut également avoir besoin d'une large gamme de courants, par exemple dans le cas où il existe une grande variation de la tension batterie Ubat du véhicule. En effet, la puissance de réglage PR nécessaire pour envoyer les signaux fonctionnels S_FONC est fonction de cette tension batterie et de l'impédance du dispositif d'antennes Zr. Afin de compenser les variations de la tension batterie Ubat, on règle le rapport cyclique de réglage α2 de façon adéquate. Par exemple, pour une forte tension batterie, on fait fonctionner l'étage de puissance P en demi-pont, tandis que pour une faible tension batterie, on le fait fonctionner à pont complet. Afin d'obtenir une plage continue entre les deux gammes de courants G1 et G2, dans un mode de réalisation non limitatif, le rapport cyclique de réglage α2, est compris dans l'intervalle [1/6 - 1/2]. Ceci est illustré à la Figure 15 représentant un diagramme rapport cyclique - courant. En abscisse est représenté le rapport cyclique α, en ordonnée le courant I. En ordonnée, on peut voir les limites respectives I11, I12 et I21, I22 des deux gammes G1 et G2. Lorsque le rapport cyclique α2 varie dans l'intervalle [1/6 - 1/2], on peut voir que lorsque l'on fonctionne à demi-pont 1/2H, on se trouve sur la courbe CG2 de la deuxième gamme de courant G2. Par contre lorsque l'on fonctionne à pont complet H, on se trouve sur la courbe CG1 de la première gamme G1. Enfin, on peut voir que lorsque l'on passe du fonctionnement demi-pont à pont complet, on passe de la gamme G2 à G1 de façon continue, c'est-à-dire sans saut dans les valeurs de courant I.Moreover, it will be noted that for the same vehicle it may also be necessary to have a wide range of currents, for example in the case where there is a large variation of the battery voltage Ubat of the vehicle. Indeed, the adjustment power PR necessary to send the S_FONC functional signals is a function of this battery voltage and the impedance of the antenna device Zr. In order to compensate for the variations of the battery voltage Ubat, the adjustment duty cycle α2 is adjusted appropriately. For example, for a high battery voltage, the power stage P is operated half-bridge, while for a low battery voltage, it is operated full bridge. In order to obtain a continuous range between the two current ranges G1 and G2, in a non-limiting embodiment, the duty ratio α2 is in the range [1/6 - 1/2]. This is illustrated in Figure 15 showing a duty cycle-current diagram. On the abscissa is represented the cyclic ratio α, ordinate the current I. On the ordinate, we can see the respective limits I11, I12 and I21, I22 of the two ranges G1 and G2. When the cyclic ratio α2 varies in the interval [1/6 - 1/2], we can see that when one operates half-bridge 1 / 2H, one is on the curve CG2 of the second range of current G2. On the other hand, when operating with a full bridge H, it is on the curve CG1 of the first range G1. Finally, it can be seen that when switching from half-bridge to full-bridge operation, the range G2 to G1 is changed continuously, ie without jumping in current values I.

Dans un autre mode de réalisation, si le rapport cyclique α2 varie dans l'intervalle [1/6 - α max'] avec α max' inférieur à 1/2, on peut voir qu'il y a un saut dans les valeurs de courant lorsque l'on passe du demi-pont au pont complet. Dans ce cas, certaines valeurs de courant ne peuvent donc pas être prises en compte pour déterminer la puissance du dispositif d'antennes A. Ce sont celles comprises dans l'intervalle I22' et I22 hachuré. Dans ce dernier mode, afin d'assurer la continuité, il faut prendre la limite inférieure αmin de l'intervalle inférieur à 1/6.In another embodiment, if the duty cycle α2 varies in the interval [1/6 - α max '] with α max less than 1/2, it can be seen that there is a jump in the values of current when passing from the half bridge to the full bridge. In this case, some current values can not be taken into account to determine the power of the antenna device A. These are those in the interval I22 'and I22 hatched. In the latter mode, to ensure continuity, take the lower limit αmin of the interval less than 1/6.

• Le dispositif de mesure de courant C.• The current measuring device C.

Dans un premier mode de réalisation, le dispositif de mesure de courant est un détecteur d'amplitude crête. C'est un moyen simple pour mesurer le courant. Il permet de mesurer l'amplitude maximale du courant, ce qui suffit car les harmoniques gênantes ont été supprimées par la commande symétrique et le rapport cyclique de 1/3. Ainsi, cette mesure va donner la valeur du fondamental de ce courant. Il est composé de manière classique d'une diode et d'une capacité.In a first embodiment, the current measuring device is a peak amplitude detector. This is a simple way to measure the current. It makes it possible to measure the maximum amplitude of the current, which is sufficient because the disturbing harmonics have been suppressed by the symmetrical control and the duty cycle of 1/3. Thus, this measure will give the value of the fundamental of this current. It is conventionally composed of a diode and a capacitance.

Il envoie la valeur du courant mesuré Im à l'organe de calcul CALC tel.It sends the value of the measured current Im to the calculator CALC tel.

Bien entendu d'autres moyens de mesure du courant peuvent être utilisés.Of course, other means for measuring the current can be used.

Par exemple, le dispositif de mesure de courant C peut être un dispositif d'échantillonnage numérique ou encore un dispositif qui effectue un redressement de courant puis une moyenne du courant redressé.For example, the current measuring device C may be a digital sampling device or else a device which performs a rectification of current and then an average of the rectified current.

On notera que le dispositif d'antennes A comporte une ou plusieurs antennes. Dans l'exemple non limitatif décrit, il comporte une pluralité d'antennes comme vu précédemment. Dans ce cas pratique, pour chaque antenne du dispositif d'antennes A, on règle le courant dans l'antenne pour obtenir un champ magnétique nominal B0 associé et correspondant à la zone ZO de communication entre le badge ID et l'antenne. Ainsi, le badge ID comporte une pluralité de valeur de seuil fixe S0, associée à chaque antenne du dispositif d'antennes A.It will be noted that the antenna device A comprises one or more antennas. In the nonlimiting example described, it comprises a plurality of antennas as seen above. In this practical case, for each antenna of the antenna device A, the current is regulated in the antenna to obtain a corresponding nominal magnetic field B0 corresponding to the zone ZO for communication between the badge ID and the antenna. Thus, the ID badge comprises a plurality of fixed threshold value S0 associated with each antenna of the antenna device A.

On notera que l'exemple pris a été décrit avec une antenne intérieure. On pourra bien entendu appliquer le procédé à une antenne extérieure si nécessaire.Note that the example taken has been described with an indoor antenna. It will of course be possible to apply the method to an external antenna if necessary.

De plus, on notera que les exemples ont été pris avec un dispositif d'antennes A émettant des signaux basse fréquence et un objet d'identification ID émettant des signaux radiofréquence, mais bien entendu d'autres exemples peuvent être pris avec des émissions de signaux à d'autres fréquences.Moreover, it should be noted that the examples were taken with an antenna device A transmitting low frequency signals and an identification object ID transmitting radio frequency signals, but of course other examples can be taken with signal transmissions. at other frequencies.

Ainsi, l'invention présente les avantages suivants :

  • Elle permet de maîtriser la valeur du champ magnétique émis par le dispositif d'antennes A en régulant la puissance à l'émission ce qui permet d'obtenir un seuil fixe pour l'objet d'identification et est plus simple à gérer qu'un seuil variable pour ledit objet;
  • En programmant l'objet d'identification ID avec un seuil fixe déterminé, cela permet d'éviter les perturbations radio et donc les champs magnétiques parasites;
  • Par ailleurs, ce seuil est fixe pour tous les véhicules ce qui permet d'avoir un objet d'identification ID universel fonctionnant avec tous les véhicules, la zone de communication ZO étant adaptée seulement par la puissance d'émission Pe et donc par le courant I circulant dans le dispositif d'antennes A;
  • La puissance est régulée au moyen d'une régulation de rapport cyclique qui est moins coûteuse qu'une régulation en tension avec rapport cyclique fixe;
  • La régulation de rapport cyclique se fait en fonction du courant qui est plus efficace et précis qu'un réglage en fonction de la tension batterie car les variations de l'impédance Zr du dispositif d'antennes A sont compensées contrairement à une solution qui effectuerait une régulation de la tension d'alimentation Ubat;
  • La commande en pont en H symétrique permet de ne pas émettre les harmoniques paires et par conséquent de réduire les problèmes de compatibilité électromagnétiques appelées CEM;
  • La commande de calibration symétrique avec un rapport cyclique de 1/3 permet de réaliser une mesure précise du courant avec un moyen simple de mesure tel que le détecteur amplitude crête;
  • La commande avec une tension carrée permet d'éviter aux transistors de l'étage de puissance de trop chauffer;
  • Elle permet d'obtenir une large gamme de courants si nécessaire, pour un même véhicule ou pour des véhicules différents, sans avoir besoin d'adapter le circuit du dispositif d'antennes A;
  • L'étape de calibration, qui permet de déterminer une puissance de réglage afin de déterminer la valeur du champ magnétique émis par le dispositif d'antenne(s), est dynamique car elle se fait pendant le fonctionnement du dispositif d'antenne(s);
  • L'étape de calibration dynamique ne nécessite aucun appareil de mesure supplémentaire externe, contrairement à des étapes de calibration statiques qui se font en amont, c'est-à-dire pendant le montage d'un dispositif d'antenne(s) (c'est-à-dire lors de sa mise au point) dans un véhicule (donc avant même la mise en production et en vente du véhicule);
  • Elle permet de maîtriser la valeur du champ magnétique émis par le dispositif d'antennes lors de son utilisation dans un véhicule en prenant en compte les variations de l'impédance du dispositif d'antenne(s) de manière à obtenir un seuil fixe pour l'objet d'identification; ces variations d'impédance apparaissant au cours de l'utilisation du dispositif d'antenne(s);
  • Le système de détection comprenant le dispositif d'antenne(s) et l'objet d'identification permet d'effectuer une auto-calibration de dispositif d'antenne(s) sans appareil de mesure extérieur.
Thus, the invention has the following advantages:
  • It makes it possible to control the value of the magnetic field emitted by the antenna device A by regulating the power at emission, which makes it possible to obtain a fixed threshold for the identification object and is simpler to manage than variable threshold for said object;
  • By programming the identification object ID with a determined fixed threshold, this makes it possible to avoid radio disturbances and therefore parasitic magnetic fields;
  • Moreover, this threshold is fixed for all the vehicles, which makes it possible to have a universal identification object ID that works with all the vehicles, the communication area ZO being adapted only by the transmission power Pe and therefore by the current I flowing in the antenna device A;
  • The power is regulated by means of a duty cycle control which is less expensive than a voltage regulation with a fixed duty cycle;
  • The duty cycle regulation is done according to the current which is more efficient and accurate than an adjustment according to the battery voltage because the variations of the impedance Zr of the antenna device A are compensated contrary to a solution which would perform a regulating the supply voltage Ubat;
  • The symmetrical H-bridge control makes it possible not to emit the even harmonics and therefore to reduce electromagnetic compatibility problems called EMC;
  • The symmetrical calibration command with a duty cycle of 1/3 allows precise measurement of the current with a simple measuring device such as the peak amplitude detector;
  • The control with a square voltage prevents the transistors of the power stage from overheating;
  • It makes it possible to obtain a wide range of currents if necessary, for the same vehicle or for different vehicles, without having to adapt the circuit of the antenna device A;
  • The calibration step, which makes it possible to determine an adjustment power in order to determine the value of the magnetic field emitted by the antenna device (s), is dynamic because it is done during the operation of the antenna device (s) ;
  • The dynamic calibration step does not require any additional external measuring device, unlike static calibration steps which are done upstream, ie during the mounting of an antenna device (s) (c). 'ie during its development) in a vehicle (thus even before the production and sale of the vehicle);
  • It makes it possible to control the value of the magnetic field emitted by the antenna device when it is used in a vehicle by taking into account the variations of the impedance of the antenna device (s) so as to obtain a fixed threshold for the antenna. object of identification; these impedance variations occurring during the use of the antenna device (s);
  • The detection system comprising the antenna device (s) and the identification object makes it possible to perform a self-calibration of antenna device (s) without an external measuring device.

Bien entendu, l'invention n'est pas limitée à l'application décrite du véhicule automobile, mais peut être utilisée dans toutes applications faisant intervenir une antenne basse fréquence et un objet d'identification telle qu'une application domotique par exemple.Of course, the invention is not limited to the described application of the motor vehicle, but can be used in all applications involving a low frequency antenna and an identification object such as a home automation application for example.

Claims (19)

  1. Method for detecting an identification object (ID) in a zone (ZO) around an antenna device (A) having one or more antennas, the method comprising, when the identification object (ID) is put into operation, a step of writing to the identification object a fixed threshold power value P0, corresponding to a nominal magnetic field B0, starting from which the identification object can receive signals from the antenna device and communicate with an associated control device, and comprising, in the operating mode of the identification object (ID) and of the antenna device, the steps of:
    - transmitting a calibration signal (S_CAL), corresponding to a theoretical initial current (Ith), towards the antenna device (A) to determine a setting power (PR),
    - measuring the current flowing in the antenna device during the transmission of the calibration signal (S_CAL),
    - comparing the measured current (Irm) with the theoretical initial current (Ith),
    - determining the setting power (PR) to be applied to the antenna device (A),
    - setting the setting power (PR) with an operating voltage (UF) having a given duty factor,
    - transmitting an operating signal (S_FONC) towards the antenna device (A) corresponding to the setting power (PR) in such a way that the antenna device transmits a specified magnetic field (Be),
    - measuring the magnetic field (Br) received by the identification object (ID) corresponding to the transmitted magnetic field and comparing it with the nominal magnetic field (B0),
    - determining whether or not the identification object (ID) is located in the zone around the antenna device (A), as a function of this comparison.
  2. Detection method according to Claim 1, characterized in that the calibration signal (S_CAL) is not intelligible to the identification object (ID).
  3. Detection method according to either of the preceding claims, characterized in that it comprises a supplementary step in which:
    - a current (Irm) flowing in the antenna device (A) is measured during the transmission of the calibration signal (S_CAL), and
    - the measured current (Irm) is compared with an initial current (Ith) in order to determine the setting power (PR).
  4. Detection method according to any one of the preceding claims, characterized in that a power (PI, PR) is set with a voltage (UC, UF) having a given duty factor (α1, α2).
  5. Detection method according to the preceding claim, characterized in that the voltage (UC) is a symmetrical signal.
  6. Detection method according to one of Claims 4 and 5, characterized in that the duty factor (α1) is equal to 1/3.
  7. Detection method according to any one of Claims 4 to 6, characterized in that the voltage (UC, UF) is generated by means of a power stage (P) with full-bridge or half-bridge control.
  8. Detection method according to any of the preceding claims, characterized in that the calibration signal (S_CAL) is triggered as a function of a specific event.
  9. Detection method according to the preceding claim, characterized in that the specific event is the accessing of a vehicle.
  10. Detection method according to Claim 8, characterized in that the specific event is a variation in battery voltage.
  11. Detection method according to any one of the preceding claims, characterized in that the fixed threshold value (S0) is a function of the nominal magnetic field (B0).
  12. Detection method according to any one of the preceding claims, characterized in that the zone (ZO) around the antenna device is defined by the nominal magnetic field (B0).
  13. Detection method according to any one of the preceding claims, characterized in that the zone around the antenna device (A) corresponds to a vehicle passenger compartment (VH).
  14. System (SYS) for detecting an identification object (ID) in a zone (ZO) around an antenna device (A), comprising a control device (DC), an antenna device (A) and an identification object (ID), such that:
    - when the identification object (ID) is put into operation, a fixed threshold power value P0, corresponding to a nominal magnetic field B0, starting from which the identification object can receive signals from the antenna device and communicate with an associated control device, is written to the identification object (ID),
    - and such that the control device (DC) is, in the operating mode of the identification object (ID) and of the antenna device, capable of:
    - transmitting a calibration signal (S_CAL), corresponding to a theoretical initial current (Ith), towards the antenna device (A) to determine a setting power (PR),
    - measuring the current flowing in the antenna device during the transmission of the calibration signal (S_CAL),
    - comparing the measured current (Irm) with the theoretical initial current (Ith),
    - determining the setting power (PR) to be applied to the antenna device (A),
    - setting the setting power (PR) with an operating voltage (UF) having a given duty factor,
    - transmitting an operating signal (S_FONC) towards the antenna device (A) corresponding to the setting power (PR) in such a way that the antenna device transmits a specified magnetic field (Be),
    - determining whether or not the identification object (ID) is located in the zone around the antenna device (A), as a function of a comparison made between the magnetic field (Br) received by the identification object (ID) and a nominal magnetic field (B0),
    - the identification object (ID) is capable of measuring the received magnetic field (Br) corresponding to the transmitted magnetic field (Be) and comparing it with the nominal magnetic field.
  15. Antenna device (A) capable of interacting with an identification object (ID), such that:
    - when the identification object (ID) is put into operation, a fixed threshold power value P0, corresponding to a nominal magnetic field B0, starting from which the identification object can receive signals from the antenna device and communicate with an associated control device, is written to the identification object (ID),
    - and such that, in the operating mode of the identification object (ID), it is capable of:
    - receiving a calibration signal (S_CAL), corresponding to a theoretical initial current (Ith) and to a specified initial power (PI),
    - measuring the current flowing in the antenna device during the transmission of the calibration signal (S_CAL),
    - comparing the measured current (Irm) with the theoretical initial current (Ith),
    - determining the setting power (PR) to be applied to the antenna device (A),
    - setting the setting power (PR) with an operating voltage (UF) having a given duty factor,
    - receiving an operating signal (S_FONC) corresponding to a specified setting power (PR) in such a way that a specified magnetic field (Be) is transmitted, and
    - transmitting the operating signal (S_FONC) to the identification object (ID), the latter receiving a magnetic field (Br) that is a function of the magnetic field (Be) transmitted by the antenna device (A).
  16. Control device (DC) capable of interacting with an antenna device (A) and with an identification object (ID), such that, when the identification object (ID) is put into operation, a fixed threshold power value P0, corresponding to a nominal magnetic field B0, starting from which the identification object can receive signals from the antenna device and communicate with an associated control device, is written to the identification object (ID), and such that it comprises a signal transmitter (EM) for, in the operating mode of the identification object (ID),
    - transmitting a calibration signal (S_CAL), corresponding to a theoretical initial current (Ith), towards the antenna device (A) to determine a setting power (PR), and
    - measuring the current flowing in the antenna device during the transmission of the calibration signal (S_CAL),
    - comparing the measured current (Irm) with the theoretical initial current (Ith),
    - determining the setting power (PR) to be applied to the antenna device (A),
    - setting the setting power (PR) with an operating voltage (UF) having a given duty factor,
    - transmitting an operating signal (S_FONC) towards the antenna device (A) corresponding to the specified setting power (PR), in such a way that the antenna device (A) transmits a specified magnetic field (Be).
  17. Control device (DC) according to the preceding claim, characterized in that it additionally comprises a signal receiver (RE) for receiving a response (REP) from the identification object (ID) as a function of a comparison made between a received magnetic field (Br) and a nominal magnetic field (B0).
  18. Control device (DC) according to either of the preceding Claims 16 and 17, characterized in that the comparison is made by the identification object (ID).
  19. Motor vehicle (V) comprising a passenger compartment (VH) in which a control device (DC) according to one of Claims 16 to 18 and an antenna device (A) according to Claim 15 are arranged, the two devices (DC, A) being able to interact with an identification object (ID).
EP07858043.8A 2006-12-22 2007-12-21 Method for detecting an identification object in a vehicle Active EP2143080B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0611343A FR2910751B1 (en) 2006-12-22 2006-12-22 METHOD FOR DETECTING AN IDENTIFICATION OBJECT IN A VEHICLE
PCT/EP2007/064428 WO2008077929A1 (en) 2006-12-22 2007-12-21 Method for detecting an identification object in a vehicle

Publications (2)

Publication Number Publication Date
EP2143080A1 EP2143080A1 (en) 2010-01-13
EP2143080B1 true EP2143080B1 (en) 2013-09-18

Family

ID=38162239

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07858043.8A Active EP2143080B1 (en) 2006-12-22 2007-12-21 Method for detecting an identification object in a vehicle

Country Status (5)

Country Link
US (1) US8773240B2 (en)
EP (1) EP2143080B1 (en)
ES (1) ES2440254T3 (en)
FR (1) FR2910751B1 (en)
WO (1) WO2008077929A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163764A (en) * 2009-11-04 2011-08-25 Valeo Securite Habitacle Method of detecting identification target in vehicle
DE102012016783B4 (en) 2011-09-24 2022-12-15 Volkswagen Aktiengesellschaft determining a position of a mobile device relative to a vehicle
CN106921445A (en) * 2012-03-06 2017-07-04 凯萨股份有限公司 System for constraining the operating parameter of EHF communication chips
EP2688140A3 (en) 2012-07-18 2014-04-30 Aisin Seiki Kabushiki Kaisha Antenna drive apparatus
DE102014102271A1 (en) * 2013-03-15 2014-09-18 Maxim Integrated Products, Inc. Method and device for granting an access permit
US9836717B2 (en) 2014-01-09 2017-12-05 Ford Global Technologies, Llc Inventory tracking system classification strategy
US9633496B2 (en) 2014-01-09 2017-04-25 Ford Global Technologies, Llc Vehicle contents inventory system
US10062227B2 (en) 2014-01-09 2018-08-28 Ford Global Technologies, Llc Contents inventory tracking system and protocol
FR3025641B1 (en) * 2014-09-08 2016-12-23 Valeo Comfort & Driving Assistance METHOD FOR DETECTING AN IDENTIFIER FOR STARTING A MOTOR VEHICLE

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836957C1 (en) * 1998-08-14 1999-09-30 Siemens Ag Theft protection arrangement for motor vehicle
FR2814013B1 (en) * 2000-09-13 2002-10-11 Valeo Electronique METHOD FOR CALIBRATING A HANDS-FREE ACCESS SYSTEM FOR A MOTOR VEHICLE
FR2834344A1 (en) * 2001-12-28 2003-07-04 Siemens Vdo Automotive Hands-free keyless entry badge detecting method for use inside vehicle, has four antennas within vehicle which transmit at low frequency but high amplitude and badges which signal identity and amplitude size received
FR2839785B1 (en) * 2002-05-14 2007-01-05 Delphi Tech Inc VEHICLE HAVING A SIGNAL TRANSMISSION DEVICE
US7046119B2 (en) * 2004-05-19 2006-05-16 Lear Corporation Vehicle independent passive entry system
DE102004059179B4 (en) * 2004-12-08 2006-12-28 Siemens Ag Method for locating a transmitting and receiving device

Also Published As

Publication number Publication date
ES2440254T3 (en) 2014-01-28
WO2008077929A1 (en) 2008-07-03
US8773240B2 (en) 2014-07-08
FR2910751A1 (en) 2008-06-27
FR2910751B1 (en) 2009-04-10
US20090315682A1 (en) 2009-12-24
EP2143080A1 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
EP2143080B1 (en) Method for detecting an identification object in a vehicle
EP3198568B1 (en) Device for controlling locking/unlocking and/or starting of a vehicle
EP3218883A2 (en) Method for detecting an identifier for starting a motor vehicle
FR2813257A1 (en) Passive entry system for vehicles, has vehicle transmitter and receiver which determine whether request for access to vehicle lock is authorized, by comparing strength of current signal from ID device with threshold value
FR2878964A1 (en) METHOD FOR LOCATING A TRANSMITTING AND RECEIVING DEVICE
FR3051306B1 (en) WIRELESS COMMUNICATION SYSTEM
EP1001117B1 (en) System for ensuring the security of a bidirectional data transmission for the access to an enclosed space, in particular for the access to a vehicle
FR3040551A1 (en) METHOD FOR ULTRA HIGH FREQUENCY LOCALIZATION OF A PORTABLE "HAND FREE" ACCESS DEVICE TO A MOTOR VEHICLE AND ASSOCIATED LOCATION DEVICE
WO2020260164A1 (en) Method and means for remotely controlling a secure function of a motor vehicle by means of a mobile communication terminal
WO2019155167A1 (en) Method for detecting a portable user equipment in a predetermined zone, inside or outside a vehicle, by ultra high frequency, associated detection device and user equipment
WO2018154211A1 (en) Detection of the presence of a human hand on an openable panel of a vehicle
FR3047085A1 (en) METHOD FOR ULTRA HIGH FREQUENCY RADIO WAVE LOCATION OF A PORTABLE HANDS-FREE ACCESS AND / OR START DEVICE TO A MOTOR VEHICLE AND ASSOCIATED LOCATION DEVICE
EP3804360B1 (en) Method of detecting an identifier inside or outside an automotive vehicle
FR2983808A1 (en) METHOD FOR CHARACTERIZING A DEVICE PORTABLE BY AN ONBOARD ANTENNA IN A MOTOR VEHICLE
WO2022214482A1 (en) Method for activating a vehicle function and associated activation device
EP1495541B1 (en) Method for interpretation of a radio-electrical command
EP2115885B1 (en) Signal transmission/reception device
EP2125450B1 (en) Method and system for detecting an identification object in a vehicle
FR3120939A1 (en) METHOD FOR DETERMINING THE POSITION OF PORTABLE EQUIPMENT IN RELATION TO A MOTOR VEHICLE AND ASSOCIATED PORTABLE EQUIPMENT
FR3107347A1 (en) Angle sensor for motor vehicles.
WO2022269071A1 (en) Method for detecting the opening of opening elements of a motor vehicle, and associated detection device
WO2022048817A1 (en) Method for activating a function of a vehicle via an ultrawide band with an item of portable user equipment, associated system and device for activating a function
FR3069348A1 (en) METHOD FOR IDENTIFYING A USER OF A MOTOR VEHICLE
WO2023066736A1 (en) Ultra-wideband-based method for activating a function of a vehicle with a portable user equipment item, associated system and device for activating a function
WO2020152109A1 (en) Method for activating a function of a vehicle by ultra high frequency with an item of portable user equipment and device for activating an associated function

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100201

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO SECURITE HABITACLE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 633127

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007032973

Country of ref document: DE

Effective date: 20131114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2440254

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130918

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 633127

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131219

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007032973

Country of ref document: DE

BERE Be: lapsed

Owner name: VALEO SECURITE HABITACLE

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20140619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131221

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007032973

Country of ref document: DE

Effective date: 20140619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131221

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181211

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181218

Year of fee payment: 12

Ref country code: IT

Payment date: 20181210

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190125

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007032973

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191221

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191222

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 17